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Abstract

We give a model of set theory based on multisets in homotopy type theory. The
equality of the model is the identity type. The underlying type of iterative sets can
be formulated in Martin-Löf type theory, without Higher Inductive Types (HITs),
and is a sub-type of the underlying type of Aczel’s 1978 model of set theory in type
theory. The Voevodsky Univalence Axiom and mere set quotients (a mild kind of
HITs) are used to prove the axioms of constructive set theory for the model. We give
an equivalence to the model provided in Chapter 10 of “Homotopy Type Theory”
by the Univalent Foundations Program.
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1 Introduction

The first model of set theory in type theory is due to Aczel and models the constructive
set theory CZF1. The underlying type of sets in this model is WUT , the type of all well-
founded trees with branchings in a universe U with decoding family T : U → Type. The
interpretation of equality in this model allows deduplication and permutation of subtrees
— incorporating the intuition that the order and multiplicity of elements of a set are
irrelevant. If we instead insist to interpret equality as the identity type and assume the
univalence axiom, the underlying type no longer models set theory, but rather multiset
theory.

In a related work2 we explore the notion of iterative multisets in type theory. Here we
will specialise from the general multisets to the set-like ones, where each element occurs
at most once. We will start by summarising the model of multisets and its relation to
Aczel’s model of CZF in type theory3.

Once the notion of a multiset is defined, it is natural to study the hereditary subtype
of multisets where each element occurs at most once. These are in a certain sense
the most natural representations of iterative sets from a homotopy type theory point of
view. These are namely the multisets for which the element hood relation is hereditarily,
merely propositional (type level −1).

In this text we explore how this type models various axioms of constructive set
theory. We also show that it is equivalent to the higher inductive type outlined in the
book “Homotopy Type Theory”4.

1.1 From multisets to sets – two ways

Assume for a moment that we would like to explain the notion of multiset to someone
who knows the notion of a set. Here are two similar attempts at such an explanation.

1.1.1 Variant A

A multiset is a generalisation of sets in which an element may occur any
number of times, not just at most once.

1.1.2 Variant B

A multiset is like a set with the extra information attached to each element
about how many times it occurs in the multiset.

The two descriptions are almost identical, but critically different. Variant A describes
the multisets as a more general concept than sets, in the sense that a set is a special
case of a multiset, namely those multisets in which each element occurs at most once.

1Aczel 1978.
2Gylterud 2016
3Aczel 1978.
4Univalent Foundations Program 2013.
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Variant B, on the other hand, describes a multisets as sets with some extra structure.
In both cases the impression given is that the multisets are, in an informal way, a bigger
concept than that of a set. Variant A says that sets are just some of the multisets, while
Variant B says that for each set there are numerous ways to make a multiset from it.

In mathematics these two notions of “bigger” correspond to the notion of

• sets being a subtype of multisets (Variant A)
• sets being a quotient of multisets (Variant B)

If we were to turn the direction of explanations, making them explanations of the
concept of a set from the notion of a multiset, the above suggests two distinct routes of
constructing a notion of sets from a notion of multisets. We either identify the subtype
of set-like multisets, or identify the equivalence relation of multisets which forgets the
extra structure of multiplicites.

Example 1:1. The multiset {a, a, b} would not be considered a set-like in the spirit
of Variant A, since a occurs twice. On the other hand, Variant B would contest that
{a, a, b} and {a, b, b} would represent the same set, since in both cases a and b are exactly
the elements occurring at least once.

If we denote by M the multisets, and VA and VB denotes the two possible notions
of sets arising from it, following Variant A and Variant B respectively, we can draw the
following diagram of the situation.

VA
� � //M

����
VB

1.2 Outline

In Section 2 and 3 we set up a bit of framework to work within. Starting from Section
4 we will follow the path of Variant A.

Section 5 will take us through the basic lemmas about the type of iterative sets we
define in Section 4. These lemmas are applied in Section 6 to give proofs that our model
satisfies the axioms of Myhill’s Constructive Set Theory.

In Section 7 we consider the problem of interpreting the two collection axioms of
Aczel’s CZF in our model.

In Section 8 we return to Variant B, which will make the relationship with the
approach taken in Chapter 10 of the book “Homotopy Type Theory”5 clear.

5Univalent Foundations Program 2013.
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1.3 Notation

In what follows we will adhere to the following notation. Some of our notation is similar
to that of the book “Homotopy Type Theory”6, while some of it is inspired by the syntax
of Agda.

