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BROUWER’S FAN THEOREM AND CONVEXITY

JOSEF BERGER ANDGREGOR SVINDLAND

Abstract. In the framework of Bishop’s constructive mathematics we introduce co-convexity as a
property of subsets B of {0, 1}∗, the set of finite binary sequences, and prove that co-convex bars are
uniform. Moreover, we establish a canonical correspondence between detachable subsets B of {0, 1}∗

and uniformly continuous functions f defined on the unit interval such that B is a bar if and only if the
corresponding function f is positive-valued, B is a uniform bar if and only if f has positive infimum, and
B is co-convex if and only if f satisfies a weak convexity condition.

§1. Introduction. In their seminal article [7], Julian and Richman established the
following correspondence between detachable subsets B of {0, 1}∗ and uniformly
continuous functions on the unit interval.

Proposition 1.1. For every detachable subset B of {0, 1}∗ there exists a uniformly
continuous function f : [0, 1]→ [0,∞[ such that
(i) B is a bar⇔ f is positive-valued,
(ii) B is a uniform bar⇔, f has positive infimum.

Conversely, for every uniformly continuous function f : [0, 1]→ [0,∞[ there exists a
detachable subset B of {0, 1}∗ such that (i) and (ii) hold.
Consequently, Brouwer’s fan theorem for detachable bars, D-FAN, is equivalent
to the statement that every uniformly continuous, positive-valued function on [0, 1]
has positive infimum. On the other hand, in [3, Theorem 1] we have shown that if
the function is convex, the fan theorem is no longer required.

Theorem 1.2. Suppose that f : [0, 1] → ]0,∞[ is uniformly continuous and
convex. Then f has positive infimum.
Therefore, the question arises whether there is a constructively valid ‘convex’
version of the fan theorem. To this end, we define ‘co-convexity’ as a property of
subsets B of {0, 1}∗ and show in Theorem 2.1 that there indeed is such a result.
Moreover, in Theorem 3.4, we include the following correspondence

(iii) B is co-convex⇔ f is weakly convex
into the list of Proposition 1.1, where weak convexity of functions generalises con-
vexity. Thewaywe achieve our aim shows some similarities with the proofs presented
in [2] and [7], but in the crucial partsweneed to proceed differently in order to include
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1364 JOSEF BERGER ANDGREGOR SVINDLAND

(iii), in particular when deriving the function f with properties (i)–(iii) for some
given detachable set B.
The framework of our presentation is Bishop’s constructive mathematics [4–6].
This includes the use of choice axioms which are compatible with intuitionistic logic
like the axiom of countable choice:
Let A be a set and let S be a subset of N×A. If for each n there exists a in A such
that (n, a) ∈ S, then there exists a function f : N → A such that (n,f(n)) ∈ S for
each n ∈ N.

§2. A constructive fan theorem. We write {0, 1}∗ for the set of all finite binary
sequences u, v,w. Let ø be the empty sequence and let {0, 1}N be the set of all infinite
binary sequences α, �, �. For every u let |u| be the length of u, that is |ø| = 0 and for
u = (u0, . . . , un−1) we have |u| = n. For v = (v0, . . . , vm−1), the concatenation u ∗ v
of u and v is defined by

u ∗ v = (u0, . . . , un−1, v0, . . . , vm−1).
The restriction αn of α to n bits is given by

αn = (α0, . . . , αn−1).

