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CONSTRUCTING TYPES IN DIFFERENTIALLY CLOSED

FIELDS THAT ARE ANALYSABLE IN THE CONSTANTS

RUIZHANG JIN

Abstract. Analysability of finite U -rank types are explored both in general
and in the theory DCF0. The well-known fact that the equation δ(logδx) = 0
is analysable in but not almost internal to the constants is generalized to show
that logδ...logδ

︸ ︷︷ ︸

n

x = 0 is not analysable in the constants in (n − 1)-steps. The

notion of a canonical analysis is introduced – namely an analysis that is of
minimal length and interalgebraic with every other analysis of that length.
Not every analysable type admits a canonical analysis. Using properties of
reductions and coreductions in theories with the canonical base property, it is
constructed, for any sequence of positive integers (n1, ..., nℓ), a type in DCF0

that admits a canonical analysis with the property that the ith step has U -rank
ni.
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1. Introduction

That differential-algebraic geometry is an expansion of algebraic geometry is re-
flected in model theory by viewing the theory of algebraically closed fields as a
reduct of the theory of differentially closed fields. The locus of that reduct is the
field of constants. The smallest intermediate reduct that properly expands algebraic
geometry is that of differential varieties that are almost internal to the constants:
differential varieties that over possibly additional parameters become definable fi-
nite covers of algebraic varieties in the constants. Here already one observes new
and interesting geometric and model theoretic phenomena. A further step would
be to consider those differential varieties that are built up through a finite sequence
of fibrations whose fibres are almost internal to the constants; these are the differ-
ential varieties that are analysable in the constants, and they are the focus of this
paper. In particular, we give some constructions that exhibit the richness of this
category.
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2 RUIZHANG JIN

Differential varieties analysable in the constants have come up recently in appli-
cations; it is shown in [1] that they give rise to a new class of associative algebras
satisfying the classical Dixmier-Moeglin equivalence.

Probably the best known example of an analysable but not internal to the con-

stants differential variety is the one defined by the equation δ

(
δx

x

)

= 0. It de-

composes as an extension of the additive group of constants by the multiplicative
group of constants, without itself being almost internal to the constants. Our first
observation is to generalize this construction by iterating the logarithmic deriv-

ative. Writing logδx :=
δx

x
and logδ(m) = logδ...logδ

︸ ︷︷ ︸

m

we consider the equation

logδ(m)x = 0, and show in Section 3 that while it is analysable in the constants in
m steps, it is not analysable in m− 1 steps. This is done in Section 3 by essentially
reducing to the m = 2 case.

Note that each step in the analysis of logδ(m)x = 0 is of U -rank one. It is not
hard to produce from this example, using methods that work generally in stable
theories satisfying the canonical base property (CBP), including reductions and
coreductions, other examples of types analysable in the constants in m-steps but
not in m− 1-steps. We may even require this type to satisfy the property that the
ith step of the analysis by reductions of this type is of U -rank ni, for any given
increasing sequence (ni)

m
i=1, or that the ith step of the analysis by coreductions of

this type is of U -rank ni, for any given decreasing sequence (ni)
m
i=1. This is done

in Section 4.
But we look for more; we want analyses of a type p that are canonical in the

sense that up to interalgebraicity there is no other analyses of p in the constants
of the same (minimal) length. Not every finite rank type, even in DCF0, admits
a canonical analysis (see Example 4.1). However, we show in Section 5 that given
any sequence of positive integers (n1, . . . , nm) there exists in DCF0 a type that
has a canonical analysis in the constants with ith step having U -rank ni. Unlike
in the logarithmic derivative case, these examples are not differential algebraic
groups, and hence that theory is not directly available to us. Our proofs involve a
careful algebraic analysis of the equations that arise. Note that the situation is very
different for differential algebraic groups; in [1] it is shown that every differential
algebraic group over the constants is analysable in at most 3 steps.

I thank Rahim Moosa, my PhD supervisor, for his advice and inputs during the
writing of this paper.

2. Analysability

As a general setting, we work in a saturated model U of a complete stable theory
T that eliminates imaginaries. We review in this section some classical notions
around finite rank types. As a general reference we suggest [7]. We have provided
proofs where explicit references were not possible.

Let P be a set of partial types (over different parameter sets) which is invariant
under automorphisms over ∅, and q be a stationary type over a parameter set A.

Recall that a stationary type q over A is P-internal (or almost P-internal) if for
some (equivalently any) realization a of q, there exists B ⊇ A which is independent
from a over A, and c1, ..., ck realizations of types in P whose parameter sets are
contained in B, such that a ∈ dcl(Bc1...ck) (or a ∈ acl(Bc1...ck)).
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The type q over A is P-analysable if for some (equivalently any) realization a
of q, there are a1, ..., ak such that stp(a1/A) is almost P-internal, ai−1 ∈ dcl(Aai),
stp(ai/Aai−1) is almost P-internal for i = 2, 3, ..., k, and acl(Aa) = acl(Aak). The
sequence (ai)

k
i=1 mentioned above is called a P-analysis of q and a P-analysis of

a over A. For notational convenience, for any analysis (ai)
k
i=1 we use a0 to denote

the empty tuple. We call k the length of the analysis. Note that an algebraic type
has a P-analysis of length zero, and an almost P-internal type has a P-analysis of
length 1.

The U -type of the analysis is the sequence (U(ai/Aai−1))
k
i=1. We say the analysis

is nondegenerated if each entry of the U -type is nonzero.
Note that the definition of analysable here is in fact the definition of almost

analysable in the literature (for example, section 1 of [6]), and we may instead say
that a type is strictly P-analysable if stp(ai/ai−1) is internal (rather than almost
internal) to P . The following proposition proves that these two definitions are in
fact equivalent.

Proposition 2.1. A stationary type q over A is P-analysable iff it is strictly P-
analysable.

We need the following lemma.

Lemma 2.2. If a stationary type q over A is almost P-internal, then for any a � q,
there exists a tuple a0 such that tp(a0/A) is P-internal and acl(Aa) = acl(Aa0).

Proof. Given any realization a � q, let n be the least number such that there exists
an LA-formula ϕ(x, y, z), a tuple b independent from a over A and a tuple c realizing
types in P such that � ϕ(a, b, c) and ϕ(U , b, c) is of size n. We fix these b, c, and ϕ
that satisfy |ϕ(U , b, c)| = n.

Step 1. We prove that ϕ (U , b, c) ⊆ acl(Aa).
Let a = a1, a2, ..., an be the elements of ϕ(U , b, c). Towards a contradiction,

suppose without loss of generality that a2 6∈ acl(Aa). Then there are a′2, b
′ and c′

such that tp(a′2b
′c′/Aa) = tp(a2bc/Aa) and a′2b

′ |⌣Aa
a2...anb. Since a′2 6∈ acl(Aa)

and a′2 |⌣Aa
a2...anb, a

′
2 6∈ acl(Aaa2...anb). In particular, a′2 6= ai for i = 1, 2, ..., n.

Also, since a |⌣A
b and b |⌣Aa

b′, we have b |⌣A
ab′, and therefore b |⌣Ab′

a.

As tp(b′/Aa) = tp(b/Aa) and b |⌣A
a, we have b′ |⌣A

a, which, together with

b |⌣Ab′
a, yields bb′ |⌣A

a. Now the fact that q is almost P-internal is witnessed
by a � ϕ(x, b, c) ∧ ϕ(x, b′, c′), and the size of ϕ(U , b, c) ∧ ϕ(U , b′, c′) is smaller then
n (notice that |ϕ(U , b, c)| = |ϕ(U , b′, c′)| = n, but the two sets are not the same),
contradicting minimality of n.

Step 2. Let d be the code of the set ϕ (U , b, c). Then tp(d/A) is P-internal and
acl(Aa) = acl(Ad).

We have a ∈ acl(d) ⊆ acl(Ad) by the definition of a code, and d ∈ dcl(aa2...an) ⊆
acl(Aa). Moreover, as a |⌣A

b, we have d |⌣A
b. Since d is the code of ϕ (U , b, c)

where ϕ is an LA-formula, d ∈ dcl(Abc). Therefore tp(d/A) is P-internal. �

Proof of Proposition 2.1. The nontrivial direction is from left to right. Suppose
(b1, ..., bk) is an analysis of a over A. For convenience, let a0 be the empty tuple.
We now construct the sequence (a1, ..., ak).

Suppose we already have (a1, ..., ai−1) for 1 ≤ i ≤ k such that stp(aj/Aaj−1) is
P-internal, aj−1 ∈ dcl(Aaj), and acl(Aaj) = acl(Abj) for j = 1, 2, ..., i − 1. Then
as stp(bi/Abi−1) is almost P-internal and acl(Aai−1) = acl(Abi−1), we have that
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stp(bi/Aai−1) is almost P-internal, so by Lemma 2.2, there exists a∗ such that
acl(Aai−1a

∗) = acl(Aai−1bi) and tp(a∗/Aai−1) is P-internal. Let ai = ai−1a
∗.