• Function application will be denoted by juxtaposition, as in f a. Also, application
of functions equipped with extra structure, such as equivalences and embeddings,
will be denoted by juxtaposition.
• Quantifiiers, such as ∀,∃,

∏
and

∑
bind weakly. For instance,∏

x:M x ∈ a→
∑
y:M y ∈ B ∧ P x y disambiguates to∏

x:M

(
x ∈ a→

∑
y:M y ∈ B ∧ P x y

)
• The equality sign, =, denotes the identity type. We sometimes equip it with a

subscript emphasising which type the elements belong to, as in a =A a
′.

• Definitions are signified by :=.
• Judgemental equalities are denoted by ≡.
• The notation A : Type denotes that A is a type,
• The notation A : Set denotes that A is a type which is a mere set and
• The notation A : Prop denotes that A is a type which is a mere proposition.
• The type U is a universe, with decoding family T : U → Type. We assume that

this universe

– is univalent,
– contains the empty type, 0,
– is closed under Π-types,
– is closed under Σ-types,
– is closed under +-types,
– is closed under (−1)-truncation and
– is closed under taking quotients of mere sets by equivalence relations.

• The notation eA denotes the empty function e : 0→ A. The subscript is dropped
when inferable from the context.
• The notation ap f refers to the usual function ap f : a = a′ → f a = f a′

2 Types and propositions

One of the main features of Martin-Löf’s type theory is the interpretation of propositions
as types7. The presence of the identity type gives the possibility of asking whether two
proofs of a proposition are equal. A type in which all elements are equal is called, in
homotopy type theory, a mere proposition.

6Univalent Foundations Program 2013.
7Martin-Löf 1984.
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The traditional interpretation of the existential quantifier in type theory is by the
sigma type

∑
a:A P a. A proof of an existential proposition is thus a, p — a term a : A of

the quantified domain paired with a proof p : P a that the term has the correct property.
It is clear that since the existence is not necessarily unique, the type of such proof need
not be a mere proposition.

In homotopy type theory, one introduces a truncated existential quantifier ∃(x :
A)P a, which is constructed from

∑
a:A P a by adding identifications of all elements in to

make it a mere proposition. This gives the following introduction and elimination rule:8

a : A b : B a
−−−−−−−−−−−−−−−−−−−−−−− ∃-intro

[a,b] : ∃(a:A)(B a)

x : ∃(a:A)(B a) y : ∃(a:A)(B a)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∃-quot

q : x = y

P : ∃(a:A)(Ba) → Prop
p : (a : A) → (b : B a) → P [a,b]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∃-elim
∃-elim P p : (x : ∃(a:A)(B a)) → P x

Clearly
∑
a:A(B a)→ ∃(a : A)(Ba) holds for all A and B. The opposite implication

holds if
∑
a:A(B a) is a mere proposition – which is to say that the existence is unique,

with a unique proof.
The situation is similar for disjunctions. Traditionally, disjunction is interpreted as

disjoint union in Martin-Löf’s type theory, while homotopy type theory introduces a
truncated variant. We will denote disjoint unions by the operator + and the truncated
disjunction by the operator ∨.

3 Models where equality is identity

In this section we define what an ∈-structure is, and give some basic results on such
structures in generality. We do this in order to adjust our expectation for the concrete
model which will be main focus of this work.

3.1 ∈-structures

Definition 3:1. An ∈-structure is a pair (M,∈) where M : Set is a mere set, and
∈:M→M→ Prop.

Definition 3:2. For any ∈-structure (M,∈) and element a : M, we define E a :=∑
x:M x ∈ a.
8In these rules, written in an Agda-like notation, Prop refers to the type of mere propositions.
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Definition 3:3. An ∈-structure (M,∈) is called U -like if for each a :M the type E a
is essentially U -small. That is, if each a :M the type E a has a code in U .

Remark 3:4. An ∈-structure is basically a mere set with a merely propositional,
binary predicate defined on it. The natural equality to consider for elements of such a
structure is the identity type. This is in contrast to the setoid approach taken by Aczel.

“U -like” is meant to mimic the traditional terminology, “set-like”, used in set theory.

3.2 Translations of first-order logic into type theory

Definition 3:5. Given an ∈-structure (M,∈) define two translations of formulas of
first-order logic to type theory, σM,∈ and τM,∈, by recursion on formulas. We let Context
denote contexts (finite lists of variables, Variable Γ denoting the variables in Γ) and let
Formula Γ denote formulas in a given context Γ : Context.

