
ar
X

iv
:1

41
0.

43
53

v2
 [

cs
.L

O
]

 1
9

O
ct

 2
01

5

The Herbrand Functional Interpretation

of the Double Negation Shift

Mart́ın Escardó Paulo Oliva

Preprint, September 12, 2018

Abstract

This paper considers a generalisation of selection functions over an arbi-
trary strong monad T , as functionals of type J

T

RX = (X → R) → TX. It is
assumed throughout that R is a T -algebra. We show that JT

R is also a strong
monad, and that it embeds into the continuation monad KRX = (X → R) →
R. We use this to derive that the explicitly controlled product of T -selection
functions is definable from the explicitly controlled product of quantifiers,
and hence from Spector’s bar recursion. We then prove several properties of
this product in the special case when T is the finite power set monad Pf(·).
These are used to show that when TX = Pf(X) the explicitly controlled prod-
uct of T -selection functions calculates a witness to the Herbrand functional
interpretation of the double negation shift.

1 Introduction

Gödel’s functional or Dialectica interpretation was introduced in [10] as a reduction
of first order arithmetic to the “finitistic” quantifier-free calculus of primitive recur-
sive functionals (system T). Soon after Gödel’s paper appeared in print, Spector
[16] showed how Gödel’s interpretation of arithmetic could be extended to analysis
by extending system T with what he called bar recursion. By analysis we mean
classical arithmetic in all finite types extended with countable choice and dependent
choice – and hence comprehension.

Spector’s original work has given rise to several other bar recursive interpreta-
tions of analysis, whereby different proof interpretations other than the Dialetica
interpretation have been used. In such cases one was either able to continue us-
ing Spector’s original form of bar recursion (e.g. [8, 12]) or some variant of bar
recursion was proposed (e.g. [1, 2]).

As we have shown in [5, 6], there are close connections between the different
forms of bar recursion and the calculation of optimal strategies in a general class
of sequential games. This was achieved by showing that bar recursion turns out to
correspond to the iterated product of quantifiers and selection functions. Spector’s
original bar recursion can be shown to be equivalent to the iterated product of quan-
tifiers, whereas the restricted form needed to witness the Dialectica interpretation
of DNS is equivalent to the iterated product of selection functions [7].

1

http://arxiv.org/abs/1410.4353v2

This analogy between computability and games is based on the modelling of
players via quantifiers KRX = (X → R) → R. If X is the set of moves available
to a player, and R is the set of possible outcomes, then mappings of type X → R

can be seen as describing the context a player lives in. Such contexts (a form
of continuation) describe the final outcome for each of the possible choices of the
player. Hence, to specify a player is to describe her preferred outcomes for each
given game context. Similarly, a selection function JRX = (X → R) → X also
takes a game context as input, but determines the optimal move for any given game
context.

In this paper we consider the iterated product of selection functions parametrised
by an arbitrary strong monad TX , i.e. JT

RX = (X → R) → TX . Using the in-
tuition that an element of a monad TX provides “information” about concrete
elements of X , and the correspondence with games, we can view such selection
functions JT

RX as specifying some information about the optimal move for any
given game context.

We study the bar recursion that arises from the iterated product of such T -
selection functions. Our first step is to show that JT

RX is also a strong monad.
Since any strong monad embeds into the continuation monad, it follows that we
have an embedding of JT

RX into KX . We make use of this embedding to show
that the iterated product of T -selection functions is in fact primitive recursively
definable from the iterated product of quantifiers, and hence from Spector’s original
bar recursion.

Finally, we consider the particular case when TX is the finite power set monad
Pf(X). We prove several properties of the iterated product of selection functions
(X → R) → Pf(X), and show how it provides a witness for the Herbrand functional
interpretation [18] of double-negation shift DNS

∀nN¬¬A(n) → ¬¬∀nNA(n).

1.1 Heyting arithmetic in all finite types, and bar induction

We work in the setting of Heyting arithmetic in all finite types, with full exten-
sionality. This corresponds to the system E-HAω of [17]. When carrying out the
verification of the Herbrand functional interpretation of DNS we will make free
use of classical logic, in order to simplify the verification of the bar-recursive con-
struction, hence will be working on E-PAω. Although it is well-known that full
extensionality is not normally interpreted by the functional interpretations, we are
simply assuming full extensionality in the verification of our interpretation of DNS,
which is obviously harmless.

The quantifier-free part of the theories E-HAω and E-PAω is normally referred
to as Gödel’s system T. Although in T one normally only assumes the natural
numbers N as basic types, and function space constructions X → Y as the only
type constructor, we will follow here the same formulation of T as in [18] where
one also assumes products X × Y , finite sequences X∗, and even finite power sets
Pf(X). We write r � s to say that the finite sequence r is a prefix of the finite
sequence s. We assume that each type X contains a ‘default’ value 0:X , so that we

2

can define an canonical extension operation (·)+:X∗ → XN from finite to infinite
sequences, by appending an infinite sequence of default values. For instance, for
the natural numbers 0N could be the number zero, whereas for Pf(X) we can take
0Pf(X) = ∅.

On top of E-HAω, in the proofs of Lemmas 3.2 and 3.3 will make use of the
following form of bar induction:

Definition 1.1 (Bar induction) Let P (s) be a universal formula, and s:X∗. We
say that bar induction holds for P (s) if whenever

• ω(s+) < |s| implies P (s), and

• ω(s+) ≥ |s| and ∀xP (s ∗ x) implies P (s)

then P (〈 〉).