Then we have ai−1 ∈ dcl(Aai), acl(Aai) = acl(Aai−1bi) = acl(Abi−1bi) = acl(Abi),
and tp(ai/Aai−1) is P-internal.

The sequence (a1, ..., ak) then witnesses that tp(a/A) is strictly analysable. �

We use the following definitions in order to better describe analysable types and
their analyses. We say that the type q is k-step P-analysable, or P-analysable in k-
steps, if the analysability of q is witnessed by a P-analysis of length k. A P-analysis
(ai)

k
i=1 is said to be incompressible if stp(ai+1/Aai−1) is not almost P-internal for

all i = 1, 2, ..., k − 1. A P-analysis of q is minimal if there is no P-analysis of q of
strictly shorter length.

The following lemma shows that incompressibility implies minimality if the U -
type of an analysis is (1, 1, ..., 1).

Lemma 2.3. Let (a1, ..., an) be an incompressible P-analysis of a over A of U -type
(1, 1, ..., 1)
︸ ︷︷ ︸

n

. Then the analysis is minimal, i.e., tp(a/A) is not P-analysable in n−1

steps.

Proof. For n = 2, the only possibility that the analysis is not minimal is that
stp(a/A) is 1-step P-analysable, i.e., almost P-internal, which contradicts the fact
that (a1, a2) is an incompressible analysis.

Assume we have proved the conclusion for n < k. Suppose towards a con-
tradiction that (a1, ..., ak) is an incompressible P-analysis of a over A of U -type
(1, 1, ..., 1)
︸ ︷︷ ︸

k

which is not minimal. Let (c1, ..., ck−1) be another P-analysis of a over

A. Note that (a1c1, a2c2, ..., ak−1ck−1) is also a P-analysis of a over A. Let b1, ..., bℓ
be a subsequence of (aici)

k−1
i=1 such that (bj)

ℓ
j=1 is a nondegenerated P-analysis

of p. This can be done by taking away all elements aici in (aici)
k−1
i=1 such that

U(aici/Aai−1ci−1) = 0. Let bj = a for ℓ+1 ≤ j ≤ k−1. Then the only zero entries

of the U -type of (bj)
k−1
j=1 (if any) are at the end of the sequence.

If U(b1/A) = 1, then acl(Ab1) = acl(Aa1), and stp(a/Aa1) = stp(a/Ab1). But
then (a2, ..., ak) is a k − 1-step incompressible P-analysis of a over Aa1 of U -type
(1, 1, ..., 1)
︸ ︷︷ ︸

k−1

, while (b2, ..., bk−1) is a k − 2-step P-analysis of the same type with

shorter length, contradicting our induction hypothesis.
Now suppose U(b1/A) ≥ 2. If the U -type of (bj)

k−1
j=1 is degenerated, then

U(bk−1/bk−2) = 0, and we have U(bk−2/A) = U(a/A) = k. If (bj)
k−1
j=1 is nondegen-

erated, then U(bj/Abj−1) ≥ 1 for any j = 1, ..., k−2 which gives us U(bj/A) ≥ j+1
for any j = 1, ..., k − 2. In both cases U(bk−2/A) ≥ k − 1. By the induction

hypothesis, acl(Abk−2) 6= acl(Aak−1): otherwise, (ai)
k−1
i=1 is a k − 1-step incom-

pressible P-analysis of ak−1 over A of U -type (1, 1, ..., 1)
︸ ︷︷ ︸

k−1

, while (bi)
k−2
i=1 is a k − 2-

step P-analysis of the same type, contradicting our induction hypothesis. Sim-
ilarly, acl(Abk−2) ) acl(Aak−1) does not hold: otherwise U(bk−2/Aak−1) ≥ 1,
and since bk−2 ∈ acl(Aa) and U(a/Aak−1) = 1, we have acl(Abk−2) = acl(Aa);
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therefore (a2, ..., ak) is a k − 1-step incompressible P-analysis of stp(a/Aa1) of U -
type (1, 1, ..., 1)

︸ ︷︷ ︸

k−1

, while (b1, ..., bk−2) is a k − 2-step P-analysis of the same type,

contradicting our induction hypothesis. Hence acl(Abk−2) ⊇ acl(Aak−1) does
not hold, i.e., ak−1 6∈ acl(Abk−2). We have k = U(a/A) ≥ U(ak−1bk−2/A) =
U(bk−2/A) + U(ak−1bk−2/Abk−2) ≥ (k − 1) + 1 = k, so acl(Abk−2ak−1) = acl(Aa).
But then since stp(bk−2/Aa1) and stp(ak−1/Aa1) are k − 2-step P-analysable, so
is stp(a/Aa1), while (a2, ..., ak) is a k − 1-step incompressible P-analysis of a over
Aa1 of U -type (1, 1, ..., 1)

︸ ︷︷ ︸

k−1

, contradicting our induction hypothesis. �

3. Iterated Logarithmic Derivative

Our primary interest is in DCF0, the theory of differential closed field of charac-
teristic 0. The theory DCF0 is complete, stable, and eliminates both quantifiers
and imaginaries. We assume some familiarity of this theory. The language used
is (0, 1,+,×, δ), and U = (U, 0, 1,+,×, δ) is the saturated model, where δ is the
derivative on the field. We often omit 0, 1,+,× and write U = (U, δ).

We focus on types which are almost C-internal or C-analysable in DCF0, where
C = {x : δx = 0} is the field of constants.

We often use the term “generic type” in DCF0. The generic type of an irreducible
Kolchin closed set D over a δ-field k is the type which says that x is in D but not
in any k-definable Kolchin closed subset of D. A definable set is irreducible if its
Kolchin closure is. By the generic type of an irreducible definable set, we mean the
generic type of its Kolchin closure. Note that this does not always coincide with
the type of greatest U -rank.

Recall that in DCF0, the logarithmic derivative of x is defined as logδx =
δx

x
.

The logarithmic derivative is used extensively in this section. Note that logδ :
Gm → Ga is a definable group homomorphism between algebraic groups, and the
kernel of the map is Gm(C). Here Gm is the universe (take away 0) viewed as a
multiplicative group, Ga is the universe viewed as an additive group, and Gm(C) is
the constant points of Gm.

Fact 3.1 (see, for example, Fact 4.2 of [2]). Let G be the differential algebraic
subgroup of Gm defined by {x : δ(logδx) = 0}. The generic type of G is 2-step
C-analysable but not almost C-internal.

It follows that any C-analysis of this type is of U -type (1, 1).
We will be considering iterated logarithmic derivatives. For any n ≥ 1 we set

logδ(n)(x) := logδ logδ ... logδ(x)
︸ ︷︷ ︸

n times

. Note that logδ(n)(x) is only defined at x if

logδ(i)(x) 6= 0 for i = 0, 1, ..., n − 1 where logδ(0)(x) = x. Whenever we write
logδ(n)(x) it is always assumed that x is in this domain of definition. Note that for
any h ∈ U , the equation logδ(n)(x) = h defines an irreducible Kolchin constructible
subset B of U . Indeed, B is isomorphic to

B∗ ={(x, logδ(x), ..., logδ(n−1)(x)) : x ∈ B}

={(x1, ..., xn) : xi 6= 0;
δxi

xi

= xi+1, i = 1, 2, ..., n− 1;
δxn

xn

= h}
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whose Kolchin closure is {(x1, ..., xn) : δxi = xixi+1, i = 1, 2, ..., n− 1; δxn = hxn},
which is irreducible since it is the set of D-points (or “sharp” set) corresponding to
the irreducibleD-variety (An, s) where s(x1, ..., xn−1, xn) = (x1x2, ..., xn−1xn, hxn).
(For details on D-varieties see [4].)

In particular, {x : logδ(2)(x) = h} is irreducible. Note also that the generic type
of logδ(2)(x) = 0 is the same as that of G defined in Fact 3.1. So the following
proposition is a generalisation of Fact 3.1.

Proposition 3.2. Let h ∈ U and consider B = {x : logδ(2)(x) = h}. Let k be a
δ-field containing h, and p be the generic type of B over k. Then p is not almost
C-internal.

Proof. We may assume that k contains an element of the form a = logδg0 where
g0 ∈ B. Indeed, this follows from the fact that for any g0 ∈ B, p is almost C-internal
iff the non-forking extension of p to k〈g0〉 is, and p|k〈g0〉 is the generic type of B
over k〈g0〉.

