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THERE ARE NO INTERMEDIATE STRUCTURES BETWEEN

THE GROUP OF INTEGERS AND PRESBURGER ARITHMETIC

GABRIEL CONANT

Abstract. We show that if a first-order structure M, with universe Z, is an
expansion of (Z,+, 0) and a reduct of (Z,+, <, 0), then M must be interdefin-
able with (Z,+, 0) or (Z,+, <, 0).

1. Introduction

Suppose M1 and M2 are first-order structures, with the same underlying uni-
verse M , but possibly in different languages. We say M1 is a reduct of M2 (equiv-
alently, M2 is an expansion of M1) if, for all n > 0, every subset of Mn definable
in M1 is definable in M2, where definability always means with parameters from
M . We say M1 and M2 are interdefinable if each structure is a reduct of the other.
The following is our main result.

Theorem 1.1. Suppose M is an expansion of (Z,+, 0) and a reduct of (Z,+, <, 0).
Then M is interdefinable with either (Z,+, 0) or (Z,+, <, 0).

The motivation for this result is the growing interest in “tame” expansions of the
group (Z,+, 0), which can be seen as a discrete analog to the prolific study of tame
expansions of the real field. Since (Z,+, 0) is a stable U -rank 1 group, there are a
wide variety of model theoretic properties one can use as a notion of tameness (see,
e.g., [3], [4], [8], [9], [12], [16]). The following questions, which more specifically
motivate Theorem 1.1, involve tameness arising from stability and dp-minimality.

Question 1.2.

(a) (Marker 2011) Is there a proper expansion M of (Z,+, 0) such that M is a
reduct of (Z,+, <, 0) and Th(M) is stable?

(b) (Aschenbrenner, Dolich, Haskell, Macpherson, Starchenko [3] 2013) Is every
dp-minimal expansion of (Z,+, 0) a reduct of (Z,+, <, 0)?

From a more general perspective, these questions can be viewed as initial incur-
sions into the following ambitious projects.

Problem 1.3.

(a) Classify the stable expansions of (Z,+, 0).
(b) Classify the dp-minimal (i.e. dp-rank 1) expansions of (Z,+, 0).

We refer the reader to [17] for background on stability, and [10], [22] for back-
ground on dp-rank in NIP theories. While these notions provide motivation for our
work, the proof of Theorem 1.1 does not require any familiarity with them.
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The main reason that Presburger arithmetic (Z,+, <, 0) arises in both Questions
1.2(a) and 1.2(b) is that it is a canonical example of a “tame” proper expansion
of (Z,+, 0) (versus a “wild” expansion like the ring (Z,+, ·, 0, 1)). For instance,
(Z,+, <, 0) is quasi-o-minimal, and thus dp-minimal (see [6], [10]). Moreover, de-
finable sets in (Z,+, <, 0) enjoy a cell decomposition similar to those in o-minimal
structures (this result is due to Cluckers [7]; we give a brief summary in Section 6).

At the time Marker posed Question 1.2(a), there were no known examples of
proper stable expansions of (Z,+, 0). Given the known tameness of (Z,+, <, 0),
and well-understood structure of Presburger definable sets, it became natural to
ask if such sets could produce proper stable expansions of (Z,+, 0). However,
as (Z,+, <, 0) is unstable, Theorem 1.1 immediately implies a negative answer to
Question 1.2(a). We should remark that proper stable expansions of (Z,+, 0) are
now known to exist (due to Palacín and Sklinos [16] and Poizat [19], independently).
However, in recent joint work with Pillay [8], we show there are no proper stable
expansions of (Z,+, 0) of finite dp-rank. This provides an alternative proof of the
answer to Question 1.2(a) which, unlike this paper, relies on technology from stable
group theory.

Motivation for Question 1.2(b) comes from several negative results on tameness in
expansions of (Z,+, <, 0). Specifically, while proper NIP expansions of (Z,+, <, 0)
exist (e.g. by [18]), there are many results showing that such expansions do not
satisfy various refinements of NIP. For example, Belegradek, Peterzil, and Wagner
[6] showed in 2000 that (Z,+, <, 0) has no proper quasi-o-minimal expansions.
This was generalized in 2013 to dp-minimal expansions by Aschenbrenner, Dolich,
Haskell, Macpherson, and Starchenko [4], and finally in 2016 to strong (which
includes finite dp-rank) expansions by Dolich and Goodrick [9]. Each of these
results relies on a powerful fact, due to Michaux and Villemaire [15], that any
proper expansion of (Z,+, <, 0) defines a unary set A ⊆ Z, which is not definable
in (Z,+, <, 0). Until very recently (Z,+, <, 0) was the only documented proper
dp-minimal expansion of (Z,+, 0) and so, toward Problem 1.3(b) and given the
previously quoted results, it is natural to consider expansions of (Z,+, 0) obtained
as reducts of (Z,+, <, 0). By Theorem 1.1 however, there are no such structures
other than (Z,+, 0) and (Z,+, <, 0), and so a positive answer to Question 1.2(b)
would require a genuinely different dp-minimal expansion of (Z,+, 0). In fact, such
expansions have recently been discovered by Alouf and D’Elbée [1].

The following corollary summarizes the progress Theorem 1.1 makes with respect
to Question 1.2(a) (answered in the negative), Question 1.2(b), and the more general
projects in Problem 1.3.

Corollary 1.4.

(a) Fix n > 0 and suppose A ⊆ Zn is definable in Presburger arithmetic. Then
either A is definable in (Z,+, 0) or, together with the group structure, A defines
the ordering on Z and thus defines any Presburger set.

(b) Suppose M is a stable expansion of (Z,+, 0). If A ⊆ Zn is definable in both M
and (Z,+, <, 0), then A is definable in (Z,+, 0).

(c) Suppose M is a dp-minimal (or even just strong) expansion of (Z,+, 0), which
is not interdefinable with (Z,+, <, 0). If A ⊆ Zn is definable in both M and
(Z,+, <, 0), then A is definable in (Z,+, 0).

We again emphasize that part (c) also requires the results cited above from [4]
and [9] on expansions of (Z,+, <, 0). The dichotomy in part (a) for Presburger
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definable sets uncovers a similar phenomenon as a result of Marker [13]: if S ⊆ R2n

is a semi-algebraic set (i.e. definable in (R,+, ·,≤, 0, 1)) then, interpreted as a
subset of Cn, S is either constructible (i.e. definable in (C,+, ·, 0, 1)) or, together
with the complex field structure, S defines any semi-algebraic set.

Finally, we emphasize that the analog of Theorem 1.1 for nonstandard models of
Th(Z,+, 0) fails. For example, if (G,+, <, 0) is a saturated model of Th(Z,+, <, 0),
then we obtain intermediate structures strictly between (G,+, 0) and (G,+, <, 0)
by expanding (G,+, 0) with the ordering on some interval [0, α], where α ∈ G>0 is
nonstandard. We can similarly obtain counterexamples using other groups: expand
(Q,+, 0) by the ordering on the interval [0, 1] to obtain an intermediate structure
strictly between (Q,+, 0) and (Q,+, <, 0).

Question 1.5. Let (G,+, <, 0) be a model of Th(Z,+, < 0) or Th(Q,+, <, 0). Is
it true that any proper expansion of (G,+, 0), which is a reduct of (G,+, <, 0),
defines the ordering on some interval? What about other ordered abelian groups?

The remainder of this paper is entirely devoted to the proof of Theorem 1.1.
Therefore, we end this introduction with a brief outline of the argument. Section
2 gives basic definitions and reformulates Theorem 1.1 as a statement about indi-
vidual definable sets, namely: if A ⊆ Zn is definable in (Z,+, <, 0) then either A is
definable in (Z,+, 0) or the ordering on Z is definable in the expansion (Z,+, 0, A)
(see Theorem 2.4). The proof then proceeds by induction on n. In Section 3 we
prove the base case n = 1, which is a straightforward consequence of quantifier
elimination in an appropriate definitional expansion of (Z,+, <, 0). We then turn
to several preliminaries needed for the induction step. In Section 4, we use the
classification of sets definable in (Z,+, 0) to give a kind of cell decomposition for
(Z,+, 0), where “cells” are quasi-cosets, i.e. cosets of subgroups with some lower
rank piece removed. In Section 5, we prove two consequences of a result of Kadets
[11] on the inradius of a polyhedron P in Rn (i.e. the supremum over the radii of
n-balls contained in P ). Polyhedra arise naturally in our situation because of the
fact that if f : Zn → Z is definable in (Z,+, <, 0), then there is a decomposition of
Zn into finitely many subsets definable in (Z,+, <, 0) such that, on each subset, f
is the restriction of an affine transformation from Rn to R (defined over Z).