This form of bar induction implicitly assumes that the bar condition ω(s+) < |s|
eventually holds. This is indeed the case in all models of Spector’s bar recursion
[3, 15].

Notation. In the paper we will use sub-scripts in four different ways, and hope
their respective meanings will be clear from context:

• In the following section we use sub-scripts to denote the type of a functional.
For instance, the identity function of type X will be written as idX .

• If α:X → Y we can view α as a family of elements of Y indexed by X , i.e.
{αx}x:X . When taking this view we might write αx instead of α(x).

• Bar recursive functionals have several parameters, normally BR(ω)(s)(ε)(q).
In order to focus on the selection functions ε and the outcome function q we
shall rewrite this as BRω

s (ε)(q). This makes sense since s is the ‘index’ of the
bar recursion whereas ω is the stopping condition.

• Finally, for q:X∗ → R we write qs(t) for q(s ∗ t) when we wish to ‘partially
evaluate’ q on s to produce another function qs:X

∗ → R.

1.2 Strong monads

In this section we recall the basic notions about strong monads needed in this paper.
Throughout the paper we work in Gödel’s system T. Hence, X,Y and R should be
viewed as finite types1.

Definition 1.2 (Strong monad) Let T be a meta-level unary operation on simple
types, that we will call a type operator. A type operator T is called a strong monad
if we have a family of closed terms

1It will be clear, however, that what we describe would work more generally in any of the
well-known models of higher-order computability.

3

ηX :X → TX

(·)† : (X → TY) → (TX → TY)

satisfying (provably in T) the laws

(i) (ηX)† = idTX

(ii) g† ◦ ηY = g

(iii) (g† ◦ f)† = g† ◦ f †

where g:Y → TR and f :X → TY . When several strong monads are involved we
shall use the super-script in ηT so as to be clear which η is being used.

Given f :X → Y we define Tf :TX → TY by Tf = (ηY ◦ f)†. The laws for the
monad show that this construction makes T into a functor, that is, T idX = idTX ,
and for g : Y → Z we have T (g ◦ f) = Tg ◦ Tf .

Monads have been extensively studied in category theory [11], programming
language semantics [13], and in the functional programming community [19]. In
a monad one would normally have a non-uniform mapping from f :X → TY to
f †:TX → TY . The term strong here refers to the assumption that we have a
uniform map (·)†: (X → TY) → (TX → TY).

Definition 1.3 (T -algebra) Given a strong monad T , a type R is called a T -
algebra if we have a family of maps (·)∗: (X → R) → (TX → R) satisfying

(i) g∗ ◦ ηY = g

(ii) (g∗ ◦ f)∗ = g∗ ◦ f †

where g:Y → R and f :X → TY .

The reason we focus here on strong monads is that on such monads we can
define a binary product operation as follows:

Lemma 1.4 For any strong monad T we can define a product operation

⊗ : TX × (X → TY) → T (X × Y)

as
a⊗ f = (λx.(λy.ηX×Y (x, y))

†(fx))†(a) (1)

satisfying, for q:X × Y → TR,

q†(a⊗ f) = (λx.(qx)
†(fx))†(a),

where qx = λy.q(x, y). When q:X × Y → R and R is a T -algebra it satisfies

q∗(a⊗ f) = (λx.(qx)
∗(fx))∗(a).

4

Proof. We calculate as follows:

q†(a⊗ f)
(1)
= q†((λx.(λy.ηX×Y (x, y))†(fx))†(a))

(◦)
= (q† ◦ (λx.(λy.ηX×Y (x, y))

†(fx))†)(a)

D1.2(iii)
= (q† ◦ (λx.(λy.ηX×Y (x, y))

†(fx)))†(a)

(◦)
= (λx.q†((λy.ηX×Y (x, y))

†(fx)))†(a)

(◦)
= (λx.((q† ◦ (λy.ηX×Y (x, y))

†)(fx)))†(a)

D1.2(iii)
= (λx.((q† ◦ (λy.ηX×Y (x, y)))

†(fx)))†(a)

(◦)
= (λx.((λy.q†(ηX×Y (x, y)))

†(fx)))†(a)

D1.2(ii)
= (λx.(qx)

†(fx))†(a).

In the case q:X × Y → R and R is a T -algebra we use properties (i) and (ii) of
Definition 1.3 instead. ✷

2 T -Selection Functions

In the following two sections we assume that T is a strong monad, and that R is a
T -algebra.

Definition 2.1 (T -selection functions) Let JT
RX = (X → R) → TX, where R

is a T -algebra. The elements of the type JT
RX will be called T -selection functions.

Under the assumptions that T is a strong monad and R a T -algebra, it follows
that JT

R is also a strong monad.

Lemma 2.2 JT
R is a strong monad with operations:

(i) η
JT
R

X (x) = λp.ηTX(x)

(ii) δ†(ε) = λp.(bδp)
†(aε,δp),where δ:X → JT

RY and δ†: JT
RX → JT

RY

where bδp(x)
TY
= δ(x)(p) and aε,δp

TX
= ε(p∗ ◦ bδp).