We now construct a new model V = (U,D) of DCF0 as follows. The set U

and the interpretation of 0, 1,+ and × remain the same, while Dg :=
δg

a
for all

g ∈ U . Notice that V is also a model of DCF0 with the same field of constants as
U , and any definable set in one model is definable in the other, with the same set
of parameters, as long as the parameter set contains a. Now let q be a type in the
model V over k so that q and p have the same set of realizations in U . This can be
done by replacing each occurrence of δ in formulas in p by aD.

Assume towards a contradiction that p is almost C-internal. Hence, for any
g |= p, there is B ⊃ k such that g |⌣k

B and g ∈ acl(BC), in the model U .
Replacing δ by aD in the formulas witnessing this fact, we have that g ∈ acl(BC)
in V as well. Moreover, g |⌣k

B holds in V because U -ranks of types are the same
in U and V if the parameter set contains a. We get that q is almost C-internal in
V .

However, q is the generic type of B, since Kolchin closed sets definable over k
(which contains a) are the same in U and V . The set B is defined in U by the
formula logδ(logδx) = h, which is just a logD(logDx) = h, which is equivalent to
logD(logDf) = 0. So q is the generic type of B = {x : logD(logDx) = 0}, which
is not almost C-internal in V by Fact 3.1, a contradiction. �

We can now show that the iterated logarithmic derivatives give rise to n-step
C-analysable types that are not n− 1-step C-analysable.

Corollary 3.3. In DCF0, let D = {x ∈ U : logδ logδ ... logδ
︸ ︷︷ ︸

n

x = 0}. Then the

generic type p of D is n-step C-analysable but not n− 1-step C-analysable.

Proof. Let a ∈ D be generic. Let an = a, ak = logδak+1 for k = 0, 1, ..., n − 1.
Note that a0 = 0, ak ∈ dcl(ak+1) for k = 0, 1, ..., n− 1, and a is interdefinable with
(a1, ..., an).

As a is generic in D, ai+1 6∈ acl(ai) for each i = 0, 1, ..., n − 1. By additivity
of U -rank, for each i = 0, 1, ..., n − 1, U(ai+1/ai) = 1. Hence, stp(ai+1/ai) is the
generic type over ai of logδ(x) = ai. The latter equation defines a multiplicative
translation of Gm(C) = ker(logδ), so stp(ai+1/ai) is almost C-internal of U -rank 1.
That is, (a1, a2, ..., an = a) is a C-analysis of p of U -type (1, 1, ..., 1)

︸ ︷︷ ︸

n

.
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For each i = 1, 2, ..., n− 1, stp(ai+1/ai−1) is the generic type of logδ(2)x = ai−1

over ai−1. Proposition 3.2 tells us that this type is not almost C-internal. That is,
(a1, a2, ..., an) is an incompressible C-analysis.

Hence, by Lemma 2.3, p is not C-analysable in n− 1 steps. �

4. Analyses by reductions and coreductions

In this section we return to the general setting of Section 2; so T is a complete
stable theory that eliminates imaginaries, U is a sufficiently saturated model of T ,
and P is a set of partial types invariant over automorphisms of the universe.

Note that Lemma 2.3 does not hold if the entries of the U -type are not all 1.

Example 4.1. Let stp(a) be 2-step P-analysable with an incompressible P-analysis
(a1, a). Now let (b1, b) be such that bb1 |⌣ aa1 and stp(bb1) = stp(aa1). Let c = ab.
Then c is 3-step P-analysable, with an analysis (a1, ab1, c = ab). This analysis
is incompressible: stp(ab1) is not almost P-internal because stp(a) is not almost
P-internal and stp(ab/a1) is not almost P-internal because stp(b) is not almost
P-internal, and stp(b/a1) is its non-forking extension. But c is 2-step P-analysable
by (a1b1, c = ab), so the P-analysis (a1, ab1, c = ab) is not minimal despite being
incompressible.

To generalize Lemma 2.3 to higher U -rank cases, we need each step to satisfy
some maximality or minimality property. We will use the notions of P-reduction
and P-coreduction.

Definition 4.2 (See, for example, Section 4 of [5]). Suppose a is a tuple and A is
a parameter set. We say a tuple b is a P-reduction of a over A if b is maximally
almost P-internal over A in acl(Aa), i.e., stp(b/A) is almost P-internal, b ∈ acl(Aa),
and if b′ ∈ acl(Aa) and stp(b′/A) is almost P-internal then b′ ∈ acl(Ab). We say a
nondegenerated P-analysis (a1, ..., an) of a over A is a P-analysis by reductions of
a over A if ak is the P-reduction of a over Aak−1 for k = 1, 2, ..., n.

Note that by definition P-reductions are unique up to interalgebraicity over the
parameter set, i.e., if b and c are both P-reductions of a over A, then acl(Ab) =
acl(Ac). We may therefore call b the P-reduction of a over A.

Remark 4.3. It is clear that if U(a/A) < ω, then a P-reduction of a over A always
exists. In fact, let b be a tuple that has maximal U -rank over A satisfying the
condition that stp(b/A) is almost P-internal and b ∈ acl(Aa). Then b is a P-
reduction of a over A: if c also satisfies this condition, then stp(bc/A) is almost
P-internal and bc ∈ acl(Aa), so U(bc/A) = U(b/A), which means c ∈ acl(Ab).
Hence, if tp(a/A) is P-analysable of finite U -rank then a P-analysis by reductions
always exists.

Definition 4.4 (See, for example, Definition 4.1 of [5]). Suppose a is a tuple and
A is a parameter set. We say a tuple b is a P-coreduction of a over A if b is minimal
in acl(Aa) such that a is almost P-internal over Ab, i.e., stp(a/Ab) is almost P-
internal, b ∈ acl(Aa), and if b′ ∈ acl(aA) and b′ satisfies that stp(a/Ab′) is almost
P-internal then b ∈ acl(Ab′). We say a nondegenerated P-analysis (a1, ..., an) of a
over A is a P-analysis by coreductions of a over A if ak−1 is a P-coreduction of ak
over A for k = 2, ..., n.
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Note similarly that by definition P-coreductions are unique up to interalgebraic-
ity over the parameter set. We may therefore call b the P-coreduction of a over
A.

Recall that T has the canonical base property (CBP) if whenever U(a/b) < ω
and acl(b) = acl(Cb(a/b)), then stp(b/a) is almost P-internal, where P is the set of
all nonmodular minimal types. See, for example, Section 1 of [6]. It is a fact that if
T has CBP then P-coreductions exist for any finite-rank type (see Theorem 2.4 of
[3]). Hence, assuming T has CBP, if stp(a/A) is P-analysable of finite U -rank then
a P-analysis by coreductions always exists.

The following lemma shows that in DCF0 C-coreductions of any finite-rank type
always exist. This is because any nonmodular minimal type in DCF0 is almost
C-internal.

Lemma 4.5. We work in DCF0 in this lemma. If U(a/A) is finite, then the
C-coreduction of a over A exists.

Proof. Let P be the set of all nonmodular minimal types in U |= DCF0. By Theorem
1.1 of [8], DCF0 has CBP. Therefore, there exists b which is the P-coreduction of a
over A.

We want to show that b is the C-coreduction of a over A. In fact, we only need
to show that if a type is almost P-internal then it is almost C-internal. Suppose
tp(e/D) is P-internal. Then for some B ⊃ D such that B |⌣

D

e and a tuple c

consists of realizations of types in P with bases in B, e ∈ acl(Bc). Since every
minimal nonmodular type in DCF0 is almost C-internal, there exist F ⊃ B such
that F |⌣

B

ec and c ∈ acl(FC). Now e ∈ acl(Bc) ⊆ acl(FC), and since e |⌣
B

F and

e |⌣
D

B, we have e |⌣
D

F . This shows that tp(e/D) is almost C-internal. �

It is not hard to see that analyses by reductions or coreductions are incompress-
ible. If (a1, ..., an) is a P-analysis by reductions of tp(a/A) and stp(ai+1/Aai−1)
is almost P-internal for some i = 1, 2, ..., n − 1, then since ai is the P-reduction
of a over Aai−1, ai+1 ∈ acl(Aai) which implies acl(Aai) = acl(Aai+1). Now for
any j > i, assume that acl(Aaj) = acl(Aai). Then since aj+1 is the P-reduction
of a over Aaj and acl(Aaj) = acl(Aai), aj+1 is the P-reduction of a over Aai, so
acl(Aaj+1) = acl(Aai+1) = acl(Aai). Thus ai, ..., an are all the same up to inter-
algebraicity over A, and this is possible only if i = n, contradicting the fact that
i ≤ n − 1. Similarly, if (a1, ..., an) is a P-analysis by coreductions of tp(a/A) and
stp(ai+1/Aai−1) is almost P-internal for some i = 1, 2, ..., n − 1, then since ai is
the P-coreduction of ai+1 over ai−1, ai ∈ acl(Aai−1) which implies ai and ai−1 are
interalgebraic over A. An inductive argument similar to the reduction case shows
that a0, ..., ai are all the same up to interalgebraicity over A, and this is possible
only if i = 0, contradicting the fact that i ≥ 1.

