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GROUPOIDS AND RELATIVE INTERNALITY

LÉO JIMENEZ

Abstract. In a stable theory, a stationary type q ∈ S(A) internal to a family
of partial types P over A gives rise to a type-definable group, called its binding
group. This group is isomorphic to the group Aut(q/P, A) of permutations of
the set of realizations of q, induced by automorphisms of the monster model,
fixing P ∪A pointwise. In this paper, we investigate families of internal types
varying uniformly, what we will call relative internality. We prove that the
binding groups also vary uniformly, and are the isotropy groups of a natural
type-definable groupoid (and even more). We then investigate how properties
of this groupoid are related to properties of the type. In particular, we obtain
internality criteria for certain 2-analysable types, and a sufficient condition for
a type to preserve internality.
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1. Introduction

In geometric stability theory, the notion of internality plays a central role, as a
tool to understand the fine structure of definable sets. More recently, it has been
developed outside of stable theories, using only stable embeddedness. In this paper,
we will restrict ourselves to the stable context. More precisely, our basic setup will
be the following: we work in a monster model M of a stable theory T , eliminating
imaginaries, and is given a family of partial types P , all over some algebraically
closed set of parameters A. A tuple c is said to be a realization of P if it is a
realization of some partial type in P . We will often also write P for the set of
realizations of P in M. A stationary type q ∈ S(A) is said to be P-internal if
there are B ⊇ A, a realization a of q, independent of B over A, and a tuple c
of realizations of P (i.e. each realizing some type in P) such that a ∈ dcl(c, B).
It is said to be almost P-internal if a ∈ acl(c, B) instead. The important part of
this definition is the introduction of the new parameters B. The following result,
which is Theorem 7.4.8 in [9], produces a type-definable group action from this
configuration:
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2 LÉO JIMENEZ

Theorem 1.1. Let M be the monster model of a stable theory T , eliminating imag-
inaries. Suppose q ∈ S(A) is internal to a family of types P over A, an algebraically
closed set of parameters. Then there are an A-type-definable group G and an A-
definable group action of G on the set of realizations of q, which is naturally iso-
morphic (as a group action), to the group Aut(q/P , A) of permutations of the set
of realizations of q, induced by automorphisms of M fixing P ∪ A pointwise.

This is the result that we will generalize in this paper. The group arising in this
theorem is called the binding group of q over P , and was first introduced by Zilber.
At our level of generality, its existence was proved by Hrushovski. Our proof will
follow very closely the proof given in [9], with a few minor adjustments.

The binding group of q over P will often be denoted by Aut(q/P , A). It encodes
the dependence on the extra parameters B. For example, if B = A, the binding
group is trivial. For a more modern treatment of these binding groups, outside of
stable theories, and with definable sets instead of types, we refer the reader to [7]
and [6].

Recall that M is a monster model of a stable theory T , eliminating imaginaries.
If Φ is a partial type, we will denote Φ(M) the set of its realizations in M. Again,
let P be a family of partial types over A algebraically closed. Suppose there is a
type q ∈ S(A), and an A-definable function π, whose domain contains q(M).

Definition 1.2. The type q is said to be relatively P-internal via π if for any a |= q,
the type tp(a/π(a)A) is stationary and P-internal. Denote this type qπ(a).

From this configuration, we can define a groupoid G (see section 2 for a definition
of groupoid). Its objects are realizations of π(q), and for any a, b |= q, the set of mor-
phisms Mor(π(a), π(b)) consists of bijections from qπ(a)(M) to qπ(b)(M), induced by
automorphisms of M fixing P ∪A pointwise, and taking π(a) to π(b). In particular,
the isotropy groups Mor(π(a), π(a)) are the binding groups Aut(qπ(a)/P , A), hence
are type-definable over Aπ(a) by Theorem 1.1. This groupoid acts naturally on the
set of realizations of q. By that we mean, setting X = {(σ, a) ∈ Mor(G) × q(M) :
dom(σ) = π(a)}, that we have a map X → q(M), satisfying the obvious group
action-like axioms. In our case, the action is given by (σ, a)→ σ(a). We obtain the
following generalization of the type-definability of binding groups:

Theorem 1.3. The groupoid G is isomorphic to an A-type-definable groupoid, and
its natural groupoid action on realizations of q is A-definable.

In particular, the binding groups are uniformly type-definable, and are the
isotropy groups of the type-definable groupoid. This groupoid arises because the
group Aut(q/P), even when q is not internal, still acts definably on the fibers of
π, but its global action is not definable. The new and interesting fact is that
all these local fiber actions are uniformly definable, and come together to form a
type-definable groupoid.

In [7] and [6], internality is considered in a different context, and from some
internal sorts, a definable groupoid is constructed. It arises for different reasons,
and we will compare the two groupoids in the next paragraphs. In these two papers,
the authors fix a monster model U of some theory T , eliminating imaginaries, and
a monster model U′ of some theory T ′, with U ⊂ U

′. They assume that U is stably
embedded in U

′, and U
′ is internal to U with only one new sort, called S. Under

these assumptions, they construct a ∗-definable (over ∅) connected groupoid G′, in
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(U′)eq , with one distinguished object a and a full ∗-definable (over ∅) subgroupoid
G in U, such that MorG′(a, a) acts definably on U

′, and this action is isomorphic
to Aut(U′/U) acting on S. Note that in [6], the groupoid constructed is actually
proven to be ∅-definable, under some mild additional assumption.

The starting point of their proof is the following observation: since U′ is internal
to U, there is a b-definable set Ob in U, and a c-definable bijection fc : S → Ob.
Roughly speaking, the idea is now to allow these parameters b and c to vary, the b
yielding objects of a groupoid, and the fc morphisms between objects. Therefore,
this groupoid will encode the non-canonicity of the parameters b and c used to wit-
ness internality. The groupoid constructed in the present paper, however, encodes
the fact that some maps are partially definable, but not globally definable.

Comparing these papers and ours, some questions arise. First, one can define
relative internality in this different context, and it would be interesting to see if a
groupoid witnessing it could be contructed there. Second, the groupoids obtained
from internality live in the sort U, and this is used to obtain a correspondence
between certain groupoids in U and internal generalised imaginary sorts of U. In
our setup, this would be equivalent to our groupoid G living in Peq. As it will
become clear from the proof, our groupoid does not live in Peq. It would be
desirable to identify some object in Peq coming from relative internality. In section
3, we will discuss some obstruction to this.

The rest of the paper will explore different properties of the groupoids arising
from relative internality, and how they relate to the type q. Mostly, we will seek to
link some properties of G to P-internality, or almost P-internality, of the type q.

One motivation for this is to be able to determine when an analysable type is
in fact internal. Recall that a type q is said to be P-analysable in n steps if for
any a |= q there are an = a, an−1, · · · , a1 such that ai ∈ dcl(ai+1) and tp(ai+1/ai)
is P-internal for all i. Therefore, if q is relatively P-internal via π, and the type
π(q) is P-internal, we see that q is P-analysable in two steps. The question of
which analysable types are actually internal is connected with the Canonical Base
Property, which is a property of finite U-rank theories. Introduced in [10], it is a
model theoretic translation of a result in complex geometry, and has some attractive
consequences (see [1], [11]). It states that for any tuple a, b, if b = Cb(stp(a/b)),
then tp(b/a) is almost internal to the family P of nonmodular U-rank one types. But
it is proven in [1] that this type is always P-analysable. Therefore, the Canonical
Base Property boils down to the collapse of an analysable type into an internal one.

In this paper, we will expose two properties of groupoids implying that a rela-
tively internal type is internal. The first one, retractability, was introduced in [5],
and is related to 3-uniqueness. Here, it will imply that the 2-analysable type is
a product of two weakly orthogonal types, one of which is P-internal. The sec-
ond needs the construction of a Delta groupoid, which adds simplicial data to the
groupoid. We define a notion of collapsing for Delta groupoids, which turns out to
be equivalent, if π(q) is P-internal, to P-internality of the type q.

