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Abstract

We modify the definable ultrapower construction of Kanovei and
Shelah (2004) to develop a ZF -definable extension of the continuum
with transfer provable using countable choice only, with an additional
mild hypothesis on well-ordering implying properness. Under the same
assumptions, we also prove the existence of a definable, proper elemen-
tary extension of the standard superstructure over the reals.

Keywords: definability; hyperreal; superstructure.

1 Introduction

The usual ultrapower construction of a hyperreal field R
ω/U is not func-

torial (in the category of models of set theory) due to its dependence on
a choice of a free ultrafilter U , which can be obtained in ZFC only as an
application of the axiom of choice, but not as an explicitly definable set-
theoretic object. Kanovei and Shelah [12] developed a functorial alternative
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to this, by providing a construction of a definable hyperreal field, which we
refer to below as the KS construction.

The KS construction was analyzed in [15], Section 1G of the Online
2007 edition, and generalized in many ways in [5, 10, 13], [11, Chapter 4]
among others. We give [14] as the source of the problem of a uniquely
definable nonstandard real line, and [18], [24], [3], [7] as basic references in
nonstandard matters.

Nonstandard analysis is viewed by some as inherently non-constructive.
One of the reasons is that nonstandard models are typically presented in
terms of an unspecified choice of a free ultrafilter, which makes the resulting
ultrapower hopelessly non-definable. In fact, as Luxemburg [18] observed,
if there is a non-standard model of the reals, then there is a free ultrafilter
on the natural numbers ω . The observation that elements of a nonstandard
extension ∗A correspond to ultralters on A was first exploited in detail by
Luxemburg [17].

To circumvent the unspecified choice of a free ultrafilter, the KS con-
struction starts with the collection of ultrafilters U on ω parametrized by
surjective maps from a suitable ordinal onto such ultrafilters U . Such maps
are ordered lexicographically. This generates a definable linear ordering of
ultrafilters in which each of them is included in many copies. The tensor
product is applied to merge the ultrafilters into a definable ultrafilter in the
algebra of finite support product sets.

Thus, the KS construction can be viewed as a functor which, given a
model of set theory, produces a definable extension of the reals in the model.

The KS construction in [12] (as well as its modifications as in [5, 13])
was originally designed to work in Zermelo–Fraenkel set theory ZFC with
choice. However for it prima facie to yield the expected result, it is sufficient
to assume the wellorderability of the reals. Let WO(R) be the following
statement: the continuum 2ω = {X : X ⊆ ω} is wellorderable. Thus it
emerges that the theory ZF + WO(R) is sufficient for the KS construction
to yield a definable proper elementary extension of the reals.

The goal of this note is to weaken this assumption.

2 The result

Consider the following two consequences of the axiom of choice in ZF :

ACω(R): countable AC for sets of reals, that is, any sequence {Xn}n<ω of
sets ∅ 6= Xn ⊆ R admits a choice function;

WOB: there exists a free ultrafilter over ω with a wellorderable base. (A
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set B ⊆ U is a base of an ultrafilter U over ω , if and only if there
is no ultrafilter U ′ 6= U over ω with B ⊆ U ′ . In such case we
write U = [B] .)

Theorem 1 (ZF ). There exists an extension ∗
R of the reals R , such that

both ∗
R and a canonical embedding x 7−→ ∗x from R into ∗

R are presented

by explicitly definable set-theoretic constructions, and in addition :

(i) ACω(R) implies that ∗
R is an elementary extension, in the sense of

the language L (R) with symbols for all finitary relations on R ;

(ii) WOB implies that ∗
R is a proper extension of R , containing in-

finitesimals and infinitely large numbers.

It follows by (i) that, instead of WO(R) , the axiom ACω(R) can be used
to establish elementarity. It emerges that proving the transfer principle for
the definable extension requires no more choice than proving, for instance,
the σ -additivity of the Lebesgue measure; see [9]. Similarly, by (ii), WOB

successfully replaces WO(R) in the proof of properness.
Quite obviously WO(R) implies ACω(R) and WOB in ZF . The failure

of the inverse implication is dealt with in 4.1 below.
The proof of Theorem 1 appears in Section 3. We also show, in 4.3,

how the theorem can be generalized in order to obtain even a nonstandard
superstructure over ∗

R .

3 What it takes: array of ultrafilters

Let an array of ultrafilters be any sequence {Da}a∈A , where A = 〈A,<A〉
is a linearly ordered set and each Da is an ultrafilter over ω .

Proposition 2 (in ZF + ACω(R)). Assume that {Da}a∈A is a definable

array of ultrafilters over ω , with at least one free ultrafilter Da0 . Then

there is a definable (as in Theorem 1) proper extension ∗
R of R , elementary

w. r. t. the language L (R) containing all finitary relations on R .

