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MODEL THEORY AND COMBINATORICS OF BANNED

SEQUENCES

HUNTER CHASE AND JAMES FREITAG

Abstract. We set up a general context in which one can prove Sauer-Shelah
type lemmas. We apply our general results to answer a question of Bhaskar
[1] and give a slight improvement to a result of Malliaris and Terry [7]. We
also prove a new Sauer-Shelah type lemma in the context of op-rank, a notion
of Guingona and Hill [4].

1. Introduction

A single combinatorial notion called VC-dimension determines important divid-
ing lines in both machine learning (PAC learnability of a class) and model theory
(the independence/non-independence dichotomy, IP/NIP) [5], and the finiteness of
this quantity plays an essential role in the development of various structural results
in theories without the independence property and in machine learning. Often at
the root of these developments is the Sauer-Shalah Lemma, which for a formula
φ(x; y) without the independence property, gives a polynomial bound on the shat-
ter function associated with φ—that is, the number of consistent φ-types over finite
sets. Without NIP, however, the number of φ-types can grow exponentially in the
size of the finite parameter set. In a recent paper, Bhaskar [1] noticed that when
the formula φ is actually stable, that is, φ has finite Shelah 2-rank (also called
thicket dimension and Littlestone dimension in the context of set systems), one can
relax the way in which the φ-types are constructed, allowing for trees of parameters
(explained below) while still proving polynomial bounds on the resulting collection
of consistent φ-types. Again, in the absence of stability the number of types formed
in this manner can grow exponentially in the height of the tree. Following Bhaskar,
we refer to this growth dichotomy theorem as the Thicket Sauer-Shelah Lemma. In
[2], we notice that stability also determines an important dividing line in machine
learning; stability determines learnability in various settings of online learning. In
these settings of learning, various results at their core rely on the polynomial growth
of the thicket shatter function.

In both settings described above, the growth of the number of types being poly-
nomially bounded or exponential is completely determined by whether a simple
combinatorial notion of dimension is finite, and the upper bound (which is tight in
general) on the number of such types (in terms of the appropriate notion of dimen-
sion) is identical in both cases. In light of this, Bhaskar naturally asks if there is
a single combinatorial principle which explains both the Sauer-Shalah Lemma and
the (thicket) stable version. The main purpose of our paper is to set up a general
context in which one can prove Sauer-Shelah type results into which both of the
above contexts fit, answering Bhaskar’s question as well as proving new results.

James Freitag was supported by NSF grant no. 1700095.
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Our solution to the problem is quite general and deals with what we call banned
sequence problems.

Our general setup of banned sequence problems is an interesting combinatorial
setting in its own right, and we will roughly describe the simplest context here.
Suppose that you consider the collection of all binary sequences of length n, and
for each subset of the indices of size k, there is at least one “banned subsequence”
of length k. How many binary sequences of length n are there which avoid each of
the banned sequences on all subsets of the indices of size k? Subject to some very
mild assumptions on how the banned sequences are chosen, we show that there are
at most

k−1
∑

i=0

(

n

i

)

such sequences. This bound is the bound of the Sauer-Shelah Lemma. Without
the mild assumptions, we show that this bound can be violated. The generality of
our setup covers both the settings mentioned above as well as yielding some new
results.

We give a slight improvement of a result of Malliaris and Terry [7] regarding
sizes of cliques and independent sets in stable graphs. Essentially, their result uses
the finiteness of a certain combinatorial dimension, tree rank, in order to establish
polynomial bounds strong enough to get a version of the Erdos-Hajnal conjecture,
among other results (Malliaris and Terry also develop further structural properties
of graphs which we will not touch on in this paper). We examine tree rank in
the general context of banned sequence problems, and as a result, give a slight
improvement to their bounds. Following this, we give an adaptation of the VC-
theorem to the setting of finite thicket dimension set systems. The VC-theorem
roughly says that for a set system of finite VC dimension on a probability space, a
random sampling by a large enough tuple will, with high probability, give a good
estimate of the measures of all of the sets in the set system (i.e. the proportion
of elements in the tuple belonging to a set is close to the measure of that set).
We show that using the stronger hypothesis of finite thicket dimension allows for
a loosening of the sampling assumptions, allowing for sampled elements to depend
on the outcomes of the previous samples.

In the last part of the paper, we turn to the setting of op-ranks. For each s ∈ N,
Guingona and Hill [4] define a rank of partial types, ops-rank. For instance, when
s = 1, op1-rank is equal to the Shelah 2-rank. Working with set systems of finite
ops-rank, we establish a new variant of the Sauer-Shelah Lemma using our banned
sequence setup.

We note that not every known variant of the Sauer-Shelah Lemma seems to fit
into the context of banned sequence problems; the main results of [3] establish a
variant of Sauer-Shelah for n-dependent theories which does not seem to easily fit
into our context of banned sequence problems. Is there a general setup which also
covers the known Sauer-Shelah style results for n-dependent theories? This seems
reasonable to ask because n-dependent theories generalize NIP theories in a way
similar to how theories with finite ops-rank generalize stable theories.

1.1. Organization. In section 2, we give the necessary preliminary notation for
our results. In section 3, we lay out the basic theory of banned sequence problems
along with some applications. In section 4, we adapt the VC-theorem. In section 5,
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we generalize our banned sequence problems. In section 5.2, we apply generalized
banned problems to the op-rank setting.

1.2. Acknowledgements. The authors would like to thank Dave Marker, Vincent
Guingona, Caroline Terry, Maryanthe Malliaris, Gabriel Conant, and Cameron Hill
for useful conversations and suggestions during the preparation of this article. The
authors would also like to especially thank Alex Kruckman and Siddharth Bhaskar
for a number of useful comments as well as pointing out some mistakes in early
versions of several proofs.

2. Preliminaries

Our primary combinatorial tool applies to theorems surrounding VC-dimension
and thicket dimension (also known as Shelah’s 2-rank in model theory or Little-
stone dimension in machine learning), and we recall those definitions and relevant
theorems. The next several definitions can be found in various sources, e.g. [9].

Throughout, any indexing starts at 0, and [n] := {0, 1, . . . , n − 1}. By
(

[n]
k

)

we
mean the collection of all subsets of [n] of size k.