Section 7 begins the technical work toward the induction step of the proof of the
main result. In particular, we isolate a subclass of definable sets in (Z,+, <, 0) satis-
fying certain structural properties, and show that it suffices to only consider sets in
this special subclass. Roughly speaking, this subclass is defined by specifying con-
gruence classes, sorting infinite fibers from finite fibers, and uniquely identifying the
endpoints of the intervals in fibers with a finite collection of affine transformations.
Finally, in Section 8, we combine all of these tools to finish the main proof.

Acknowledgements. I would like to thank Dave Marker for first introducing me
to this problem, and for many helpful conversations. I also thank Anand Pillay,
Sergei Starchenko, Somayeh Vojdani, and Erik Walsberg.

2. Definitions and reformulation of main result

Given a structure M in a first-order language L, we say that a subset A ⊆ Mn

is definable in M to mean A is L-definable with parameters from M .

Definition 2.1. Suppose M1 and M2 are first-order structures, with the same
underlying universe M , in first-order languages L1 and L2, respectively.
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(1) We say M1 is a reduct of M2 (equivalently, M2 is an expansion of M1)
if, for all n > 0, every subset of Mn, which is definable in M1, is also
definable in M2.

(2) We say M1 and M2 are interdefinable if M1 is a reduct of M2 and M2

is a reduct of M1.

Let Z denote the set of integers, and N the set of nonnegative integers. We let
Z∗ denote Z ∪ {-∞,∞}, and extend the ordering on Z to Z∗ in the obvious way.

Given a sequence of sets (A1, . . . , An), with Ai ⊆ Zni , we define the expansion
(Z,+, 0, A1, . . . , An) of (Z,+, 0) where, with a slight abuse of notation, Ai is an
ni-ary relation symbol interpreted as Ai.

Definition 2.2. Let (A1, . . . , Am) and (B1, . . . , Bn) be sequences of sets, with
Ai ⊆ Zmi and Bi ⊆ Zni .

(1) We say (A1, . . . , Am) is definable from (B1, . . . , Bn) if (Z,+, 0, A1, . . . , Am)
is a reduct of (Z,+, 0, B1, . . . , Bm).

(2) We say (A1, . . . , Am) and (B1, . . . , Bn) are interdefinable if the structures
(Z,+, 0, A1, . . . , Am) and (Z,+, 0, B1, . . . , Bn) are interdefinable.

It is worth noting that, in the previous definition, we have been a little careless
with our use of the word definable. In particular, it would be more accurate to
say, for instance, “(A1, . . . , Am) is definable from (B1, . . . , Bn) relative to (Z,+, 0)”.
However, throughout the paper we focus exclusively on expansions of (Z,+, 0), and
therefore always assume that we can use the group language when defining sets.

Our two main structures are (Z,+, 0) and (Z,+, <, 0). The latter structure is
often referred to as Presburger arithmetic, since the theory of (Z,+, <, 0) was first
formally axiomatized by Presburger [20] in 1929. We use the following terminology.

Definition 2.3. Fix n > 0 and a subset A ⊆ Zn.

(1) We say A is a Presburger set if A is definable in (Z,+, <, 0).
(2) We say A defines the ordering if N is definable in (Z,+, 0, A).

We now restate Theorem 1.1.

Theorem 2.4. Given n > 0, if A ⊆ Zn is a Presburger set then either A is
definable in (Z,+, 0) or A defines the ordering. In other words, (Z,+, 0, A) is
either interdefinable with (Z,+, 0) or with (Z,+, <, 0).

It is worth again emphasizing that, for us, “interdefinable” means with param-
eters. For example, 1 is definable in (Z,+, <, 0) without parameters, but not in
(Z,+, 0). Of course, any element of Z is definable from 1 without parameters, and
so one could avoid this issue by replacing (Z,+, 0) with (Z,+, 0, 1).

Given n > 0 and x, y ∈ Z, we write x ≡n y if x− y ∈ nZ. For a fixed n > 0, the
binary relation ≡n is definable in (Z,+, 0). The main model theoretic ingredients
necessary for the proof of Theorem 2.4, are the facts that (Z,+,−, 0, (≡n)n>0)
and (Z,+,−, <, 0, 1, (≡n)n>0) both have quantifier elimination (see, respectively,
Exercise 3.4.6 and Corollary 3.1.21 of [14] for details). As a result, definable sets
in (Z,+, 0) and (Z,+, <, 0) can be described explicitly (see, respectively, Fact 4.1
and Fact 6.3).

The proof of Theorem 2.4 will proceed by induction on n > 0. The base case
n = 1 can be handled easily, and so we will dispense with it right away.
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3. The one-dimensional case

In this section, we prove Theorem 2.4 for the case n = 1. The main tool is the
following description of Presburger subsets of Z.

Proposition 3.1. Suppose A ⊆ Z is a Presburger set. Then

A = F ∪
k
⋃

i=1

{ai + bin : n ∈ N},

for some finite set F , k ∈ N (possibly 0), and a1, . . . , ak, b1, . . . , bk ∈ Z.

The proof is omitted. It follows fairly easily from quantifier elimination for
Presburger arithmetic, and even more easily from cell decomposition for Presburger
sets (due to Cluckers [7], see Section 6). We have formulated Proposition 3.1
to mimic a recent result of Dolich and Goodrick [9, Theorem 2.18], which is a
generalization to archimedean ordered abelian groups with strong theories.

Definition 3.2. Given a, b ∈ Z∗ and m, c ∈ N, with c < m, define

[a, b]cm = {x ∈ Z : a ≤ x ≤ b, x ≡m c}.

Corollary 3.3. Suppose A ⊆ Z is a Presburger set. Then either A is definable in
(Z,+, 0) or A defines the ordering.

Proof. Since any finite set is definable in (Z,+, 0), we may assume A is infinite.
Since A is interdefinable with A△F for any finite F ⊆ Z, we may use Proposition
3.1 to assume

A =

k
⋃

i=1

(-∞, 0]cimi
∪

l
⋃

i=1

[0,∞)di
ni
,

where k, l ∈ N (possibly 0), and ci, di,mi, ni ∈ N with ci < mi and di < ni. Let
m be the least common multiple of m1, . . . ,mk, n1, . . . , nl. Then, by adding more
terms to the union, we may write

A =

k∗
⋃

i=1

(-∞, 0]cim ∪
l∗
⋃

i=1

[0,∞)di

m

where 0 ≤ ci < m and 0 ≤ dj < m for all 1 ≤ i ≤ k∗ and 1 ≤ j ≤ l∗.
Suppose that there is some 1 ≤ j ≤ l∗ such that dj 6= ci for all 1 ≤ i ≤ k∗. Then

x ∈ N ⇔ dj +mx ∈ A,

and so A defines the ordering. By a similar argument, if there is some 1 ≤ i ≤ k∗
such that ci 6= dj for all 1 ≤ j ≤ l∗, then A defines the ordering. So we may assume
{c1, . . . , ck∗

} = {d1, . . . , dl∗}. Then

A =

k∗
⋃

i=1

(-∞,∞)cim,

which is definable in (Z,+, 0). �

From the proof, we have the following useful observation.

Corollary 3.4. Suppose A ⊆ Z is an infinite Presburger set, which is bounded
above or bounded below. Then A defines the ordering.
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4. Quasi-coset decomposition in (Z,+, 0)

In the induction step of the proof of Theorem 2.4, we will use the induction
hypothesis to conclude that if a Presburger set A ⊆ Zn+1 does not define the
ordering, then the projection of A to Zn is definable in (Z,+, 0). Therefore, in this
section, we develop a certain decomposition of subsets of Zn definable in (Z,+, 0).
We remind the reader that when we say “definable”, with no other specification, we
mean “definable in (Z,+, 0)”.

We start with the following classical fact (see, e.g., [17] or [21]).

Fact 4.1. A set A ⊆ Zn is definable in (Z,+, 0) if and only if it is a (finite) Boolean
combination of cosets of subgroups of Zn.

The goal of this section is to decompose definable sets in Zn into finite unions
of definable pieces, such that each piece is “essentially" a coset (specifically, a coset
with some smaller dimensional set removed).

Recall that, given n > 0, Zn is an example of a free abelian group, meaning it is
an abelian group generated by a linearly independent basis of unique cardinality,
called the rank of the group. Recall also that any subgroup of a free abelian group
is free abelian, which can be shown using the following classical fact (see, e.g., [2,
Theorem 12.4.11]).