However, more is true: they are actually minimal.

Proposition 4.6. Analysis by reductions and coreductions are minimal.

Proof. Let (a1, ..., an) and (c1, ..., cℓ) be P-analyses of a over A with (a1, ..., an)
being by reductions. We shall prove that n ≤ ℓ. We show that ci ∈ acl(Aai)
for i = 1, 2, ...,min(n, ℓ). For i = 1, since stp(c1/A) is almost P-internal and a1
is the P-reduction of a over A, c1 ∈ acl(Aa1). Now if ci−1 ∈ acl(Aai−1), then
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stp(ci/ai−1) is almost P-internal, and as ai is the P-reduction of a over Aai−1,
ci ∈ acl(Aai) as desired. Suppose ℓ < n. Then acl(Aaℓ) ( acl(Aan) since (a1, ..., an)
is incompressible, so acl(Aa) = acl(Acℓ) ⊆ acl(Aaℓ) ( acl(Aan) = acl(Aa), a
contradiction.

Now suppose (b1, ..., bm) is a P-analysis by coreductions of a over A. We shall
prove that m ≤ ℓ. We show that bm−j ∈ acl(Acℓ−j) for j = 0, 1, ...,min(m, ℓ) − 1.
For j = 0, notice that bm, cℓ are both interalgebraic over A with a. Now if bm−j+1 ∈
acl(Acℓ−j+1), then stp(bm−j+1/cℓ−j) is almost P-internal, and as bm−j is the P-
coreduction of bm−j+1 over A, bm−j ∈ acl(Acℓ−j) as desired. Assume towards a
contradiction that ℓ < m. Then acl(Abm−ℓ+1) ⊆ acl(Ac1). Since m − ℓ + 1 ≥ 2,
stp(bm−ℓ+1/A) is not almost P-internal because (b1, ..., bm) is incompressible, but
stp(c1/A) is almost P-internal, a contradiction. �

So analyses by reductions and coreductions are of the same length. However,
analyses by reductions and coreductions do not always have to agree (even up to
interalgebraicity).

Definition 4.7. We say that two P-analyses (a1, ..., an) and (b1, ..., bm) of a over
A are interalgebraic over A if n = m and acl(Aai) = acl(Abi) for i = 1, 2, ..., n.
We call an analysis canonical if it is minimal and interalgebraic with every other
minimal analysis.

Example 4.8. Using the notation of Example 4.1, the P-analysis by reductions of
ab1 over ∅ is (a1b1, ab1), while the P-analysis by coreductions of ab1 is (a1, ab1).
But (a1b1, ab1) and (a1, ab1) are not interalgebraic. In particular, stp(ab1) does not
have a canonical P-analysis.

The next proposition points out, however, that if an analysis by reductions has
the same U -type as one by coreductions, then they are interalgebraic and are in
fact the unique minimal analysis up to interalgebraicity.

Proposition 4.9. Let (a1, ..., an) and (b1, ..., bn) be P-analyses by reductions and
coreductions of a over A, respectively. If the U -types of (a1, ..., an) and (b1, ..., bn)
are the same, then (a1, ..., an) is interalgebraic with (b1, ..., bn) over A. Moreover, if
(c1, ..., cn) is another P-analysis of a over A, then (c1, ..., cn) is also interalgebraic
with both (a1, ..., an) and (b1, ..., bn) over A.

In particular, if p has an analysis by reductions and an analysis by coreductions
of the same U -type, then these analyses are canonical. Conversely, any canonical
analysis is an analysis by both reductions and coreductions.

Proof. Having the same U -type implies that U(ai/A) = U(bi/A) for i = 1, 2, ..., n.
Let (c1, ..., cn) be another P-analysis of a over A, We have seen in the proof of
4.6 that ci ∈ acl(Aai) and bi ∈ acl(Aci) for i = 1, 2, ..., n. Therefore U(ai/A) =
U(bi/A) = U(ci/A) and acl(Aai) = acl(Abi) = acl(Aci) for i = 1, 2, ..., n, as desired.

The “in particular” clause now follows by Proposition 4.6. For the converse,
let (ai)

n
i=1, (bi)

n
i=1, (ci)

n
i=1 be P-analyses of a over A, which are an analysis by

reductions, an analysis by coreductions, and a canonical analysis, respectively.
We have that ai is the P-reduction of a over Aai−1, acl(Aai) = acl(Aci), and
acl(Aai−1) = acl(Aci−1), so ci is the P-reduction of a over Aci−1. Thus (ci)

n
i=1 is

a P-analysis by reductions. Similarly, we have that bi is the P-coreduction of bi+1

over A, acl(Abi) = acl(Aci), and acl(Abi+1) = acl(Aci+1), so ci is the P-coreduction
of a over Aci−1. Thus (ci)

n
i=1 is a P-analysis by coreductions. �
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Here is a local criterion to determine whether an analysis is an analysis by
reductions.

Lemma 4.10. Let (a1, ..., an) be a P-analysis of a over A. Then it is a P-analysis
by reductions iff ai is a P-reduction of ai+1 over Aai−1 for i = 1, ..., n− 1.

Proof. Suppose (a1, ..., an) is a P-analysis by reductions of a over A. For any
k = 1, 2, ..., n− 1, ak is a P-reduction of a over Aak−1, i.e., for any a′k ∈ acl(Aa),
if stp(a′k/Aak−1) is almost P-internal, then a′k ∈ acl(ak). In particular, for any
a′k ∈ acl(Aak+1), if stp(a

′
k/Aak−1) is almost P-internal, then a′k ∈ acl(ak). Note

that ak ∈ acl(Aak+1), so ak is a P-reduction of ak+1 over Aak−1.
Now suppose (a1, ..., an) is a P-analysis of a over A such that ai is a P-reduction

of ai+1 over Aai−1 for i = 1, ..., n− 1. We need to check that ak is the P-reduction
of a over Aak−1. In fact, let a′k be the P-reduction of a over Aak−1, then we only
need to show that a′k ∈ acl(Aak).

We know a′k ∈ acl(Aan). Suppose a′k ∈ acl(Aai) for some i such that k < i ≤ n.
Since a′k is almost P-internal over Aak−1 and k − 1 < i − 1, a′k is P-internal over
Aai−2. Now ai−1 is a P reduction of ai over Aai−2, a

′
k ∈ acl(Aai), and a′k is almost

P-internal over Aai−2, so a′k ∈ acl(Aai−1). By induction we get a′k ∈ acl(Aak). �

We have a similar criterion for analyses by coreductions.

Lemma 4.11. A P-analysis (a1, ..., an) of a over A is a P-analysis by coreductions
iff ai is a P-coreduction of ai+1 over Aai−1 for i = 1, ..., n− 1.

Proof. Suppose (a1, ..., an) is a P-analysis by coreductions of a over A. For any
k = 1, 2, ..., n−1, ak is a P-coreduction of ak+1 over A, i.e., for any a′k ∈ acl(Aak+1),
if stp(ak+1/Aa

′
k) is P-internal, then ak ∈ acl(Aa′k). In particular, for any a′k ∈

acl(Aak+1), if stp(ak+1/Aak−1a
′
k) is P-internal, then ak ∈ acl(Aak−1a

′
k). So we

have that ak is a reduction of ak+1 over Aak−1.
Now suppose (a1, ..., an) is a P-analysis of a overA such that ai is a P-coreduction

of ai+1 over Aai−1 for i = 1, ..., n− 1. Fixing a k ∈ {1, 2, ..., n − 1}, we need to
check that ak is the P-coreduction of ak+1 over A. In fact, let a′ be be such that
stp(ak+1/Aa

′) is almost P-internal. We need to prove that ak ∈ acl(Aa′).
We know that a1 ∈ acl(Aa′). This is because a1 is the P-coreduction of a2 over

A, and stp(a2/Aa
′) is almost P-internal (since a2 ∈ dcl(Aak+1)).

Suppose ai−1 ∈ acl(Aa′) for some i such that 1 < i ≤ k. Since ai+1 is almost P-
internal overAa′ (as i+1 ≤ k+1, ai+1 ∈ acl(Aak+1)), and ai is the P-coreduction of
ai+1 over Aai−1, we have that ai ∈ acl(Aa′). By induction we get ak ∈ acl(Aa′). �

It follows from the above lemma that an incompressible analysis of U -type
(1, 1, ..., 1) is canonical. Indeed, for such an analysis (a1, ..., an) of a over A, as
stp(ai+1/Aai−1) is not almost P-internal, by rank consideration, ai must be both
the P-reduction and the P-coreduction of ai+1 over Aai−1 for i = 1, 2, ..., n− 1.