Proof (sketch, based on the proof in [12]). The following is defined:

− the index set I = ωA = {x : x is a map A → ω} ;

− the algebra X = X (A) of finite-support subsets of I = ωA , so that
a set X ⊆ ωA is in X if and only if there is a finite u ⊆ A such that

∀x, y ∈ ωA
(

x ↾u = y ↾u =⇒ (x ∈ X ⇐⇒ y ∈ X)
)

;
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− the collection F = F (A) of finite-support functions f : I → R , so
that f : I → R belongs to F if and only if there is a finite set u ⊆ A
such that

∀x, y ∈ ωA
(

x ↾u = y ↾u =⇒ (f(x) = f(y))
)

.

The tensor, or Fubini product D =
⊗

a∈ADa consists then of all sets X ⊆ I
such that for a finite subset u = {a1 <A · · · <A an} ⊆ A we have:

Dankn . . . Da2k2 Da1k1 (〈k1, . . . , kn〉 ∈↑ X) ,

where 〈k1, . . . , kn〉 ∈↑ X means that every x ∈ I satisfying x(a1) = k1, . . . ,
x(an) = kn belongs to X , and Dak Φ(k) means that the set {k : Φ(k)}
belongs to Da . It turns out that D is an ultrafilter in the algebra X , which
allows to define the ultrapower ∗

R = F/D = {[f ]D : f ∈ F} , where [f ]D =
{g ∈ F : f =D g} and f =D g means that {x ∈ I : f(x) = g(x)} ∈ D . All
finitary relations in L (R) extend to ∗

R naturally.
In addition, we send every real r to the equivalence class ∗r = [cr]D of

the constant function cr ∈ F with value r . The axiom ACω(R) is strong
enough to support the ordinary proof of the  Loś lemma, and hence r 7−→ ∗r
is an elementary embedding in the sense of the language L (R) . To prove
that the embedding is proper, make use of the assumption that at least one
of Da is a free ultrafilter. Finally, the extension ∗

R is definable since the
given array of ultralters {Da}a∈A is definable by hypothesis.

Proof (Theorem 1). To define a suitable array of ultrafilters, let ϑ be the
least ordinal such that for any wellorderable set Z ⊆ R there is a surjective

map a : ϑ
onto
−→ Z . Let A consist of all maps a : ϑ → P(ω) such that the set

Ba = ran a = {a(γ) : γ < ϑ} is a base of an ultrafilter on ω , and let Da =
[Ba] be this ultrafilter. The set A is ordered lexicographically: a <A b if and
only if there exists an ordinal γ < ϑ such that a ↾ γ = b ↾ γ and a(γ) < b(γ)
in the sense of the lexicographical linear order < on P(ω) . Then {Da}a∈A
is a definable array of ultrafilters. Assuming WOB, it contains at least one
free ultrafilter Da , and we apply Proposition 2.

4 Remarks

Here we add some related remarks, starting with a model of ZF + ACω +
WOB in which the continuum is not wellorderable. This demonstrates that
Theorem 1 is an actual strengthening of the key result of [12].
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4.1. Separating WOB + ACω from WO(R) . Pincus and Solovay con-
jectured in [20, p. 89] that iterated Sacks extensions may be useful in the
construction of choiceless models with free ultrafilters. Working in this di-
rection, we let M be an ω1 -iterated Sacks extension of L , the constructible
universe, as in [1]. Let N be the class of all sets hereditarily definable from
an ω -sequence of ordinals in M . Then WOB is true in N since some free
ultrafilters in L (basically, all selective ultrafilters) remain ultrafilter bases
in M and in N by [1, Section 4], and ACω is true as well (even the principle
of dependent choices DC holds). Meanwhile, WO(R) fails in N (2ω is not
wellorderable) by virtue of arguments, based on the homogeneous structure
of the Sacks forcing, and similar to those used in the classical studies of the
choiceless Solovay model S′ as in [23, Part III, proof of Theorem 1].

If we let M be an ω2 -iterated Sacks extension of L , then the class N of
all sets that are hereditarily definable from an ω1 -sequence of ordinals in M ,
still will be a model of WOB + ¬WO(R) , in which even DCω1

and ACω1

hold instead of the simple DC and ACω. Longer iterations make little sense
here as each further Sacks real collapses all smaller cardinals down to ω1 .

We know nothing about any model of WOB+ACω(R) in which WO(R)
fails, different from the ones just described. (However see 4.5 below.) This
can be a difficult problem, yet not uncommon in studies of choiceless models.

4.2. Keisler-style representation. Keisler’s influential monograph [15]
contains (in Section 1G) a somewhat modified exposition of the construction
of a definable nonstandard extension of [12], by an explicit amalgamation of
all ultrapowers of R via different ultrafilters on ω into one large hyperreal
field. A similar Keisler-style modification of the construction readily works
in the ZF + ACω(R) + WOB setting.