Fact 4.2. Suppose G is a free abelian group of rank n and H ≤ G is a nontrivial
subgroup. Then there is a basis {ā1, . . . , ān} of G, an integer k ≤ n, and positive
integers d1, . . . , dk, such that di divides di+1 for all 1 ≤ i < k and {d1ā1, . . . , dkāk}
is a basis for H (in particular, H is free abelian of rank k).

Note that this fact can be used to prove one direction of Fact 4.1, namely, that
Boolean combinations of cosets are definable. The following corollary of Fact 4.2
will be useful.

Corollary 4.3. Suppose G is a free abelian group of rank n and H ≤ G is a
subgroup of rank k ≤ n. Then [G : H ] is finite if and only if k = n.

We now define a notion of rank for arbitrary subsets X ⊆ Zn. As usual, the
rank of the trivial subgroup {0} is 0.

Definition 4.4.

(1) If C ⊆ Zn is a coset of a rank k subgroup of Zn, then we set rk(C) = k.
(2) Given a nonempty set X ⊆ Zn, define the rank of X , denoted rk(X), to be

the minimum integer k ∈ {0, 1, . . . , n} such that X is contained in a finite
union of cosets of rank at most k. Set rk(∅) = -1.

Using Corollary 4.3, the reader may check that if C ⊆ Zn is a coset then the
rank of C, as defined in part (1) of the previous definition, agrees with the rank as
defined in part (2). So our notion of rank is well-defined. From the definitions, it
follows that rk(X ∪ Y ) = max{rk(X), rk(Y )} for any X,Y ⊆ Zn.

Definition 4.5. Fix linearly independent α = {ā1, . . . , āk} ⊂ Zn, and let G =
〈ā1, . . . , āk〉 ≤ Zn.

(1) Define the group isomorphism Φα : G → Zk such that

Φα(ā
t) = (0, . . . , 0, 1, 0, . . . , 0) ∈ Zk,

where 1 is in the tth coordinate.
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(2) Fix c̄ ∈ Zk and set C = c̄ + G. Define the bijection Φα,c̄ : C → Zk such
that Φα,c̄(x̄) = Φα(x̄− c̄).

Note that if α is a basis for a rank k subgroup G ≤ Zn then Φα is a an isomor-
phism of free abelian groups, and therefore can be represented as multiplication
by an integer matrix (see [2, Chapter 12]). In particular, if c̄ ∈ Zn then Φα,c̄ is
definable in (Z,+, 0) (as a function on the definable set C = c̄+G).

Remark 4.6. While it will not be necessary for our results, it is also worth pointing
out that if X ⊆ Zn is definable in (Z,+, 0), then rk(X) = U(X) (see [17]). In
particular, Lemma 4.7 and Corollary 4.8, which discuss rank-preserving properties
of definable bijections on definable sets, are very specific manifestations of the
fact that U -rank is preserved this way in general. To avoid bringing in this extra
technology, we give the (short) proofs of these two results.

Lemma 4.7. Let G ≤ Zn be a subgroup with basis α = {ā1, . . . , āk}. Fix c̄ ∈ Zn,
and let C = c̄ + G. Then the map D 7→ Φα,c̄(D) is a rank-preserving bijection
between the collection of cosets D in Zn such that D ⊆ C, and the collection of
cosets in Zk.

Proof. First, if D is a coset in Zn and D ⊆ C then D = c̄+ ḡ +H for some ḡ ∈ G

and subgroup H ≤ G. A direct calculation then shows Φα,c̄(D) = Φα(ḡ + H) =
Φα(ḡ)+Φα(H). So Φα,c̄ is injective from the collection of cosets D in Zn such that
D ⊆ C, to the collection of cosets in Zk. Note also that, since Φα is an isomorphism,

rk(Φα,c̄(D)) = rk(Φα(H)) = rk(H) = rk(D).

Finally, to show surjectivity, fix K ≤ Zk and ū ∈ Zk. Let H = Φ-1
α (K) ≤ G and

ḡ = Φ-1
α (ū) ∈ G. Then, setting D = c̄ + ḡ + H , we have D ⊆ C and Φα,c̄(D) =

ū+K. �

Corollary 4.8. Let G ≤ Zn be a subgroup with basis α = {ā1, . . . , āk}. Fix c̄ ∈ Zn,
and let C = c̄+G. If X ⊆ C then rk(Φα,c̄(X)) = rk(X).

Proof. If X ⊆ C then rk(X) and rk(Φα,c̄(X)) are both bounded above by k =
rk(C). Moreover, in the computation of rk(X) it suffices to only consider cosets
of Zn which are subsets of C. Given m ≤ k and a subset X ⊆ C, it follows from
Lemma 4.7 that Φα,c̄(X) is contained in a finite union of cosets in Zk of rank at
most m if and only if X is contained in a finite union of cosets in Zn, which are
subsets of C and have rank at most m. By definition, rk(Φα,c̄(X)) = rk(X). �

Definition 4.9. Given 0 ≤ k ≤ n, a subset X ⊆ Zn is a quasi-coset of rank k

if X = C\Z, where C is a coset of rank k and Z ⊆ C is definable with rk(Z) < k.

Note that any quasi-coset in Zn is definable in (Z,+, 0) by Fact 4.1.

Theorem 4.10. For any n > 0, if A ⊆ Zn is nonempty and definable in (Z,+, 0),
then A can be written as a finite union of quasi-cosets in Zn.

Proof. For brevity, we call a definable subset A ⊆ Zk good if either A = ∅ or A can
be written as a finite union of quasi-cosets in Zn. By induction on n ≥ 0, we prove
that any definable subset in Zn is good (where our convention is Z0 = {0}). The
base case n = 0 is trivial. Fix n > 0 and assume that, for any k < n, any definable
subset A ⊆ Zk is good.
Claim 1 : If X ⊆ Zn is definable, with rk(X) < n, then X is good.
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Proof : Let k = rk(X) < n. Then X ⊆ C1 ∪ . . . ∪ Cm, where each Ci is a coset in
Zn of rank at most k. If we can show that each X ∩ Ci is good then it will follow
that X is good. Therefore, without loss of generality, we assume X is contained
in a single coset C of rank k. Let C = c̄ + G and fix a basis α = {ā1, . . . , āk} for
G. Let Φ = Φα,c̄. Then Φ(X) is a definable subset of Zk, and is therefore good by
induction. So we may write

Φ(X) = E1\W1 ∪ . . . ∪ Em\Wm,

where Ei is a coset in Zk of rank ki ≤ k, and Wi ⊆ Ei is definable with rk(Wi) =
li < ki. Let Di = Φ-1(Ei) and Zi = Φ-1(Wi). Then

X = D1\Z1 ∪ . . . ∪Dn\Zm.

By Lemma 4.7, each Di is a coset in Zn of rank ki. By Corollary 4.8, each Zi is a
definable subset of Di of rank li < ki. Altogether, X is good. ⊣claim

Claim 2 : Any finite intersection of quasi-cosets in Zn is good.
Proof : It suffices to prove the claim for an intersection of two quasi-cosets X and
Y . Let A = X ∩ Y . By Claim 1, we may assume rk(A) = n. Let X = C\U and
Y = D\V where C,D are cosets in Zn and U, V are definable with U ⊆ C, V ⊆ D,
rk(U) < n, and rk(V ) < n. Since A is nonempty, C ∩ D is some coset E in Zn.
Setting Z = E∩(U∪V ), we have A = E\Z. Then rk(Z) ≤ max{rk(U), rk(V )} < n,
which means we must have rk(E) = n. Altogether, A is a quasi-coset of rank n,
and is therefore good. ⊣claim

Claim 3 : Let X ⊆ Zn be a quasi-coset. Then ¬X := Zn\X is good.
Proof : Set X = C\Z, where C is a coset of rank k ≤ n and Z ⊆ C is definable
with rk(Z) < k. Then ¬X = Z ∪ Zn\C. Note that Z is good by Claim 1, and so
it suffices to show that Zn\C is good. If k < n then this is immediate, so we may
assume k = n. Let C = c̄ +G for some c̄ ∈ Zn and rank n subgroup G ≤ Zn. By
Corollary 4.3, G has finite index in Zn. So Zn\C is a finite union of cosets, and
therefore good. ⊣claim

We now proceed with the induction step. Since any coset in Zn is good, it suffices
by Fact 4.1 to show that the good sets in Zn form a Boolean algebra. Since the
union of two good sets is obviously good, it suffices to fix a good set A ⊆ Zn and
prove that ¬A is good. Let

A = X1 ∪ . . . ∪Xn.

where each Xi is a quasi-coset. Then ¬A = ¬X1 ∩ . . .∩¬Xm. By Claim 3, we may
write ¬Xi =

⋃

j∈Ji
Y i
j , where Ji is some finite set and each Y i

j is a quasi-coset. If

J = J1 × . . .× Jm then ¬A =
⋃

̄∈J Y̄ where, given ̄ ∈ J ,

Y̄ = Y 1
j1
∩ . . . ∩ Y m

jm
.