Recall that a set system (X,F) (often referred to as F when X is understood)
consists of a set X and a collection F ⊆ P(X) of subsets of X . For Y ⊆ X , the
projection of F onto Y is the set system with base set Y and collection of subsets

FY := {F ∩ Y |F ∈ F}.

VC-dimension measures the ability of a set system to pick out subsets of a set
of a given size.

Definition 2.1. A set system (X,F) shatters a set Y if FY = P(Y ). The VC-
dimension of F is the largest k < ω such that F shatters some set of size k, or is
infinite if F shatters arbitrarily large sets. The shatter function

πF (n) := sup
Y ⊆X,|Y |=n

|FY |

is given by the supremum of the size of the projection onto subsets of a given size.

If a set system has finite VC-dimension, then we obtain a polynomial bound on
the shatter function.

Theorem 2.2 (Sauer-Shelah Lemma). Let F be a set system of VC-dimension k.
Then the maximum size of a projection from F onto a set A = {a0, . . . , an−1} of

size n is
∑k

i=0

(

n
i

)

. In particular,

πF(n) ≤
k
∑

i=0

(

n

i

)

.

Several proofs of the Sauer-Shelah Lemma can be found in various sources, e.g.
[9, 8].

Thicket dimension is a variant of VC-dimension; our development follows [1].
Given a set from the set system, elements are presented sequentially, with the
element presented depending on membership of previous elements.

Definition 2.3. A binary element tree of height n with labels from X is a function
T : 2<n → X . A node is a binary sequence σ ∈ 2<n along with its label, aσ := T (σ).
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A leaf is a binary sequence of length n, τ : [n] → {0, 1}. A leaf τ is properly labeled
by a set A if for all m < n,

aτ |[m]
∈ A iff τ(m) = 1.

Definition 2.4. The thicket dimension of a set system (X,F) is the largest k < ω
such that there is a binary element tree of height k with labels from X such that
every leaf can be properly labeled by elements of F , or is infinite if there are
such trees of arbitrary height. The thicket shatter function ρF(n) is the maximum
number of leaves properly labeled by elements of F in a binary element tree of
height n.

Theorem 2.5 (Thicket Sauer-Shelah Lemma [1]). Let F be a set system of thicket
dimension k. Then the maximum number of properly labeled leaves in a binary

element tree of height n is
∑k

i=0

(

n
i

)

. In particular,

ρF(n) ≤
k
∑

i=0

(

n

i

)

.

VC-dimension and the VC shatter function can be viewed in the context of
binary element trees where every node of the same height is labeled with the same
element, i.e. aσ = aσ′ whenever |σ| = |σ′|.

There are dual notions of both VC-dimension and thicket dimension, and their
corresponding shatter functions, where the roles of elements and sets are reversed.

Definition 2.6. Given a set system (X,F), the dual set system (X,F)∗, or just
F∗, is the set system with base set F where the subsets are given by

{F |F ∈ F , x ∈ F}

for each x ∈ X . The dual VC (resp., thicket) dimension of F is the VC (resp.,
thicket) dimension of F∗.

Dual thicket dimension can be calculated by examining binary decision trees,
where nodes are labeled by sets in the set system, and leaves are labeled by elements.
Dual VC-dimension can be calculated similarly.

In model theory, given a model M, the VC (resp., thicket) dimension of a par-
titioned formula φ(x; y) is the VC (resp., thicket) dimension of the set system

(M |x|, {φ(M |x|, b) | b ∈M |y|}).

These combinatorial notions encode model-theoretic dividing lines. A formula is
NIP iff it has finite VC-dimension, and is stable iff it has finite thicket dimension.

3. The combinatorics of banned sequences

The binary element tree structure used to define thicket dimension allows us
to identify a leaf of the tree with the binary sequence corresponding to the path
through the tree to that leaf. Then counting properly-labeled leaves amounts to
counting the corresponding binary sequences. We establish a framework for count-
ing binary sequences under certain conditions reflecting the tree structure, from
which we will obtain a unified proof of the Sauer-Shelah lemmas.
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3.1. Banned binary sequences and Sauer-Shelah lemmas. Our framework
for counting binary sequences will reflect the height of the tree as well as the
dimension (either thicket or VC) of the set system. We find it easier to count
banned sequences. Having thicket dimension k − 1 says that in a tree of height k,
there are some leaves which cannot be properly labeled, and those leaves correspond
to sequences that we ban.

Definition 3.1. A k-fold banned binary sequence problem (BBSP) of length n, g,
is a function

g :

(

[n]

k

)

× 2n−k → P(2k) \ {∅}.

Informally, for each k-subset of [n] and each binary sequence of length n− k, we
pick at least one binary sequence of length k to ban. Sometimes we will refer to
the sequences selected by the function f as banned subsequences.

Remark 3.2. It will be convenient to view binary sequences as functions, where

the domain is the appropriate set of indices. Given S ∈
(

[n]
k

)

, when we consider

f(S,X), we view X ∈ 2n−k as a function X : [n] \ S → {0, 1}, and elements of
f(S,X) as functions Z : S → {0, 1}.

We shall denote the union of two binary sequencesX and Y with disjoint domains
as X ∧ Y . For example, if X has domain {0, 2}, with X(0) = X(2) = 0, and Y has
domain {1} with Y (1) = 1, then X ∧ Y is the binary sequence 010. When we wish
to extend a sequence by appending some j ∈ {0, 1}, we will merely write X ∧ j,
with the index of j usually understood from the context.

For a fixed S ∈
(

[n]
k

)

, we denote the elements of S by {s0, . . . , sk−1}, where
s0 < s1 < . . . < sk−1.

Definition 3.3. A solution to a k-fold banned binary sequence problem of length
n, f is a binary sequence, X ∈ 2n such that for any S ⊆ [n],

X |S /∈ f(S,X |[n]\S).

A sequence which is not a solution is banned.

Intuitively, a solution to a banned binary sequence problem is a sequence which
avoids every banned subsequence. In applications to binary element trees, properly
labeled leaves will correspond to solutions of a certain banned binary sequence
problem.

Without further assumptions, the number of solutions of a BBSP can grow ex-
ponentially in n for a fixed k.

Proposition 3.4. A k-fold BBSP of length n, f , has at most (2k−1)2n−k solutions.