Finally, in [8], a strengthening of internality, called being Moishezon, or pre-
serving internality in later papers, was introduced, again motivated by properties
of compact complex manifolds. A criterion for when an internal type preserves
internality was proved in this paper, but under the assumption that the ambient
theory has the Canonical Base Property. Here, we prove a criterion for preserving
internality in terms of Delta groupoids, valid in any superstable theory.
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The paper is organized as follow: in section 2, we recall some results concerning
internality and stable theories that will be used frequently, and say a few words
about groupoids. In section 3, we construct the type-definable groupoid of Theorem
1.3. In section 4, we define retractability for a type-definable groupoid, and explore
the consequences of this property. In Section 5, we define Delta groupoids, introduce
the notion of collapsing, and link it with internality and preservation of internality.

Before we start, let us give a few conventions and notations. As stated before,
we will work throughout in the monster model M of a stable theory, eliminating
imaginaries. Theorem 1.3 is stated over any small parameter set A, but we will
work, without loss of generality, over the empty set. We also assume that acl(∅) = ∅.
Recall that if P is a family of partial types over the empty set, by a realization of
P , we mean a tuple c realizing some partial type in P . We will often write P for
the set of realizations of the family of partial type P in M, since no confusion could
arise from this. Finally, recall that if Φ is any partial type, we will denote Φ(M)
the set of its realizations in M.

We assume familiarity with stability theory and geometric stability theory, for
which [9] is a good reference.

I would like to thank my advisor, Anand Pillay, for giving me regular input
and suggestions during the writing of this paper. I would also like to thank Levon
Haykazyan, Rahim Moosa, and Omar Léon Sánchez for discussing the subject of
this paper with me. Finally, I am grateful to my referee, whose comments and
suggestions lead to a substantial improvement of this paper.

2. Preliminaries

Internality of a type q to a family of partial types P is equivalent to: there
exists a set of parameters B such that for any a |= q, there are c1, · · · , cn realizing
P satisfying a ∈ dcl(c1, · · · , cn, B). Moreover, the parameters B can be taken as
realizations of q, as the following, which is Lemma 7.4.2 from [9], shows:

Lemma 2.1. Let A be a small set of parameters. Suppose P is a family of partial
types over A, and q is a P-internal stationary type over A. Then there exist a partial
A-definable function f(y1, · · · , ym, z1, · · · , zn), a sequence a1, · · · , am of realizations
of q, and a sequence Ψ1, · · · ,Ψn of partial types in P, such that for any a realizing
q, there are ci realizing Ψi, for i = 1 · · ·n, such that a = f(a1, · · · , am, c1, · · · , cn).

The tuple a1, · · · , am obtained in this lemma is called a fundamental system of
solutions for q.

In fact, we define, for any type q:

Definition 2.2. If q is P-internal, a tuple a of realizations of q is said to be a
fundamental system of solutions for q if for any b |= q, we have b ∈ dcl(a,P). If
q has a fundamental system consisting of only one realization, it is said to be a
fundamental type.

The following fact will be used implicitly throughout the article:

Fact 2.3. If q is internal to P, and r ∈ S(∅) is the type of a fundamental system
of solutions for q, then the binding groups Aut(q/P) and Aut(r/P) are ∅-definably
isomorphic.

By Lemma 2.1, any internal type has a fundamental system of solutions.
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Remark 2.4. By inspecting the proof (in [9]) of the previous lemma, one notices
that the tuples a1, · · · , an are independent realizations of q. This will be useful in
section 5.

The following two facts will be useful to us:

Fact 2.5. For any family of partial types P and tuple a, we have tp(a/ dcl(a)∩P) |=
tp(a/P).

For a proof of this, see Claim II of the proof of Theorem 7.4.8 in [9].

Fact 2.6. If P is a family of partial types, for any two tuples a and b, we have
tp(a/P) = tp(b/P) if and only if there is an automorphism of M, fixing P, and
taking a to b.

This can be proven adapting the proof of Lemma 10.1.5 in [12].
The main algebraic objects considered in this paper are groupoids. We recall

their definition:

Definition 2.7. A groupoid G is a non-empty category such that every morphism
is invertible.

Therefore, a groupoid consists of two sets: a set of objects Ob(G), and a set
of morphisms Mor(G). These are equipped with the partial composition on mor-
phisms, and the domain and codomain maps. Moreover, for each object a, there is
an identity map ida ∈Mor(a, a).

Groupoids generalize groups. Indeed, every object of a groupoid G gives rise to
the group Mor(a, a), called the isotropy group of a. But we also have the extra
morphisms Mor(a, b), for any a, b ∈ Ob(G). Remark that a group is then exactly a
groupoid with only one object.

The set Mor(a, b) could be empty if a 6= b. This will actually have some mean-
ingful model-theoretic content, and we can define:

Definition 2.8. If G is a groupoid and a ∈ Ob(G), then the connected component
of a is the set {b ∈ Ob(G) : Mor(a, b) 6= ∅}. A groupoid is connected if it has only
one connected component, and totally disconnected if the connected component of
any object is itself.

Since we are interested in definable, or type-definable objects, we need to define
these notions for groupoids.

Definition 2.9. A groupoid G is definable if the sets Ob(G) and Mor(G) are defin-
able, and the composition, domain, codomain and inverse maps are definable. It is
type-definable is these sets and maps are type-definable.

3. The construction of a groupoid

Let q ∈ S(∅), a family of partial types P over ∅, and an ∅-definable function π,
whose domain contains q(M), such that q is relatively P-internal via π.

Remark that for any a |= q, the type tp(a/π(a)) is implied by q(x) ∪ {π(x) =
π(a)}. We will denote this type qπ(a). To ease notation, if a is a tuple of realizations
of q with same image under π, we will denote π(a) their common image.

Recall that there is a groupoid G, whose objects are given by π(q)(M), and mor-
phisms Mor(π(a), π(b)) by the set of bijections from qπ(a)(M) to qπ(b)(M), induced
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by automorphisms of M fixing P pointwise, and taking π(a) to π(b). Our goal is to
prove this groupoid, as well as its action on realizations of q (see in the introduction
for a definition of a groupoid action) are ∅-type-definable. We now start the proof,
which follows closely the proof of Theorem 7.4.8 from [9]:

Proof of Theorem 1.3. First note that the objects are the ∅-type-definable set π(q).
So what we have to show is that the set of morphisms is ∅-type-definable, as well
as domain and codomain maps, and composition.

Note that since each π-fiber is P-internal, we can apply Lemma 2.1 to any of
them, so each type qπ(a) has a fundamental system of solution. The first step of
the proof is to show that these fundamental systems can be chosen uniformly, in
the following sense:

Claim 3.1. There exist a type r over ∅, a partial ∅-definable function f(y, z1, · · · , zn),
a sequence Ψ1, · · · ,Ψn of partial types in P. These satisfy that for each π(a) |=
π(q), there is a |= r such that π(a) = π(a), and for any other a′ |= qπ(a), there are
ci realizing Ψi, for i = 1 · · ·n, with a′ = f(a, c1, · · · , cn).

Proof. Let π(a) be a realization of π(q). Applying Lemma 2.1 to qπ(a) yields a
partial π(a)-definable function f(y1, · · · , ym, z1, · · · , zn), a sequence a1, · · · , am of
realizations of qπ(a), and a sequence Ψ1, · · · ,Ψn of partial types in P , such that
qπ(a) ⊂ f(a,Ψ1(M), · · · ,Ψn(M)).

Denote a = (a1, · · · , am), and r = tp(a/∅). Remark that since π(a) = π(a) ∈
dcl(a), the function f is actually ∅-definable. By invariance, we see that f, r and
Ψ1, · · · ,Ψn satisfy the required properties.