5

Proof. It is easy to check conditions (i) and (ii). Define ∆x(p) = (bδp)
†(aεx,δp) and

Γν(p) = (bεp)
†(aν,εp). We outline property (iii):

(δ† ◦ ε)† = (λx.δ†(εx))
†

(ii)
= (λx.λp.(bδp)

†(aεx,δp))†

∆ def.
= (λx.∆x)

†

(ii)
= λν.λq.(b∆q)†(aν,∆q)

b def.
= λν.λq.(λx.∆x(q))

†(aν,∆q)
∆ def.
= λν.λq.((bδq)

† ◦ (λx.aεx ,δq))†(aν,∆q)
D1.2(iii)

= λν.λq.((bδq)
† ◦ (λx.aεx ,δq)†)(aν,∆q)

= λν.λq.(bδq)
†((λx.aεx,δq)†(aν,∆q))

(∗)
= λν.λq.(bδq)

†(aΓν ,δ
q)

(ii)
= λν.δ†(Γν)

Γ def.
= λν.δ†(λp.(bεp)

†(aν,εp))
(ii)
= λν.δ†(ε†(ν))

= δ† ◦ ε†.

It remains to show that (∗) aΓν ,δ
q = (λx.aεx ,δq)†(aν,∆q). This can be shown as

aΓν ,δ
q

a def.
= Γν(q

∗ ◦ bδq)
Γ def.
= (λx.bε

q∗◦bδq
(x))†(aν,ε

q∗◦bδq
)

b def.
= (λx.εx(q

∗ ◦ bδq))
†(aν,ε

q∗◦bδq
)

(∗∗)
= (λx.εx(q

∗ ◦ bδq))
†(aν,∆q)

a def.
= (λx.aεx,δq)†(aν,∆q),

where, finally, (∗∗) aν,ε
q∗◦bδq

= aν,∆q is shown as

a
ν,ε

q∗◦bδq

a def.
= ν((q∗ ◦ bδq)

∗ ◦ bε
q∗◦bδq

)

D1.3(ii)
= ν(q∗ ◦ (bδq)

† ◦ bε
q∗◦bδq

)

= ν(λx.q∗((bδq)
†(bε

q∗◦bδq
(x))))

b def.
= ν(λx.q∗((bδq)

†(εx(q
∗ ◦ bδq))))

a def.
= ν(λx.q∗((bδq)

†(aεx,δq)))
∆ def.
= ν(λx.q∗(∆x(q)))

b def.
= ν(λx.q∗(b∆q (x)))

a def.
= aν,∆q .

6

✷

It follows that the product operation of the monad JT
R can be explicitly described

in terms of the product operation on T as:

(ε⊗JT
R δ)(q) = a⊗T f (2)

where q:X × Y → R, ε: (X → R) → TX and δ:X → (Y → R) → TY , and

f(x)
TY
= δx(qx)

a
TX
= ε(λxX .(qx)

∗(fx)).

Note that ⊗ on the right side of (2) denotes the product on the strong monad
T whereas ⊗ on the left denotes the product of the strong monad JT

R . We will in
general use the same notation ⊗ for the product of any strong monad, as it will
hopefully be clear from the context which monad we are referring to.

Definition 2.3 (from JT
R to KR) Let KRX = (X → R) → R. Given a T -

selection function ε: JT
RX we can construct a quantifier ε:KRX as

ε(pX→R)
R
= p∗(εp).

It can be shown that the construction ε 7→ ε is actually a monad morphism, from
which the next lemma follows. Nevertheless, we shall prove the lemma directly. A
particular instance of this lemma, when T is the identity monad, was first proven
in [5]. It is important here that R is a T -algebra.

Lemma 2.4 Given ε: JT
RX and δ:X → JT

RY then

(ε⊗JT
R δ) = ε⊗KR (λx.δx).

Proof. Define f(x) = δx(qx) and p(x) = (qx)
∗(fx) and a = ε(p). We calculate as

follows:

(ε⊗JT
R δ)(q)

D2.3
= q∗((ε⊗JT

R δ)(q))
(2)
= q∗(a⊗T f)

L1.4
= (λx.(qx)

∗(fx))∗(a)

Def(a)
= (λx.(qx)

∗(fx))∗(ε(p))

Def(p)
= p∗(ε(p))

D2.3
= ε(p)

Def(p, f)
= ε(λx.(qx)

∗(δx(qx)))

D2.3
= ε(λx.δx(qx))

= (ε⊗KR (λx.δx))(q).

The last equality in the chain above uses the definition of the product ⊗ for the
strong monad KRX . ✷

7

3 Iterated Products and Bar Recursion

Given any strong monad M we can iterate its product operation MX × (X →
MY) → M(X × Y) so as to obtain an operation2 on infinite sequences (X∗ →
M(X))N → M(XN). Although this will not be a total operation in general, it is
surprising that, as shown in [5], it defines a total operation when M is the selection
monad MX = JRX and R is a discrete type.

It is also possible to iterate the binary product of M in a controlled way, by
using an explicit termination function ω:XN → N as

M -EPω
s (α) =

{
ηM (〈 〉) if ω(s+) < |s|

αs ⊗M (λx.M -EPω
s∗x(α) otherwise

where M -EPω
s is of type (N → M(X) → M(X∗). We use the acronym M -EP for

the “explicitly controlled iterated product of the strong monad M”.
The explicitly controlled product of selection functions EPS or quantifiers EPQ

(cf. [7]) are particular cases when MX = JRX and MX = KRX , this time for an
arbitrary R, i.e. EPS = JR-EP and EPQ = KR-EP. In turn, these are primitively
recursively equivalent to restricted Spector bar recursion and the general Spector
bar recursion, respectively [7].