Thus |αn| = n and α0 = ø. For u with n ≤ |u|, the restriction un is defined
analogously. A subsetB of {0, 1}∗ is closed under extension if u ∗v ∈ B for all u ∈ B
and for all v. A sequence α hits B if there exists n such that αn ∈ B. B is a bar if
every α hits B. B is a uniform bar if there exists N such that for every α there exists
n ≤ N such that αn ∈ B. Often one requires B to be detachable, that is for every
u the statement u ∈ B is decidable. Now we are ready to introduce Brouwer’s fan
theorem for detachable bars.
D-FAN : Every detachable bar is a uniform bar.
In Bishop’s constructive mathematics, D-FAN is neither provable nor falsifiable, see
[5, Section 3 of Chapter 5]. Define

u < v :⇔ |u| = |v| ∧ ∃k < |u| (uk = vk ∧ uk = 0 ∧ vk = 1)
and

u ≤ v :⇔ u = v ∨ u < v.
Note that u < v means that u and v are on the same level and u is to the left of v. A
subset B of {0, 1}∗ is co-convex if for every α which hits B there exists n such that
either

{v | v ≤ αn} ⊆ B or {v | αn ≤ v} ⊆ B.
Note that, for detachable B, co-convexity follows from the convexity of the
complement of B, where C ⊆ {0, 1}∗ is convex if for all u, v,w we have

u ≤ v ≤ w ∧ u,w ∈ C ⇒ v ∈ C.
Define the upper closure B ′ of B by

B ′ = {u | ∃k ≤ |u| (uk ∈ B)} .
Note that B is a (uniform) bar if and only if B ′ is a (uniform) bar. Moreover, if
B is detachable then B ′ is also detachable. Therefore, we may assume that bars are
closed under extension.
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BROUWER’S FAN THEOREMAND CONVEXITY 1365

Theorem 2.1. Every co-convex bar is a uniform bar.

Proof. Fix a co-convex barB. Since the upper closure of B is also co-convex, we
can assume that B is closed under extension. Define

C = {u | ∃n ∀w ∈ {0, 1}n (u ∗ w ∈ B)} .
Note that C consists of the set of nodes beyond which B is uniform. Note that
B ⊆ C and that C is closed under extension as well. Moreover, B is a uniform bar
if and only if there exists n such that {0, 1}n ⊆ C .
First, we show that

∀u ∃i ∈ {0, 1} (u ∗ i ∈ C ) . (1)

Fix u. For
� = u ∗ 1 ∗ 0 ∗ 0 ∗ 0 ∗ · · ·

there exist an l such that either {
v | v ≤ �l

}
⊆ B

or {
v | �l ≤ v

}
⊆ B.

SinceB is closed under extension, we can assume that l > |u|+1.Letm = l−|u|−1.
If
{
v | v ≤ �l

}
⊆ B, we can conclude that

u ∗ 0 ∗ w ∈ B
for every w of length m, which implies that u ∗ 0 ∈ C . If

{
v | �l ≤ v

}
⊆ B, we

obtain
u ∗ 1 ∗ w ∈ B

for every w of length m, which implies that u ∗ 1 ∈ C . This concludes the proof of
(1).

By countable choice, there exists a function F : {0, 1}∗ → {0, 1} such that
∀u (
u ∗ F (u) ∈ C ) .

Define α by
αn = 1− F (αn).

Next, we show by induction on n that

∀n ∀u ∈ {0, 1}n (u �= αn ⇒ u ∈ C ) . (2)

If n = 0, the statement clearly holds, since in this case the statement u �= αn is
false. Now fix some n such that (2) holds. Moreover, fix w ∈ {0, 1}n+1 such that
w �= α(n + 1).
Case 1. wn �= αn. Then wn ∈ C and therefore w ∈ C .
Case 2. w = αn ∗ (1 − αn) = αn ∗ F (αn). This implies w ∈ C . So we have
established (2).

There exists n such that αn ∈ B. Applying (2) to this n, we can conclude that
every u of length n is an element of C , thus B is a uniform bar. �
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1366 JOSEF BERGER ANDGREGOR SVINDLAND

Remark 2.2.

(a) Note that we do not need to require that the co-convex barB in Theorem 2.1
be detachable.

(b) If B is detachable, the function F in the proof Theorem 2.1 can be defined
directly—without using countable choice—by F (u) = 0 if

∃m (∀w ∈ {0, 1}m (u ∗ 0 ∗ w ∈ B) ∧ ∃w ∈ {0, 1}m (u ∗ 1 ∗ w /∈ B)) ,
and F (u) = 1, otherwise.