�

We will now fix r, f be as in Claim 3.1, and Φ(x) = Ψ(x1)∪· · ·∪Ψ(xn). Fix π(a),
π(b) and a realization a of r in π−1(π(a)). Consider the set X = {(a, b) : tp(a) =
tp(b) = r, tp(a/P) = tp(b/P)}, it is the set we will use to encode morphisms. We
have:

Claim 3.2. The set X is ∅-type-definable.

Proof. Fact 2.5 yields that tp(a/ dcl(a) ∩ P) |= tp(a/P). Consider the set {λi(x) :
i ∈ I} of partial ∅-definable functions defined at a with values in P (and these are the
same at every realization of r). Then tp(a/P) = tp(b/P) if and only if λi(a) = λi(b)

for all i ∈ I. Therefore X = {(a, b) : tp(a) = tp(b) = r, λi(a) = λi(b) for all i ∈ I},
which is an ∅-type-definable set. �

Let ra = tp(a/P). We then have the following:

Claim 3.3. The map from Mor(π(a), π(b)) to ra(M) ∩ {x : π(x) = π(b)} taking σ
to σ(a) is a bijection.

Proof. First injectivity: suppose σ(a) = τ(a). Every element of π−1(π(a)) ∩ q(M)
is written as f(a, c), for some c |= Φ, and σ(f(a, c)) = f(σ(a), σ(c)) = f(τ(a), c) =
τ(f(a, c)), so τ = σ.

For surjectivity, given b |= ra, since a and b have the same type over P , by Fact
2.6, there is an automorphism of the monster model, fixing P , and taking a to b.
The restriction of this automorphism to qπ(a)(M) belongs to Mor(π(a), π(b)).

�
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By Claim 3.3, for any (a, b) ∈ X , there is a unique σ ∈Mor(π(a), π(b)) such that
σ(a) = b. And for any a |= r and σ ∈ Mor(π(a), π(b)), we also have (a, σ(a)) ∈ X .
However, this correspondence may not be injective: for a σ ∈Mor(π(a), π(b)), there
are multiple elements of X corresponding to it. We will solve this problem with an
equivalence relation.

Claim 3.4. There is a formula ψ(x1, x2, y, z) such that for any σ ∈ Mor(G),
any a |= r, any a |= q such that dom(σ) = π(a) = π(a) and any b, we have
|= ψ(a, σ(a), a, b) if and only if b = σ(a).

Proof. By the proofs of Claim 3.2 and Claim 3.1, if a, b realise r, with λi(a) = λi(b)
for all i, and c1, c2 realise the partial type Φ of Claim 3.1, then f(a, c1) = f(a, c2) if

and only if f(b, c1) = f(b, c2) (and these are well defined). By compactness, there
is a formula θ(w) and a finite subset J ⊂ I such that the previous property is true
replacing Φ by θ and I by J .

Let the formula ψ(x1, x2, y, z) be ∃w(f(x1, w) = y ∧ f(x2, w) = z ∧ θ(w)). We
now check that this formula works. Suppose first that a, σ(a), a, b satisfy it. Then
there is c |= θ(w) such that f(a, c) = a and f(σ(a), c) = b.

But as a |= q, there is also d |= Φ such that f(a, d) = a. Since d |= Φ, it is a
realization of P , hence σ(a) = σ(f(a, d)) = f(σ(a), d).

So f(a, c) = a = f(a, d), the tuple d is a realization of Φ, and f(σ(a, d)) = σ(a).
By choice of ψ, this implies b = f(σ(a), c) = f(σ(a), d) = σ(a).

Conversely, suppose that b = σ(a). Since a |= r and dom(σ) = π(a) = π(a),
there is c |= Φ such that f(a, c) = a. Therefore b = σ(f(a, c)) = f(σ(a), c), so we
can take c to be the w of the formula.

�

Now define an equivalence relation E on X as (a1, b1)E(a2, b2) if and only if
π(a1) = π(a2) and for some σ ∈ Mor(G), we have σ(a1) = b1 and σ(a2) = b2. So

(a1, b1)E(a2, b2) if and only if the tuples (a1, b1) and (a2, b2) represent the same
morphism σ. Then the following is true:

Claim 3.5. E is relatively ∅-definable on X ×X.

Proof. Recall that we denote tp(a/π(a)), for a |= q, by qπ(a). We also denote
rπ(a) = tp(a/π(a)), for some a |= r with π(a) = π(a).

We first show that (a1, b1)E(a2, b2) if and only if π(a1) = π(a2) and for any
a |= qπ(a1)|a1,a2,b1,b2

we have ∀zψ(a1, b1, a, z)↔ ψ(a2, b2, a, z).
The left to right direction is immediate. So assume that the right-hand condition

holds. There are σ, τ ∈ Mor(G) with σ(a1) = b1 and τ(a2) = b2. Let a3 |=
rπ(a1) be independent from a1, a2, b1, b2. If we let a3 = (a3,1, · · · , a3,n), then by

independence, we have ∀zψ(a1, b1, a3,i, z) ↔ ψ(a2, b2, a3,i, z), for all 1 ≤ i ≤ n.
Hence σ(a3) = τ(a3). Let a′ be any realization of qπ(a1). Then a′ = f(a3, c) for
some c, since a3 is a realization of rπ(a1). So σ(a′) = σ(f(a3, c)) = f(σ(a3), c) =
f(τ(a3), c) = τ(a′). This is true for any realization a′ of qπ(a1), so τ = σ.

Notice that the right-hand condition is equivalent to a formula over π(a1) be-
cause the stationary type qπ(a1) is definable over π(a1). So if we fix π(a) |= π(q),
there is a formula θπ(a)(z1, t1, z2, t2, y) over ∅ such that for any a1, a2 |= rπ(a), and

any b1, b2, we have (a1, b1)E(a2, b2) if and only if θπ(a)(a1, b1, a2, b2, π(a)). A priori,
this formula θπ(a) depends on π(a), hence we cannot yet conclude that E is rela-
tively definable, let alone relatively ∅-definable. However, if we can prove that for
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any a, b |= q the formulas θπ(a)(z1, t1, z2, t2, π(a)) and θπ(b)(z1, t1, z2, t2, π(a)) are
equivalent, we would get relative ∅-definability.

Note that the formula θπ(a) we obtained is a defining scheme for a formula in the
stationary type qπ(a) = tp(a/π(a)). We will use this to show the desired equivalence.

Let π(a), π(b) |= π(q), and σ an automorphism such that σ(π(a)) = π(b). Let
φ(x, y, z) be a formula over ∅. Since qπ(a) and qπ(b) are definable and stationary,
there are defining schemes θπ(a)(z, π(a)) (respectively θπ(b)(z, π(b))) for φ(x, y, z)
and qπ(a) (respectively qπ(b)), and the formulas θπ(−)(z, y) are over the empty set.
Now, let c be a tuple, and a′ a realization of qπ(a)|c, the unique non-forking extension
of qπ(a) to {π(a), c}. Then:

θπ(a)(c, π(a))⇔ φ(x, π(a), c) ∈ qπ(a)|c

⇔|= φ(a′, π(a), c)

⇔|= φ(σ(a′), π(b), σ(c))

⇔ φ(x, π(b), σ(c)) ∈ qπ(b)|σ(c) because σ(a
′) |= qπ(b)|σ(c)

⇔ θπ(b)(σ(c), π(b))

⇔ θπ(b)(c, π(a))

Applying this to the formula ∀wψ(z1, t1, x, w) ↔ (ψ(z2, t2, x, w) ∧ π(z1) = y =
π(z2)) and the qπ(a), where z = (z1, t1, z2, t2), we obtain, for any π(a), π(b) realiza-

tions of π(q), that |= θπ(a)(a1, b1, a2, b2, π(a)) if and only if |= θπ(b)(a1, b1, a2, b2, π(a)).
Therefore, we can fix π(b), and use the formula θπ(b) to obtain for any π(a) |=

π(q), for any a1, a2 |= rπ(a) and any b1, b2, that (a1, b1)E(a2, b2) if and only if

θπ(b)(a1, b1, a2, b2, π(a)). So θπ(b) is the formula defining E.
�

Hence we obtain an ∅-type-definable set X/E. But we had, by Claim 3.3, a map
from X to Mor(G). And (a1, b1)E(a2, b2) if and only if they have the same image
under this map. Therefore we have obtained a bijection from X/E to Mor(G).
Notice that this also yields ∅-definability of domain and codomain: since the maps
are represented by elements in the fibers, we can just take images under π of any
of their representant.