We end this section by pointing out that once we have a type with an incom-
pressible analysis of U -type (1, 1, ..., 1)

︸ ︷︷ ︸

n

– as for example we do in DCF0 by Corollary

3.3 – then every decreasing sequence of positive integers of length n appears as the
U-type of the P-analysis by reductions of some other type in this theory. A similar
statement holds for increasing sequences and P-analyses by coreductions provided
that every finite U -rank type has a P-coreduction. For convenience we work over
the empty set.
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Proposition 4.12. Suppose (a1, ..., an) is a P-analysis of a of U -type (1, 1, ..., 1).

(a) Given positive integers s1 ≥ ... ≥ sn, there exists a tuple whose P-analysis
by reductions is of U -type (s1, ..., sn).

(b) Suppose every type of finite U -rank has a P-coreduction. Given positive
integers s1 ≤ ... ≤ sn, there exists a tuple whose P-analysis by coreductions
is of U -type (s1, ..., sn).

Proof. (a) Let ā(j) = (a
(j)
1 , ..., a

(j)
n ), j = 1, 2, ... be tuples such that (ā(1), ā(2), ...)

is a Morley sequence of tp(a1, ..., an). In particular, a
(j)
i is the P-reduction and

the P-coreduction of a
(j)
i+1. Let αi = (a

(1)
i , ..., a

(si)
i ) and βi = (α1, ..., αi). Note

that a
(j)
i ∈ βi for j = 1, 2, ..., si. We claim the tuple βn is P-analysable and its

P-analysis by reductions is of U -type (s1, ..., sn). To show this, since (ā(j))j is a
Morley sequence, we have

U(βi/βi−1) =U(αi/βi−1)

=U(a
(1)
i ...a

(si)
i /βi−1)

=U(a
(1)
i ...a

(si)
i /a

(1)
i−1a

(si)
i−1)

=si,

so we only need to prove that the P-analysis by reductions of β is (β1, β2, ..., βn).
Let bi be the reduction of βn over βi−1. We claim that bi is interalgebraic with

βi. Since a
(j)
i−1 ∈ dcl(βi−1) for j = 1, 2, ..., si (since si−1 ≥ si), stp(a

(j)
i /βi−1) is

almost P-internal for j = 1, 2, ..., si, so stp(αi/βi−1) is almost P-internal. Since
βi ∈ dcl(αi, βi−1), stp(βi/βi−1) is almost P-internal, so βi ∈ bi. We now need to
show that U(bi/βi) = 0. Toward a contradiction, suppose U(bi/βi) > 0.

Set B = βi, which is the collection of elements of the form a
(q)
p where 1 ≤ p ≤ i

and 1 ≤ q ≤ si. Now we add elements of the form a
(q)
p one by one into B according

to dictionary order of (p, q) where i+1 ≤ p ≤ n and 1 ≤ q ≤ si as long as U(bi/B)
remains unchanged. Since bi ∈ βn, U(bi/βn) = 0, so this process will terminate for

some a
(q)
p where U(bi/Ba

(q)
p ) < U(bi/B).

Now B contains elements of the form a
(q′)
p′ where (p′, q′) < (p, q) by dictionary

order. We have a
(q)
p 6 |⌣

B

bi. As a
(q)
p−1 ∈ B and a

(q)
p |⌣

a
(q)
p−1

B, U(a
(q)
p /B) = 1, so

a
(q)
p ∈ acl(Bbi). However, Let C = {a

(j)
i : a

(j)
i+1 ∈ dcl(B)}. Then stp(B/C) is

almost P-internal as stp(a
(j)
i+1/a

(j)
i ) is almost internal for any i, j, and stp(bi/C) is

almost P-internal because βi−1 ∈ dcl(C). But stp(a
(q)
p /C) is not almost P-internal:

since a
(q)
p−1 6∈ acl(a

(q)
p−2) and a

(q)
p−1 |⌣

a
(q)
p−2

C, we have a
(q)
p−1 6∈ acl(C).

(b) Let ā(j) = (a
(j)
1 , ..., a

(j)
n ), j = 1, 2, ... be tuples such that (ā(1), ā(2), ...) is a

Morley sequence of tp(a1, ..., an/A). Let βi = (a
(1)
1 ...a

(sn−i+1)
1 , ..., a

(1)
i ...a

(s1)
i ). Let

f(j) = min{k : j ≤ sk}, and let f(j) be infinity if it is not defined. Then a
(j)
k ∈ βi

iff k ≤ i − f(j) + 1 and βi =

si⋃

j=1

a
(j)
i+1−f(j). We claim the tuple βn is P-analysable
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and its P-analysis by coreductions is of U -type (s1, ..., sn). Since βi =

si⋃

j=1

a
(j)
i+1−f(j)

and βi−1 =

si⋃

j=1

a
(j)
i−f(j) (as i − f(j) = 0 for si−1 < j ≤ si, we may set the upper

bound as si), we have

U(βi/βi−1) =U(

si⋃

j=1

a
(j)
i+1−f(j)/βi−1)

=

si∑

j=1

U(a
(j)
i+1−f(j)/a

(j)
i−f(j))

=si

as (ā(j))j is a Morley sequence. Thus we only need to prove that the P-analysis by
coreductions of β is (β1, β2, ..., βn).

Suppose b is the P-coreduction of βi+1 over the empty set. We claim that
acl(b) = acl(βi). Note that stp(βi+1/βi) is almost P-internal, so b ∈ acl(βi). Take

any a
(k)
j ∈ βi. Since a

(k)
j+1 ∈ βi+1 and βi+1 is almost P-internal over b, a

(k)
j+1 is

almost P-internal over b, so a
(k)
j ∈ b since a

(k)
j is the P-coreduction of a

(k)
j+1. We

therefore have that βi ∈ acl(b).
�

5. A Construction in DCF0

In this section we show that in DCF0 we can do better than the conclusions of
Proposition 4.12. Given any sequence of positive integers we provide a type which
has a canonical C-analysis with that U -type. Throughout we use the fact proven in
Lemma 4.5 that any finite rank type has a C-coreduction.

Suppose n1, ..., nℓ are positive integers. We want to construct a type admitting
a C-analysis in ℓ steps where the ith step has U -rank ni, and such that the analysis
is canonical. Here is our construction.

For convenience, we name everything in Qalg in the language. Let cij ∈ Qalg be
algebraic numbers for i = 1, 2, ..., ℓ and 1 ≤ j ≤ ni such that {cij}

ni

j=1 is Q-linearly
independent for i = 1, 2, ..., ℓ.

We inductively define (Di, ei) for i = 1, 2, ..., ℓ as follows:
Set D1 := δ and let e1 be a generic solution over ∅ to

(D1 − c11)(D1 − c12)...(D1 − c1n1)x = 0.(E1)

For i > 1 set Di :=
δ

∏i−1
j=1 ej

and let ei be a generic solution over {e1, ...ei−1} to

(Di − ci1)(Di − ci2)...(Di − cini
)x = 0.(Ei)

The notationDi−cij here represents a linear operator which sends y toDiy−cijy,
so equation (Ei) is a linear differential equation over {e1, ...ei−1} of order ni.

Now let ai = (e1, ..., ei) for i = 1, 2, ..., n, and a0 = ∅. We will show that (a1...aℓ)
is a canonical C-analysis of aℓ of U -type (n1, ..., nℓ).

Since ei is a generic solution of (Ei), an order ni linear differential equation over
ai−1, we have U(ai/ai−1) = ni, and stp(ai/ai−1) is almost C-internal. So this is
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a C-analysis of the correct U -type. We need to show it is by C-reductions and
C-coreduction.

Fixing i ∈ {1, 2, ..., ℓ}, the following coordinatisation of solutions of (Ei) is a
useful tool that we will apply often.

Lemma 5.1. If f is any solution to (Ei) then we can decompose f =

ni∑

j=1

fj such

that each fj is a solution to Dix− cijx = 0 and f is interdefinable with (f1, ..., fni
)

over ai−1.