§3. A correspondence between subsets of {0, 1}∗ and functions on [0, 1]. We recall
a few basic notions of constructive analysis. Fix an inhabited subset S of R. A real
number x is a lower bound of S if

∀s ∈ S (x ≤ s)
and the infimum of S if it is a lower bound of S and

∀ε > 0 ∃s ∈ S (s < x + ε) .
In this case we write x = inf S. We cannot assume that every inhabited set with a
lower bound has an infimum. However, under some additional conditions, this is
the case. See [6, Corollary 2.1.19] for a proof of the following criterion.

Lemma 3.1. Let S be an inhabited set of real numbers which has a lower bound.
Assume further that for all p, q ∈ Q with p < q either p is a lower bound of S or else
there exists s ∈ S with s < q. Then S has an infimum.
For X ⊆ R, a function f : X → R is weakly increasing if

∀s, t ∈ X (
s < t ⇒ f(s) ≤ f(t)) ,

strictly increasing if

∀s, t ∈ X (
s < t ⇒ f(s) < f(t)) ,

and monotone if either f or −f is weakly increasing.
A subset S of a metric space (X, d ) is totally bounded if for every ε > 0 there exist
s1, . . . , sn ∈ S such that

∀s ∈ S ∃i ∈ {1, . . . , n} (d (s, si) < ε)
and compact if it is totally bounded and complete (i.e., every Cauchy sequence in
S has a limit in S). Proofs of the following basic statements can be found in [6,
Section 2.2].

Lemma 3.2. (i) If S is totally bounded, then for all x ∈ X the distance
d (x, S) = inf {d (x, s) | s ∈ S}

exists and the function x �→ d (x, S) is uniformly continuous.
(ii) Uniformly continuous images of totally bounded sets are totally bounded.
(iii) If S is totally bounded and f : S → R is uniformly continuous, then

inf f = inf {f(s) | s ∈ S}
exists.
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BROUWER’S FAN THEOREMAND CONVEXITY 1367

We want to include convexity in the list of Proposition 1.1. To this end, we
introduce a suitable convexity condition for functions. Let S be a subset of R. A
functionf : S → R is weakly convex if for all t ∈ S withf(t) > 0 there exists ε > 0
such that either

∀s ∈ S (s ≤ t ⇒ f(s) ≥ ε)
or

∀s ∈ S (t ≤ s ⇒ f(s) ≥ ε) .
We want to relate this condition to the usual notions of convexity for functions.
Recall that a function f : [0, 1]→ R is convex if we have

f(�s + (1− �)t) ≤ �f(s) + (1− �)f(t)
and quasiconvex if we have

f(�s + (1− �)t) ≤ max (f(s), f(t))
for all s, t ∈ [0, 1] and all � ∈ [0, 1]. Note that convexity implies quasiconvexity.
Lemma 3.3. Fix a function f : [0, 1]→ R.

(a) If f is weakly convex, then the set {t | f(t) ≤ 0} is convex. With classical
logic, the reverse implication holds as well, if f is continuous. This illustrates
that weak convexity is indeed a convexity property.

(b) Monotone functions are weakly convex.

Now assume that f is uniformly continuous.

(c) If f is quasiconvex, then it is weakly convex.
(d) Let D be a dense subset of [0, 1]. Then f is weakly convex if and only its
restriction to D is weakly convex.

Proof. We only show (c). Fix t ∈ [0, 1] and suppose that f(t) > 0. By part (iii)
of Lemma 3.2, the real numbers

� = inf {f(s) | s ∈ [0, t]}
and

� = inf {f(s) | s ∈ [t, 1]}
exist. We either have 0 < � or � < f(t). If 0 < �, we are done. So assume that
� < f(t). We either have 0 < � or � < f(t). Again, in the first case, we are done.
The second case can be ruled out in view of � < f(t) and the quasiconvexity of f. �
Now we can state the main theorem.