In this section we consider another instance where MX = JT
RX , with T being

a strong monad, i.e. JT
R -EP which we shall call T -EPS.

Definition 3.1 (Iterated JT
R product) Let εs: J

T
RX|s| and s:X∗ and ω:XN →

N. We define T -EPSωs (ε): J
T
RX∗ as T -EPSωs = JT

R -EPω
s .

Unfolding the definition of the binary product, as in Lemma 2.2, and noticing

that ηJ
T
R (〈 〉) = λq.ηT (〈 〉), the equation above can be also written as

T -EPSωs (ε)(q) =

{
ηT (〈 〉) if ω(s+) < |s|

a⊗T f otherwise
(3)

where a = εs(λx.(qx)
∗(fx)) and f(x) = T -EPSωs∗x(ε)(qx).

Recall that EPQ is the explicitly controlled iterated product of quantifiers, i.e.
EPQ = KR-EP. EPQ satisfies the equation

EPQω
s (φ) =

{
λq.q(〈 〉) if ω(s+) < |s|

φs ⊗KR λx.EPQω
s∗x(φ) otherwise.

Again, the definition of the binary product of quantifiers can unfolded, leading to
the equivalent equation

EPQω
s (φ)(q) =

{
q(〈 〉) if ω(s+) < |s|

φs(λx.EPQ
ω
s∗x(φ)(qx)) otherwise

(4)

2A simpler instance of this operation without dependent types, namely (MX)N → M(XN),
is actually a built-in function in standard implementations of the Haskell programming language
called sequence :: Monad m => [m a] -> m [a].

8

As show in [4], EPQ is equivalent over system T to Spector’s bar recursion. The
following lemma follows by a simple iteration of Lemma 2.4.

Lemma 3.2 T -EPSω〈 〉(ε) = EPQω
〈 〉(ε).

Proof. The proof goes by bar induction on s with the bar ω(s+) < |s|. In case we
have reached the bar, i.e. ω(s+) < |s|, we have

EPQω
s (ε)(q) = q(〈 〉)

D1.3(i)
= q∗(ηT (〈 〉))

D3.1
= q∗(T -EPSωs (ε)(q))

D2.3
= T -EPSωs (ε).

By the bar inductive assumption we have that T -EPSωs∗x(ε) = EPQω
s∗x(ε), for all x,

and hence

EPQω
s (ε)(q) = (ε⊗KR (λx.EPQω

s∗x(ε)))(q)

(IH)
= (ε⊗KR (λx.T -EPSωs∗x(ε)))(q)

L2.4
= (ε⊗JT

R (λx.T -EPSωs∗x(ε)))(q)

= T -EPSωs (ε)(q),

since we can assume ω(s+) ≥ |s|. ✷

It is well know that the product of selection functions of type (X,R) can be
simulated by a product where R is restricted to R = XN and q:XN → R is the
identity function. In fact, one can think of Spector’s restricted form of bar recursion
[16] as the iterated product of these restricted selection functions. In terms of
games, it corresponds to taking the outcome of the game to be the sequence of
moves played. The actual outcome of the game can be reconstructed from this
sequence via the outcome function. The next lemma shows that this simulation of
an arbitrary outcome type R by taking the outcome to be the actual sequence of
moves also works in this monadic setting.

Lemma 3.3 T -EPS of type (X,R) is definable from T -EPS of type (X,TXN).

Proof. Let adds:X
N → XN and dropn:X

N → XN be the functions that append
the finite sequence s to the beginning of an infinite list, and the function that drops
n elements from an infinite list, respectively. Clearly, drop|s| ◦ adds is the identity,

and hence, by functoriality, T (drop|s|) ◦ T (adds) is the identity on T (XN). Given

q:XN → R and εs: J
T
RX we define εqs: J

T
TXNX as

εqs(p
X→TXN

)
TX
= εs(λx.((qs∗x)

∗ ◦ T (drop|s∗x|))(px)).

9

Note that TXN is also a T -algebra with the map

(·)∗: (Y → TXN) → (TY → TXN)

being simply the (·)† of the monad T . We claim that

T -EPSω〈 〉(ε)(q) = T -EPSω〈 〉(ε
q)(ηT).

Define

P (s) ≡ T -EPSωs (ε)(qs) = T -EPSωs (ε
q)(ηT ◦ adds)

and let us show P (〈 〉) by bar induction. Recall that T (adds) = ηT ◦ adds by
definition. In the base case, assuming ω(s+) < |s|, we have

T -EPSωs (ε)(qs) = ηT (〈 〉) = T -EPSωs (ε
q)(ηT ◦ adds).

For the bar inductive step we assume P (s ∗ x) holds for all x and must prove P (s).
We can also assume that ω(s+) ≥ |s|. Let

f(x) = T -EPSωs∗x(ε)(qs∗x)

a = εs(λx.(qs∗x)
∗(fx))

f̃(x) = T -EPSωs∗x(ε
q)(ηT ◦ adds∗x)

ã = εqs(λx.T (adds∗x)(f̃x)).

By the bar inductive hypothesis we have f = f̃ and hence

ã = εqs(λx.T (adds∗x)(f̃ x))

(IH)
= εqs(λx.T (adds∗x)(fx))

(εq def)
= εs(λx.((qs∗x)

∗ ◦ T (drop|s∗x|))(T (adds∗x)(fx))))

= εs(λx.(qs∗x)
∗(fx))

= a.

Therefore

T -EPSωs (ε)(qs) = a⊗T f

= ã⊗T f̃

= T -EPSωs (ε
q)(ηT ◦ adds).