We can, using this coding for morphisms of the groupoid, prove that the groupoip
action is relatively ∅-definable. If σ ∈Mor(π(a), π(b)), we can pick any representant
(a, σ(a)). Then σ(a) is the unique tuple satisfying ψ(a, σ(a), a, z). Since this does
not depend on the representant we pick, we obtain that σ(a) ∈ dcl(σ, a) (and the
formula witnessing it is uniform in σ and a). This yields that the groupoid action
is relatively ∅-definable.

To finish the proof, we need to construct the composition in an ∅-definable way.

Claim 3.6. The composition of Mor(G) is definable.

Proof. Let σ, τ, µ ∈ Mor(G). Let a, b, c |= r, with π(a) = dom(σ), π(b) = dom(τ)
and π(c) = dom(σ). We will show that the equality τ ◦ σ = µ holds if and
only if dom(σ) = dom(µ), cod(τ) = cod(µ), cod(σ) = dom(τ) and for any a |=
qπ(a)|a,b,c,σ,τ,µ, we have:

∀zψ(c, µ(c), a, z)↔ ∃u(ψ(a, σ(a), a, u) ∧ (ψ(b, τ(b), u, z)))
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The left to right direction is again immediate. For the right to left direction,
we can proceed as in Claim 3.5, and assume that the right-hand side holds. Pick
a2 |= rπ(a)|σ,τ,µ,a,b,c, then, as was done in Claim 3.5, we obtain µ(a2) = τ ◦ σ(a2).

But any a′ |= qπ(a) is equal to f(a2, c) for some c tuple of realizations of P . So we
get µ(a′) = f(µ(a2), c) = f(τ ◦ σ(a2), c) = τ ◦ σ(a′). So µ = τ ◦ σ.

Note that since the type qπ(a) is stationary and definable, the right-hand side
condition is equivalent to a formula over dom(σ) = π(a). Moreover, the truth
of this formula does not depend on the representants of σ, τ and µ that we pick.
Therefore it only depends on σ, τ and µ.

Hence, if we fix π(a), we obtain a formula θπ(a)(x, y, z) over π(a) such that for
all σ, τ, µ ∈ Mor(G) with dom(σ) = dom(µ) = π(a), we have θπ(a)(σ, τ, µ) if and
only if µ = τ ◦ σ. Again, this formula is a defining scheme for qπ(a).

We can apply the proof of Claim 3.5 to this situation, to get a formula θ over
∅ such that for all σ, τ, µ ∈ Mor(G), µ = τ ◦ σ if and only if θ(σ, τ, µ). So the
composition in G is relatively ∅-definable.

�

This finishes the proof: we have obtained a type-definable groupoid, and we
already saw that its natural action on q(M) is relatively ∅-definable. �

We will denote this groupoid G(q, π/P), or just G when it is clear what type and
projection are considered.

Here is a first connection between the groupoid G(q, π/P) and the type q. In
section 2, we defined the connected component of a groupoid. An easy consequence
of Fact 2.6 is that the connected components of G(q, π/P) correspond to the orbits
of π(q) under Aut(π(q)/P) (even if this group is not type-definable).

What if q is P-internal? Our theorem specializes in the following way: we can
pick e ∈ dcl(∅), and set π(a) = e for all a |= q. We obtain a groupoid with only one
object, that is, a group, which is just the type-definable binding group of q over P .

In the internal case, the type-definable group Aut(q/P) can be shown (see [9])
to be definably isomorphic to a type-definable group in Peq, possibly using some
extra parameters. In particular, the group Aut(q/P) is internal to P . One would
hope that in our context, the groupoid G(q, π/P) is also P-internal. This result,
proved with the help of Omar Léon Sánchez, shows that it is unfortunately not the
case:

Proposition 3.7. If G is internal to P and connected, then q is internal to P.

Proof. By internality assumption, there is a set of parametersB such that Mor(G) ⊂
dcl(P , B).

Let a and b be any realizations of q, and let a be a fundamental system of solutions
for tp(a/π(a)). Since G is connected, there is σ ∈ Mor(π(a), π(b)). Moreover, the
tuple b = σ(a) is a fundamental system of solutions for tp(b/π(b)). Therefore,

there is d ∈ P such that b = f(b, d) = f(σ(a), d). But σ ∈ dcl(P , B), therefore
b ∈ dcl(P , B, a). �

Note that this result is also true if one replace connected by boundedly many
connected components. Some connectedness assumption is required to make this
proof work.

In some cases, the groupoid associated to a non-internal type might actually be
internal as well. Indeed, it is proven in [6], that the groupoids associated to certain
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relatively internal definable sets are internal to the base set. The context in which
these objects are studied in this paper is slightly different from ours, and it would
be interesting to see which results can transfer, in one way or the other.

Remark 3.8. If we assume that π(q) is P-internal, Theorem 1.1 yields the type-
definable binding group Aut(π(q)/P). If we moreover assume that π(q) is fun-
damental (see Definition 2.2), we obtain a definable functor Π : G(q, π/P) →
Aut(π(q)/P). Indeed, we can send the morphism represented by (a, b) to the one
represented by (π(a), π(b)). We will see in the fifth section that this generalizes to
the case of π(q) not fundamental, after introducing Delta groupoids.

4. Retractability

In this section, we consider retractability, which was introduced in [5]. There,
it was used to study groupoids arising from internality, and was linked to 3-
amalgamation in stable theories. Interestingly, it has some meaningful content
in the context of our paper as well.

Definition 4.1. An ∅-type-definable groupoid G is retractable if it is connected
and there exist an ∅-definable partial function g(x, y) = gx,y such that for all a, b
objects of G, we have ga,b ∈ Mor(a, b). Moreover, we require the compatibility
condition that g(b, c) ◦ g(a, b) = g(a, c) for all objects a, b, c (note that this implies
ga,a = ida and g−1

a,b = gb,a for all a, b).

The following was proved in [5], but we include their proof here for completeness:

Remark 4.2. An equivalent definition of retractability is given by: there exist an
∅-type-definable group G, and a full, faithfull ∅-definable functor F : G → G.

Proof. If we have such a functor F : G → G, we can take ga,b = F−1({idG}) ∩
Mor(a, b), which is a singleton because F is full and faithfull. The compatiblity
condition is easily checked, and this is definable uniformly in (a, b).

If G is retractable, then we can construct a relation E on Mor(G) as follows: if
σ ∈Mor(a, b) and τ ∈ Mor(c, d), then σEτ if and only if τ = gb,d ◦ σ ◦ gc,a. By the
compatibility condition, this is an equivalence relation, and it is ∅-definable. Now
consider G = Mor(G)/E, and F : G → G the quotient map. The groupoid law of
G goes down to a group law on G. Indeed, if we want to compose σ ∈ Mor(a, b)
and τ ∈ Mor(c, d) in G, notice that τEgd,a ◦ τ , so we can define F (σ) ◦ F (τ) =
F (σ ◦ gd,a ◦ τ). Again by the compatibility condition, this is well defined. Finally,
it is easy to derive the group axioms from the groupoid axioms of G. �

We are still working with a family of partial types P over the empty set, a type
q, and an ∅-definable function π such that q is relatively P-internal via π. Let
G = G(q, π/P). Recall that we denote, for a |= q, the type tp(a/π(a)) by qπ(a).

In a stable theory, if p and q are stationary types over some fixed set of parameters
A, the type of (a, b), with a |= p and b |= q independent over A, is unique. We
denote this type p⊗ q.