Theorem 3.4. For every detachable subset B of {0, 1}∗ which is closed under
extension there exists a uniformly continuous function f : [0, 1]→ R such that

(a) B is a bar ⇔ f is positive-valued,
(b) B is a uniform bar ⇔ inf f > 0,
(c) B is co-convex ⇔ f is weakly convex.

Conversely, for every uniformly continuous function f : [0, 1] → R there exists a
detachable subset B of {0, 1}∗ which is closed under extension such that (a), (b), and
(c) hold.

We split the proof of Theorem 3.4 into two parts.
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1368 JOSEF BERGER ANDGREGOR SVINDLAND

part i: construction of a function f for given B.
Fix a detachable subset B of {0, 1}∗ which is closed under extension. We can
assume that ø /∈ B. (Otherwise, let f be the constant function t �→ 1.) First, we
define a function g : [0, 1]→ Rwhich satisfies the properties (1) and (2) of Theorem
3.4. Then, we introduce a refined version f of g which satisfies all properties of
Theorem 3.4. Define metrics

d1(s, t) = |s − t|, d2((x1, x2), (y1, y2)) = |x1 − y1|+ |x2 − y2|
on R and R2, respectively. The mapping

(α, �) �→ inf
{
2−k | αk = �k

}

is a compact metric on {0, 1}N. See [5, Section 1 of Chapter 5] for an introduction
to basic properties of this metric space. Let κ : {0, 1}N → [0, 1] be the standard
embedding of Cantor space into the reals as the Cantor set. Then

κ(α) = 2 ·
∞∑
k=0

αk · 3−(k+1),

so κ is uniformly continuous. The next lemma immediately follows from the
definition of κ.

Lemma 3.5. For all α, � and n, we have
• αn = �n ⇒ |κ(α)− κ(�)| ≤ 3−n
• αn = �n ∧ αn < �n ⇒ κ(α) + 3−(n+1) ≤ κ(�)
• αn �= �n ⇒ |κ(α)− κ(�)| ≥ 3−n
• αn < �n ⇒ κ(α) < κ(�).
Now define

�B : {0, 1}N → [0, 1] , α �→ inf
{
3−k | αk /∈ B

}
.

Lemma 3.6. The function �B is well-defined—the infimum in the definition of �B
always exists—and uniformly continuous. If �B(α) > 0, there exists k such that
(1) αk /∈ B
(2) α(k + 1) ∈ B
(3) �B(α) = 3−k.
Moreover,

αn ∈ B ⇔ �B(α) ≥ 3−n+1 ⇔ �B(α) > 3−n

for all α and n.
We consider the following, more abstract version of Lemma 3.6.

Lemma 3.7. For every weakly increasing function h : N → {0, 1} with h(0) = 0
the set

S =
{
3−k | h(k) = 0

}

has an infimum. If inf S > 0, there exists k such that
(1) h(k) = 0
(2) h(k + 1) = 1
(3) inf S = 3−k.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2018.49
Downloaded from https://www.cambridge.org/core. UB der LMU München, on 05 Sep 2019 at 13:30:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2018.49
https://www.cambridge.org/core


BROUWER’S FAN THEOREMAND CONVEXITY 1369

Moreover,
h(n) = 1 ⇔ inf S ≥ 3−n+1 ⇔ inf S > 3−n

for all n.
Proof. Note that 1 ∈ S and that 0 is a lower bound of S. Fix p, q ∈ Q with
p < q. If p ≤ 0, p is a lower bound of S. Now assume that 0 < p. Then there exists
k with 3−k < p. If h(k) = 0, there exist s ∈ S (choose s = 3−k) with s < q. If
h(k) = 1, we can compute the minimum s0 of S. If p < s0, p is a lower bound of S;
if s0 < q, there exists s ∈ S (choose s = s0) with s < q.
If inf S > 0, there exists l such that 3−l < inf S. Therefore, h(l) = 1. Let k be
the largest number such that h(k) = 0.