By Claim 2, each Y̄ is good. Altogether, ¬A is good, as desired. �

5. Polyhedra and inscribed balls

Throughout the section we work in Rn for a fixed n > 0.

Definition 5.1.

(1) A function f : Rn → R is an affine transformation if it is of the form

f(x̄) = u+

n
∑

i=1

aixi,
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for some u, a1, . . . , an ∈ R. If u = 0 then f is linear. If ai = 0 for all
1 ≤ i ≤ n then f is constant.

(2) Given a non-constant affine transformation f : Rn → R, we define the as-
sociated affine hyperplane

H(f) = {x̄ ∈ Rn : f(x̄) = 0},

as well as the associated half-spaces

H+(f) = {x̄ ∈ Rn : f(x̄) > 0},

H−(f) = {x̄ ∈ Rn : f(x̄) < 0},

H+(f) = {x̄ ∈ Rn : f(x̄) ≥ 0},

H−(f) = {x̄ ∈ Rn : f(x̄) ≤ 0}.

For • ∈ {+,−}, we may also use H•
1 (f) := H•(f) and H•

0 (f) := H•(f).
(3) A polyhedron in Rn is an intersection of finitely many half-spaces.1

(4) Given a non-constant linear function f(x̄) =
∑n

i=1 aixi, and u < v in R,
we define the plank

S(f, u, v) = {x̄ ∈ Rn : u ≤ f(x̄) ≤ v} = H+(f − u) ∩H−(f − v).

The thickness of the plank S(f, u, v) is u−v
|ā| , i.e., the distance between the

hyperplanes H(f − u) and H(f − v).
(5) Given x̄ ∈ Rn and r ≥ 0, we define the closed ball

Br(x̄) = {ȳ ∈ Rn : d(x̄, ȳ) ≤ r}.

(6) The inradius of a convex set P ⊆ Rn is

r(P ) = sup{r ≥ 0 : Br(x̄) ⊆ P for some x̄ ∈ Rn} ∈ R≥0 ∪ {∞}.

For example, if B is a ball of radius r then r(B) = r. If S is a plank of thickness
t then r(S) = t

2 . Moreover, if P ⊆ Rn is convex then r(P ) = 0 if and only if P has
no interior. In particular, any hyperplane, or more generally, any affine translation
of a proper vector subspace of Rn, is a closed polyhedron with inradius 0.

In this section, we derive some consequences, to be used later, of the following
result on convex sets and inscribed balls.

Fact 5.2. (Kadets [11] 2005) Suppose Q,P1, . . . , Pk are closed convex sets in Rn,

with nonempty interior. If Q ⊆ P1 ∪ . . . ∪ Pk then r(Q) ≤
∑k

i=1 r(Pi).

This fact has its roots in a 1932 result of Tarski [23], which essentially deals
with the case in R2 where the Pi are parallel planks. The generalization of Tarski’s
result to Rn was given by Bang [5] in 1951.

The following is an immediate consequence of Fact 5.2.

Corollary 5.3. Suppose Q,P1, . . . , Pk are polyhedra in Rn and Q ⊆ P1 ∪ . . . ∪ Pk.
If r(Q) = ∞ then r(Pi) = ∞ for some 1 ≤ i ≤ k.

Remark 5.4. Although we quote Corollary 5.3 as a consequence of Kadets’ result,
it is worth observing that we are not using the full power of Fact 5.2, but only
the difference between finite and infinite inradius. We leave it as an exercise to the
reader to deduce Corollary 5.3 directly from basic principles (such an argument was
communicated to us by Solecki).

1We are making a slight departure from standard conventions in allowing polyhedra to be
defined by possibly open half-spaces.
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For later results, we need two applications of Corollary 5.3. First, we show that
if P is a polyhedron of infinite inradius, defined by some finite intersection of half-
spaces, then the “opposite” polyhedron, defined by the intersection of the opposite
sides of these half-spaces, also has infinite inradius.

Lemma 5.5. Suppose f1, . . . , fk are linear functions from Rn to R and b1, . . . , bk ∈
R. Fix η : {1, . . . , k} → {0, 1} and define

P+ =

k
⋂

i=1

H+
η(i)(fi − bi) and P− =

k
⋂

i=1

H−
η(i)(fi − bi).

Then r(P+) = ∞ if and only if r(P−) = ∞.

Proof. Without loss of generality, it suffices to assume r(P+) = ∞ and prove
r(P−) = ∞. Define

Q =

k
⋂

i=1

H−
η(i)(fi + bi).

For any x̄ ∈ Rn, x̄ ∈ P+ if and only if -x̄ ∈ Q. Since x̄ 7→ -x̄ is an isometry of Rn,
it follows that r(Q) = r(P+) = ∞.

Given 1 ≤ i ≤ k, define

Si =



















S(fi, -bi, bi)\H(f − bi) if bi ≥ 0 and η(i) = 0

S(fi, -bi, bi) if bi ≥ 0 and η(i) = 1

S(fi, bi, -bi) if bi < 0 and η(i) = 0

S(fi, bi, -bi)\H(fi − bi) if bi < 0 and η(i) = 1.

Then, for any 1 ≤ i ≤ k, we have

H−
η(i)(fi − bi) =

{

H−
η(i)(fi + bi) ∪ Si if bi ≥ 0

H−
η(i)(fi + bi)\Si if bi < 0.

Therefore, we may write

P− = A ∪
⋂

bi≥0

H−
η(i)(fi + bi) ∪

⋂

bi<0

H−
η(i)(fi + bi)\S,

where A is some subset of Rn and S =
⋃

bi<0 Si. In particular, Q ⊆ P− ∪ S. Since

S is a finite union of polyhedra, each of finite inradius, and r(Q) = ∞, it follows
from Corollary 5.3 that r(P−) = ∞. �

Finally, we show that the integer points on a polyhedron of infinite inradius
cannot be covered by finitely many polyhedra of finite inradii, even after removing
some definable small-rank subset of the integer points.

Lemma 5.6. Suppose X ⊆ Zn is definable in (Z,+, 0), with rk(X) < n. Let
P ⊆ Rn be a a polyhedron, with r(P ) = ∞. Suppose Q1, . . . , Qk are polyhedra in
Rn such that P ∩ (Zn\X) ⊆ Q1 ∪ . . . ∪Qk. Then r(Qi) = ∞ for some 1 ≤ i ≤ k.

Proof. By definition of rank, there are cosets C1, . . . , Cl ⊆ Zn such that X ⊆
C1 ∪ . . .∪Cl and, for all 1 ≤ i ≤ l, rk(Ci) = ni < n. For 1 ≤ i ≤ l, let Ci = c̄i +Gi

for some element c̄i ∈ Zn and subgroup Gi ≤ Zn of rank ni. Let VGi
be the convex
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closure of Gi in Rn, and note that VGi
is an ni-dimensional subspace of Rn. Set

Ri = c̄+ VGi
. Then Ri is a polyhedron with r(Ri) = 0 and Ci ⊆ Ri. Altogether,

(†) P ∩ Zn ⊆ Q1 ∪ . . . ∪Qk ∪R1 ∪ . . . ∪Rl.

Using an inductive argument, it is straightforward to show that the collection
of subsets of Rn, which can be written as a finite union of polyhedra, is a Boolean
algebra. Therefore, we may write

(††) P\(Q1 ∪ . . . ∪Qk ∪R1 ∪ . . . ∪Rl) = S1 ∪ . . . ∪ Sm,

for some polyhedra S1, . . . , Sm. Note that Si ⊆ P for all 1 ≤ i ≤ m, and we have

P ⊆ Q1 ∪ . . . ∪Qk ∪R1 ∪ . . . ∪Rl ∪ S1 ∪ . . . ∪ Sm.

By Corollary 5.3, and since r(Ri) = 0 for all 1 ≤ i ≤ l, it follows that either
r(Qi) = ∞ for some 1 ≤ i ≤ k or r(Si) = ∞ for some 1 ≤ i ≤ m. Suppose, toward
a contradiction, that r(Si) = ∞ for some 1 ≤ i ≤ m. Then we may find a point
x̄ ∈ Si ∩ Zn. But then x̄ ∈ Si ∩ (P ∩ Zn), which contradicts (†) and (††). �

6. Cell decomposition for Presburger sets

In this section, we briefly summarize the cell decomposition of sets definable in
(Z,+, <, 0), which is a result of Cluckers [7]. Recall that Z∗ = Z ∪ {-∞,∞}.