Proposition 4.3. If G is retractable, then there is a complete type p ∈ S(∅),
internal to P, weakly orthogonal to π(q), and an ∅-definable bijection between q(M)
and p⊗ π(q)(M).
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Proof. We consider the ∅-definable relation xEy ⇔ gπ(x),π(y)(x) = y. The compat-
ibility condition of retractability implies that this is an equivalence relation. Let ρ
be the quotient map, then ρ(q) is a complete type over the empty set, and it will
be the type p of the proposition.

There is an ∅-definable function s : q(M) → ρ(q)(M) × π(q)(M) sending x to
(ρ(x), π(x)). Since q is a complete type, s(q(M)) is the set of realizations of a
complete type, denoted s(q). But the function s is bijective. Indeed, notice that
each E-class has exactly one element in each fiber of π: each class has at least one
element in a given fiber because G is connected, and no more than one because
gπ(a),π(a) = ida. Therefore we can send (ρ(a), π(b)) to the unique element both
in the π(b) fiber and in the E-class of a, to obtain an inverse of s. So ρ(q)(M) ×
π(q)(M) is in ∅-definable bijection with a complete type, hence is itself a complete
type over the empty set. In particular π(q) and ρ(q) are weakly orthogonal, so
ρ(q)(M) × π(q)(M) = ρ(q)⊗ π(q)(M). We denote p = ρ(q).

We now just need to prove that p is P-internal. Each E-class has a unique
representant in each π-fiber. Therefore, fixing a |= q, we have p(M) ⊂ dcl(qπ(a)(M)).
But by internality of the fibers, we get qπ(a)(M) ⊂ dcl(a,P), for some tuple a. This
yields p(M) ⊂ dcl(a,P).

�

Corollary 4.4. If G is retractable and π(q) is P-internal, then q is P-internal.

Retractability yields a functor F : G → G, but one could ask if it has any
consequence on the group Aut(q/P). As it turns out, it does:

Proposition 4.5. If G is retractable, there is a morphism R : Aut(q/P) → G,
which is surjective.

Proof. We use the functor F : G → G. For σ ∈ Aut(q/P), note that the restriction
of σ to qπ(a)(M) is an element of Mor(π(a), σ(π(a))). We denote it by σ|π(a). We
can then set R(σ) = F (σ|π(a)). Let us show that R is a surjective morphism
R : Aut(q/P)→ G.

First, we need to prove that R is well defined. To do so, we need to show that
for any b, we have σ|π(b) = gσ(π(a)),σ(π(b)) ◦ σ|π(a) ◦ gπ(b),π(a), by definition of F .

Pick any x with π(x) = σ(π(a)). Since g , is an uniformly ∅-definable family of
partial functions, we have gσ(π(a)),σ(π(b))(x) = y if and only if gπ(a),π(b)(σ

−1(x)) =

σ−1(y), for any y. Applying σ to the second equality, we get, for all y, that
gσ(π(a)),σ(π(b))(x) = y if and only if σ(gπ(a),π(b)(σ

−1(x))) = y, which yields that

σ|π(b) ◦ gπ(a),π(b) ◦ σ|
−1
π(a) = gσ(π(a)),σ(π(b)), what we wanted.

Therefore we have a well defined map R : Aut(q/P) → G. It is a morphism
because:

R(σ ◦ τ) = F ((σ ◦ τ)|π(a))

= F (σ|τ(π(a)) ◦ τ |π(a))

= F (σ|τ(π(a))) ◦ F (τ |π(a)))

= R(σ) ◦M(τ)

For surjectivity, by fullness of F , it is enough to prove that for σ ∈Mor(π(a), π(a)),
there is τ ∈ Aut(q/P) restricting to σ. This is true by definition of Mor(π(a), π(a)).

�
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Proposition 4.6. The group G witnessing retractability is relatively ∅-definably
isomorphic to Aut(p/P), the binding group of p over P (where p is the type of
Proposition 4.3).

Proof. Recall that Mor(G) is given by X/E, where X is an ∅-type-definable set,
and E is an ∅-definable equivalence relation. Moreover, the type-definable set
X is composed of pairs of realizations of r, the type introduced in the proof of
Theorem 1.3. In the proof Proposition 4.3, we constructed an ∅-definable quotient
map ρ : q(M) → p(M). The type p = ρ(q) is P-internal, hence its binding group
Aut(p/P) is similarly given by the type r′ of a fundamental system of solutions, an
∅-type-definable set X ′ and an ∅-definable equivalence relation E′. We can assume
that r′ = ρ(r).

For any a |= r, this allows us to define a group morphism:

Pπ(a) : Aut(tp(a/π(a))/P)→ Aut(p/P)

σ = (a, σ(a))/E → (ρ(a), ρ(σ(a)))/E′

and by construction of ρ, this is an isomorphism. It is relatively a-definable.
We are also given, by the retractability assumption, a relatively ∅-definable full

and faithfull functor F : Mor(G) → G. By restriction this yields, for any a |= r, a
relatively π(a)-definable group isomorphism Fπ(a) : Aut(tp(a/π(a))/P)→ G.

Hence, for any a |= r, the groups G and Aut(p/P) are relatively a-definably
isomorphic via the composition Pπ(a) ◦ F

−1
π(a). To complete the proof, we need to

show that this morphism is actually relatively ∅-definable. To do so, it is enough
(via a compactness argument) to prove that the graph of Pπ(a) ◦ F

−1
π(a) is fixed by

any automorphism of M.

Claim 4.7. For any a, b |= r and g ∈ G, we have Pπ(b) ◦F
−1

π(b)
(g) = Pπ(a) ◦F

−1
π(a)(g).

Proof. By the proof of Proposition 4.5, if a, b are realizations of r and g ∈ G, then
there is σ ∈ Aut(q/P) such that F−1

π(a)(g) is the restriction of σ to Aut(tp(a/π(a))/P)

and F−1

π(b)
(g) is the restriction of σ to Aut(tp(b/π(b))/P). Hence F−1

π(a)(g) = (a, σ(a))/E

and F−1

π(b)
(g) = (gπ(a),π(b)(a), σ(gπ(a),π(b)(a)))/E, as gπ(a),π(b)(a) |= r. We then ob-

tain:

Pπ(b) ◦ F
−1

π(b)
(g) = Pπ(b)((gπ(a),π(b)(a), σ(gπ(a),π(b)(a)))/E)

= (ρ(gπ(a),π(b)(a)), ρ(σ(gπ(a),π(b)(a))))/E
′

= (ρ(gπ(a),π(b)(a)), σ(ρ(gπ(a),π(b)(a))))/E
′

= (ρ(a), σ(ρ(a)))/E′ by definition of ρ

= Pπ(a)(a, σ(a)/E)

= Pπ(a) ◦ F
−1
π(a)(g)

�

Now let g ∈ G, let (g, Pπ(a) ◦ F
−1
π(a)(g)) be in the graph of Pπ(a) ◦ F

−1
π(a), and let

µ be an automorphism of M. We want to show that µ(g, Pπ(a) ◦F
−1
π(a)(g)) is also in

the graph of Pπ(a) ◦ F
−1
π(a).
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Claim 4.8. We have µ(Fπ(a)) = Fπ(µ(a)).

Proof. This is because the maps F−1
π(a) are uniformly π(a)-definable.

�

Claim 4.9. For any σ ∈ Aut(tp(a/π(a))/P), we have µ(Pπ(a)(σ)) = Pπ(µ(a))(µ(σ)).