Starting with σM,∈, leaving out the subscripts for ease of reading:

σ :
∏

Γ:Context
Formula Γ→ (Variable Γ→M)→ Type

σ Γ (∀x φ) γ :=
∏
a:M

σ (Γ.x)φ (γ.a)

σ Γ (∃x φ) γ :=
∑
a:M

σ (Γ.x)φ (γ.a)

σ Γ (φ ∧ ψ) γ := σ Γφγ × σ Γψ γ
σ Γ (φ ∨ ψ) γ := σ Γφγ + σ Γψ γ
σ Γ (φ→ ψ) γ := σ Γφγ → σ Γψ γ
σ Γ⊥ γ := 0
σ Γ> γ := 1
σ Γ (x ∈ y) γ := γ x ∈ γ y
σ Γ (x = y) γ := γ x =M γ y

where Γ.x denotes the context Γ extended with the variable x, and γ.a denotes the
function Variable (Γ.x)→M which maps x to a.

We define τM,∈ analogously, only difference being in the clauses for ∨ and ∃:
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τ :
∏

Γ:Context
Formula Γ→ (Variable Γ→M)→ Type

τ Γ (∀x φ) γ :=
∏
a:M

τ (Γ.x)φ (γ.a)

τ Γ (∃x φ) γ := ∃(a :M) τ (Γ.x)φ (γ.a)
τ Γ (φ ∧ ψ) γ := τ Γφγ × τ Γψ γ
τ Γ (φ ∨ ψ) γ := τ Γφγ ∨ τ Γψ γ
τ Γ (φ→ ψ) γ := τ Γφγ → τ Γψ γ
τ Γ⊥ γ := 0
τ Γ> γ := 1
τ Γ (x ∈ y) γ := γ x ∈ γ y
τ Γ (x = y) γ := γ x =M γ y

Example 3:6. The axiom of union is translated differently by the two translations:

UNION :=∀x ∃u∀z z ∈ u↔ ∃y ∈ x z ∈ y
σ () (UNION) =

∑
u:M

∏
z:M

z ∈ u↔
∑
y:M

y ∈ x ∧ z ∈ y

τ () (UNION) =∃(u :M)
∏
z:M

z ∈ u↔ ∃(y :M) y ∈ x ∧ z ∈ y

If the structure (M,∈) satisfies the extensionality axiom, then the property
∏
z:M z ∈

u ↔ ∃(y : M) y ∈ x ∧ z ∈ y completely characterises u, making τ () (UNION) '∑
u:M

∏
z:M z ∈ u↔ ∃(y :M) y ∈ x∧ z ∈ y. However,

∑
y:M y ∈ x∧ z ∈ y is not always

implied by ∃(y :M) y ∈ x ∧ z ∈ y so the two axioms remain distinct.

3.3 Axioms of set theory

The axioms of set theory contain a number of axiom schemas, such as collection or
replacement, or (restricted) separation. In set theory this adds one axiom for each first-
order formula. In type theory it is more convenient to use the higher order features
of type theory and regard these as quantified over all predicates. The result is much
stronger than the original axiom scheme. In the following we will exploit this extra
strength.

Definition 3:7. Given a structure, (M,∈), and a predicate
P :M→M→ Type and an element m :M, we define σ-replacement for P and m in
(M,∈) to be the type
σP (a) ((∀x ∈ a∃!y P x y) → ∃b∀y(y ∈ b ↔ ∃x ∈ a P x y))m, where σP is σ extended
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with the clause σ Γ (P x y) γ := P (γ x) (γ y), in order to interpret the P as a predicate
symbol.

Define τ -replacement in the same way, substituting τ for σ.

Proposition 3:8. If an ∈-structure (M,∈) satisfies extensionality, σ-replacement and
has an ordered pairing operation 〈−,−〉 : M → M → M, then the following choice
principle, stemming from the so-called type theoretic choice principle9, holds:

For any P :M→M→ Type and a, b :M if

∏
x:M

x ∈ a→
∑
y:M

y ∈ B ∧ P x y,

then there is a function f :M with domain a and codomain b such that
∏
x:M P x (f x).

Proof: Given a,b and a proof p :
∏
x:M x ∈ a →

∑
y:M y ∈ B ∧ P x y, apply σ-

replacement to a and the predicate P ′ :M→M→ Prop defined by

P ′ x z :=
∑
q:x∈a

z =M 〈x, π0 (p x q)〉

The resulting element of M is a function with the desired properties.