In the last step we have used that T (adds) is defined as ηT ◦ adds. ✷

The main result in this section is that Spector’s original bar recursion already
defines the explicitly controlled product of T -selection functions T -EPS. Spector
proves this in [16] for the case when T is the identity monad. The following theorem
shows that this in fact holds for any strong monad T .

Theorem 3.4 T -EPS is definable from EPQ.

10

Proof. We claim that T -EPSω〈 〉(ε)(q) can be defined as EPQω
〈 〉(ε

q)(η), where εq is
as in the proof of the previous lemma. Indeed we have:

EPQω
〈 〉(ε

q)(η)
L3.2
= T -EPSω〈 〉(ε

q)(η)

D2.3
= η∗(T -EPSω〈 〉(ε

q)(η))

L3.3
= η∗(T -EPSω〈 〉(ε)(q))

= η†(T -EPSω〈 〉(ε)(q))

D1.2(i)
= T -EPSω〈 〉(ε)(q).

We used that the map (·)∗ for the algebra TXN is just the (·)† map for the monad
T , as discussed in the proof of Lemma 3.3. ✷

4 Finite Power Sets

For the rest of the paper we will make essential use of the definitional extension of
Gödel’s system T with the finite power-set type Pf(X). To simplify the exposition,
let us also abbreviate Pf(X → Y) as X ⇒ Y , i.e. the type of finite sets of functions
from X to Y . We can think of the elements f :X ⇒ Pf(Y) as functions by defining
the following set-application

Ap(f)(xX)
Pf (Y)
=

⋃

g∈f

gx.

Hence, if f :X ⇒ Pf(Y) then Ap(f)(·):X → Pf(Y). In particular, if f : (X ⇒ (Y ⇒
Pf(Z))) then Ap(Ap(f)(x))(y) stands for

⋃

g∈f

⋃

h∈gx

hy

and we will be abbreviated that as Ap2(f)(x, y).

Lemma 4.1 The finite power set type operator Pf(·) is a strong monad with oper-
ations

• η(x) = {x}

• f †(S) =
⋃
{f(x) : x ∈ S}, for f :X → Pf(Y).

Moreover, its binary product

⊗:Pf(X)× (X → Pf(Y)) → Pf(X × Y)

can be explicitly described as

S ⊗ f = {〈a, b〉 : a ∈ S ∧ b ∈ f(a)}.

11

For the rest of the paper we shall assume that R = Pf(R
′), for some R′, so that

R is an algebra for Pf(·) with (·)∗ = (·)†. We will also use
⋃
:Pf(R) → R, the usual

union operation which satisfies Si ⊆
⋃
{Si : i ∈ I} (we use this in Lemma 4.6).

Definition 4.2 (Herbrand bar recursion) Let us write hBR for the instance of
T -EPS where T = Pf(·), i.e

hBRω
s (ε)(q) =

{
{〈 〉} if ω(s+) < |s|

{a ∗ r : a ∈ χ ∧ r ∈ hBRs∗a(ω)(ε)(qa)} otherwise

where χ = εs(λx.
⋃
{qx(r) : r ∈ hBRs∗x(ω)(ε)(qx)}).

By Theorem 3.4 hBR is T -definable from Spector’s general form of bar recursion
[14]. We now prove four lemmas about hBR, to be used in the interpretation of
DNS in the following section. For this section we will assume that ε and ω are fixed
functionals and hence, for the sake of readability, we shall omit these as parameters
in hBRω

s (ε)(q).

Lemma 4.3 Let t = hBR〈 〉(q) and s ∈ t. For all i ≤ |s| we have

s ∈ {〈s0, . . . , si−1〉 ∗ r : r ∈ hBR〈s0,...,si−1〉(q〈s0,...,si−1〉)}.

The types are t:Pf(X
∗) and s:X∗.

Proof. By induction on i. If i = 0 then 〈s0, . . . , si−1〉 is the empty sequence and
the result follows by the assumption that s ∈ t. For the induction step assume that
i < |s| and that

s ∈ {〈s0, . . . , si−1〉 ∗ r : r ∈ hBR〈s0,...,si−1〉(q〈s0,...,si−1〉)}.

Since i < |s| there must exist some r ∈ hBR〈s0,...,si−1〉(q〈s0,...,si−1〉) of the form si ∗r′

so that

(i) s = 〈s0, . . . , si−1, si〉 ∗ r′, and

(ii) si ∗ r′ ∈ hBR〈s0,...,si−1〉(q〈s0,...,si−1〉).

In particular, we cannot have hBR〈s0,...,si−1〉(q〈s0,...,si−1〉) = {〈 〉}, so it must be the
case that (∗) ω(〈s0, . . . , si−1〉+) ≥ |〈s0, . . . , si−1〉|. Hence

hBR〈s0,...,si−1〉(q〈s0,...,si−1〉) = {a ∗ r : a ∈ χ ∧ r ∈ hBR〈s0,...,si−1,a〉(q〈s0,...,si−1,a〉)}

where

χ = ε〈s0,...,si−1〉(λy
X .

⋃

{q〈s0,...,si−1,y〉(r) : r ∈ hBR〈s0,...,si−1,y〉(q〈s0,...,si−1,y〉)}).

From (ii) it follows that si ∈ χ and

(iii) r′ ∈ hBR〈s0,...,si−1,si〉(q〈s0,...,si−1,si〉).