Proof. The set Mor(G) is ∅-type-definable, hence for any σ ∈ Aut(tp(a/π(a))/P)
we have µ(σ) = τ ∈ Mor(G). In particular, we obtain µ(σ(a)) = τ(µ(a)), which
yields:

µ(Pπ(a)(σ)) = µ(Pπ(a)((a, σ(a))/E))

= (ρ(µ(a)), ρ(µ(σ(a))))/E′

= (ρ(µ(a)), ρ(τ(µ(a))))/E′

= Pπ(µ(a))((µ(a)), τ(µ(a))/E)

= Pπ(µ(a))(τ)

= Pπ(µ(a))(µ(σ))

�

Putting everything together, we obtain:

µ(Pπ(a) ◦ F
−1
π(a)(g)) = µ(Pπ(a)) ◦ µ(Fπ(a))

−1(µ(g))

= Pπ(µ(a)) ◦ Fπ(µ(a))(µ(g)) by Claims 4.8 and 4.9

= Pπ(a) ◦ F
−1
π(a)(µ(g)) by Claim 4.7

so (µ(g), Pπ(a) ◦F
−1
π(a)(µ(g))) belongs to the graph of Pπ(a) ◦F

−1
π(a), what we needed

to prove.
�

If π(q) is P-internal, it has an ∅-type-definable binding group Aut(π(q)/P), and
we have:

Theorem 4.10. If G is retractable and π(q) is P-internal and fundamental, then
q is P-internal and Aut(q/P) is ∅-definably isomorphic to G×Aut(π(q)/P).

Proof. We know from Corollary 4.4 that q is internal. Let a be a fundamental
system of solutions for q.

Recall that there are two ∅-definable quotient maps π : q(M) → π(q)(M) and
ρ : q(M)→ p(M) = ρ(q)(M). The tuples π(a) and ρ(a) are fundamental systems of
solutions for π(q) and ρ(q). As was done in Proposition 4.6, we can use this to con-
struct two a-definable surjective group morphisms π : Aut(q/P) → Aut(π(q)/P)
and ρ : Aut(q/P)→ Aut(ρ(q)/P). Using techniques similar to the ones in Propo-
sition 4.6, we can prove that these two morphisms are ∅-definable.

Hence we have produced two ∅-definable group morphisms π : Aut(q/P) →
Aut(π(q)/P) and ρ : Aut(q/P) → Aut(ρ(q)/P), both surjective. To obtain the
desired isomorphism, it would be enough to prove that ker(π) ∩ ker(ρ) = id and
that any element of Aut(q/P) can be written as the product of an element of ker(ρ)
and an element of ker(π).



14 LÉO JIMENEZ

Suppose that σ ∈ ker(π) ∩ ker(ρ), and let a |= q. Then σ fixes π−1{π(a)}
setwise. But σ ∈ ker(ρ), hence must fix π−1{π(a)} pointwise. Since this is true for
any a |= q, we conclude that σ = id.

Let σ be any morphism in Aut(q/P) and a |= q. Consider gπ(a),π(σ(a)) ∈ G.
It extends to an automorphism τ ∈ Aut(q/P) by Fact 2.6, which has to belong to
ker(ρ). We can write σ = τ ◦τ−1 ◦σ, so we only need to prove that τ−1 ◦σ ∈ ker(π).
But π(τ−1 ◦ σ(a)) = π(a) and π(q) is fundamental, so this implies π(τ−1 ◦ σ) = id.

�

Remark 4.11. The assumption that π(q) is fundamental seems necessary for this
proof to go through. We still do not know if this theorem is valid without that
assumption.

So retractability of the groupoid gives a lot more than just internality of the type.
In fact, internality does not imply retractability, even if the groupoid is connected.

Example 4.12. Consider the two sorted structure M = (G,X,LG, ∗) with one sort
being a connected stable group G in the language LG, and the other sort being a
principal homogeneous space X for G, with group action ∗. We will work in M

eq .
One can quickly prove that the sort X has only one 1-type q over ∅, and that

this type is stationary and internal to G, with binding group isomorphic to G.
Assume that there is an ∅-definable normal subgroup H of G, such that the short

exact sequence:

1→ H → G→ G/H → 1

does not definably split.
The group action of G on X defines an equivalence relation E, where the class

of an element a ∈ X is its orbit H ∗ a. Hence, we can define a map π : X → X/E,
sending a ∈ X to H ∗ a. This is ∅-definable, we have Aut(π(q)/G) ∼= G/H and for
any a, that Aut(tp(a/π(a)) = H . The type q is relatively G-internal via π, yielding
a groupoid G. Since G/H acts transitively on π(q), this groupoid is connected.
Moreover, we have a definable short exact sequence:

1→ H → G→ G/H → 1

which, by assumption, is not definably split. However, if G was retractable, our
previous work implies that this sequence would be definably split. Hence G is not
retractable, even though q is G-internal.

In the next section, we will introduce a necessary and sufficient condition for
internality, using Delta groupoids.

5. Delta groupoids and collapsing

In this section, we are again working with a family of partial types P over the
empty set, a type q ∈ S(∅), and an ∅-definable function π such that q is relatively
P-internal via π. We have obtained a groupoid from this relatively internal type.
But since q is stationary, for any n, we can form the product of q with itself n-times,
denoted q(n). We still have an ∅-definable projection map π(n), given by applying
π on each coordinate, and its fibers are P-internal too. All we are missing to get
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relative internality and apply Theorem 1.3 is that the type of a fiber be stationary.
This is an easy application of forking calculus.

Fact 5.1. For any n and (a1, · · · , an) |= q(n), tp(a1, · · · , an/π(a1), · · · , π(an)) is
stationary.

Hence for each n ≥ 1, the type q(n), together with the map π(n), satisfies the
assumptions of Theorem 1.3. We therefore obtain a sequence Gn of ∅-type-definable
groupoids. Our first groupoid G, associated to q and π, becomes G1 in this new
notation.

Recall that G was constructed using a type r, which corresponds to a fundamental
system of solutions of the type qπ(a) = tp(a/π(a)), for some (any) a |= q. Morphisms
of G were then obtained as elements of X/E, where X is an ∅-type-definable subset
of r(M)2, and E is a relatively ∅-definable equivalence relation on X ×X .

Notice that for any a |= q(n), the type tp(a/π(a)) has a fundamental solution
that is a realization of r(n). Hence, for each n, the type r(n) will play for q(n)

and π(n) the same role as r for q and π. Thus we obtain, for each n, an ∅-type-
definable subset Xn ⊂ r(n)(M)2 and a relatively ∅-definable equivalence relation
En on Xn ×Xn, such that Mor(Gn) is given by Xn/En.

This yields ∅-definable functors between the Gn. To see this, let us introduce
some notation: if a = (a1, · · · , an) is a tuple, then for any 1 ≤ i ≤ n, we denote
a∧i = (a1, · · · , âi, · · ·an) where the hat means the corresponding coordinate has
been removed. Now, if n > 1, an element σ of Mor(Gn) corresponds to the En-class
of (a, b) = ((a1, · · · , an), (b1, · · · , bn)), where a and b are realizations of r(n). For

any 1 ≤ i ≤ n, we can then send (a, b)/En to (a∧i, b
∧i
)/En−1. This is well defined,

as (a∧i, b
∧i
) ∈ X2

n−1, and ∅-definable.
For each n > 1 and each 1 ≤ i ≤ n, we hence obtain ∅-definable maps:

∂ni : Mor(Gn)→ Mor(Gn−1)

(a, b)/En → (a∧i, b
∧i
)/En−1

and by setting ∂ni (π(a)) = π(a∧i), we can easily check that each ∂ni is an ∅-definable
functor from Gn to Gn−1.

These functors have a clear interpretation as restrictions of partial automor-
phisms. Indeed, if a = (a1, · · · , an) |= r(n) and b = (b1, · · · , bn) |= r(n), then an

element σ of Hom(Gn)(π(a), π(b)) is a bijection:

σ : tp(a/π(a))(M)→ tp(b/π(b))(M)

which is the restriction of an automorphism of M fixing P pointwise. The element
∂ni (σ) of Gn−1 is then the restriction of σ to a bijection:

∂ni (σ) : tp(a
∧i/π(a∧i))(M)→ tp(b

∧i
/π(b

∧i
))(M)

which still is the restriction of the same global automorphism.

Remark 5.2. If we assume that π(q) is P-internal, then by Remark 2.4, there is
some n such that any n independent realizations of π(q) form a fundamental system
of solutions. Therefore we obtain, as was done in Remark 3.8, a definable functor
F : Gn → Aut(π(q)(n)/P).
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We are now ready to define the algebraic structure of interest, which will be an
∅-type-definable Delta groupoid.