4.3. Superstructure over ∗
R . Let V (R) =

⋃

n≥0
Vn(R) be the super-

structure over the reals, where V0(R) = R and Vn+1(R) = Vn(R)∪P(Vn(R))
for all n , see [2, Section 4.4]. To build a nonstandard superstructure over ∗

R

as in Section 3, we let Fn be the set of all functions f : ωA → Vn(R) of
finite support, and then define the ultrapower ∗Vn(R) = Fn/D and the el-
ementary embedding x 7−→ ∗x from Vn(R) to ∗Vn(R) as above. (And we
need ACω for subsets of Vn(R) to prove the elementarity.) Then each ele-
ment of ∗Vn(R) can be identified with a certain subset of ∗Vn−1(R) or an ele-
ment of ∗Vn−1(R) , so that each ∗Vn(R) emerges as a subset of Vn(∗R) . This
completes the nonstandard superstructure construction under WOB+ACω.

4.4. Another definable choiceless ultrapower. Consider the basic Cohen

model L(A) , obtained by adding a set A = {an : n < ω} of Cohen generic
reals an to L , [8, 5.3]. (Not to be confused with the Feferman model [4],
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adding all an but not A .) The set A belongs to L(A) but the map n 7−→ an
does not. ACω badly fails in L(A) as A is an infinite Dedekind finite set.
Yet L(A) contains a free ultrafilter U over ω , see [21] for a short proof.

Let ∗
R = R

ω/U be the associated ultrapower. Then ∗
R is not an elemen-

tary extension of R in the full relational language L (R) as in Theorem 1,
since the formula “∀n ∈ ω ∃x (x codes an n -tuple of elements of A )” is true
for R but false for ∗

R . However ∗
R is an elementary extension of R with

respect to the sublanguage L ′(R) of L (R) , containing only real-ordinal
definable finitary relations on R . Note that L ′(R) is a sufficiently rich
language to enable an adequate development of nonstandard real analysis.

Both U and ∗
R are definable in L(A) by a set theoretic formula with

the only parameter A . And this is probably all we can do in L(A) since
the model contains no real-ordinal definable elementary extensions of R .

4.5. A possible WOB model.

One may want to extend L(A) as in 4.4 by a P (U) -generic real c =
c0 ∈ 2ω , where P (U) is the Mathias forcing with infinite conditions in U .
If L(A)[c0] happens to have an {A, a0} -definable ultrafilter U1 over ω
with U ⊆ U1 then let c1 ∈ 2ω be a P (U1) -generic real over L(A)[c0] . Ex-
tending this forcing iteration as in [16, A10 in Chapter 8], one may hope to
get a final extension of L(A) with a wellordered ultrafilter base {cξ : ξ < ω1}
but with A still not wellorderable.

4.6. Least cardinality.

What is the least possible cardinality of a definable hyperreal field? A
rough estimate for the general definable extension in [12] under AC yields
≤ exp3(ℵ0) . As for the definable extension ∗

R in Section 3 of this paper,
if the ground set universe is the ω2 -iterated Sacks extension of L as in 4.1
then card(∗R) = 2ℵ0 = ℵ2 , which is minimal.

5 Conclusions

Analysis with infinitesimals presupposes the existence of an extended math-
ematical universe which, in the tradition of Robinson and Zakon [22], is
typically understood as an extended superstructure over the reals, although
for some basic applications an extension of the set of reals suffices. Even
for certain more sophisticated applications, it is enough for this extension
of the mathematical universe to satisfy the Transfer Principle, which means
that it is an elementary extension in the sense of model theory.

We have shown that one can find definable extensions of both the set of
reals and the superstructure over the reals; more precisely, our extensions are
definable by purely set-theoretic means without recourse to well-ordering,
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and have the following properties: (I) one can prove the Transfer Principle

for such extensions from Zermelo–Fraenkel set theory with merely Countable
Choice; (II) the existence of infinitesimals and infinitely large numbers in
those extensions follows from a mild well-ordering assumption.

The property of countable saturation, important for some advanced ap-
plications, is not asserted, but can be achieved by the ω1 -iteration of the
given extension construction, as described in [12, Section 4].

Our results may be of interest to practitioners working with fragments of
nonstandard analysis. For instance, the Transfer Principle plus the existence
of an infinitely large integer is all that is required to develop Edward Nelson’s
[19, p. 30] minimal nonstandard analysis or the related minimal Internal Set

Theory [6, pp. 3, 4, 104]. Such fragments of nonstandard analysis have the
potential for application in diverse fields, ranging from stochastic calculus
and mathematical finance to theoretical quantum mechanics [6].
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