Remark 3:9. Proposition 3:8 shows us that we cannot hope to have a model satisfying
all axioms of constructive set theory by interpreting the existential quantifier as Σ-types
while at the same time interpreting equality as the identity type of a mere set. This
is because the above proposition shows that AC will hold, in this interpretation, and
thus if all other CZF axioms hold (in fact U -restricted separation and pairing should
suffice), Diaconescu’s theorem demonstrates that the law of excluded middle holds (for
all U -small propositions).

4 The model of iterative sets

We recall the definition, from Gylterud 2016, of the type of iterated multisets and the
membership relation.

Definition 4:1.

M := WUT

9The type theoretic choice principle is the fact that for all A, B and P , the type
(∏

a:A

∑
b:B a

P a b
)

→∑
f :
∏

a:A
B a

∏
a:A P a (f a) is inhabited.

9



∈M : M →M → Set
x ∈M (sup a f) :=

∑
i:T a

f i = x

The elements of M are the iterative multiset in which another element of M may
occur any U -small number of times. This is expressed by the relation ∈M , as follows:
Given x, y : M the type x ∈M y is the type of occurrences of x in y. For instance, if
(x ∈M y) ' 2 then x occurs twice in y.

What we would like to consider are the elements of M in which every element occurs
at most once. Such a multiset would be called set-like. Being set-like could be expressed
in different ways. The most direct would be to say that y : M is set-like whenever
x ∈M y is a mere proposition for all other x : M . Another way to state this is to say
that the function mapping each instance of an element in y to the element it represents
is an embedding.

The iterative sets are those multisets which are hereditarily set-like. On M we define
the predicate itset, recursively, as follows.

Definition 4:2.

itset : M → Type
itset (sup a f) := embedding f ∧

∏
i:T a

itset (f a)

For each x : M , whenever we have itset x, we say that x is an iterative set.
A Σ-type then collects the type of iterative sets as a subtype of M – with elementhood

defined by the restriction of elementhood for multisets.

Definition 4:3. The type of iterative sets, V , is defined as the subtype of M of iterative
sets, or V ≡

∑
x:M itset x.

We denote by ∈V the specialisation of ∈M to V , that is
x ∈V y := π0 x ∈M π0 y.

Notation 4:4. We will permit ourselves a slight abuse of notation when denoting
elements of V . We will for the remainder of this article use the notation sup a f to
denote an element of V constructed by a : U and an embedding f : T a ↪→ V .

Remark 4:5. Checking that a multiset is an iterative set can be a tedious task, since
it has to be carried out on each level, but the next section will give lemmas to make it
easier to construct new iterative sets.

5 Basic results

In this section we clarify the basic properties of iterative multisets and
(V,∈V ). The most important of these is the extensionality of V with respect to ∈V .

We start with reminding ourselves of the extensionality theorem for multisets.

10



Theorem 5:1. x =M y '
∏
z:M ((z ∈M y) ' (z ∈M y))

Proof: See Theorem 3:14 in Subsection 3.5 of Gylterud 2016.

Lemma 5:2. The type itset x is a mere proposition for every x : M .
Proof: Immediate by induction on M and that embedding f is a mere proposition.

Lemma 5:3. The function ap π0 : (x =V y)→ (π0 x =M π0 y) is an equivalence.
Proof: Simple consequence of itset being a mere proposition.

Lemma 5:4. For any x : M and y : V we have that the type x ∈M π0y is a mere
proposition.

Proof: Assume y ≡ (sup a f, (p, q)). Observe that x ∈M π0y is the fibre of f over y.
Since p proves f to be an embedding, and embeddings have propositional fibres, then
x ∈M π0y is a proposition.

Lemma 5:5.(∏
z:V

(z ∈V x↔ z ∈V y)
)
'
(∏
z:M

(z ∈M π0x↔ z ∈M π0y)
)

Proof: Both sides of the equivalence are mere propositions, so it is enough to show
biimplication. Passing from right to left is trivial, so we show only the implication from
left to right.

Assume z : M . If z ∈ π0x then z must be an iterative set. Thus, z ∈ y which is to
say z ∈ π0y. This demonstrates z ∈ π0x → z ∈ π0y. That z ∈ π0y → z ∈ π0x is shown
symmetrically. Hence, z ∈ π0x↔ z ∈ π0y, which completes the proof.

Lemma 5:6. Given a small type a : U and a function f : T a → V , there is a set
image a f such that

• for each i : T a we have that f i ∈ (image a f)
• for any merely propositional predicate P : V → Set, given∏

i:T a P (f i) we can prove that
∏
z:V (z ∈ (image a f)→ P z).