Proof. Fix S ∈
(

n
k

)

. For X : [n] \S → {0, 1} and Z : S → {0, 1}, X ∧Z can only be

a solution if Z /∈ f(S,X), and for each of 2n−k many such X ’s, there are at most
2k − 1 many Z’s. �

We observe that to obtain this bound, and so have only 2n−k banned sequences,
we must be able to find a collection B of 2n−k sequences Y : [n] → {0, 1} such that

for all T ∈
(

[n]
n−k

)

and all X : T → {0, 1}, there is some Y ∈ B such that X ⊆ Y .

Then we set f([n]\T,X) := {Y |[n]\T }. In general this is not possible. It is possible
for k = n, where we simply pick a sequence of length n to ban, k = n− 1, where B
can consist of, say, the two constant sequences, and k = 1, given below. But this
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condition already cannot be met for k = 2 and n = 4. In this case, one can verify
that the minimum size of B to satisfy the above condition is 5, and so a 2-fold
BBSP of length 4 can have at most 11 solutions.

Example 3.5. Let f be the 1-fold BBSP of length n given by

f({s}, X) =

{

1 X has an even number of 1s

0 X otherwise.

Then f has 2n−1 solutions, given by those binary sequences which have an even
number of 1s.

We therefore need stronger hypotheses in order to bound the number of solutions
by the Sauer-Shelah bound.

Definition 3.6. A k-fold banned binary sequence problem of length n, f , is not

hereditary if there is S ∈
(

[n]
k

)

such that for all Zα : S → {0, 1}, there is Xα :
[n] \ S → {0, 1} such that Zα /∈ f(S,Xα), and additionally, for Zα 6= Zβ , the first
index at which Xα ∧ Zα and Xβ ∧ Zβ differ is in S.

Otherwise, say f is hereditary.

Hereditary BBSPs reflect enough of the tree structure so as to obtain the Sauer-
Shelah bound on the number of sequences as well as frame thicket and VC trees as
hereditary BBSPs, and thus derive the corresponding Sauer-Shelah lemmas.

Theorem 3.7. Any hereditary k-fold banned binary sequence problem of length n

has at most
∑k−1

i=0

(

n
i

)

solutions.

Proof. We prove the result by induction on n and k. Throughout, we fix a hered-
itary k-fold banned binary sequence problem of length n, f . Let B(f) denote the
number of sequences banned by f . It suffices to prove that

B(f) ≥ 2n −
k−1
∑

i=0

(

n

i

)

.

The base cases are k = n and k = 1. When k = n, the result is immediate, since

then 2n −
∑k−1

i=0

(

n
i

)

= 1 and any BBSP has at least one banned sequence.
When k = 1, we must show that B(f) ≥ 2n−1, i.e. there is at most one solution.

Assume for contradiction that X 6= Y are two distinct solutions to f , with s the
first index at which X and Y differ, say with X(s) = 0 and Y (s) = 1. If s = n− 1,
then we have that f({n−1}, X |[n−1]) = ∅, a contradiction. If s < n−1, we observe
that 0 /∈ f({s}, X[n]\{s}) and 1 /∈ f({s}, Y[n]\{s}). Since the first index at which
X and Y differ is s, this witnesses that f is not hereditary, a contradiction. So
B(f) ≥ 2n − 1.

Otherwise, we proceed by induction. Given a binary sequence X of length n, we
call an entry of X bad if it is part of a k-subset S such that X |S ∈ f(S,X[n]\S).

We call a binary sequence X ′ of length n − 1 potentially bad for T ∈
(

[n−1]
k−1

)

if

there is j ∈ {0, 1} such that the (n−1)th entry1 of X ′∧j is bad for S = T ∪{n−1}.
That is, setting S = T ∪{n−1}, we have X ′|T ∧j ∈ f(S,X ′|[n−1]\T ). In particular,
sequences which are potentially bad for T can be extended to sequences which are
banned by f , witnessed by S = T ∪ {n− 1}.

1We emphasize that we index from 0, so that the (n − 1)th entry will be the last entry of a
sequence of length n.
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Let f̂ be the (k − 1)-fold banned binary sequence problem of length n− 1 given

by those sequences which are potentially bad for some T ∈
(

[n−1]
k−1

)

. That is, let

Z ∈ f̂(T,X) if Z ∧ X is potentially bad for T . We claim that f̂ is hereditary.

If f̂ were not hereditary, then there would exist T ∈
(

[n−1]
k−1

)

such that for each

Zα : T → {0, 1}, there is Xα : [n − 1] \ T → {0, 1} such that Zα /∈ f̂(T,Xα), with
the first index at which any two Xα ∧Zα and Xβ ∧Zβ differ belonging to T . Note
that for some α and some j ∈ {0, 1}, we have that

Zα ∧ j ∈ f(T ∪ {n− 1}, Xα),

or else associating Zα ∧ j with Xα would witness that f itself is not hereditary.

In particular, Zα ∧ Xα is potentially bad for T . Then, by definition of f̂ , Zα ∈
f̂(T,Xα), a contradiction. So f̂ is also hereditary.

Let f ′ be the k-fold banned binary sequence problem of length n − 1 given by
those sequences which contain a banned subsequence for f in the first n−1 entries,

for any choice of the last entry. That is, given S ∈
(

[n−1]
k

)

, let Z ∈ f ′(S,X) iff
Z ∈ f(S,X ∧ j) for all j ∈ {0, 1}. We claim that f ′ is hereditary. Suppose for

contradiction that f ′ is not hereditary. Then there is S ∈
(

[n−1]
k

)

such that for all
Zα : S → {0, 1}, there is Xα : [n− 1] \ S → {0, 1} such that Zα /∈ f ′(S,Xα), with
the first index at which any two Xα ∧Zα and Xβ ∧Zβ differ belonging to S. That
is, by definition of f ′, for each α, there is jα ∈ {0, 1} such that Zα /∈ f(S,Xα ∧ jα).
Let X ′

α be Xα∧jα. Then associating Zα with X ′
α witnesses that f is not hereditary,

a contradiction.
Now, we aim to prove

B(f) ≥ B(f̂) +B(f ′).

For a given sequence X ′ which is banned by f̂ , there is at least one extension X
which is banned by f , and we pick one such an extension. For a given sequence
Y ′ banned by f ′, at most one extension Y was already obtained by extending a

banned sequence X ′ for f̂ . So there is at least one extension Y which is banned
by f (by definition of f ′) but was not obtained by extending banned sequences for

f̂ . Therefore these banned sequences constructed from f ′ and f̂ have no common
members, and so we have

B(f) ≥ B(f̂) +B(f ′),

as desired. By induction, we have that

B(f) ≥

(

2n−1 −
k−2
∑

i=0

(

n− 1

i

)

)

+

(

2n−1 −
k−1
∑

i=0

(

n− 1

i

)

)

.