Definition 5.3. A Delta groupoid is the following data:

(1) For every integer n ∈ N\{0}, a groupoid Gn
(2) For every integer n ∈ N\{0, 1}, and every i ∈ {0, · · · , n}, a groupoid mor-

phism (that is, a functor) ∂ni : Gn → Gn−1, called a face map

subject to the following condition:
∂ni ◦ ∂

n+1
j = ∂nj−1 ◦ ∂

n+1
i for all i < j ≤ n and n ≥ 1.

Note that this definition, while adapted to our purpose, is not the one usually
given in the simplicial homotopy literature. The interested reader can find an
alternative category-theoretic definition in [4].

Definition 5.4. A Delta groupoid G is ∅-type-definable if every groupoid Gn is
∅-type-definable, and all the face maps are ∅-type-definable.

The previously defined groupoids Gn and maps ∂ are then easily checked to
form an ∅-type-definable Delta groupoid. We will denote it by G (the previously
constructed groupoid now becomes G1). Remark that the Gn are not uniformly
type-definable (they do not even live in the same sorts).

Notation. If a |= qn for some n, then the type tp(a/π(a)) is P-internal, and we
will denote Gπ(a) its binding group. It is Mor(π(a), π(a)) in Gn.

Using the Delta groupoid structure, the data of the Gπ(a) can be formed into
a projective system of type-definable groups. Indeed, we can take our directed set to
be {π(a) : π(a) |= πn(q(n)) for some n}, with (π(a1), · · · , π(an)) ≤ (π(b1), · · · , π(bm))

if and only if n ≤ m and π(ai) = π(bi) for all i ≤ n. If π(a) ≤ π(b), the restric-
tion map Gπ(b) → Gπ(a) is definable, as it is a composition of face maps. These

maps, together with the Gπ(a), are easily checked to form a projective system. In
particular, we obtain the projective limit lim

←−
Gπ(a).

Definition 5.5. The Delta groupoid G is said to collapse if there is a tuple a of
independent realizations of q such that for any b ≥ a, the map Gπ(b) → Gπ(a) is

injective. It is said to almost collapse if the maps Gπ(b) → Gπ(a) have finite kernel

instead.

These maps Gπ(b) → Gπ(a) are not necessarily surjective, but some will be if

π(q) is P-internal:

Remark 5.6. If π(q) is P-internal, then there is m ∈ N such that for all n ≥ m,
all π(a) |= q(n) and π(a) ≤ π(b), the map Gπ(b) → Gπ(a) is surjective.

Proof. Let a0 |= q(m) be such that π(a0) is a fundamental system of solutions for
π(q) (such an a0 exist by Remark 2.4). Then any m independent realizations of
π(q) will be a fundamental system a solutions. Hence for any n ≥ m and any
a |= q(n), the tuple π(a) is a fundamental system of solutions for π(q).

Fix a |= q(n) for n ≥ m and π(b) ≥ π(a), consider the map Gπ(b) → Gπ(a). Let

σ ∈ Gπ(a), it is the restriction to tp(a/π(a))(M) of an automorphism σ̃ of M. But
π(a) is a fundamental system of solutions for π(q), and σ̃ fixes π(a). Hence σ̃ fixes
π(q)(M), and in particular fixes π(b). Therefore σ̃ restricts to an element of Gπ(b),

and the image of this element under Gπ(b) → Gπ(a) has to be σ.

�
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We will now prove a very useful equivalent condition.

Lemma 5.7. The Delta groupoid associated to q, π and P collapses (respectively
almost collapses) if and only if there is a tuple a of independent realizations of
r such that for any (some) b |= q, independent of a, we have b ∈ dcl(a, π(b),P)
(respectively b ∈ acl(a, π(b),P)).

Proof. We will only prove the equivalence for collapsing, the other equivalence being
proved in a similar way. Suppose first that there is a tuple a of realizations of r such
that for any b |= q independent of a, we have b ∈ dcl(a, π(b),P). Let π(b) > π(a),
these are tuples of independent realizations of π(q), we want to prove that Gπ(b) →

Gπ(a) is injective. The type tp(b/π(b)) is P-internal, hence it has a fundamental

system of solutions (b1, · · · , bn). Each of these bi is either in π
−1(π(a)), and hence

in dcl(a,P), or π(bi) is independent of π(a) over ∅, and we can then assume bi
to be independent of a over ∅. In this second case, the assumption yields bi ∈
dcl(a, π(bi),P). Hence we obtain bi ∈ dcl(a, π(bi),P) for all i, so tp(b/π(b))(M) ⊂
dcl(a, π(b),P).

Now let σ ∈ Gπ(b)) be such that its image under Gπ(b) → Gπ(a) is the identity.

Then it has to fix a, and it fixes π(b) and P too. Hence it has to fix tp(b/π(b))(M),
so it is the identity of Gπ(b).

For the other implication, suppose that the Delta groupoid collapses. Hence
there is a tuple a of independent realizations of q such that for any π(b) ≥ π(a),
the map Gπ(b) → Gπ(a) is injective. The type tp(a/π(a)) is internal, and it has a

fundamental system of solutions, which can be taken to be a tuple of independent
realizations of r. From now on, we replace a by this tuple.

We need to prove that for any b |= q independent of a, we have b ∈ dcl(a, π(b),P).
To do so, it is enough, by Fact 2.6, to prove that any automorphism σ of M fixing
a, π(b) and P pointwise has to fix b. So consider such an automorphism σ. It
restricts to σ ∈ Gπ(b)π(a), as it fixes π(b) and π(a). But it also fixes a, which is a
fundamental system of solutions for tp(a/π(a)). Hence, its image under the map
Gπ(a)π(b) → π(a) is the identity, so by collapse assumption, it is itself the identity
in Gπ(a)π(b), and in particular fixes b.

�

Note that we needed the independence assumption in order for the groupGπ(a)π(b)

to be in the Delta groupoid. However, if the type q has finite weight (see [9] Chapter
1, Subsection 4.4 for a definition of weight), we obtain:

Proposition 5.8. If the type q has finite weight, the Delta groupoid associated to
q, π and P collapses (respectively almost collapses) if and only if there is a tuple a
of independent realizations of r such that for any b |= q, we have b ∈ dcl(a, π(b),P)
(respectively b ∈ acl(a, π(b),P)).

Proof. Again, we will only prove the equivalence for collapsing, the other equiva-
lence being proved in a similar way. The right to left direction is an immediate
consequence of Lemma 5.7 (and does not require superstability), so we only need
to prove the left to right direction.

Assume that the Delta groupoid collapses, and let a be a tuple of independent
realizations of r such that for all b |= q independent of a over ∅, we have b ∈
dcl(a, π(b),P), it exists by Lemma 5.7. Pick a Morley sequence (ai)i∈N in tp(a/∅).
Because the type q has finite weight there is n ∈ N such that for any b |= q, there
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is i ≤ n such that b and ai are independent over the empty set. Let σ be an
automorphism of M such that σ(ai) = a, we then have that σ(b) is a realization of
q, independent of a. Therefore σ(b) ∈ dcl(a, π(σ(b)),P) by Lemma 5.7. Applying
σ−1, we obtain b ∈ dcl(ai, π(b),P). Hence, picking α = (a1, · · · , an), for any b |= q,
we have b ∈ dcl(α, π(b),P).

�

Remark 5.9. Recall that in a superstable theory, any type has finite weight.
Hence, this proposition is true for any type in a superstable theory.

We also can prove the following proposition, which is similar to what can be
obtained for internal types:

Proposition 5.10. Let q ∈ S(∅) be relatively P-internal via the ∅-definable func-
tion π. Suppose that there is a tuple e ∈ M such that for all a |= q, we have
a ∈ acl(π(a), e,P). Then the Delta groupoid G associated to q and π almost col-
lapses.