Assume that h(n) = 1. Let l be the largest natural number with h(l) = 0. Then
l ≤ n − 1 and thus inf S = 3−l ≥ 3−n+1.
Assume that inf S > 3−n. Then there exists k with (1), (2), and (3). We obtain
k < n and therefore h(n) = 1.

�
Set

C =
{
κ(α) | α ∈ {0, 1}N}

and
K =

{
(κ(α), �B (α)) | α ∈ {0, 1}N} .

Lemma 3.8. The sets C and K are compact.
Proof. Both sets are uniformly continuous images of the compact set {0, 1}N and
therefore totally bounded. Suppose that κ(αn) converges to t and �B(αn) converges
to s . By Lemma 3.5, the sequence (αn) is Cauchy, therefore it converges to a limit α.
Then κ(αn) converges to κ(α) and �B(αn) converges to �B(α). Therefore t = κ(α)
and s = �B(α). Thus we have shown that both C and K are complete. �
In the following, we will use Bishop’s lemma, see [4, Chapter 4, Lemma 3.8].

Lemma 3.9. Let A be a compact subset of a metric space X , and x a point of X .
Then there exists a point a in A such that d (x, a) > 0 entails d (x,A) > 0.

Define
g : [0, 1]→ [0,∞[ , t �→ d2((t, 0), K).

Proposition 3.10. (1) B is a bar ⇔ g is positive-valued
(2) B is a uniform bar ⇔ inf g > 0.
Proof. Assume that B is a bar. Fix t ∈ [0, 1]. In view of Bishop’s lemma and the
compactness of K , it is sufficient to show that

d2((t, 0), (κ(α), �B (α))) > 0

for each α. This follows from �B(α) > 0.

Now assume that g is positive-valued. Fix α. Since

d2((κ(α), 0), K) = g(κ(α)) > 0,

we can conclude that

d2((κ(α), 0), (κ(α), �B (α))) > 0.
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1370 JOSEF BERGER ANDGREGOR SVINDLAND

Thus �B(α) is positive which implies that α hits B.

The second equivalence follows from Lemma 3.6 and the fact that
inf g = inf �B . �
Set

−C = {t ∈ [0, 1] | d1(t, C ) > 0}
and introduce a new function f by

f : [0, 1]→ R, t �→ g(t) − d1(t, C ).
The next lemma lists up a few properties of f and g.

Lemma 3.11. For all α, n, and t we have

• g(κ(α)) = f(κ(α)) ≤ �B(α)
• f(κ(α)) > 3−n ⇒ αn ∈ B
• αn ∈ B ⇒ f(κ(α)) ≥ 3−n
• d1(t, C ) ≤ g(t).
Next, we clarify how f behaves on −C .
Lemma 3.12. The set −C is dense in [0, 1]. For every t ∈ −C there exist unique
elements a, a′ of C such that

(a) t ∈ ]a, a′[ ⊆ −C .
(b) d1(t, C ) = min

(
d1(t, a), d1(t, a′)) .

Moreover, setting � = κ−1(a) and � ′ = κ−1(a′), we obtain

(c) ∀n (�n ∈ B ∧ � ′n ∈ B ⇒ f(t) ≥ 3−n)
(d) if d1(t, a) < d1(t, a′), then

� hits B ⇔ f(t) > 0 ⇔ inf {f(s) | a ≤ s ≤ t} > 0
(e) if d1(t, a′) < d1(t, a), then

� ′ hits B ⇔ f(t) > 0 ⇔ inf {f(s) | t ≤ s ≤ a′} > 0.
Proof. Fix t ∈ [0, 1] and 
 > 0. If d1(t, C ) > 0, then t ∈ −C . Now assume that
there existsα such that d1(t, κ(α)) < 
/2.There existsu such that d1(κ(α), tu) < 
/2
where

tu = 1
2 · κ(u ∗ 0 ∗ 1 ∗ 1 ∗ 1 ∗ · · · ) + 12 · κ(u ∗ 1 ∗ 0 ∗ 0 ∗ 0 ∗ · · · ).