Noting that
(

n−1
i

)

+
(

n−1
i−1

)

=
(

n
i

)

whenever i > 0, and that
(

n−1
0

)

=
(

n
0

)

, we see that

B(f) ≥ 2n −
k−1
∑

i=0

(

n

i

)

.

Thus f has at most
∑k−1

i=0

(

n
i

)

solutions. �

It shall be useful to identify a stronger banned binary sequence problem, namely
those in which f(S,X) depends only on S.

Definition 3.8. A banned binary sequence problem f is independent if f(S,X) =
f(S, Y ) for any X,Y : [n] \ S → 0, 1. When f is independent, we write f(S).
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Corollary 3.9. Any independent k-fold banned binary sequence problem of length

n has at most
∑k−1

i=0

(

n
i

)

solutions.

Proof. We check that f is hereditary. If not, then there is S ∈
(

[n]
k

)

such that for
all Zα : S → {0, 1}, there is Xα : [n] \ S → {0, 1} with Zα /∈ f(S,Xα) = f(S). But
then f(S) is empty, a contradiction. The result follows from Theorem 3.7. �

Banned binary sequence problems provide a common framework to prove Sauer-
Shelah type bounds.

Proof of Theorem 2.2. We obtain a k + 1-fold independent BBSP f of length n as
follows. Given S = {as0 , . . . ask} ∈

(

A
k+1

)

, let f(S) be the set of binary sequences

Z of length k + 1 such that there is no F ∈ F such that asi ∈ F iff Z(i) = 1.
We have that f(S) is nonempty since the VC-dimension of F is k, and f is clearly
independent. Then a subset B of A is in the projection from F onto A iff the
characteristic sequence of B (i.e. the sequence where the jth entry is 1 iff aj ∈ B)
is a solution to f . The result follows from Corollary 3.9. �

Proof of Theorem 2.5. Let T be a binary element tree of height n, with nodes aσ
for σ ∈ 2<n. We obtain a k + 1-fold hereditary BBSP of length n, f , as follows.

Given S = {s0, . . . , sk} ∈
(

[n]
k+1

)

where s0 < s1 < · · · < sk and X : [n] \ S → {0, 1},
we obtain a binary element tree of height k+ 1 by taking all paths τ ∈ 2n through
T such that X ⊆ τ . Any two such paths first differ at some node aσ where |σ| ∈ S,
so removing all other nodes gives us the binary element tree TS,X of height k + 1.
Since F has thicket dimension k, not all leaves of TS,X can be properly labeled, so
let f(S,X) be the set of all sequences whose corresponding leaves in TS,X cannot be
properly labeled. Then a leaf in T can only be properly labeled if the corresponding
sequence is a solution to f .

We now show that f as constructed above is hereditary. Fix S = {s0, . . . , sk},
and suppose for contradiction that this choice of S witnesses that f is not hereditary.
Then, for each Zα : S → {0, 1}, there is Xα : [n] \ S → {0, 1} such that Zα /∈
f(S,Xα). We obtain a complete binary tree of height k + 1 specified by each path
Xα ∧ Zα constructed in this manner, restricted to S. In particular, any two paths
constructed in this manner first differ at some index in S, as the first index at
which Xα ∧Zα and Xβ ∧Zβ differ is in S. Since each Zα is not banned, we have a
complete binary tree of height k + 1 in which every leaf can be properly labeled, a
contradiction.

The result then follows from Theorem 3.7. �

3.2. An application to type trees. Banned binary sequence problems can be
applied to other problems with a tree structure. We use this to improve a result of
Malliaris and Terry [7].

Definition 3.10. Given a graph G = (V,E) on n vertices and A ⊆ 2<n, closed
under initial segments, we say that a labeling V = {aη | η ∈ A} is a type tree if for
each η ∈ A :

(1) If η ∧ 0 ∈ A, then aη∧0 is nonadjacent to aη. If η ∧ 1 ∈ A, then aη∧1 is
adjacent to aη.

(2) If η ( η′ ( η′′, then aη is adjacent to aη′ if and only if aη is adjacent to
aη′′ .

A type tree has height h if A ⊆ 2<h but A * 2<h−1.
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This is a specific instance of a type tree. More generally, given a model M, a
finite set B ⊆M , a finite collection ∆ of partitioned formulas closed under cycling
of the variables, and A ⊆ ω<ω closed under initial segments, a type tree is a labeling
B = {bη | η ∈ A} such that, for any η, η′ ∈ A, bη and bη′ have the same ∆-type over
their common predecessors {bζ | ζ ( η, β ( η′} iff η ⊆ η′ or η′ ⊆ η. Type trees are
used in more generality in [6].

Definition 3.11. The tree rank of a graph G = (V,E) is the largest integer t such
that there is a subset V ′ ⊂ V and some indexing V ′ = {aη | η ∈ 2<t} which is a
type tree for the induced graph on V ′, i.e. the type tree of V ′ is a full binary tree
of height t.

The main interest in type trees for graphs lies in the fact that if we have a branch
of length h for a graph (V,E) with tree rank t, there is a clique or independent
set of size at least max{h

2 , t} [7, Lemma 4.4]. More generally, branches through a
type tree can be used to extract indiscernible sequences [6, Theorem 3.5]. In both
cases, stability establishes the length of long branches through the type tree. For
graphs, this is by way of tree rank—observe that the edge relation having thicket
dimension k implies that the tree rank is at most k + 1. We use banned binary
sequence problems to improve the bounds from [7, Theorem 4.6]. The improvement
is modest, but it demonstrates how banned binary sequence problems accommodate
the combinatorics of type trees, at least in the case of the graph edge relation.

Theorem 3.12. Let G = (V,E) be a graph with |V | = n and tree rank t ≥ 2.
Suppose A ⊆ 2<n and V = {aη | η ∈ A} is a type tree with height h, where h ≥ 2t.
Then

h ≥ (n · (t− 2)!)
1
t + 1.