Proof. Indeed, let gj be a generic solution of Dix − cijx = 0. The set {gj : j =
1, 2, ..., ni} is C-linearly independent because gj’s are nonzero eigenvectors of differ-
ent eigenvalues under the C-linear operatorDi. Note that since (Di−cij) commutes
with (Di − cij′ ) for any j, j′, each gj is a solution to (Ei). Since (Ei) is an order
ni linear differential equation and {gj : j = 1, 2, ..., ni} is a set of C-linearly inde-
pendent solutions of (Ei), any solution of (Ei) is a C-linear combination of gj ’s. In

particular, f is of the form

ni∑

j=1

ujgj where uj ∈ C for j = 1, ..., ni. Let fj = ujgj,

so f =

ni∑

j=1

fj, and f ∈ dcl(f1, ..., fni
). Also,

Difj − cijfj = uj(Digj − cijgj) = 0,

so fj is a solution to Dix− cijx = 0.
We still need to verify that (f1, ..., fni

) ∈ dcl(ai−1f). Indeed, suppose (f∗
j )

ni

j=1

and (fj)
ni

j=1 have the same type over ai−1f . Then in particular f∗
j is a solution to

Dix− cijx = 0, and
ni∑

j=1

fj = f =

ni∑

j=1

f∗
j

which gives us

ni∑

j=1

(fj−f∗
j ) = 0. As {fj−f∗

j : j = 1, 2, ..., ni} is a set of eigenvectors

of different eigenvalues under the C-linear operator Di, we then have fj − f∗
j = 0

for all j = 1, 2, ..., ni, so (f∗
j )

ni

j=1 = (fj)
ni

j=1. �

Lemma 5.2. If f is a generic solution to (Ei) over ai−1, then {f1, ..., fni
} obtained

in Lemma 5.1 is independent over ai−1 and each fj is a generic solution to Dix−
cijx = 0.

Proof. Since f is a generic solution over ai−1 to (Ei), which is a linear differential
equation of order ni, we have U(f/ai−1) = ni Since fj is a solution for Dix−cijx =
0, U(fij/ai−1) ≤ 1. But

ni =U(f/ai−1)

=U(f1f2...fni
/ai−1)

=U(f1/ai−1) + U(f2/ai−1f1) + ...+ U(fni
/ai−1f1f2...fni−1)

≤U(f1/ai−1) + U(f2/ai−1) + ...+ U(fni
/ai−1)

≤ni.
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So U(fj/ai−1) = 1 and U(fj/ai−1f1f2...fj−1) = 1 for j = 1, 2, ..., ni. This means
that {f1, ..., fni

} is independent over ai−1 and each fj is a generic solution to
Dix− cijx = 0. �

Lemma 5.3. Let f be a generic solution over Qalg to (E1). Then acl(f)∩C = Qalg.

Proof. Let m = n1. Let (f1, ..., fm) be the decomposition of f by Lemma 5.1
with respect to (E1). Since f is generic, fj 6= 0 for j = 1, 2, ...,m. Suppose the
conclusion is false and there exists some c such that c ∈ (acl(f) ∩ C)\Qalg. Note
that acl(f) = Q(f1, ..., fm)alg since δfj = c1jfj ∈ Qalg(fj).

For simplicity, let f̄ = (f1, ..., fm), and ȳ = (y1, ..., ym). Let F (x, ȳ) be a poly-
nomial with coefficients in Qalg such that F (c, f̄) = 0 and F (x, f̄) 6= 0. Since
c 6∈ Qalg, F (c, ȳ) 6= 0. Let G(ȳ) be a nonzero polynomial over C with minimal
number of terms such that G(f̄) = 0. Since F (c, ȳ) 6= 0 and F (c, f̄) = 0, F (c, ȳ)
satisfies all conditions of G except for the minimality, so such a G exists.

Let

G(ȳ) =
∑

r̄∈I

sr̄ ȳ
r̄,

where I is a set of m-tuples of nonnegative integers, ȳr̄ = yr11 ...yrmm , and sr̄ ∈ C.

Let c̄ = (c11, ..., c1m), and set f̄ c̄ :=

m∑

j=1

fjc1j .

We claim that

r̄(1)c̄ = r̄(2)c̄

for all r̄(1), r̄(2) ∈ I. Indeed, otherwise, fixing any r̄∗ ∈ I, we have

G∗(ȳ) :=r̄∗c̄G(ȳ)− δ(G(ȳ))

=
∑

r̄∈I

(r̄∗c̄)sr̄ ȳ
r̄ −

∑

r̄∈I

sr̄δȳ
r̄

=
∑

r̄∈I

(r̄∗c̄− r̄c̄)sr̄ ȳ
r̄

is a polynomial with fewer terms than G (since the term with index r̄∗ is cancelled)
such that its coefficients are in C, G∗(f̄) = 0 since G(f̄) = δ(G(f̄ )) = 0, and
G∗(ȳ) 6= 0 as there exist r̄ ∈ I such that r̄c̄ 6= r̄(∗)c̄. This contradicts the minimality
of G.

We now have r̄(1)c̄ = r̄(2)c̄ for all r̄(1), r̄(2) ∈ I, i.e., (r̄(1) − r̄(2))c̄ = 0 for all
r̄(1), r̄(2) ∈ I. But {c11..., c1m} is Q-linearly independent, so in fact r̄(1) = r̄(2) for
all r̄(1), r̄(2) ∈ I. Therefore there is only one element r̄ in I, and G(f̄) = sr̄ f̄

r̄. Since
all fj ’s are nonzero, sr̄ = 0, so G is the zero polynomial, a contradiction. �

The following lemma is the technical heart of the construction.

Lemma 5.4. Fix i ∈ {1, 2, ..., ℓ− 1}, and for notational convenience, let m := ni

and L := acl(ai−1). Then the following are true:

(i) Suppose f is a solution of (Ei) and (f1, ..., fm) is the decomposition of f by
Lemma 5.1. Then f is generic over L iff all the fj are nonzero.

(ii) Suppose f is a generic solution to (Ei) over L, α ∈ Qalg is nonzero, and h
is a nonzero solution of Dix− αfx = 0. Then f is the C-coreduction of h
over L.

(iii) The C-coreduction of ai+1 over ai−1 is ai.
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(iv) The C-reduction of ai+1 over ai−1 is ai.

Proof. We use induction on i.
(i) Suppose the conclusion is true for i− 1.
By Lemma 5.2, if f is a generic solution to (Ei) over L, then for any j ∈

{1, 2, ...,m}, fj is a generic solution to Dix− cijx = 0. In particular, fj 6= 0.
Now suppose fj 6= 0 for all j = 1, 2, ...,m, but f is not generic, i.e., U(f/L) < m.

Since

U(f/ai−1) =U(f1f2...fm/ai−1)

=U(f1/ai−1) + U(f2/ai−1f1) + ...+ U(fm/ai−1f1f2...fm−1),

U(fj/ai−1f1f2...fj−1) < 1 for some j, and hence fj ∈ L〈
⋃

k 6=j

fk〉 for that j. Note

that

δfk = (Difk)

i−1∏

j=1

ej = cikfk

i−1∏

j=1

ej ∈ L(fk),

so fj ∈ L〈
⋃

k 6=j fk〉 = L(
⋃

k 6=j fk), which means that {f1, ..., fm} is algebraically
dependent over L in the field theoretic sense.

Let f̄ = (f1, ..., fm), ȳ = (y1, ..., ym), and c̄ = (ci1, ..., cim). Let G(ȳ) be a
nonzero polynomial with minimal number of terms such that its coefficients are in
L and G(f̄) = 0. We will use a minimality argument similar to that in the proof of
Lemma 5.3. Suppose

G(y1, ..., ym) =
∑

r̄∈I

sr̄ ȳ
r̄,

where I is a set of m-tuples of nonnegative integers, and sr̄ ∈ L for r̄ ∈ I. Now

Di(G(f̄)) =Di

∑

r̄∈I

sr̄ f̄
r̄

=
∑

r̄∈I

(f̄ r̄Disr̄ + sr̄Dif̄
r̄)

=
∑

r̄∈I

(logDisr̄ + r̄c̄)sr̄ f̄
r̄.

We claim that
logDisr̄(1) + r̄(1)c̄ = logDisr̄(2) + r̄(2)c̄

for all r̄(1), r̄(2) ∈ I. Indeed, otherwise, fixing any r̄∗ ∈ I, we have

G∗(ȳ) :=(logDisr̄∗ + r̄∗c̄)G(ȳ)−Di(G(ȳ))

=
∑

r̄∈I

(logDisr̄∗ + r̄∗c̄− logDisr̄ − r̄c̄)sr̄ ȳ
r̄

is a polynomial with fewer terms than G (since the term with index r̄∗ is cancelled)
such that its coefficients are in L, G∗(f̄) = 0 as G(f̄ ) = Di(G(f̄)) = 0, and
G∗(ȳ) 6= 0 as there exist r̄ in I such that logDisr̄ + r̄c̄ 6= logDisr̄∗ + r̄∗c̄. This
contradicts the minimality of G.