Note that tu ∈ −C and that d1(t, tu) < 
. So −C is dense in [0, 1].
Fix t ∈ −C . Since for any α it is decidable whether κ(α) > t or κ(α) < t, the
sets C<t = {s ∈ C | s < t} and C>t = {s ∈ C | s > t} are compact. Let a be the
maximum of C<t and let a′ be the minimum of C>t . Clearly, a and a′ fulfil (a) and
(b).

In order to show (c), assume that �n ∈ B and � ′n ∈ B. Fix α. We show that
d2((t, 0), (κ(α), �B (α)))− d1(t, C ) ≥ 3−n. (3)

First, assume that κ(α) < t. Then we have

d2((t, 0), (κ(α), �B (α))) − d1(t, C ) ≥ κ(�)− κ(α) + �B(α).
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BROUWER’S FAN THEOREMAND CONVEXITY 1371

If αn = �n, then αn ∈ B and we can conclude that �B(α) ≥ 3−n+1, by Lemma 3.6.
On the other hand, Lemma 3.5 implies that κ(�)− κ(α) ≤ 3−n. This proves (3). If
αn �= �n, then κ(�) − κ(α) ≥ 3−n, by Lemma 3.5. This also proves (3). The case
t < κ(α) can be treated similarly.

In order to show (d ), set � = d1(t, a′) − d1(t, a) and suppose that �n ∈ B.
Set ε = min (�, 3−n). Fix s with a ≤ s ≤ t. We show that f(s) ≥ ε. Note that
d1(s, C ) = s − a. Fix α. We show that

d2((s, 0), (κ(α), �B (α)))− (s − a) ≥ ε.
If a′ ≤ κ(α), we obtain

d2((s, 0), (κ(α), �B (α))) − (s − a) ≥
κ(α)− s − (s − a) ≥ � ≥ ε.

If κ(α) ≤ a, we obtain
d2((s, 0), (κ(α), �B (α)))− (s − a) = s − κ(α) + �B(α)− (s − a) =

�B(α) + a − κ(α) ≥ 3−n ≥ ε,
where �B(α) + a − κ(α) ≥ 3−n is derived by looking at the cases αn = �n and
αn �= �n separately.
Now assume thatf(t) > 0.We show that � hitsB. Iff(t) > 0, then g(t) > t−a.
On the other hand, we have

g(t) ≤ d2((t, 0), (a, �B (�))) = t − a + �B(�),
so �B(�) > 0. By Lemma 3.6, this implies that � hits B.

The statement (e) is proved analogously to (d ). �
The next lemma is very easy to prove, we just formulate it to be able to refer to it.

Lemma 3.13. For real numbers x < y < z and 
 > 0 there exists a real number y′

such that

• x < y′ < z
• d1(y, y′) < 

• d1(x, y′) < d1(y′, z) or d1(x, y′) > d1(y′, z).
For a function F defined on {0, 1}N, set

F (u) = F (u ∗ 0 ∗ 0 ∗ 0 ∗ · · · ). (4)

Now we can show that f has all the desired properties.

Proposition 3.14. (a) B is a bar ⇔ f is positive-valued
(b) B is a uniform bar ⇔ inf f > 0
(c) B is co-convex ⇔ f is weakly convex.

Proof. (a) “⇒”. Suppose thatB is a bar and fix t. By Proposition 3.10, we obtain
g(t) > 0. If d1(t, C ) < g(t), then f(t) > 0, by the definition of f. If 0 < d1(t, C ),
we can apply Lemma 3.12 to conclude that f(t) > 0.