The assumptions on t and h are not restrictive if our aim is to obtain cliques
or independent sets. If t = 1, then there is no branching, and we obtain a clique
or independent set of size n

2 . If h < 2t, then the largest clique or independent set
guaranteed by [7, Lemma 4.4] is just the tree rank t.

Proof. We will associate a hereditary t-fold banned binary sequence problem of

length h − 1 with the type tree. Fix any subset S = {s0, . . . , st−1} in
(

[h−1]
t

)

and

any X ∈ 2[h−1]\S. Let f(S,X) consist of all Z ∈ 2S such that (X ∧ Z)|[st−1+1] is

an element of 2<h which is not in the index set A of the type tree.
Suppose for contradiction that f(S,X) = ∅. For each η ∈ 2<t+1, we identify η

with a partial function Zη : S ⇀ {0, 1}, where η(i) = Zη(si). For each i < t and
each η : [i] → {0, 1} in 2<t+1 \ 2t, let bη = a(X∧Zη)|[si]

. For each η : [t] → {0, 1}

in 2t, let bη = a(X∧Zη)|[st−1+1]
. Note that each bη is well-defined—in particular, for

η ∈ 2t, if bη = a(X∧Zη)|[st−1+1]
was not an element of the type tree, then we would

have Zη ∈ f(S,X). The rest of the elements are well-defined since the index set of
a type tree is closed under initial segments. Then the bη define a full binary type
tree of height t+ 1, contradicting our assumption that the tree rank of G is t. So
f is a t-fold BBSP of length h− 1.

We check that f is hereditary. Suppose for contradiction that f is not hereditary,

witnessed by some S ∈
(

[h−1]
t

)

. So for each Zα : S → {0, 1}, there is Xα : [h −
1] \ S → {0, 1} such that Zα /∈ f(S,Xα), and for α 6= β, the first index at which
Xα ∧ Zα and Xβ ∧ Zβ differ is in S. Identify each η ∈ 2<t+1 with Zη as above.
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For each i < t and each η : [i] → {0, 1}, let bη = a(Xα∧Zα)|[si]
for any α such that

Zη ⊆ Zα. For each η : [t] → {0, 1}, let bη = a(Xη∧Zη)|[st−1+1]
. These bη are defined

since Zη ∈ f(S,Xη) by hypothesis. All other bη, for η : [i] → {0, 1}, i < t, are
defined since type trees are closed under initial segments, and well-defined since if
Zη ⊆ Zα, Zβ , then the first index at which Xα ∧Zα and Xβ ∧Zβ differ is in S and
is at least si. Then the bη form a type tree of height t+ 1, a contradiction.

Thus a type tree of height h gives a hereditary t-fold banned binary sequence
problem of length h − 1. Now, by Theorem 3.7, the number of nodes at level h0,
h0 = 0, . . . , h− 1, is at most

t−1
∑

i=0

(

h0
i

)

.

Thus, the total number of nodes of a type tree of height h and tree rank t is at
most

h−1
∑

h0=0

t−1
∑

i=0

(

h0
i

)

= 1 +
h−1
∑

h0=1

t−1
∑

i=0

(

h0
i

)

= 1 +

h−1
∑

h0=1

(

1 +

t−1
∑

i=1

(

h0
i

)

)

≤
h−1
∑

h0=1

t−1
∑

i=1

(

h− 1

i

)

(1)

≤
h−1
∑

h0=1

t−1
∑

i=1

(h− 1)t−1

(t− 1)!
(2)

≤
h−1
∑

h0=1

(h− 1)t−1

(t− 2)!

≤
(h− 1)t

(t− 2)!
,

where estimates in (1) and (2) follow from hypotheses on t and h. Then

(h− 1)t

(t− 2)!
≥ n,

so

h ≥ (n · (t− 2)!)
1
t + 1.

�

Under the hypotheses of Theorem 3.12, applying [7, Lemma 4.4] gives us a clique
or independent set of size at least

(n · (t− 2)!)
1
t + 1

2
.

This is an improvement of the lower bound given by Malliaris and Terry [7, Corol-
lary 4.7].



MODEL THEORY AND COMBINATORICS OF BANNED SEQUENCES 11

4. Adapting the Fundamental Theorem of Vapnik and Chervonenkis

The fundamental theorem of Vapnik and Chervonenkis, also known as the VC-
theorem, states that for a set system of finite VC dimension, a random sampling
by a single tuple will, with high probability, uniformly give a good estimate of the
measures of all of the sets in the set system. We adapt this to the finite thicket
dimension case. The stronger hypothesis of finite thicket dimension allows for more
complicated sampling, by allowing for sampled elements to depend on the outcomes
of the previous samples.

Let F be a set system on X , with S ∈ F . Fix x̄ = (xσ)σ∈2<n , which we call a
test tree. We define

test(x̄, S) :=
1

n

n−1
∑

i=0

∑

τ∈2i

(

1S(xτ ) ·
∏

σ<τ

χτ
S(xσ)

)

where 1S is the indicator function for S, σ < τ means σ is an initial segment of τ ,
and χτ

S is the τ -indicator function for S, i.e. for σ < τ ,

χτ
S(xσ) =

{

1 xσ ∈ S ↔ τ(|σ|) = 1

0 otherwise.

This is calculated by first checking if xS,0 := x∅ ∈ S, then checking if xS,1 :=
x(1S(xS,0)) ∈ S, then checking if xS,2 := x(1S(xS0),1S(xS,1)) ∈ S, and so on. That is,
we follow the path determined by S through the test tree and check each element
on the path. Indeed, we have that

∏

σ<τ χ
τ
S(xσ) = 1 iff τ follows the characteristic

path of S on (xσ) (i.e. τ is an initial segment of the unique binary sequence η ∈ 2n

such that, for each σ < η, xσ ∈ S iff η(|σ|) = 1), and checking xτ is only relevant if
we have done so. Following this path, we count how many positive answers we get
and divide by the number of queries n to estimate the measure of S. (We think of
test(x̄, S) as testing S by x̄ to get a thicket estimate of the measure of S.)

Write

(3) YS,i(x̄) :=
∑

τ∈2i

(

1S(xτ ) ·
∏

σ<τ

χτ
S(xσ)

)

so that test(x̄, S) := 1
n

∑n−1
i=0 YS,i(x̄). That is YS,i(x̄) = 1 if the ith query is 1,

following the above process.