Definition 6.1. Fix n > 0.

(1) A function f : Zn → Z∗ is extreme if f(x̄) = ∞ for all x̄ ∈ Zn or f(x̄) = -∞
for all x̄ ∈ Zn. If f is extreme and c ∈ Z then, by convention, we let
f + c = f .

(2) A partial function f : Zn → Z is standard Z-linear if there are m̄, c̄ ∈ Nn

such that ci < mi for all 1 ≤ i ≤ n, dom(f) = c̄+ m̄Zn, and

f(x̄) = u+

n
∑

i=1

ai

(

xi − ci

mi

)

,

for some u ∈ Z and ā ∈ Zn.
(3) A partial function f : Zn → Z∗ is Z-linear if it is either extreme or standard

Z-linear.

Definition 6.2. Given η ∈ 2<ω\{∅}, we define, by induction on |η|, the notion of
an η-cell in Z|η|.

(1) A (0)-cell is a singleton {x} for some x ∈ Z.
(2) A (1)-cell is an infinite set of the form

[a, b]cm := {x ∈ Z : a ≤ x ≤ b, x ≡m c}.

where a, b ∈ Z∗ and m, c ∈ N with c < m.
(3) Given η ∈ 2<ω\{∅}, an (η, 0)-cell is a set of the form

X [f ] := {(x̄, y) ∈ Z|η|+1 : x̄ ∈ X, f(x̄) = y},

where X ⊆ Z|η| is an η-cell and f is a standard Z-linear function with
X ⊆ dom(f).
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(4) Given η ∈ 2<ω\{∅}, an (η, 1)-cell is a set of the form

X [f, g]cm := {(x̄, y) ∈ Z|η|+1 : x̄ ∈ X, y ∈ [f(x̄), g(x̄)]cm},

where X ⊆ Z|η| is an η-cell, f, g are Z-linear functions such that X ⊆
dom(f) ∩ dom(g), f(x̄) ≤ g(x̄) for all x̄ ∈ X , c,m ∈ N with c < m, and
there is no uniform finite bound on the sets [f(x̄), g(x̄)]cm for x̄ ∈ X .

The following is (a slightly weaker version of) Cluckers’ cell decomposition [7].

Fact 6.3. Any Presburger set in Zn can be written as a finite union of cells in Zn.

The distinction between (η, 0)-cells and (η, 1)-cells will not be essential for our
work. In particular, if X [f ] is an (η, 0)-cell then, since X [f ] = X [f, f ]01, we can
view X [f ] as a “flat” (η, 1)-cell. Precisely, all we will need from cell decomposition
is the following corollary.

Corollary 6.4. Given n > 0, if A ⊆ Zn+1 is a Presburger set then

A =

k
⋃

t=1

Xt[ft, gt]
ct
mt

,

where, for all 1 ≤ t ≤ k, Xt ⊆ Zn is a Presburger set, ft, gt are Z-linear functions
such that Xt ⊆ dom(ft) ∩ dom(gt), and mt, ct ∈ N with ct < mt.

Remark 6.5. A crucial observation is that any standard Z-linear function is de-
finable in (Z,+, 0). We will use this fact constantly in the subsequent arguments,
and without further mention.

7. Technical reductions toward the main proof

In this section, we develop the technical tools necessary to prove the induction
step of Theorem 2.4. Therefore, throughout the section, we fix an integer n > 0
and consider Presburger sets in Zn+1.

The goal of this section is to isolate a subclass of Presburger sets in Zn+1,
satisfying certain structural assumptions, such that, in order to prove the induction
step of Theorem 2.4, it suffices to only consider sets in this special subclass (see
Corollary 7.10 for the precise statement). Roughly speaking, we apply a series
of three reductions, starting with a Presburger set A ⊆ Zn+1 of the form given
by Corollary 6.4. Our first reduction will be to “sort” the congruence classes ct (
mod mt) so that we may assume all mt’s are the same and all ct’s are 0. The second
reduction is to separate infinite fibers from finite fibers, and show that it suffices to
assume A has finite fibers. The third reduction is to identify the endpoints of the
intervals in the fibers of A, and show that it suffices to assume there is a single finite
collection of standard Z-linear functions, which, up to some permutation, precisely
determine the endpoints of any fiber of A.

For the sake of brevity, we will use the following terminology.

Definition 7.1. For any n > 0, a Presburger set A ⊆ Zn is peripheral if either
A is definable in (Z,+, 0) or A defines the ordering.

Also, given an integer k > 0, we let [k] denote the set {1, . . . , k}.
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7.1. Sorting congruence classes. To simplify notation, given X [f, g]cm as in Def-
inition 6.2, if c = 0 then we omit it and write X [f, g]m.

Definition 7.2. A set A ⊆ Zn+1 is uniformly congruent if

A =

k
⋃

t=1

Xt[ft, gt]m,

where m > 0 and, for all t ∈ [k], Xt ⊆ Zn is a Presburger set and ft, gt are Z-linear
functions such that Xt ⊆ dom(ft) ∩ dom(gt).

Proposition 7.3. Suppose A ⊆ Zn+1 is a Presburger set. Then A is interdefinable
with a finite sequence of uniformly congruent Presburger sets in Zn+1.

Proof. By Corollary 6.4, we may write

A =

k
⋃

t=1

Xt[ft, gt]
ct
mt

,

where, for all 1 ≤ t ≤ k, Xt ⊆ Zn is a Presburger set, ft, gt are Z-linear functions
such that Xt ⊆ dom(ft) ∩ dom(gt), and mt, ct ∈ N with ct < mt. Let m be the
least common multiple of m1, . . . ,mk. Given 0 ≤ d < m, we let

Ad = {(x̄, y) ∈ A : y ≡m d}.

Then A =
⋃

0≤d<m Ad and each Ad is definable from A.

Claim: Given 0 ≤ d < m there is a set Id ⊆ [k] such that

Ad =
⋃

t∈Id

Xt[ft, gt]
d
m.

Proof : Let Id = {t ∈ [k] : Ad ∩ Xt[ft, gt]
ct
mt

6= ∅} and, for t ∈ Id, let Bt =
Ad ∩ Xt[ft, gt]

ct
mt

. Then Ad =
⋃

t∈Id
Bt. Fix t ∈ Id. We immediately have Bt ⊆

Xt[ft, gt]
d
m. By assumption, there is (x̄, z) ∈ Bt and so z ≡mt

ct and z ≡m d.
Since mt divides m, it follows that d ≡mt

ct. Therefore, if (x̄, y) ∈ Xt[ft, gt]
d
m then

y ≡m d, and so y ≡mt
ct, which means (x̄, y) ∈ Xt[ft, gt]

ct
mt

∩Ad = Bt. Altogether,

Bt = Xt[ft, gt]
d
m. ⊣claim

Now, for 0 ≤ d < m, set Cd = {(x̄, y−d) : (x̄, y) ∈ Ad}. Then Cd is interdefinable
with Ad, and so, altogether, A is interdefinable with (Cd)0≤d<m. Moreover,

Cd =
⋃

t∈Id

Xt[ft − d, gt − d]m.

In particular, each Cd is uniformly congruent. �

From this result, we obtain our first reduction.

Corollary 7.4. If every uniformly congruent Presburger set in Zn+1 is peripheral,
then every Presburger set in Zn+1 is peripheral.

7.2. Eliminating infinite fibers. Similar to before, given a, b ∈ Z∗ and m > 0,
we let [a, b]m = [a, b]0m.

Definition 7.5. Let A ⊆ Zn+1 be a Presburger set.

(1) Let π(A) = {x̄ ∈ Zn : (x̄, y) ∈ Zn+1 for some y ∈ Z} be the projection of

A to Zn.
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(2) Given x̄ ∈ Zn, define the fiber Ax̄ = {y ∈ Z : (x̄, y) ∈ A}. In particular,
Ax̄ 6= ∅ if and only if x̄ ∈ π(A).

(3) We say A has weakly sorted fibers if there are sets F = {f1, . . . , fk} and
G = {g1, . . . , gl} of standard Z-linear functions, and an integer m > 0, such
that for all x̄ ∈ π(A), there is some I(x̄) ⊆ [k]× [l] satisfying:
(i) x̄ ∈ dom(fs) ∩ dom(gt) and fs(x̄) ≤ gt(x̄) for all (s, t) ∈ I(x̄), and
(ii) Ax̄ =

⋃

(s,t)∈I(x̄)[fs(x̄), gt(x̄)]m.

We may also specify that A has weakly sorted fibers witnessed by (F,G,m).