(a) “⇐”. Iff is positive-valued, then g is positive-valued as well and Proposition
3.10 implies that B is a bar.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2018.49
Downloaded from https://www.cambridge.org/core. UB der LMU München, on 05 Sep 2019 at 13:30:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2018.49
https://www.cambridge.org/core


1372 JOSEF BERGER ANDGREGOR SVINDLAND

(b) “⇒”. If B is a uniform bar, Proposition 3.10 yields
ε := inf g > 0.

Moreover, there exists n such that {0, 1}n ⊆ B. Fix 
 > 0 such that
|s − t| < 
 ⇒ |f(s)− f(t)| < ε/2

for all s and t. Fix t. If d1(t, C ) < 
, we can conclude that

f(t) ≥ ε/2
by the choice of ε and 
. If d1(t, C ) > 0, Lemma 3.12 and {0, 1}n ⊆ B imply that

f(t) ≥ 3−n.
So we have shown that inf f ≥ min (ε/2, 3−n) .
(b) “⇐”. If inf f > 0, then inf g > 0, and Proposition 3.10 implies that B is a
uniform bar.

(c) “⇒”. By part (d) of Lemma 3.3 and Lemma 3.12, it is sufficient to show that
the restriction of f to−C is weakly convex. Fix t ∈ −C and assume that f(t) > 0.
Choose a, a′, � and � ′ according to Lemma 3.12. In view of Lemma 3.13 and the
uniform continuity of f, we may assume without loss of generality that either

d1(a, t) < d1(t, a′) or d1(a, t) > d1(t, a′).

Consider the first case. The second case can be treated analogously. By Lemma 3.12,
we obtain

� = inf {f(s) | a ≤ s ≤ t} > 0.
In particular, f(κ(�)) > 0, so � hits B. There exists n such that either

{v | v ≤ �n} ⊆ B (5)

or
{v | �n ≤ v} ⊆ B. (6)

Set ε = min (�, 3−n) . In case (5), we show that

∀s ∈ −C (
s ≤ t ⇒ f(s) ≥ ε) ,

as follows. Assume that there exists s ∈ −C with s ≤ t such that f(s) < ε. Then,
by the definition of �, we obtain that s < a. Applying Lemma 3.12 again, we can
choose α and α′ such that

s ∈ ]
κ(α), κ(α′)

[ ⊆ −C.
Then αn ≤ α′n ≤ �n. Thus both αn and α′n are in B. This implies f(s) ≥ 3−n,
which is a contradiction. In case (6), a similar argument yields

∀s ∈ −C (
t ≤ s ⇒ f(s) ≥ ε) .

(c) “⇐”. Assume thatf is weakly convex. Fix α and suppose that α hitsB. Then
Lemma 3.11 implies that f(κ(α)) > 0. By the weak convexity of f, there exists
� > 0 such that either

∀s (s ≤ κ(α) ⇒ f(s) ≥ �) (7)
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or else
∀s (κ(α) ≤ s ⇒ f(s) ≥ �) . (8)

Fix n large enough such that αn ∈ B and 3−n < �. Assume that (7) holds. Fix v
with v ≤ αn. Then κ(v) ≤ κ(α). If v /∈ B, then, by Lemmas 3.6 and 3.11,

f(κ(v)) = g(κ(v)) ≤ �B(v) ≤ 3−n.
This contradiction shows that

{v | v ≤ αn} ⊆ B.
Now, consider the case (8). Fix v with αn < v. Then κ(α) ≤ κ(v). If v /∈ B, then
f(κ(v)) ≤ 3−n. This contradiction shows that

{v | αn ≤ v} ⊆ B. �
part ii: construction of a set B for given f.
Set

κ′ : {0, 1}N → [0, 1] , α �→
∞∑
k=0

αk · 2−(k+1).

One cannot prove that κ′ is surjective, since this would imply LLPO. Note, however,
that every rational q ∈ [0, 1] is in the range of κ′. Moreover, we make use of the
following lemma, see [1, Lemma 1].

Lemma 3.15. Let S be a subset of [0, 1] such that

∀α ∃ε > 0 ∀t ∈ [0, 1] (|t − κ′(α)| < ε ⇒ t ∈ S) .
Then S = [0, 1].