Proposition 4.1 (Weak law of large numbers). Let S ⊆ X be an event in a
probability space (X,µ). Fix ǫ > 0. Then for any integer n, we have

µn

(

x̄ ∈ Xn |

∣

∣

∣

∣

∣

1

n

n
∑

i=1

1S(xi)− µ(S)

∣

∣

∣

∣

∣

≥ ǫ

)

≤
1

4nǫ2

See [9] for a proof.

Proposition 4.2 (Weak law of large numbers for thickets). Let S ⊆ X be an event
in a probability space (X,µ). Fix ǫ > 0. Then for any integer n, we have

µ2n−1

(

(xσ)σ∈2<n ∈ X2n−1 |

∣

∣

∣

∣

∣

1

n

n−1
∑

i=0

∑

τ∈2i

(

1S(xτ ) ·
∏

σ<τ

χτ
S(xσ)

)

− µ(S)

∣

∣

∣

∣

∣

≥ ǫ

)

≤
1

4nǫ2
.



12 HUNTER CHASE AND JAMES FREITAG

Intuitively, this follows from 4.1 if we take

1

n

n−1
∑

i=0

∑

τ∈2i

(

1S(xτ ) ·
∏

σ<τ

χτ
S(xσ)

)

=
1

n

n−1
∑

i=0

1S(xτi,S )

and view the random choices of the xσ as being made “on the fly,” and only making
the choices which are relevant given our previous choices. We give a more precise
proof.

Proof. We follow the proof of 4.1. Observe that for each i, the random variable
Yi : X

2n−1 → [0, 1],

Yi :=
∑

τ∈2i

(

1S(xτ ) ·
∏

σ<τ

χτ
S(xσ)

)

has expectation µ(A) and variance µ(A)(1 − µ(A)) ≤ 1
4 , noting that 1S(xτ ) ·

∏

σ<τ χ
τ
S(xσ) can be nonzero for exactly one τ ∈ 2i. Additionally, the variables

Y0, . . . Yn−1 are mutually independent. So 1
n

∑n−1
i=0 Yi has expectation µ(A) and

variance ≤ 1
4n . The conclusion then follows from Chebyshev’s inequality. �

In other words, as the height of the test tree increases, the probability that a
random test tree gives a good estimate of the measure of S approaches 1. The adap-
tation of the VC-theorem states that, with probability approaching 1, a random
test tree gives a uniformly good estimate of the measures of all S ∈ F , provided
that F has finite thicket dimension.

Theorem 4.3 (VC-theorem for thickets). Let (X,µ) be a finite probability space,
F ⊆ P(X) be a family of subsets, and ρF(n) be the thicket shatter function of F .
Then for any n and ǫ > 0, we have

(4) µ2n−1

(

sup
S∈F

| test(x̄, S)− µ(S)| > ǫ

)

≤ 8ρF(n) exp

(

−
nǫ2

32

)

.

In particular, when F has finite thicket dimension, ρF (n) is bounded by a poly-
nomial in n, and so the right-hand side of (4) approaches 0 exponentially quickly.

Our proof follows the proof of the VC-theorem closely—see [9].

Proof. Fix an integer n. For x̄ = (xσ)σ∈2<n , x̄′ = (x′σ)σ∈2<n , and S ∈ F , let
f(x̄, x̄′, S) := | test(x̄, S)− test(x̄′, S)|.

Let (xσ)σ∈2<n , (x′σ)σ∈2<n be mutually independent random elements from X ,
each with distribution µ. Let ξ0, . . . , ξn−1 be random variables, independent from
each other and from the previous ones, such that Prob(ξi = 1) = Prob(ξi = −1) =
1
2 , for all i.

Claim. We have

Prob

(

sup
S∈F

f(x̄, x̄′, S) > ǫ/2

)

≤ 2Prob

(

sup
S∈F

1

n

∣

∣

∣

∣

∣

n−1
∑

i=0

ξiYS,i(x̄)

∣

∣

∣

∣

∣

≥ ǫ/4

)

with YS,i as in (3).

Observe that for fixed i and S, the random variable YS,i(x̄)− YS,i(x̄
′) has mean

0 and a symmetric distribution (taking values 1 and -1 with equal probability).
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Therefore its distribution does not change if we multiply it by ξi. We then compute:

Prob

(

sup
S∈F

f(x̄, x̄′, S) > ǫ/2

)

= Prob

(

sup
S∈F

1

n

∣

∣

∣

∣

∣

n−1
∑

i=0

(YS,i(x̄)− YS,i(x̄′))

∣

∣

∣

∣

∣

> ǫ/2

)

= Prob

(

sup
S∈F

1

n

∣

∣

∣

∣

∣

n−1
∑

i=0

ξi(YS,i(x̄)− YS,i(x̄′))

∣

∣

∣

∣

∣

> ǫ/2

)

≤ Prob

(

sup
S∈F

1

n

∣

∣

∣

∣

∣

n−1
∑

i=0

ξiYS,i(x̄)

∣

∣

∣

∣

∣

> ǫ/4 or sup
S∈F

1

n

∣

∣

∣

∣

∣

n−1
∑

i=0

ξiYS,i(x̄′)

∣

∣

∣

∣

∣

> ǫ/4

)

≤ 2Prob

(

sup
S∈F

1

n

∣

∣

∣

∣

∣

n−1
∑

i=0

ξiYS,i(x̄)

∣

∣

∣

∣

∣

> ǫ/4

)

.

This proves the claim.

Claim. We have:

Prob

(

sup
S∈F

f(x̄, x̄′, S) > ǫ/2

)

≤ 4ρF(n) exp

(

−
nǫ2

32

)

.

Fix a tuple ā = (aσ)σ∈2<n ∈ X2n−1. For S ∈ F , let AS(ā) be the event
1
2 |
∑n−1

i=0 ξiYS,i(ā)| > ǫ/4, so that the only randomness is in the ξi’s. By Chernoff’s
bound (see Appendix B of [9]), we have

Prob(AS(ā)) ≤ 2 exp

(

−
nǫ2

32

)

.

Note that AS(ā) depends only on the characteristic path of S through ā, of which
there are at most ρF(n) values as S ranges in F . So there are at most ρF(n) events
AS(ā) to consider. Then the union bound shows that the disjunction ∪S∈FAS(ā)
has probability at most 2ρF(n) exp(−nǫ2/32). Then, by the first claim, we have

Prob

(

sup
S∈F

f(x̄, x̄′, S) > ǫ/2

)

≤ 2Prob(∪S∈FAS(x̄))

≤ 4ρF(n) exp

(

−
nǫ2

32

)

.