12

Finally, from (i) and (iii) we have

s ∈ {〈s0, . . . , si−1, si〉 ∗ r′ : r′ ∈ hBR〈s0,...,si−1,si〉(q〈s0,...,si−1,si〉)}

which concludes the proof. ✷

For the following three lemmas let t = hBR〈 〉(q), and assume a0, . . . , an is a
finite sequence satisfying, for all i ≤ n,

ai ∈ ε〈a0,...,ai−1〉(pi)

where pi is defined as

pi(y) =
⋃
{q〈a0,...,ai−1,y〉(r) : r ∈ hBR〈a0,...,ai−1,y〉(q〈a0,...,ai−1,y〉)}.

Lemma 4.4 If ω(〈a0, . . . , ai−1〉+) ≥ i, for all i ≤ n, then

〈a0, . . . , an−1〉 ∗ x ∗ r ∈ t,

for all x ∈ ε〈a0,...,an−1〉(pn) and r ∈ hBR〈a0,...,an−1,x〉(q〈a0,...,an−1,x〉).

Proof. We prove the lemma by induction on n.

For n = 0 the assumption of the lemma always holds, while the conclusion follows
by the definition of hBR

t = hBR〈 〉(q) = {a ∗ r : a ∈ ε〈 〉(p0) ∧ r ∈ hBRa(qa)}

since ω(〈 〉+) ≥ 0. For the induction step, assume that ω(〈a0, . . . , ai−1〉+) ≥ i, for
all i ≤ n+1. In particular this holds for i ≤ n. Hence, by induction hypothesis we
have

〈a0, . . . , an−1〉 ∗ x ∗ r ∈ t,

for all x ∈ ε〈a0,...,an−1〉(pn) and r ∈ hBR〈a0,...,an−1,x〉(q〈a0,...,an−1,x〉)

and, since an ∈ ε〈a0,...,an−1〉(pn),

(i) 〈a0, . . . , an〉 ∗ r ∈ t, for all r ∈ hBR〈a0,...,an〉(q〈a0,...,an〉).

Now fix a y ∈ ε〈a0,...,an〉(pn+1) and an r′ ∈ hBR〈a0,...,an,y〉(q〈a0,...,an,y〉). In order
to show that 〈a0, . . . , an〉 ∗ y ∗ r′ ∈ t, by (i) it is enough to show that y ∗ r′ ∈
hBR〈a0,...,an〉(q〈a0,...,an〉). But since ω(〈a0, . . . , an〉

+) ≥ n+1, this indeed follows by
the definition of hBR, and the assumptions on y and r′. ✷

Lemma 4.5 Let t and ai’s be as above. Define N = 1 + max{|s| : s ∈ t}. For
some n < N we have that

(a) n is the least such that ω(〈a0, . . . , an〉+) < n+ 1, and

(b) 〈a0, . . . , an〉 ∈ t.

13

Proof. Suppose that for all n ≤ N we have ω(〈a0, . . . , an−1〉+) ≥ n. By Lemma
4.4 this would imply 〈a0, . . . , aN−1〉 ∗ r ∈ t for some non-empty finite sequence
r, which is a contradiction by the definition of N . Therefore, let n < N be
the smallest such that ω(〈a0, . . . , an〉+) < n + 1, so that for all i ≤ n we have
ω(〈a0, . . . , ai−1〉

+) ≥ i. By Lemma 4.4 again we have that 〈a0, . . . , an−1〉∗an∗r ∈ t

for all r ∈ hBR〈a0,...,an〉(q〈a0,...,an〉). But since ω(〈a0, . . . , an〉+) < n + 1 we have
that hBR〈a0,...,an〉(q〈a0,...,an〉) = {〈 〉}, implying 〈a0, . . . , an〉 ∈ t. ✷

Lemma 4.6 Let t, pi, ai be as above, and n < N as in Lemma 4.5. Let also
s = 〈a0, . . . , an〉. Then for all i ≤ n

q(s) ⊆ pi(ai). (5)

Proof. By Lemma 4.5 we have that s ∈ t. Hence, by Lemma 4.3, for i ≤ n

s ∈ {〈a0, . . . , ai−1, ai〉 ∗ r : r ∈ hBR〈a0,...,ai−1,ai〉(q〈a0,...,ai−1,ai〉)}.

It follows that

q(s) ∈ {q(〈a0, . . . , ai−1, ai〉 ∗ r) : r ∈ hBR〈a0,...,ai−1,ai〉(q〈a0,...,ai−1,ai〉)}.

Hence

q(s) ⊆
⋃
{q〈a0,...,ai−1,ai〉(r) : r ∈ hBR〈a0,...,ai−1,ai〉(q〈a0,...,ai−1,ai〉)}

= pi(ai)

which concludes the proof. ✷

5 Application: Herbrand Interpretation of DNS

In this final section we show how the product of T -selection functions, with T being
the finite power-set monad, witnesses the Herbrand functional interpretation of the
double negation shift

DNS : ∀stnN¬¬A(n) → ¬¬∀stnNA(n)

where ∀stxA(x) is the quantification over standard objects from [18]. Let us first
briefly recall here the definition of the Herbrand functional interpretation from [18].
We shall only present the {→, ∀st,⊥}-fragment as this is enough to carry out the
interpretation of DNS. Negation ¬A is defined as A → ⊥. Although we will present
an explicit definition for the witnesses of DNS, for simplicity, we will carry out the
verification of correctness in a classical setting, reading the weak existential ¬∀x¬A
as the strong one ∃xA.