Note that, since we assume the functions in F and G are standard, it follows
that if A ⊆ Zn+1 has weakly sorted fibers then Ax̄ is finite for all x̄ ∈ Zn.

Proposition 7.6. Assume every Presburger set in Zn is peripheral. Suppose A ⊆
Zn+1 is a uniformly congruent Presburger set. Then A is interdefinable with a finite
sequence of Presburger sets in Zn+1 with weakly sorted fibers.

Proof. First, if A defines the ordering then it is interdefinable with N×{0}n, which
has weakly sorted fibers. So we may assume A does not define the ordering.

By assumption A =
⋃k

t=1 Xt[ft, gt]m for some Xt, ft, gt and m > 0. Note that all
fibers of A are definable from A, and are therefore Presburger definable subsets of
Z, which do not define the ordering. It follows from Corollary 3.4 that any infinite
fiber of A is unbounded above and below.

Let X = π(A) =
⋃k

t=1 Xt, and note that X is definable from A. Given x̄ ∈ X ,
let I(x̄) = {(t, t) : x̄ ∈ Xt}. In particular, if x̄ ∈ X then x̄ ∈ dom(ft) ∩ dom(gt) for
all (t, t) ∈ I(x̄) and, moreover,

(†) Ax̄ =
⋃

(t,t)∈I(x̄)

[ft(x̄), gt(x̄)]m.

Set Y1 = {x̄ ∈ X : Ax̄ is infinite} and Y2 = X\Y1.
Claim: For any x̄ ∈ Zn, x̄ ∈ Y1 if and only if Ax̄ +Ax̄ = mZ.
Proof : Clearly, if Ax̄ + Ax̄ = mZ then Ax̄ is infinite and so x̄ ∈ Y1. Conversely,
suppose x̄ ∈ Y1. As previously noted, it follows from Corollary 3.4 that Ax̄ is
unbounded above and below. Combined with (†), there must be s, t ∈ I(x̄) such that
fs = -∞ and gt = ∞, which means there are a, b ∈ Z such that Ax̄ ∪ [a, b]m = mZ.
Fix z ∈ mZ and choose y ∈ mZ such that y > max{b, z − a}. If x = z − y then
x, y ∈ Ax̄ and x+ y = z. Altogether, Ax̄ +Ax̄ = mZ. ⊣claim

It follows from the proof of the claim that if x̄ ∈ Y1 then Ax̄ is cofinite in mZ.
By the claim, Y1 is definable from A, and therefore so is Y2. For i ∈ {1, 2}, let

Ai = {(x̄, y) ∈ A : x̄ ∈ Yi}.

Then A = A1 ∪ A2 and so A is interdefinable with (A1, A2).
We first show that A2 has weakly sorted fibers. Let F be the set of standard ft,

and G the set of standard gt. By (†), if x̄ ∈ Y2 = π(A2) and (t, t) ∈ I(x̄), then ft
and gt are standard. Therefore A2 has weakly sorted fibers, witnessed by (F,G,m).

To finish the proof, we assume A1 6= ∅ (i.e. Y1 6= ∅) and show that A1 is
interdefinable with a set B ⊆ Zn+1 with weakly sorted fibers. In particular, let
B = (Y1 × mZ)\A1 (and so A1 = (Y1 × mZ)\B). Since Y1 ⊆ Zn is definable
from A, and A does not define the ordering, it follows that Y1 does not define the
ordering and therefore is definable in (Z,+, 0) by assumption. Therefore A1 and B

are interdefinable.
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Let F ∗ = {ft − 1 : ft ∈ F} and G∗ = {gt + 1 : gt ∈ G}. If x̄ ∈ π(B) ⊆ X1 then,
using (†), we have

Bx̄ = mZ\Ax̄ =
⋂

(t,t)∈I(x̄)

(

[-∞, ft(x̄)− 1]m ∪ [gt(x̄) + 1,∞]m

)

.

On the other hand, if x̄ ∈ π(B) then Ax̄ is cofinite in mZ, and so Bx̄ is finite.
Therefore, (G∗, F ∗,m) witnesses that B has weakly sorted fibers. �

Combined with Corollary 7.4, we obtain our next reduction.

Corollary 7.7. Assume every Presburger set in Zn is peripheral. If every Pres-
burger set in Zn+1, with weakly sorted fibers, is peripheral, then every Presburger
set in Zn+1 is peripheral.

7.3. Identifying fibers up to permutation of boundary points. Given k > 0,
let Sk denote the group of permutations of [k].

Definition 7.8. Fix m > 0.

(1) Define the binary relations <m and ⊳m on Z by

a <m b ⇔ a < x < b for some x ∈ mZ,

a⊳m b ⇔ a ≤ x ≤ b for some x ∈ mZ.

(2) Given x ∈ Z, let ρm(x) be the unique element of {0, 1, . . . ,m−1} such that
x ≡m ρm(x). Define functions Lm, Rm, L−

m, R−
m from Z to mZ such that,

for x ∈ Z,

Lm(x) := max{y ∈ mZ : y ≤ x} = x− ρm(x),

Rm(x) := min{y ∈ mZ : x ≥ y} = x+ ρm(-x),

L−
m(x) := max{y ∈ mZ : y < x} = Lm(x) −m,

R+
m(x) := max{y ∈ mZ : y > x} = Rm(x) +m.

Note that Rm, L−
m, and R−

m are all definable in (Z,+, 0).
(3) Suppose A ⊆ Zn+1 is is a Presburger set. We say A has sorted fibers if

there are tuples f̄ = (f1, . . . , fk) and ḡ = (g1, . . . , gk) of standard Z-linear
functions on Zn, and an integer m > 0, such that π(A) ⊆ dom(ft)∩dom(gt)
for all t ∈ [k] and, for all x̄ ∈ π(A), there are σ, τ ∈ Sk satisfying:
(i) fσ(t)(x̄)⊳m gτ(t)(x̄) for all 1 ≤ t ≤ k,
(ii) gτ(t)(x̄) <m fσ(t+1)(x̄) for all 1 ≤ t < k,

(iii) Ax̄ =
⋃k

t=1[fσ(t)(x̄), gτ(t)(x̄)]m.

We may also specify that A has sorted fibers witnessed by (f̄ , ḡ,m).

Proposition 7.9. Suppose A ⊆ Zn+1 is a Presburger set with weakly sorted fibers,
witnessed by (F,G,m). Then A is interdefinable with a finite sequence (Bi) of
Presburger sets in Zn+1 such that each Bi has sorted fibers witnessed by some
(f̄ i, ḡi,m), with |f̄ i| = |ḡi| ≤ min{|F |, |G|}.

Proof. Let F = {f1, . . . , fk} and G = {g1, . . . , gl}. For x̄ ∈ π(A), let I(x̄) ⊆ [k]× [l]
be as in Definition 7.5(3), and let I1(x̄) and I2(x̄) be the projections to the first
and the second coordinate, respectively. Define the sets

A− = {(x̄, y) ∈ A : (x̄, L−
m(y)) 6∈ A} and A+ = {(x̄, y) ∈ A : (x̄, R+

m(y)) 6∈ A}.
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Note that A− and A+ are each definable from A.
Claim: For any x̄ ∈ Zn,

A−
x̄ ⊆ {Rm(fs(x̄)) : s ∈ I1(x̄)} and A+

x̄ ⊆ {Lm(gt(x̄)) : t ∈ I2(x̄)}.

Proof : Fix x̄ ∈ Zn. Suppose y ∈ A−
x̄ . Then y ∈ [fs(x̄), gt(x̄)]m for some (s, t) ∈

I(x̄). Since (x̄, L−
m(y)) 6∈ A, we must have L−

m(y) < fs(x̄) ≤ y. Since y ∈ mZ, it
follows that y = Rm(fs(x̄)). The proof of the second containment is similar.⊣claim

Let Σ = P([k]) × P([l]), where P denotes powerset. Given (α, β) ∈ Σ, define
Y β
α ⊆ Zk such that x̄ ∈ Y β

α if and only if:

(i) x̄ ∈ π(A), α ⊆ I1(x̄), and β ⊆ I2(x̄),
(ii) A−

x̄ = {Rm(ft(x̄)) : t ∈ α},
(iii) A+

x̄ = {Lm(gt(x̄)) : t ∈ β},
(iv) for all distinct s, t ∈ α, Rm(fs(x̄)) 6= Rm(ft(x̄)), and
(v) for all distinct s, t ∈ β, Lm(gs(x̄)) 6= Lm(gt(x̄)).

Then Y β
α is definable from A and, moreover, it follows from the claim that

π(A) =
⋃

(α,β)∈Σ

Y β
α .