This proves the claim.
We may assume that n > 2/ǫ2, as otherwise the right-hand side of (4) is larger

than 1. Let

X0 := {b̄ ∈ X2n−1 | Prob

(

sup
S∈F

f(x̄, b̄, S) >
ǫ

2

)

≥
1

2
}.

Then the second claim implies that µ2n−1(X0) ≤ 8ρF(n) exp(−nǫ
2/32). Fix ā ∈

X2n−1 \X0 and S ∈ F . By Proposition 4.2, we have

Prob
(

| test(x̄, S)− µ(S)| >
ǫ

2

)

≤
1

nǫ2
<

1

2
.

It follows that there is x̄ ∈ X2n−1 such that f(x̄, ā, S) ≤ ǫ/2 and | test(x̄, S) −
µ(S)| ≤ ǫ/2. This implies that | test(ā, S) − µ(S)| ≤ ǫ. As S was arbitrary, we
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conclude that for any ā ∈ X2n−1 \X0, we have that supS∈F | test(ā, S)−µ(S)| ≤ ǫ.
The result follows. �

The proof goes through verbatim if X is infinite, provided we have some mea-
surability conditions, namely:

• each S ∈ F is measurable;
• for each n, the function

x̄ = (xσ)σ∈2<n 7→ sup
S∈F

| test(x̄, S)− µ(S)|

from X2n−1 to R is measurable; and
• for each n, the function

(x̄, x̄′) = ((xσ)σ∈2<n , (x′σ)σ∈2<n) 7→ sup
S∈F

| test(x̄, S)− test(x̄′, S)|

from X2(2n−1) to R is measurable.

To demonstrate the power of the result, we would like to find an example of a
set system F over a probability space (X,µ) with finite VC-dimension but infinite
thicket dimension such that

µ2n−1

(

sup
S∈F

| test(x̄, S)− µ(S)| > ǫ

)

does not approach 0 exponentially quickly in n (as it would if F had finite thicket
dimension). This would show that sampling by test trees is meaningfully more
complex than sampling by tuples, and that we can necessarily obtain uniformly
good estimates of measures with probability exponentially approaching 1 only for
set systems that have finite thicket dimension.

5. Generalized banned sequence problems and applications

In this section we generalize Theorem 3.7 to the setting of j-ary sequences, and
apply the resulting combinatorics to prove Sauer-Shelah type lemmas in the op-rank
context [4].

5.1. Banned j-ary sequence problems.

Definition 5.1. A k-fold banned j-ary sequence problem of length n is a function

f :

(

[n]

k

)

× jn−k → P(jk) \ {∅}.

A solution to g is a j-ary sequence X ∈ jn such that for any S ∈
(

[n]
k

)

,

X |S /∈ f(S,X |[n]\S).

As before, for a fixed S ∈
(

[n]
k

)

,, we denote the elements of S by {s0, . . . , sk−1},

where s0 < s1 < . . . < sk−1. When we consider f(S,X), we view X ∈ jn−k as a
function X : [n] \ S → [j] = {0, 1, . . . , j − 1}, and elements of f(S,X) as functions
Z : S → [j].

Definition 5.2. A k-fold banned j-ary sequence problem (j-ary BSP) of length

n, f , is not hereditary if there is S ∈
(

[n]
k

)

such that for all Zα : S → [j], there is
Xα : [n] \S → [j] such that Zα /∈ f(S,Xα), and additionally, for Zα 6= Zβ , the first
index at which Xα ∧ Zα and Xβ ∧ Zβ differ is in S.

Otherwise, say f is hereditary.
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Theorem 5.3. Any hereditary k-fold banned j-ary sequence problem of length n

has at most
∑k−1

i=0 (j − 1)n−i
(

n
i

)

solutions.

Proof. The proof is by induction on n and k, and is similar to the proof of Theorem
3.7. Throughout, we fix a hereditary k-fold banned j-ary sequence problem of length
n, f .

Let B(f) denote the number of sequences banned by f . It suffices to prove that

B(f) ≥ jn −
k−1
∑

i=0

(j − 1)n−i

(

n

i

)

.

The base cases are k = n and k = 1. When k = n, the result is immediate,

since then jn−
∑k−1

i=0 (j−1)n−i
(

n
i

)

= 1, and any j-ary BSP has at least one banned
sequence.

When k = 1, we must show that B(f) ≥ jn − (j − 1)n, i.e. there are at most
(j − 1)n solutions. Assume for contradiction that there are at least (j − 1)n + 1
solutions. We claim that there are s ∈ [n] and solutions X0, . . . , Xj−1 such that
Xi(s) = i for all i ∈ [j], and

X0|[s] = X1|[s] = · · · = Xj−1|[s].

Such an s and Xi witness that f is not hereditary, a contradiction. If we cannot
find such Xi for s = 0, i.e. there is some m0 ∈ [j] such that for no solution X
does X(0) = m0, then by the generalized pigeonhole principle there is some l0 ∈ [j]
such that for at least (j − 1)n−1 + 1 solutions X , we have X |[1] = l0. From among
these sequences, if we cannot find such Xi for s = 1, i.e. there is some m1 ∈ [j]
such that for no solution X does X(1) = m1, then by the generalized pigeonhole
principle there is some l1 ∈ [j] such that for at least (j − 1)n−2 +1 solutions X , we
have X |[2] = l0l1. Continue in this fashion. If at any index s we find the desired
solutions Xi, we are done. If this process does not terminate earlier, we eventually
obtain at least (j − 1) + 1 = j solutions X with X |[n−1] = l0l1 · · · ln−2, giving us
the desired solutions Xi = l0l1 · · · ln−2i for each i ∈ [j], with s = n− 1. This proves
the k = 1 case.

Otherwise, we proceed by induction. Given a j-ary sequence X of length n, we
call an entry of X bad if it is part of a k-subset S such that X |S ∈ f(S,X |[n]\S).