Proof. Let a be a realization of q, independent from e over the empty set. By
assumption, there is a tuple c of realizations of P such that a ∈ acl(e, π(a), c).

Consider tp(ac/ acl(e)), it is a stationary type, let d be its canonical base. Pick
(aici)i∈N, a Morley sequence in tp(ac/ acl(e)), which we can assume to be indepen-
dent from ac over e. We know that ac |⌣d

acl(e), and from this and the assumption,

forking calculus yields a ∈ acl(π(a), c, d). But d ∈ acl((aici)1≤i≤n) for some n, hence
a ∈ acl(π(a), (aici)1≤i≤n, c), so a ∈ acl(π(a), (ai)1≤i≤n,P).

Now let a′ |= q, independent from (ai)1≤i≤n over the empty set. Since a is
independent from e over the empty set, and independent over e of the sequence
(ai)i∈N, we have that a is independent from (ai)i∈N over the empty set. Since
q = tp(a/∅) is stationary, this implies that tp(a/(ai)i∈N) = tp(a′/(ai)i∈N), hence
a′ ∈ acl(π(a′), (ai)1≤i≤n,P). By Lemma 5.7, this implies that G almost collapses.

�

As a corollary of Lemma 5.7, we obtain the following test for internality:

Corollary 5.11. The type q is internal (respectively almost internal) to P if and
only if and only if the Delta groupoid G collapses (respectively almost collapses) and
π(q) is internal (respectively almost internal) to P.

Proof. Once again, we will only treat the case of internality and collapse.
Suppose first that q is internal to P . We immediately get that π(q) is internal

as well. It also yields a fundamental system of solutions, denote it a, which we
can pick as a tuple of independent realizations of q. Moreover, we can extend a
into a tuple of independent realizations of r. If we now pick any b |= q, we have
b ∈ dcl(a,P), hence also b ∈ dcl(a, π(b),P), so G collapses by Lemma 5.7.

For the other implication, assume that G collapses and π(q) is P-internal. As a
consequence of Lemma 5.7, the type q is internal to the family of types P ∪{π(q)}.
But because π(q) is P-internal, this implies that q itself is P-internal (see [9],
Remark 7.4.3).

�

Notice that even without any internality assumption, there is always a surjective
morphism Aut(q/P) → Aut(π(q)/P). If we assume π(q) is P-internal, then the
target group is ∅-type-definable.
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Corollary 5.12. If the type q is internal to P, then there is a definable (possibly
over some extra parameters) short exact sequence:

1→ lim
←−

Gπ(a) → Aut(q/P)→ Aut(π(q)/P)→ 1

and the groups and morphisms are internal to P.

Proof. Set H = ker(Aut(q/P) → Aut(π(q)/P)). Then we have a short exact se-
quence:

1→ H → Aut(q/P)→ Aut(π(q)/P)→ 1

Every group in this sequence is type-definable. Moreover, the left arrow is just
inclusion, so is ∅-definable. As for the right arrow, if σ ∈ Aut(q/P) is represented
by (a, σ(a)), we can simply send it to (π(a), π(σ(a))), so the right arrow is definable.
The groups and morphisms are internal to P . So all we need to do to finish the
proof is show that lim

←−
Gπ(a) is definably isomorphic to H .

Since q is P-internal the Delta groupoid associated to q, π and P collapses.
By Corollary 5.11 there is a tuple b of realizations of q such that Gπ(c) → Gπ(b) is

injective for any π(c) ≥ π(b). Moreover, since π(q) is P-internal, we can also assume,
by Remark 5.6, that these maps are isomorphisms, hence lim←−Gπ(a) = Gπ(b). By

extending b we can assume both that b is a fundamental system of solutions for
q and π(b) is a fundamental system of solutions for π(q). We can then define a

morphism Gπ(b) → Aut(q/P) by sending σ ∈ Gπ(b) to (b, σ(b)), this is well-defined

because b is a fundamental system for q. It is a relatively b-definable map, and it
is injective, again because b is a fundamental system for q.

But π(b) is a fundamental system for π(q), so the image of this map is contained

in H = ker(Aut(q/P) → Aut(π(q)/P)). Finally, if σ ∈ H , then it has to fix π(b),
and hence restricts to an element of Gπ(b), which yields surjectivity of Gπ(b) → H .

�

The splitting of the short exact sequence we obtained has, in some cases, nice
consequences:

Proposition 5.13. Suppose q is P-internal and π(q) is fundamental. If the short
exact sequence:

1→ lim
←−

Ga → Aut(q/P)→ Aut(π(q)/P)→ 1

is definably split and G1 is connected, then G1 is retractable.

Proof. Since π(q) is fundamental, an element of Aut(π(q)/P) is then defined as
the class of (π(a), π(b)), for π(a), π(b) two realizations of π(q). Let s be a section
of the short exact sequence. We can then define gπ(a),π(b) = s((π(a), π(b))/E′),
where E′ is the equivalence relation used to define Aut(π(q)/P). This is uniformly
∅-definable, and the compatibility condition is easily checked.

�

We hence obtain a partial converse to Theorem 4.10:
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Theorem 5.14. Suppose q is P-internal. Assume G1 is connected, and π(q) is
fundamental. Then G1 is retractable if and only if the short exact sequence:

1→ lim
←−

Ga → Aut(q/P)→ Aut(π(q)/P)→ 1

is definably split.

We have seen that internality of q can be read from the collapse of the Delta
groupoid. It is also linked to the following notion, first introduced in [8]:

Definition 5.15. Suppose q ∈ S(d) is a stationary type, and P is a family of
partial types, over the empty set. We say that q(x) preserves internality to P if
whenever a |= q and c are such that tp(d/c) is almost P-internal, then tp(a/c) is
also almost P-internal.

We want to obtain a sufficient condition for tp(a/d) to preserve internality. Note
that by setting c = d, we get that preserving internality implies almost internality.

Remark that if tp(a/d) is P-internal and stationary, then we can consider the
type p = tp(ad/∅), and the projection π on the d-coordinate. This is a projection
with P-internal fibers, so yields an ∅-type-definable Delta groupoid Gp.

Intuitively, collapse of the groupoid associated to π and q means that the only
thing missing for q to be P-internal is for π(q) to be P-internal. Therefore, the
following result appears quite natural:

Proposition 5.16. Suppose q = tp(a/d) is P-internal and stationary. Let p =
tp(ad/∅). If the Delta groupoid G associated to p and the projection π on the d-
coordinate almost collapses, then tp(a/d) preserves internality to P.

Proof. Recall that we assume ∅ = acl(∅), hence p is stationary. Lemma 5.7 implies
the existence of a tuple e of realizations of p, independent from ad over ∅, such that
ad ∈ acl(e, d,P). Taking a realization of tp(e/ad) independent from c over ad, we
can assume that e is independent from adc over ∅.

Now, the type tp(d/c) is almost P-internal, hence there is a tuple d of realiza-

tions of tp(d/c), independent from d over c, such that d ∈ acl(d, c,P). We can
assume, without loss of generality, that d is independent from ade over c. Forking
calculus yields that de is independent from ad over c. But ad ∈ acl(e, d,P) and
d ∈ acl(d, c,P), so ad ∈ acl(e, d, c,P). Hence tp(ad/c) is almost P-internal.

�

The converse to this proposition is likely to be false. Indeed, suppose tp(a/d)
is P-internal and stationary, but for any tuple c, the type tp(d/c) is almost P-
internal if and only if it is algebraic. This implies that tp(a/d) preserves internality
to P , but should not imply that the groupoid associated to tp(ad/∅) collapses. The
construction given on top of page 4 of [8] is a good candidate for a counterexample.
It would be interesting to find a necessary and sufficient condition, in terms of Delta
groupoids, for a type to preserve internality.

In the literature, examples of types preserving internality appear in [1], [2] and
[8]. A potential direction for future work is to examine, for each of these examples,
if the collapse of a Delta groupoid is involved or not.
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