There are at least two terms in G(ȳ). Indeed, if there is only one term in G, then
G(ȳ) = sr̄ ȳ

r̄ for the unique r̄ ∈ I. Since fj 6= 0 for j = 1, 2, ...,m and G(f̄) = 0, we
have sr̄ = 0, so G(ȳ) = 0, contradicting the fact that G is nonzero.

We now have
logDisr̄(1) + r̄(1)c̄ = logDisr̄(2) + r̄(2)c̄
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for all r̄(1), r̄(2) ∈ I. Note that logDisr̄+r̄c̄ = logDi(sr̄ f̄
r̄) for any r̄ ∈ I. Therefore,

fixing r̄(1) 6= r̄(2) in I, we get sr̄(1) f̄
r̄(1) = csr̄(2) f̄

r̄(2) for some nonzero c ∈ C. This
means that

cf̄ r̄(2)−r̄(1) = sr̄(1)s
−1
r̄(2)

.(*)

Note that as all fj 6= 0, f̄ r̄(2)−r̄(1) makes sense and is nonzero. Let h = cf̄ r̄(2)−r̄(1) .
Then h is a nonzero solution to

logDix = (r̄(2) − r̄(1))c̄.(**)

When i = 1, right side of (*) is in acl(a0) = Qalg ⊂ C, so h is also a constant, but
then it is not a solution for (**). When i > 1, we apply part (ii) of the lemma for
i− 1 with ei−1 a generic solution of (Ei−1) over ai−2, α = (r̄(2) − r̄(1))c̄∗ 6= 0, and
h a nonzero solution of Di−1x − dx = 0. We get that ei−1 is the coreduction of
h over ai−2. In particular, since ei−1 6∈ acl(ai−2), we have that stp(h/ai−2) is not
almost C-internal. But the right side of (*) is in L which is almost C-internal over
ai−2, a contradiction.

(ii) Suppose the conclusion is true for i− 1, and (i) is true for i.
We use induction on m, the order of the differential equation (Ei).
If m = ni = 1, we have that logDih = αf and logDi(αf) = ci1. Let h∗

be a generic solution of logDix = αf over Lf . Since f is a generic solution of
logDi(x) = ci1 over L, αf is also a generic solution of logDi(x) = ci1 over L, and

therefore h∗ is a generic solution of logD
(2)
i x = ci1 over ai−1. Thus stp(h

∗/L) is not
almost C-internal by Proposition 3.2. Since h∗ is a constant multiple of h, stp(h/L)
is also not almost C-internal. Note that (f, h) is a C-analysis of h over L, and as it
is incompressible of U -type (1, 1), we have that f is the C-coreduction of h over L.

Now suppose the conclusion of (ii) is proven if the order of the equation (Ei) is
less than or equal to m− 1.

Let β be the C-coreduction of h over L. Since stp(h/Lf) is almost C-internal,
we only need to show that f ∈ acl(Lβ). Let (f1, ..., fm) be the decomposition of
f by Lemma 5.1. By Lemma 5.2, fj is a generic solution of Dix − cijx = 0 for
j = 1, 2, ...,m. Suppose towards a contradiction that f 6∈ acl(Lβ). We may, without
loss of generality, suppose f1, ..., fs 6∈ acl(Lβ) and fs+1, ..., fm ∈ acl(Lβ) for some
1 ≤ s ≤ m.

In the rest of the proof we seek a contradiction to the above assumption.
We prove first that s = m. Suppose not, so fm ∈ acl(Lβ). Let hm be a nonzero

solution to Dix−αfmx = 0. We have that stp(hm/Lfm) is almost C-internal. Since
fm ∈ acl(Lβ), stp(hm/Lβ) is almost C-internal. Let h∗ = hh−1

m . Then

logDi(h
∗) = logDi(h)− logDi(hm)

= α(f1 + ...+ fm−1 + fm)− αfm

= α(f1 + ...+ fm−1).

Let f∗ = f1 + ...+ fm−1. Then h∗ is a nonzero solution to Dix− αf∗x = 0. From
(i), since f1, ..., fm−1 are all nonzero, f∗ is a generic solution over L to

(Di − ci1)...(Di − ci,m−1)x = 0.

By the induction hypothesis, we conclude that the C-coreduction of h∗ over L is
f∗. Since h and hm are almost C-internal over Lβ and h∗ = hh−1

m , we get that
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f∗ ∈ acl(Lβ). As f∗ is interdefinable with (f1, ..., fm−1) over L, f1 ∈ acl(Lβ),
contradicting our assumption.

Let gt1 = tf1 for t = 1, 2, .... We show that stp(gt1/Lβ) = stp(f1/Lβ). Since

(5.1) Digt1 − ci1gt1 = tDif1 − tci1f1 = 0,

we have that gt1 ∈ {x : Dix − ci1x = 0}, a strongly minimal set. Thus in order to
prove stp(gt1/Lβ) = stp(f1/Lβ) we only need to show that gt1 6∈ acl(Lβ), which
follows from f1 6∈ acl(Lβ).

For each integer t ≥ 1, let ηt be an automorphism fixing acl(Lβ) and taking f1
to gt1. Set gtj := ηt(fj) for all j = 1, 2, ...,m, gt := ηt(f), and ht := ηt(h). So
stp(ht, gt, gt1, ..., gtm/Lβ) = stp(h, f, f1, ..., fm/Lβ) for all t ≥ 1. In particular, gt
is a generic solution to (Ei) over L, ht is a nonzero solution to Dix − αgtx = 0,

gt =

m∑

j=1

gtj is the decomposition by Lemma 5.1, and stp(ht/β) is almost C-internal.

We next show that gtj = tfj for all t ≥ 1 and all j.
Towards a contradiction, suppose that gtj 6= tfj for some t and j. Fix this t.

We argue first that gtj − tfj ∈ acl(Lβ). Let H = hth
−t, and let I = {j : 2 ≤ j ≤

m, gtj − tfj 6= 0} (note that gt1 = tf1, so we only need j ≥ 2; also note that I is
nonempty since gtj 6= tfj for some j by assumption). We have that

DiH =(logDiH)H

=(logDiht − t logDih)H

=(αgt − tαf)H

=(α
m∑

j=1

(gtj − tfj))H,

=(α
∑

j∈I

(gtj − tfj))H.

So H is a nonzero solution of Dix− (α
∑

j∈I(gtj − tfj))x = 0.

Note that
∑

j∈I(gtj − tfj) is a solution to

(5.2)




∏

j∈I

(Di − cij)



 (x) = 0.

This is because (5.2) is linear, and for each j ∈ I,

(Di − cij)(gtj − tfj) = (Di − cij)gtj − (Di − cij)tfj = 0.

The decomposition of
∑

j∈I

(gtj − tfj) by Lemma 5.1 with respect to (5.2) is (gtj −

tfj)j∈I , and gtj − tfj 6= 0 for every j ∈ I. Therefore, applying part (i) where we
replace (Ei) with (5.2), we get that

∑

j∈I(gtj − tfj) is a generic solution to (5.2)
over L.

Now, since (5.2) is of order less than m and H is a nonzero solution of Dix −
(α

∑

j∈I(gtj − tfj))x = 0, by the induction hypothesis, the coreduction of H over L

is
∑

j∈I(gtj − tfj). Since H = hth
−t and both h and ht are almost C-internal over

Lβ, we have stp(H/Lβ) is almost C-internal. Therefore, for any j ∈ I, gtj − tfj ∈
acl(Lβ). We now fix some j ∈ I.



18 RUIZHANG JIN

Let γ =
gtj
fj

− t =
gtj − tfj

fj
6= 0. Then γ is a constant in acl(LF )\acl(Lβ).

Indeed, γ is a constant because gtj and fj are both solutions to Dix−cijx = 0, and

hence
gtj
fj

∈ C. We get γ ∈ acl(Lf) by the fact that gtj − tfj ∈ acl(Lβ) ⊆ acl(Lf).

And γ 6∈ acl(Lβ) because if it were, then so would fj =
gtj − tfj

γ
, but we know

that is not the case.
When i = 1 this is impossible, since acl(Lf) = acl(f), and Lemma 5.3 tells us

that acl(f) ∩ C = Qalg.
Suppose i > 1. We apply part (iv) of the lemma for i − 1 and get that the

C-reduction of ai over ai−2 is ai−1. As f is a generic solution of (Ei) over L,
stp(f/L) = stp(ei/L), so the C-reduction of f over ai−2 is ai−1. Since γ ∈
acl(Lf)\acl(Lβ), γ 6∈ L = acl(ai−1). So stp(γ/ai−2) is not almost C-internal.
On the other hand, γ is a constant, a contradiction.