Proof: Given a : U and f : T a → V . Take the image factorisation of f , which can
be expressed as a simple higher inductive type. Since V is locally U -small, the image
has a code b : U . Denote the injection of the image into V by g : Tb → V , and define
image a f := sup b v.
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6 V models Myhill’s constructive set theory

In this section we prove that (V,∈V ) models the axioms of Myhill’s Constructive Set
Theory (CST), when the existential quantifiers are interpreted as truncated. In fact,
we shall see that except for a few critical places, positive occurrences of the existential
quantifier can be strengthened to

∑
, mostly because the constructions we make are

explicit.

6.1 Extensionality

The lemmas we have proved line up to give the following equivalence:

Extensionality 6:1. x =V y ↔
∏
z:V (z ∈ x↔ z ∈ y)

Proof:

x =V y ' π0x = π0y (1)
'
∏
z:M

(z ∈M π0x ' z ∈M π0y) (2)

'
∏
z:M

(z ∈M π0x↔ z ∈M π0y) (3)

'
∏
z:V

(z ∈V π0x↔ z ∈M π0y) (4)

6.2 The empty set, natural numbers

The empty set is given by ∅ := sup 0e. The natural numbers we constructed in Gylterud
2016, Subsection 4.10 is indeed an iterative set.

6.3 Separation

Restricted separation can be done in V without quotienting, as long as the separating
predicate is merely propositional. Thus, whenever we separate a formula with existential
quantifier in a positive position, the existence must be unique or truncated. If there are
more than one witness of the statement, the result would be a multiset where the element
occurs once per witness of the statement. The same is true for disjunction. Notice that
if A + B is a proposition then A and B are mutually exclusive (since l a and r b are
always distinct).

12



Proposition 6:2. For any U -small predicate P : V i→ Prop, and x : V there is u : V
such that for any z : V we have z ∈ u↔ (P z)× (z ∈ x).

Proof: Assume that x ≡ sup Af and let u := sup(
∑
a:A P (f a))(f ◦ π0). Since P ◦ f

is a mere proposition π0 : (
∑
a:A P (f a))→ A is injective, thus f ◦ π0 is injective.

If z ∈ u then z = f a for some a : A such that P (f a), and hence P z and z ∈ x.
If p : P z and q : z ∈ x then let a := π0q, ((a, p), π1 q) will prove that z ∈ u.

6.3.1 ∈-induction

Induction on V can be performed, even when the predicate is a general type, not neces-
sarily merely propositional.

Proposition 6:3. For every predicate P : V → Type, if for each x : V we have that∏
y:V y ∈ x→ P y implies P x, then we have P x for every x : V .

Proof. By induction on V . Assume x ≡ sup Af then by induction hypothesis P (f i)
for every i : A. We must show that if y ∈ x then P y. However, y ∈ x means that there
is i such that y = f i so we can transport the induction hypothesis to obtain P y. Thus,
we have shown

∏
y:V y ∈ x→ P y, which implies P x by assumption.

6.4 Pairing and Union

In order to show pairing and union we will have to apply the image construction, pre-
viously introduced (Lemma 5:6). If we applied the constructions of union and pairing
for multisets which we defined in Gylterud 2016, then the resulting multisets would not
be set-like. Therefore, we need a different construction, and the most natural is to take
quotients to make the multisets back into sets. The fact that quotienting was not needed
for multisets, may be an indication that iterative multisets is a more natural notion than
iterative sets to consider in type theory.

Definition 6:4. Given x, y : V , we define {x, y} := image (1 + 1) (constx+ const y).

Proposition 6:5. For any x, y : V and for each z : V we have that z ∈ {x, y} ↔ ((x =
z) ∨ (y = z))

Proof: Simple consequence of Lemma 5:6.

Definition 6:6. Given x : V , where x ≡ sup Af define
∪x := image (

∑
a:A(f a)) (λ〈i, j〉.(̃fi)j).

Proposition 6:7. For any x : V and for any z : V , we have that z ∈ ∪x↔ ∃y (y ∈ x∧
z ∈ y)

Proof: Simple consequence of Lemma 5:6.

13



Remark 6:8. The truncated existential quantifier in the above proposition cannot be
strengthened to a Σ-type, since it would mean constructing sections for almost arbitrary
quotients.

6.5 Replacement

Proposition 6:9. For any a : V and P : V → V → Prop, such that for all x ∈ a there
exists a unique y for which P x y, then there is b : V such that for each y : V we have
that y ∈ b if and only if there exists x ∈ a such that P x y.