Given (α, β) ∈ Σ, set Bβ
α = {(x̄, y) ∈ A : x̄ ∈ Y β

α }. Let Σ0 = {(α, β) ∈ Σ : Bβ
α 6= ∅}.

Then

A =
⋃

(α,β)∈Σ0

Bβ
α,

and so A is interdefinable with (Bβ
α)(α,β)∈Σ. Given α ⊆ [k] and β ⊆ [l], define

f̄α = (fs)s∈α and ḡβ = (gt)t∈β. To finish the proof, we fix (α, β) ∈ Σ0 and show
|α| = |β| and Bβ

α has sorted fibers, witnessed by (f̄α, ḡβ,m). To ease notation, let
Y = Y β

α and B = Bβ
α. Without loss of generality, we also assume α = [p1] and

β = [p2] for some p1 ≤ k and p2 ≤ l.
Fix x̄ ∈ Y . We have

Bx̄ = Ax̄ =
⋃

(s,t)∈I(x̄)

[fs(x̄), gt(x̄)]m.

Therefore we can write Bx̄ as a union

Bx̄ =

p
⋃

t=1

[at, bt]m,

where {a1, . . . , ap} ⊆ {f1(x̄), . . . , fk(x̄)}, {b1, . . . , bp} ⊆ {g1(x̄), . . . , gl(x̄)}, and

a1 ⊳m b1 <m a2 ⊳m b2 <m . . . <m ap ⊳m bp.

Altogether, we want to show p1 = p = p2 and there are σ, τ ∈ Sp such that,
for all 1 ≤ t ≤ p, at = fσ(t)(x̄) and bt = gτ(t)(x̄). To see this, first observe

that Rm(a1), . . . , Rm(ap) are distinct elements in A−
x̄ and Lm(b1), . . . , Lm(bp) are

distinct elements in A+
x̄ . Moreover, if t ∈ α then Rm(ft(x̄)) ∈ A−

x̄ , and so ft(x̄) is
a left endpoint of some interval in

I = {[a1, b1]m, . . . , [ap, bp]m}.
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Similarly, if t ∈ β then Lm(gt(x̄)) ∈ A+
x̄ , and so gt(x̄) is a right endpoint of some

interval in I. Therefore,

{Rm(a1), . . . , Rm(ap)} = {Rm(ft(x̄)) : 1 ≤ t ≤ p1} and

{Lm(b1), . . . , Lm(bp)} = {Lm(gt(x̄)) : 1 ≤ t ≤ p2},

as desired. �

Combined with Corollary 7.7, we have our third and final reduction.

Corollary 7.10. Assume every Presburger set in Zn is peripheral. If every Pres-
burger set in Zn+1, with sorted fibers, is peripheral, then every Presburger set in
Zn+1 is peripheral.

7.4. Exchanging parallel functions. In the proof of the main result, we will use
Corollary 7.10 to focus on Presburger sets in Zn+1 with sorted fibers. Given such a
set A, we will assume A does not define the ordering and prove that A is definable
in (Z,+, 0). In this section, we prove one final technical result, which will allow us
to argue by induction on the number of Z-linear functions used to determine the
fibers of A.

Lemma 7.11. Suppose A ⊆ Zn+1 has sorted fibers, witnessed by (f̄ , ḡ,m), where
f̄ = (f1, . . . , fk) and ḡ = (g1, . . . , gk). Assume π(A) is definable in (Z,+, 0), and
suppose there are s, t ∈ {1, . . . , k} such that fs − gt is constant on π(A).

(a) Assume gt = fs + c on π(A), for some c ≥ 0, and set

B = {(x̄, y) ∈ A : fs(x̄) ≤ y ≤ gt(x̄)}.

Then B is definable in (Z,+, 0).
(b) If k > 1 then A is interdefinable with a finite sequence of Presburger sets (Bi)

in Zn+1 such that each Bi has sorted fibers, witnessed by some (f̄ i, ḡi,m) with
|f̄ i| = |ḡi| < k.

Proof. Without loss of generality, we may assume fk − gk is constant on π(A).
Part (a). Given 1 ≤ p ≤ k, define the set

Ip = {(i1, j1, . . . , ip, jp) ∈ Z2p : 0 = i1 ≤ j1 ≤ i2 ≤ j2 ≤ . . . ≤ ip ≤ jp = c}.

We claim that (x̄, y) ∈ B if and only if

(1) x̄ ∈ π(A) and y ∈ mZ, and
(2) there are

(i) an integer 1 ≤ p ≤ k,
(ii) injective functions σ, τ : [p] → [k], with σ(1) = k and τ(p) = k, and
(iii) a tuple (i1, j1, . . . , ip, jp) ∈ Ip,
such that
• for all 1 ≤ t ≤ p, fσ(t)(x̄) = fk(x̄) + it and gτ(t)(x̄) = fk(x̄) + jt,
• for all s ∈ [k]\ℑσ and t ∈ [k]\ℑτ , neither fs(x̄) nor gt(x̄) is in [fk(x̄), gk(x̄)],

i.e.,
c
∧

i=0

[

(fs(x̄) 6= fk(x̄) + i) ∧ (gt(x̄) 6= fk(x̄) + i)
]

, and

• y ∈
⋃p

t=1[fσ(t)(x̄), gτ(t)(x̄)], i.e.,

p
∨

t=1

jt
∨

i=it

y = fk(x̄) + i.
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In particular, since π(A) is definable in (Z,+, 0) by assumption, this shows that B

is definable in (Z,+, 0).
To verify that the above data defines B, fix (x̄, y) ∈ B. Then fk(x̄) ≤ gk(x̄) and

so, since A has sorted fibers, we may fix some p ≤ k for which there are distinct
u1, . . . , up ∈ [k] and distinct v1, . . . , vp ∈ [k] such that:

(∗)1 fk(x̄) = fu1
(x̄)⊳m gv1(x̄) <m . . . <m fup

(x̄)⊳m gup
(x̄) = gk(x̄),

(∗)2 for all s 6∈ {u1, . . . , up} and t 6∈ v1, . . . , vp}, neither fs(x̄) nor gt(x̄) is in
[fk(x̄), gk(x̄)], and

(∗)3 Ax̄ ∩ [fk(x̄), gk(x̄)] =
⋃p

t=1[fut
(x̄), gvt(x̄)]m.

Therefore, letting σ : t 7→ ut, τ : t 7→ vt, and setting it = fut
(x̄) − fk(x̄) and

jt = gvt(x̄)− fk(x̄), we have properties (1) and (2) above.
Conversely, suppose (x̄, y) ∈ Zn+1 satisfies properties (1) and (2) above, wit-

nessed by 1 ≤ p ≤ k, σ, τ , and (i1, j1, . . . , ip, jp) ∈ Ip. Then we have

• fk(x̄) = fσ(1)(x̄) ≤ gτ(1)(x̄) ≤ . . . ≤ fσ(p)(x̄) ≤ gτ(p)(x̄) = gk(x̄),
• for all s ∈ [k]\ℑσ and t ∈ [k]\ℑτ , neither fs(x̄) nor gt(x̄) is in [fk(x̄), gk(x̄)], and
• y ∈

⋃p

t=1[fσ(t)(x̄), gτ(t)(x̄)]m.

Therefore, it suffices to show that Ax̄ ∩ [fk(x̄), gk(x̄)] =
⋃p

t=1[fσ(t)(x̄), gτ(t)(x̄)]m.
Since x̄ ∈ π(A), there are 1 ≤ p∗ ≤ k, distinct u1, . . . , up∗

∈ [k], and distinct
v1, . . . , vp∗

∈ [k] satisfying (∗)1 through (∗)3 above. We want to show that p = p∗
and, for all 1 ≤ t ≤ p, ut = σ(t) and vt = τ(t). First,

p = |{1 ≤ t ≤ k : ft(x̄) ∈ [fk(x̄), gk(x̄)]}| = p∗.

Next, we have

• fk(x̄) = fu1
(x̄)⊳m gv1(x̄) <m . . . <m fup

(x̄)⊳m gup
(x̄) = gk(x̄), and

• fk(x̄) = fσ(1)(x̄) ≤ gτ(1)(x̄) ≤ . . . ≤ fσ(p)(x̄) ≤ gτ(p)(x̄) = gk(x̄).

Therefore it must be the case that, for all 1 ≤ t ≤ p, we have ut = σ(t) and
vt = τ(t).