Definition 5.1 ([18]) The Herbrand functional interpretation of a formula A is
defined by structural induction. Assume3 (A)H = ∃staX∀stbY AH(a, b) and (B)H =

3Here a, b, c and d are potentially tuples of variables, though for simplicity we will treat them
as if they were single variables.

14

∃stcV ∀stdWBH(c, d). The only relevant cases for the interpretation of DNS are:

(⊥)H ≡ ⊥

(A → B)H ≡ ∃stf, g∀staX , dW (∀b∈Ap2(g)(a, d)AH(a, b) → BH(Ap(f)(a), d))

(∀stzZA)H ≡ ∃sthZ⇒X∀stz, bAH(Ap(h)(z), b)

where in the clause for A → B the types of f and g are

f : X ⇒ V

g : X ⇒ (W ⇒ Pf(Y)).

For all other cases, including the other base cases, see [18].

Let us start by working out the Herbrand interpretation of negation ¬A and
double-negation ¬¬A. If (A)H = ∃staX∀stbRAH(a, b) then

(¬A)H ≡ ∃stpX⇒Pf (R)∀staX¬∀b ∈ Ap(p)(a)AH(a, b)

and hence

(¬¬A)H ≡ ∃stε∀stpX⇒Pf (R)∃aX ∈ Ap(ε)(p)∀b ∈ Ap(p)(a)AH(a, b)

where ε: (X ⇒ Pf(R)) ⇒ Pf(X). Assuming A(n) has a Herbrand functional inter-
pretation ∃staX∀stbRAH(n, a, b) then the interpretation of ∀stnN¬¬A(n) is

∃stδ∀stn∀stpX⇒Pf (R)∃a ∈ Ap2(δ)(n, p)∀b ∈ Ap(p)(a)AH(n, a, b). (6)

The interpretation of the conclusion of DNS, ¬¬∀stnNA(n), follows from4

∃stα∀stϕ, q∃β ∈ Ap2(α)(ϕ, q)∀n ∈ Ap(ϕ)(β)∀b ∈ Ap(q)(β)AH (n, β(n), b) (7)

where the types above are

δ:N ⇒ (X ⇒ Pf(R)) ⇒ Pf(X) p:X ⇒ Pf(R)

q: (N → X) ⇒ Pf(R) β:N → X

ϕ: (N → X) ⇒ Pf(N) Ap2(α)(ϕ, q):Pf (N ⇒ X).

Given δ, ϕ and q, we will calculate finite sets α,N and P and show that

∀n∈N∀p∈P∃a∈Ap2(δ)(n, p)∀b∈Ap(p)(a)AH(n, a, b)

→ ∃β∈α∀n∈Ap(ϕ)(β)∀b∈Ap(q)(β)AH (n, β(n), b).

Although the Herbrand interpretation here would only actually ask us to produce
finite sets of candidate “constructions” for α,N and P , with a guarantee that one
of them did the job, we show that in fact we can produce concrete finite sets α,N
and P . Given δ, ϕ and q as above, let us define

4Instead of producing a set of functions β:N ⇒ X we will actually produce a single function
β:N → X. Note that Ap({p})(a) = p(a).

15

εn: (X → Pf(R)) → Pf(X)

q̂:X∗ → Pf(R)

ω: (N → X) → N

as

εn(p) = Ap2(δ)(n, {p})

q̂(s) = Ap(q)(s+)

ω(β) = max(Ap(ϕ)(β)).

We will then apply hBR to εn, q̂ and ω.

Theorem 5.2 Define t = hBR
ω
〈 〉(ε)(q̂). We claim that

α = {s+ : s ∈ t}

P = {pr : r � s ∧ s ∈ t}

N = 1 +max{|s| : s ∈ t}

where pr(y) =
⋃
{q̂(r∗y∗r′) : r′ ∈ hBR(r∗y)}, witness the Herbrand interpretation

of DNS, i.e.

∀n≤N∀p∈P∃a∈Ap2(δ)(n, p)∀b∈Ap(p)(a)AH(n, a, b)

→ ∃β∈α∀i∈Ap(ϕ)(β)∀b∈Ap(q)(β)AH (i, β(i), b)

viewing the number N as the finite set {0, 1, . . . , N}.

Proof. Assume

∀n ≤ N∀p∈P∃a∈Ap2(δ)(n, p)∀b∈Ap(p)(a)AH(n, a, b). (8)

By induction on n it follows that: For all n ≤ N there exists a sequence 〈a0, . . . , an〉
such that either

• for some i < n, ω(〈a0, . . . , ai〉
+) < i+ 1, or

• for all i ≤ n,

ai∈Ap2(δ)(i, {p〈a0,...,ai−1〉})
︸ ︷︷ ︸

εi(p〈a0,...,ai−1〉)

∧ ∀b∈Ap({p〈a0,...,ai−1〉})(ai)
︸ ︷︷ ︸

p〈a0,...,ai−1〉(ai)

AH(i, ai, b). (9)

We have used Lemma 4.4, since under the assumption that ω(〈a0, . . . , ai−1〉+) ≥ i

for all i ≤ n then 〈a0, . . . , ai−1〉 ∗ r ∈ t, for some r, and hence p〈a0,...,ai−1〉 ∈ P . By
Lemma 4.5 there exists a least n < N such that ω(〈a0, . . . , an〉+) < n+ 1, so that
(9) holds for all i ≤ n, and 〈a0, . . . , an〉 ∈ t. Let s = 〈a0, . . . , an〉 and β = s+ (so
that β ∈ α). Note that

max(Ap(ϕ)(s+)) = ω(s+) < |s|.