Proof: Given a = sup ā ã, the assumptions let us construct a map T ā → V . Using
Lemma 5:6, we can construct its image in V , which will have the desired properties.

Proposition 6:10. For any a : V and F : V → V , there is y : V such that for any
z : V we have z ∈ b↔ ∃(w : V ) z = F w.

Proof: Assume x ≡ sup a f and let b = image (F ◦ f), and apply Lemma 5:6.

6.6 Exponentials

The construction of exponentials in this model is particularly easy, since a set-theoretical
function between two elements, (sup Af) and (sup B g), of V boils down to a function
in the type theory A → B. Instead of giving a direct proof, we can lean on Gylterud
2016, Subsection 4.9 in order to prove the correctness of this construction.

6.6.1 Exponentiation

Exponentiation of sets is a special case of exponentiation of multisets. For multisets, we
defined10operationa,b f for every a, b, f : M , and showed that there is a multiset Exp a b,
such that
f ∈ Exp a b ' operationa,b f . We will here show that whenever a, b, f : V , we have
operationπ0 a,π0 b (π0 f) if an only if Fun a b f , and that in fact itset (Exp (π0 a) (π0 b)), in
order to conclude that there is exponentiation in V .

Lemma 6:11. Whenever a, b, f : V , we have that
operationπ0 a,π0 b (π0 f)↔ Fun a b f .

Proof: Recall that11 for every a, b, f : M ,
10Definition 4:10 in Subsection 4.7 of Gylterud 2016
11ibid.
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operationa b f :=
(∏

z

z ∈ f →
∑
x

∑
y

z = 〈x, y〉
)

∧
(∏

x

x ∈ a '
∑
y

〈x, y〉 ∈ f
)

∧
(∏

y

y ∈ b←
∑
x

〈x, y〉 ∈ f
)

If here it said ↔ instead of ', this would state that f is a total relation between a
and b. We thus have to show that this strengthening is exactly the same as ensuring
functionality of a total relation.

In the middle conjunction, x ∈ a is a mere proposition since a is an iterative set by
assumption. Thus,

∑
y〈x, y〉 ∈ f must also be a mere proposition, and thus equivalent

to ∃!(y : M)〈x, y〉 ∈ f . This is exactly the requirement for a total relation to be
functional.

Remark: Since operationπ0 a,π0 b (π0 f) and Fun a b f are both mere propositions, the
biimplication is also an equivalence of types.

Lemma 6:12. For every a, b : V the multiset Exp (π0 a) (π0 b) is an iterative set.
Proof: The definition of Exp a (π0b) is. . .

Exp (π0a) (π0b) := sup ((π0 a)→ (π0 b))
(λf. sup (π0 a)

(λi.〈(̃π0 a)i, (̃π0 b) (f i)〉))

Thus, we need to show that the function
λf. sup (π0 a) (λi.〈(̃π0a)i, (̃π0b)(f i)〉), which takes a function to its graph, is injective,
but this comes down to that a function is determined by its graph, which follows from
function extensionality.

Next, we need to argue that each graph of each function is itself an iterative set.
Assume that f : (π0 a) → (π0 b), then the function which maps an element i : (̄π0a) to
〈(̃π0a) i, (̃π0b) (fi)〉 is injective since π0 a is an iterative set. Furthermore, 〈(̃π0 a) i, (̃π0 b) (f i)〉
is an iterative set since both a and b are iterative sets. Thus, the graph of f is an iterative
set.

Proposition 6:13. For every a, b : V there is a u : V such that for any c : V there is
an biimplication c ∈ u↔ Fun a b c.
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Proof: Direct from Lemma 6:11, Lemma 6:12, and exponentiation in M12, letting
u := Exp (π0a) (π0b)↔ Fun a b f .

7 Collection axioms

In this section we discuss the status of collection axioms of constructive set theory in
our model.

Neither strong collection, nor subset collection seem to hold in either extreme inter-
pretation of the existential quantifier (i.e. applying τ or σ). Interpreting the existential
quantifier as Σ-types forces us to make arbitrary choices in an apparently unconstructive
way. Interpreting the existential quantifier as the truncated ∃, the assumptions become
too weak to work with.

We discuss two approaches to solving this problem. On the one hand, we identify
which existential quantifiers need to be weakened – and which have to remain strict –
in order to get something like the collection axioms to become provable for our model.
On the other hand, we identify axioms about the type theoretical universe, from which
V was constructed, from which we can derive collection and subset collection in the
truncated form.