Part (b). We continue to assume s = t = k. Suppose first that gk = fk + c for
some c ≥ 0, and let B be as in part (a). Then A is interdefinable with A∗ := A\B.
If x̄ ∈ π(A∗) then, since A has sorted fibers, there are σ, τ ∈ Sk such that

• fσ(1)(x̄)⊳m fτ(1)(x̄) <m . . . <m fσ(k)(x̄)⊳m gτ(k)(x̄), and

• Ax̄ =
⋃k

t=1[fσ(t)(x̄), gτ(t)(x̄)]m.

Therefore, for some 1 ≤ p ≤ k−1, there are distinct s1, . . . , sp ∈ [k−1] and distinct
t1, . . . , tp ∈ [k − 1] such that

• fs1(x̄)⊳m ft1(x̄) <m . . . <m fsp(x̄)⊳m gtp(x̄), and

• A∗
x̄ =

⋃p

j=1[fsj (x̄), gtj (x̄)]m.

In particular, if F = {f1, . . . , fk−1} and G = {g1, . . . , gk−1}, then A∗ has weakly
sorted fibers witnessed by (F,G,m). By Proposition 7.9, A∗ is interdefinable with
a finite sequence (Bi) of Presburger sets, where each Bi has sorted fibers witnessed
by some (f̄ i, ḡi,m), with |f̄ i| = |ḡi| ≤ k − 1.

Now, we must prove the other case: gk = fk + c for some c < 0. The argument
is similar, and equally technical, so we sketch the proof and leave the details to the
reader. First, set

B = {(x̄, y) 6∈ A : gk(x̄) ≤ y ≤ fk(x̄), y ∈ mZ}.

Then, using a similar argument as in part (a), one shows that B is definable in
(Z,+, 0), and so A is interdefinable with A∗ = A∪B. Moreover, similar to the first
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case, A∗ has weakly sorted fibers, witnessed by (F,G,m) where F = {f1, . . . , fk−1}
and G = {g1, . . . , gk−1}. The result then follows from Proposition 7.9 as in the first
case. �

8. Proof of the main result

In this section, we prove Theorem 2.4 by induction on n. The base case n = 1
was done in Corollary 3.3. So fix n > 0 and, for a primary induction hypothesis,
assume that if B ⊆ Zn is a Presburger set then either B is definable in (Z,+, 0) or
B defines the ordering.

Claim 8.1. Fix a Presburger set A ⊆ Zn+1, which has sorted fibers, witnessed
by (f̄ , ḡ,m), where f̄ = (f1, . . . , fk) and ḡ = (g1, . . . , gk) are tuples of standard
Z-linear functions. Assume X := π(A) is a quasi-coset in Zn. Then there are
s, t ∈ {1, . . . , k} such that fs − gt is constant on X.

Proof. Suppose not. Let X = C\Z where C is a coset of rank n∗ ≤ n and Z ⊆ C

is definable in (Z,+, 0), with rk(Z) < n∗. Let C = c̄ + G where G ≤ Zn is a
subgroup with basis α = {ā1, . . . , ān∗}. Set Φ = Φα,c̄|X , and let W = Φ(Z). Then
Φ: X → Zn∗ is an injective function with ℑ(Φ) = Zn∗\W . By Corollary 4.8,
rk(W ) < n∗. Let Y = Zn∗\W , and note that Φ: X → Y is a bijection.

For 1 ≤ t ≤ k, define

f̃t = ft ◦ Φ
-1 and g̃t = gt ◦ Φ

-1.

Note that f̃t and g̃t are functions from Y to Z. Since A has sorted fibers it follows
that for all x̄ ∈ Y , there are σ, τ ∈ Sk such that

f̃σ(1)(x̄) ≤ g̃τ(1)(x̄) < . . . < f̃σ(k)(x̄) ≤ g̃τ(k)(x̄).

For any 1 ≤ t ≤ k, f̃t and g̃t are each a composition of a standard Z-linear
function and Φ-1, which is of the form z̄ 7→ c̄ +

∑n∗

i=1 ziā
i. Therefore f̃t and g̃t

determine affine transformations from Rn∗ to R. For any s, t ∈ {1, . . . , k}, fs − gt
is non-constant on X , and so f̃s = g̃t is non-constant on Y . Given σ, τ ∈ Sk and
• ∈ {+,−}, define the polyhedron

P •(σ, τ) =

k
⋂

t=1

H•(g̃τ(t) − f̃σ(t)) ∩
k−1
⋂

t=1

H•(f̃σ(t+1) − g̃τ(t)).

Then, altogether, we have Y ⊆
⋃

σ,τ∈Sk
P+(σ, τ). By Lemma 5.6, we may fix

µ, ν ∈ Sk such that r(P+(µ, ν)) = ∞. Then, by Lemma 5.5, r(P−(µ, ν)) = ∞.
Fix x̄ ∈ P−(µ, ν) ∩ Y . Then

g̃ν(k)(x̄) ≤ f̃µ(k)(x̄) < . . . < g̃ν(1)(x̄) ≤ f̃µ(1)(x̄).

On the other hand, there are σ, τ ∈ Sk such that

f̃σ(1)(x̄) ≤ g̃τ(1)(x̄) < . . . < f̃σ(k)(x̄) ≤ g̃τ(k)(x̄).

Then g̃ν(k)(x̄) < g̃t(x̄) for all t 6= ν(k), and g̃τ(1)(x̄) < g̃t(x̄) for all t 6= τ(1), which

means τ(1) = ν(k). But then g̃ν(k)(x̄) ≤ f̃σ(1)(x̄) ≤ gτ(1)(x̄), and so g̃ν(k)(x̄) =

f̃σ(1)(x̄). Then f̃σ(1)(x̄) < f̃t(x̄) for all t 6= µ(k), and so σ(1) = µ(k). Altogether,

we have shown that f̃µ(k)(x̄) = g̃ν(k)(x̄) for all x̄ ∈ P−(µ, ν)∩Y . Therefore f̃µ(k) =

g̃ν(k) on Rn∗ since otherwise P−(µ, ν) ∩ Y would be contained in the hyperplane

H(f̃µ(k) − g̃ν(k)), contradicting Lemma 5.6.
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Now, if x̄ ∈ X then

fµ(k)(x̄) = f̃µ(k)(Φ(x̄)) = g̃ν(k)(Φ(x̄)) = gν(k)(x̄),

and so fµ(k) = gν(k) on X , which contradicts our original assumption. �

Finally, we proceed with the induction step. Fix a Presburger subset A ⊆ Zn+1,
and assume A does not define the ordering. We want to show A is definable in
(Z,+, 0). By Corollary 7.10, we may assume A has sorted fibers witnessed by
(f̄ , ḡ,m), where f̄ = (f1, . . . , fk) and ḡ = (g1, . . . , gk) are tuples of standard Z-
linear functions. We prove, by induction on k, that A is definable in (Z,+, 0).

Suppose k = 1 and let X = π(A). Then X is definable from A and therefore
is a Presburger subset of Zn, which does not define the ordering. By the primary
induction hypothesis, X is definable in (Z,+, 0). Therefore, by Theorem 4.10, we
may write

X = X1 ∪ . . . ∪Xp,

where each Xi is a quasi-coset in Zn. For 1 ≤ i ≤ p, let Ai = {(x̄, y) ∈ A : x̄ ∈ Xi}.
Then A =

⋃p

i=1 Ai and so A is interdefinable with (Ai)1≤i≤p. Note also that each Ai

still has sorted fibers witnessed by (f̄ , ḡ,m). Altogether, without loss of generality,
we may assume X = π(A) is a single quasi-coset in Zn.

Since A has sorted fibers and k = 1, it follows that, for all x̄ ∈ X , f1(x̄) ≤ g1(x̄)
and Ax̄ = [f1(x̄), g1(x̄)]m. Therefore, by Claim 8.1, g1 = f1 + c on X for some
c ≥ 0. By Lemma 7.11(a), it follows that A is definable in (Z,+, 0).

Now, for a secondary induction hypothesis, fix k > 1 and assume that if B ⊆
Zn+1 is a Presburger set, which does not define the ordering and has sorted fibers
witnessed by some (f̄ ′, ḡ′,m) such that |f̄ ′| = |ḡ′| < k, then B is definable in
(Z,+, 0). Let A ⊆ Zn+1 be a Presburger set, which does not define the ordering and
has sorted fibers witnessed by (f̄ , ḡ,m), where f̄ = (f1, . . . , fk) and ḡ = (g1, . . . , gk).

As in the secondary base case, it suffices to assume X = π(A) is a single quasi-
coset in Zn. By Claim 8.1, there are s, t ∈ {1, . . . , k} such that fs − gt is constant
on X . By Lemma 7.11(b) and the secondary induction hypothesis, it follows that
A is definable in (Z,+, 0). This completes the proof of Theorem 2.4.
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