16

Hence, i < |s| for all i ∈ Ap(ϕ)(s+). By Lemma 4.6

Ap(q)(β) = Ap(q)(s+) = q̂(s) ⊆ p〈a0,...,ai−1〉(ai), for all i ∈ Ap(ϕ)(s+).

By (9) we can conclude that ∀i∈Ap(ϕ)(β)∀b∈Ap(q)(β)AH (i, β(i), b). ✷

A reader familiar with the bounded functional interpretation of DNS (cf. [8])
will have noticed several similarities with the Herbrand functional interpretation of
DNS presented here. The main difference, however, is that we have made no effort
to formalise the verification of the interpretation in a constructive setting, choosing
to view ¬∀x¬A as a strong existence ∃xA. Although it is clear to us that such
formalisation is possible, attempting to do so would complicate the verification and
probably obfuscate the crucial steps of the bar recursive construction. We hope that
by simplifying the “logical component” of the proof one can better appreciate its
“computational” aspect and the use of the “Herbrand” bar recursion. The recent
paper [9] sheds some light at the relationship between the two interpretations.

6 Conclusion

We conclude by noticing that all lemmas of Section 4 were proven for the specific
case of the finite power set monad only. It is reasonable to ask whether more general
versions of such lemmas work already for the monadic bar recursion T -EPS. The
main challenge as we see it is to find the appropriate abstraction to the notion of
set containment and subset inclusion. Similarly, one might consider generalisations
of the Herbrand functional interpretation whereby the finite power set monads is
replaced by an arbitrary monad, with possibly some extra structure.

References

[1] S. Berardi, M. Bezem, and T. Coquand. On the computational content of the
axiom of choice. The Journal of Symbolic Logic, 63(2):600–622, 1998.

[2] U. Berger and P. Oliva. Modified bar recursion. Mathematical Structures in
Computer Science, 16:163–183, 2006.

[3] M. Bezem. Strongly majorizable functionals of finite type: a model for bar
recursion containing discontinuous functionals. The Journal of Symbolic Logic,
50:652–660, 1985.

[4] M. H. Escardó and P. Oliva. Computational interpretations of analysis via
products of selection functions. In F. Ferreira, B. Lowe, E. Mayordomo, and
L. M. Gomes, editors, Computability in Europe 2010, LNCS, pages 141–150.
Springer, 2010.

[5] M. H. Escardó and P. Oliva. Selection functions, bar recursion, and backward
induction. Mathematical Structures in Computer Science, 20(2):127–168, 2010.

[6] M. H. Escardó and P. Oliva. Sequential games and optimal strategies. Royal
Society Proceedings A, 467:1519–1545, 2011.

17

[7] M. H. Escardó and P. Oliva. Computational interpretations of analysis via
products of selection functions. The Journal of Symbolic Logic, 80(1):1–28,
2015.

[8] F. Ferreira and P. Engrácia. The bounded functional interpretation of the
double negation shift. Journal of Symbolic Logic, 75(2):759–773, 2010.

[9] F. Ferreira and J. Gaspar. Nonstandardness and the bounded functional in-
terpretation. Annals of Pure and Applied Logic, 166:665–740, 2015.

[10] K. Gödel. Über eine bisher noch nicht benützte Erweiterung des finiten Stand-
punktes. Dialectica, 12:280–287, 1958.

[11] A. Kock. Strong functors and monoidal monads. Arch. Math. (Basel), 23:113–
120, 1972.

[12] U. Kohlenbach. Effective bounds from ineffective proofs in analysis: an appli-
cation of functional interpretation and majorization. The Journal of Symbolic
Logic, 57:1239–1273, 1992.

[13] E. Moggi. Notions of computation and monads. Inf. Comput., 1:55–92, 1991.

[14] P. Oliva and T. Powell. On Spector’s bar recursion. Mathematical Logic Quar-
terly, 58(4-5):356–365, 2012.

[15] B. Scarpellini. A model for bar recursion of higher types. Compositio Mathe-
matica, 23:123–153, 1971.

[16] C. Spector. Provably recursive functionals of analysis: a consistency proof of
analysis by an extension of principles in current intuitionistic mathematics.
In F. D. E. Dekker, editor, Recursive Function Theory: Proc. Symposia in
Pure Mathematics, volume 5, pages 1–27. American Mathematical Society,
Providence, Rhode Island, 1962.

[17] A. S. Troelstra. Metamathematical Investigation of Intuitionistic Arithmetic
and Analysis, volume 344 of Lecture Notes in Mathematics. Springer, Berlin,
1973.

[18] Benno van den Berg, Eyvind Martol Briseid, and Pavol Safarik. A functional
interpretation for nonstandard arithmetic. Annals of Pure and Applied Logic,
163(2):1962–1994, 2012.

[19] Philip Wadler. The essence of functional programming. In Proceedings of
the 19th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL’92, pages 1–14, New York, NY, USA, 1992. ACM.

18

	1 Introduction
	1.1 Heyting arithmetic in all finite types, and bar induction
	1.2 Strong monads

	2 T-Selection Functions
	3 Iterated Products and Bar Recursion
	4 Finite Power Sets
	5 Application: Herbrand Interpretation of DNS
	6 Conclusion