What we have actually shown is that for any t ≥ 1, stp(tf1/Lβ) = stp(f1/Lβ),

and if stp(f̃1, f̃2, ..., f̃m/Lβ) = stp(f1, ..., fm/Lβ) and f̃1 = tf1, then f̃j = tfj for
j = 2, 3, ...,m. In particular, stp(tf1, ..., tfm/Lβ) = stp(f1, ..., fm/Lβ) holds for all
t. In addition, the case of t = 1 tells us that fj ∈ dcl(f1acl(Lβ)) for j = 2, 3, ...,m.

We now show that
fj
f1

∈ acl(Lβ) for j = 2, 3, ...,m. Fix some j. Since fj ∈

dcl(f1acl(Lβ)), there exists a formula ϕ1(x, y) over acl(Lβ) such that ϕ1(U , f1) =
{fj}. Since stp(tf1, tfj/Lβ) = stp(f1, fj/Lβ), we have ϕ1(U , tf1) = {tfj} for all t.

Now set ϕ2(x, y) := ∀z(ϕ1(z, y) → x =
z

y
). Then ϕ2(U , tf1) =

{
fj
f1

}

for all t. So

we have

{tf1 : t ≥ 1} ⊆

{

b ∈ U : logDib = ci1 and ϕ2(U , b) =

{
fj
f1

}}

.

Since logDix = ci1 is strongly minimal, it must be that for all but finitely many

solutions to logDix = ci1, ϕ2(U , b) =

{
fj
f1

}

. It follows that
fj
f1

∈ acl(Lβ).

Let g01 be a generic solution over Lh to Dix− ci1x = 0, and g0j = g01
fj
f1

for j =

2, 3, ...,m. We have shown that each
fj
f1

is in acl(Lβ), so (g01, ..., g0m) ∈ acl(Lβg01).

Let c01 =
f1
g01

∈ C. Now,

logD
(2)
i (h) = logDi(αf)

= logDi(α(f1 + ...+ fm))

= logDi(αc01(g01 + ...+ g0m))

= logDi(g01 + ...+ g0m) =: ǫ.

Hence h is a solution to logD
(2)
i (x) = ǫ which is over acl(Lβg01), so U(h/Lβg01) ≤

2. Note that U(h/Lβ) ≥ 2 since h is a generic solution to logDix = αf and
U(f/Lβ) ≥ 1. But we also have h |⌣

Lβ

g01 (recall that β ∈ acl(Lh)), so U(h/Lβg01) =

U(h/Lβ) ≥ 2. Thus U(h/Lβg01) = 2, and h is a generic solution to logD
(2)
i (x) = ǫ
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over acl(Lβg01). Hence stp(h/Lβg01) is not almost C-internal by Proposition 3.2,
and therefore stp(h/Lβ) is not almost C-internal, contradicting the definition of β.

(iii) Assume part (ii) of the lemma is true for i.
Let ei+1 =

∑ni+1

j=1 bi+1,j be the decomposition by Lemma 5.1 with respect to

(Ei+1). We have that stp(ai+1/ai) is almost C-internal. Also, by part (ii) applied
to f = ei and h = bi+1,1, the C-coreduction of bi+1,1 over ai−1 is ei, which is
interdefinable over ai−1 with ai. Since bi+1,1 ∈ dcl(aiei+1) = dcl(ai+1), the C-
coreduction of ai+1 over ai−1 is ai.

(iv) Assume parts (i) and (ii) of the lemma are true for i. For simplicity, we
use n to denote ni+1. Let K be the algebraically closed field generated by ai. Let
b̄i+1 = (bi+1,1, ..., bi+1,n).

We already know that stp(ai/ai−1) is C-internal. Suppose β ∈ acl(ai+1) is
almost C-internal over ai−1 and β 6∈ acl(ai). Since ei+1 is interalgebraic with
b̄i+1 over ai, β ∈ acl(aib̄i+1), which means β ∈ K〈b̄i+1〉

alg. Since δbi+1,j =

ci+1,jbi+1,j

i∏

k=1

ek ∈ K(bi+1,j) for j = 1, 2, ..., n, we have K〈b̄i+1〉 = K(b̄i+1), so

β ∈ K(b̄i+1)
alg. Thus there exist a polynomial F (x, y1, ..., yn) with coefficients

in K such that F (β, bi+1,1, ..., bi+1,n) = 0 and F (x, bi+1,1, ..., bi+1,n) 6= 0. Also,
F (β, y1, ..., yn) 6= 0 since β 6∈ K.

Suppose G(y1, ..., yn) is a nonzero polynomial with minimal number of terms
such that the coefficients of G are almost C-internal over ai−1 and G(b̄i+1) = 0.
Note that this is well-defined because F (β, y1, ..., yn) satisfies all the conditions
except for the minimality, as K and β are both almost C-internal over ai−1.

Let

G(y1, ..., yn) =
∑

r̄∈I

sr̄ ȳ
r̄,

where I is a set of n-tuples of nonnegative integers, and stp(sr̄/ai−1) is almost
C-internal. Let c̄i+1 = (ci+1,1, ..., ci+1,n). Arguing exactly as in the proof of part
(i) of the lemma, we get by minimality of G that

(5.3) logDisr̄(1) + r̄(1)c̄i+1ei = logDisr̄(2) + r̄(2)c̄i+1ei

for any r(1), r(2) ∈ I. Indeed,

Di(G(b̄i+1)) =
∑

∈̄I

(b̄r̄i+1Disr̄ + sr̄Dib̄
r̄
i+1)

=
∑

∈̄I

(b̄r̄i+1Disr̄ + sr̄ r̄c̄i+1eib̄
r̄
i+1)

=
∑

∈̄I

(logDisr̄ + r̄c̄i+1ei)sr̄ b̄
r̄
i+1,

where the second equality is by the fact that

Dib̄
r̄
i+1 =r̄b̄r̄−1̄

i+1Dib̄i+1

=r̄b̄r̄−1̄
i+1 eiDi+1b̄i+1

=r̄b̄r̄−1̄
i+1 eic̄i+1b̄i+1

=r̄eic̄i+1b̄
r̄
i+1.
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Now if (5.3) failed, then fixing any r̄∗ ∈ I we see that

G∗(ȳ) :=(logDisr̄∗ + r̄∗c̄i+1ei)G(ȳ)−DiG(ȳ)

=
∑

r̄∈I

(logDisr̄∗ + r̄∗c̄i+1ei − logDisr̄ − r̄c̄i+1ei)sr̄ ȳ
r̄

whose coefficients are again almost C-internal over ai−1, would contradict the min-
imal choice of G.

If G has only one term, then for the only r̄ ∈ I, G(b̄i+1) = sr̄b̄
r̄
i+1. Since

bi+1,j 6= 0 for j = 1, 2, ..., n, sr̄ = 0, which means G(ȳ) = 0, a contradiction. Now

fix r(1) 6= r(2) in I. Since logDisr̄ + r̄c̄i+1ei = logDi(sr̄ b̄
r̄
i+1) for any r̄ ∈ I, we have

sr̄(1) b̄
r̄(1)

i+1 = csr̄(2) b̄
r̄(2)

i+1 for some c ∈ C. This means that b̄r̄
(1)−r̄(2)

i+1 = csr̄(2)s
−1
r̄(1)

. So

b̄r̄
(1)−r̄(2)

i+1 is almost C-internal over ai−1.

On the other hand, as Di+1b̄
r̄(1)−r̄(2)

i+1 = (r̄(1) − r̄(2))c̄i+1b̄
r̄(1)−r̄(2)

i+1 , b̄r̄
(1)−r̄(2)

i+1 is a

solution of (Di+1 − (r̄(1) − r̄(2))c̄i+1)x = 0, with (r̄ − r̄∗)c̄i+1 6= 0 since {ci+1,j :
j = 1, 2, ..., n} is Q-linearly independent. By part (ii) of the lemma with f = ei,

h = b̄r̄
(1)−r̄(2)

i+1 , and α = (r̄(1)− r̄(2))c̄i+1, ei is a C-coreduction of b̄r̄
(1)−r̄(2)

i+1 over ai−1.

In particular, b̄r̄
(1)−r̄(2)

i+1 is not almost C-internal over ai−1. This contradiction proves
part (iv) of the lemma. �

We have accomplished the desired construction:

Theorem 5.5. Given positive integers n1, ..., nℓ, there exists in DCF0 a type over
Qalg that admits a canonical C-analysis of U -type (n1, ..., nℓ).

Proof. Let (a1, ..., aℓ) be as in the above construction. We have seen that (a1, ..., aℓ)
is a C-analysis of p = stp(aℓ) of U-type (n1, ..., nℓ). By Lemmas 4.10 and 4.11,
parts (iii) and (iv) of Lemma 5.4 prove that it is a C-analysis by reductions and
coreductions, as desired. �
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