7.1 Strong Collection

Together with subset collection, strong collection is the most subtle of the axioms of
constructive set theory. First of all because it is underspecified: the strong collection
axiom states the existence of a set, but does not define it up to equality.

On an intuitive level, strong collection states that if we have shown that for all
elements of a set x there exists some element with a certain property, then the proof is
in some way an operation which should have an image in V .

The problem is that the proof in first-order logic may not be uniform, in the sense
that the operation may not respect equality of elements. However, this would not prevent
us from taking its image.

In Aczel’s original model one can see this, as his V is a setoid and we can talk about
extensional operations on the underlying type. However, our V has the identity type as
its equality type. This means that if we interpret the existential quantifier as the Σ-type,
then any proof operation will give rise to an actual function which respects equality. The
image of such an operation is naturally a multiset, and we have seen how to quotient
such a multiset to a set. The only wrinkle of this approach is that the “strong part” of
strong collection has to be weakened by using a truncated existential quantifier.

7.1.1 Strong quantifiers

The following proposition is the rendering of strong collection in which we, as far as our
abilities go, interpreted the existential quantifier as Σ-types.

12(M-EXP) in Subsection 4.9, Gylterud 2016
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Proposition 7:1. For any predicate P : V → V → Type and every a : V if
∏
x:V (x ∈

a)→
∑
y:V P x y then there is b : V such that

1.
∏
x:V (x ∈ a)→

∑
y:V y ∈ b ∧ (P x y)

2.
∏
y:V (y ∈ b)→ ∃(x : V ) x ∈ a ∧ (P x y)

Proof: Given a ≡ sup ā ã, the assumptions let us construct a map T ā → V . Using
Lemma 5:6, we can construct its image in V , which will have the desired properties.

Remark 7:2. It is well known that, in constructive set theory, collection implies re-
placement, and that the converse implication does not hold. But the strong version of
replacement proven for our model in Proposition 6:9, formulated for a given ∈-structure,
does in fact entail the collection principle of Proposition 7:1, for the same ∈-structure.

7.1.2 Weak quantifies

Aczel and Gambino (2006) discuss a general approach to interpreting first-order logic into
type theory. For any given interpretation in their framework, they identify type theoretic
principles corresponding to strong collection and subset collection. Here we will, in a
similar fashion, give a sufficient principle for our model to satisfy strong collection in the
sense of weak quantifiers.

Definition 7:3. Collection Principle for a universe, U :
For every locally U -small B : Set, given a : U and P : T a → B → Type, such

that
∏
x:T A ∃(y : B)P x y then ∃(r : U)∃(β : T r ↪→ B)(

∏
x:T a ∃(y : T r)P x (β y)) ∧

(
∏
y:T r ∃(x : T a)P x y).

Proposition 7:4. The collection principle for U implies strong collection in the fol-
lowing sense:

For any predicate P : V → V → Type and every a : V if
∏
x:V (x ∈ a)→ ∃(y : V )P x y

then there merely exists b : V such that

1.
∏
x:V (x ∈ a)→ ∃(y : V ) y ∈ b ∧ (P x y)

2.
∏
y:V (y ∈ b)→ ∃(x : V ) x ∈ a ∧ (P x y)

Proof: Apply the collection principle for U to P ◦ ā, to obtain the mere existence
r and β, which together form b := sup r β. 1. and 2. follow from the property of the
collection principle for U .
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7.2 Subset Collection

Subset collection is the principle that for any pair of sets there is a third set, such that
each total relation between the two has an image in the third. The precise formulation of
the axiom in first-order logic is slightly complicated by the fact that one cannot quantify
over all (or even all definable) total relations in the middle of a formula. Therefore, the
axiom is an axiom schema quantified over ternary formulas, where the first parameter
is allowed to vary. Our formulation will be close to the first-order formulation:

∀a, b ∃c ∀u (∀x ∈ a→ ∃y ∈ b ∧ P ux y)
→ (∃d ∈ c ∧ (∀x ∈ a→ ∃y ∈ d ∧ P ux y)

∧ (∀y ∈ d→ ∃x x ∈ a ∧ P ux y)

In the above formula there are three existential quantifiers to interpret, either as a
Σ-type or as a truncated existential. At one extreme it is possible to give all but the
last existential quantifier the Σ-type interpretation, truncating the last one.