The next lemma is a typical application of Lemma 3.15.

Lemma 3.16. Fix a uniformly continuous function f : [0, 1]→ R and define

F : {0, 1}N → R, α �→ f(κ′(α)).
Then

(1) f is positive-valued ⇔ F is positive-valued,
(2) inf f > 0 ⇔ inf F > 0.

Proof. In (1), the direction “⇒” is clear. For “⇐”, apply Lemma 3.15 to the set
S = {t ∈ [0, 1] | f(t) > 0} .

The equivalence (2) follows from the density of the image of κ′ in [0, 1] and the
uniform continuity of f. �
In the following proposition, we use a similar construction as in [2].

Proposition 3.17. For every uniformly continuous function

f : [0, 1]→ R

there exists a detachable subsetB of {0, 1}∗ which is closed under extension such that
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(a) B is a bar ⇔ f is positive-valued,
(b) B is a uniform bar ⇔ inf f > 0,
(c) B is co-convex ⇔ f is weakly convex.

Proof. Since the function

F : {0, 1}N → R, α �→ f(κ′(α))
is uniformly continuous, there exists a strictly increasing functionM : N → N such
that

|F (α)− F (α(M (n)))| < 2−n
for all α and n, recalling the convention given in (4). SinceM is strictly increasing,
for every k the statement

∃n (k =M (n))
is decidable. Therefore, for every u we can choose �u ∈ {0, 1} such that
�u = 0 ⇒ ∀n (|u| �=M (n)) ∨ ∃n (|u| =M (n) ∧ F (u) < 2−n+2

)
,

�u = 1 ⇒ ∃n (|u| =M (n) ∧ F (u) > 2−n+1
)
.

The set
B = {u ∈ {0, 1}∗ | ∃l ≤ |u| (�ul = 1)}

is detachable and closed under extension. Note that

F (α) ≥ 2−n+3 ⇒ α(M (n)) ∈ B (9)

and
α(M (n)) ∈ B ⇒ F (α) ≥ 2−n (10)

for all α and n. In view of Lemma 3.16, (9) and (10) yield (a) and (b).

In order to show (c), assume that B be co-convex. Moreover, fix t ∈ [0, 1] and
assume thatf(t) > 0. By part (d) of Lemma 3.3, we may assume that t is a rational
number, which implies that there exists α such that κ′(α) = t. Now F (α) > 0
implies that α hits B. Therefore, there exists n such that either

{v | v ≤ αn} ⊆ B
or

{v | αn ≤ v} ⊆ B.
In the first case, we show that

inf {f(s) | s ∈ [0, t]} ≥ min (2−n, F (α)) . (11)

Assume that there exists s ≤ t such that f(s) < 2−n and f(s) < F (α). The latter
implies that s < t. Choose a � with the property that κ′(�) is close enough to s
such that

κ′(�) < κ′(α) (12)

and
F (�) = f(κ′(�)) < 2−n. (13)

Now (10) and (13) imply that�n /∈ B. On the other hand, (12) implies that�n ≤ αn
and therefore �n ∈ B. This is a contradiction, so we have shown (11).
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In the case
{v | αn ≤ v} ⊆ B

we can similarly show that

inf {f(s) | s ∈ [t, 1]} ≥ min (2−n, F (α)) .

Now assume that f is weakly convex. Fix an α which hits B. Then there exists n
with α(M (n)) ∈ B and (10) implies that f(κ′(α)) > 0. We choose n large enough
such that either

inf
{
f(t) | t ∈ [

0, κ′(α)
]} ≥ 2−n+3

or
inf

{
f(t) | t ∈ [

κ′(α), 1
]} ≥ 2−n+3.

By (9), we obtain
{v | v ≤ α(M (n))} ⊆ B

in the first case and
{v | α(M (n)) ≤ v} ⊆ B.

in the second. Therefore, B is co-convex. �
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