Proposition 7:5. For every predicate P : V → V → V → Type and every a, b : V
there is c : V such that for all u : V if

∏
x:V (x ∈ a) →

∑
y:V P ux y then there is d ∈ c

such that

1.
∏
x:V (x ∈ a)→

∑
y:V y ∈ d ∧ (P ux y)

2.
∏
y:V (y ∈ d)→ ∃(x : V ) x ∈ a ∧ (P ux y)

Proof: Given a ≡ sup ā ã and b ≡ sup b̄ b̃, consider the function γ : (ā → b̄) → V
which maps each f : ā→ b̄ to image(b̃ ◦ f) in V . Let c := image γ, which will have the
desired properties.

7.2.1 Weak quantifiers

In the same way we did for strong collection, we identify a principle of subset collection
for our universe which is sufficient to prove the truncated variation of subset collection
for our model.

Definition 7:6. Subset Collection Principle for U :
For each a, b : U there merely exists c : U such that for every P : T a→ T b→ Type

such that
∏
x:T a ∃(y : T b)P x y, there ∃(r : T c)(

∏
x:T a ∃(y : T r)P x (α y))∧ (

∏
y:T r ∃(x :

T a)P x y)

Proposition 7:7. For every predicate P : V → V → V → Type and every a, b : V ,
there merely exists a c : V such that for every u : V , if

∏
x:V (x ∈ a)→

∑
y:V P ux y then

there merely exists d ∈ c such that
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1.
∏
x:V (x ∈ a)→ ∃(y : V ) y ∈ d ∧ (P ux y)

2.
∏
y:V (y ∈ d)→ ∃(x : V ) x ∈ a ∧ (P ux y)

Proof: Apply the subset collection principle for U to a,b to obtain the mere existence
of c, and then use the property of c on the predicate P u.

8 Equivalence with the HIT-formulation

Section 5.1 of Chapter 10 of the book “Homotopy Type Theory”13, is dedicated to set
theory in the context of homotopy type theory. The iterative hierarchy is presented
there, in the form of a higher inductive type (HIT). Our V is a HIT-free alternative to
this, and in this section we show that the two types are equivalent.

The HIT formulation bears more than a slight similarity to Aczel’s original construc-
tion of the iterative hierarchy in type theory. Both are quotients of the type we call
M . The difference is that while Aczel uses the untruncated version of the quantifiers
and leaves the quotient a setoid, HTT uses the truncated quantifiers and postulates the
existence of a type with the identity type to match.

In this section we define the bisimulation relation on M of which the V in HTT
Chapter 10 can be seen a quotient. We show that this quotient is equivalent to our
V . The proof on this relies on a function, iterative-image : M → V , which turns any
multiset into an iterative set by identifying all occurrences of each elements, having first
applied the process inductively on all elements.

Definition 8:1. We define by induction on M the binary relation:

≈ : M →M → Type

(sup a f) ≈ (sup b g) :=
( ∏
x:T a
∃(y : T b)(f x ≈ g y)

)

×

∏
y:T b
∃(x : T a)(f x ≈ g y)



Definition 8:2. We define by induction on M the function:

iterative-image : M → V

iterative-image (sup a f) := image a (iterative-image ◦f)
13Univalent Foundations Program 2013.
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Lemma 8:3. For each x : M we have that x ≈ iterative-image x.
Proof: For each element of x there is a corresponding element in iterative-image x,

since the type of elements of iterative-image x is a quotient of the type of elements
in x. In the other direction there just merely exists an element of x for each element
of iterative-image x, since it was a quotient. However, this is sufficient to show that
x ≈ iterative-image x.

Lemma 8:4. For iterative sets ≈ is equivalent to the identity type. That is, for every
x, y : M given itset x and itset y, we have that x ≈ y → x =M y.

Proof: By W-induction. Let x ≡ sup a f and y ≡ sup b g, and assume x ≈ y. By
extensionality, it suffices to show that for any z : M we have that z ∈M x if and only if
z ∈M y.

In one direction, if z ∈M x we know that there is i : T a such that z =M f i. Since
z ∈M y is a mere proposition, we can assume from x ≈ y that there is a j : T b such that
f i ≈ g j. By inductive hypothesis, f i ≈ g j → f i =M g j, and thus z =M g j which is
to say z ∈M y.

The other direction is symmetric in x and y.

Proposition 8:5. V 'M/ ≈
Proof: Direct consequence of the previous two lemmas.

Remark 8:6. That M/ ≈ is equivalent to the HIT formulation in the book can be
seen from Lemma 10.5.5 of “Homotopy Type Theory”14. Thus, proposition 8:5 shows
that our V is indeed equivalent to the HIT formulation of V .
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