We call a j-ary sequence of length n − 1, X ′ potentially bad for T ∈
(

[n−1]
k−1

)

if

there is l ∈ [j] such that the (n − 1)th entry of X ∧ l is bad for S = T ∪ {n− 1}.
That is, setting S = T ∪ {n− 1}, we have X ′|T ∧ l ∈ f(S,X ′|[n]\T ).

Let f̂ be the (k − 1)-fold banned j-ary sequence problem of length n − 1 given

by those sequences in jn−1 which are potentially bad for some T ∈
(

[n−1]
k−1

)

. That

is, let Z ∈ f̂(T,X) if Z ∧X is potentially bad for T . We claim that f̂ is hereditary.

If f̂ were not hereditary, then there would exist T ∈
(

[n−1]
k−1

)

such that for each

Zα : T → [j], there is Xα : [n− 1] \T → [j] such that Zα /∈ f̂(T,Xα), with the first
index at which any two Xα ∧ Zα and Xβ ∧Zβ differ belonging to T . Note that for
some α and some l ∈ [j], we have that

Zα ∧ l ∈ f(T ∪ {n− 1}, Xα),

or else associating Zα ∧ l with Xα would witness that f itself is not hereditary.

In particular, Zα ∧ Xα is potentially bad for T . Then, by definition of f̂ , Zα ∈
f̂(T,Xα), a contradiction. So f̂ is also hereditary.
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Let f ′ be the k-fold banned j-ary sequence problem of length n − 1 given by
those sequences which contain a banned subsequence for f in the first n−1 entries,

for any choice of the last entry. That is, given S ∈
(

[n−1]
k

)

, let Z ∈ f ′(S,X)
iff Z ∈ f(S,X ∧ l) for all l ∈ [j]. We claim that f ′ is hereditary. Suppose for

contradiction that f ′ is not hereditary. Then there is S ∈
(

[n−1]
k

)

such that for all
Zα : S → [j], there is Xα : [n − 1] \ S → [j] such that Zα /∈ f ′(S,Xα), with the
first index at which any two Xα ∧ Zα and Xβ ∧ Zβ differ belonging to S. That is,
by definition of f ′, for each α, there is lα ∈ [j] such that Zα /∈ f(S,Xα ∧ lα). Let
X ′

α be Xα ∧ lα. Then associating Zα with X ′
α witnesses that f is not hereditary, a

contradiction.
Now, we aim to prove

B(f) ≥ B(f̂) +B(f ′) · (j − 1).

For a given sequence X ′ which is banned by f̂ , there is at least one extension X
which is banned by f , and we pick one such extension. For a given sequence Y ′

banned by f ′, at most one extension Y was already obtained by extending a banned

sequence X ′ for f̂ . So there are at least j − 1 extensions Y which are banned by
f (by definition of f ′) but was not obtained by extending banned sequences for

f̂ . Therefore these banned sequences constructed from f ′ and f̂ have no common
members, and so we have

B(f̂) +B(f ′) · (j − 1),

as desired. By induction, we have that

B(f) ≥ jn−1 −
k−2
∑

i=0

(j − 1)n−1−i

(

n− 1

i

)

+ (j − 1)

(

jn−1 −
k−1
∑

i=0

(j − 1)n−1−i

(

n− 1

i

)

)

= jn −
k−1
∑

i=0

(j − 1)n−i

(

n

i

)

.

Thus, f has at most
∑k−1

i=0 (j − 1)n−i
(

n
i

)

solutions.
�

5.2. On the op-rank shatter function. The context of banned j-ary sequences
allows us to work in the op-rank context of [4], which we reframe in terms of set
systems. Whereas VC dimension and thicket dimension make use of binary trees,
ops-rank makes use of 2s-ary trees.

Definition 5.4. A 2s-ary element tree T of height n with labels from X is a
labeling of each node ν ∈ (2s)<n by s-tuples xν = (xν,0, . . . , xν,s−1) from X . A leaf
of T is an element of (2s)n. A leaf ξ is properly labeled by a set A if, for all j < n
and for all i < s, xξ|[j],i ∈ A iff ξ(j)(i) = 1.

While this will be the definition that we use in practice, it is often useful think of
such trees as binary trees with certain requirements on uniformity of labels within
levels.
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x0, x1

x8, x9

A15A14A13A12

00

01 10

11

x6, x7

A11A10A9A8

00

01 10

11

x4, x5

A7A6A5A4

00

01 10

11

x2, x3

A3A2A1A0

00

01 10

11

00

01 10

11

Figure 1. A 22-ary element tree of height 2. A9 properly labels
its leaf if it contains x0 and x7, but does not contain x1 and x6,
with no requirements on membership of the other elements.

Definition 5.5. An alternative 2s-ary element tree T of height n with labels from
X is a labeling of 2<ns by elements of X such that given any two nodes σ and σ′

with labels xσ and xσ′ , if |σ| = |σ′| = l and σ|s[⌊ l
s
⌋] = σ′|s[⌊ l

s
⌋], then xσ = xσ′ .

A leaf of T is an element of 2ns, i.e. a binary sequence of length ns. A leaf τ is
properly labeled by a set A if, for all j < ns, xτ |[j] ∈ A iff τ(j) = 1.

x0

x1

x8

x9

A15A14

x9

A13A12

x6

x7

A11A10

x7

A9A8

0 1
x1

x4

x5

A7A6

x5

A5A4

x2

x3

A3A2

x3

A1A0

0 1

0 1

Figure 2. An alternative 22-ary element tree of height 2. Ob-
serve that the labels on the first two levels are uniform. Then, on
the fourth level (and, trivially, the third level), labels are uniform
across all nodes with the same initial segment of length 2. We
identify 1 with the right branch. As before, A9 properly labels its
leaf if it contains x0 and x7, but does not contain x1 and x6, with
no requirements on membership of the other elements.

Definition 5.6. The ops-rank of a set system (X,F), written opRs(X,F) or
opRs(F), is the largest k < ω such that there is a 2s-ary element tree of height
k with labels from X such that every leaf can be properly labeled by elements of
F , or is infinite if there are such trees of arbitrary height. As a convention, we set
opRs(F) = −∞ if F = ∅. The ops shatter function ψs

F (n) is the maximum number
of leaves properly labeled by elements of F in a 2s-ary element tree of height n.
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It is easy to verify that the ops-rank and ops shatter function do not depend on
which definition of 2s-ary element tree we take.

The ops context is therefore intermediate between thicket context and VC con-
text. Instead of picking labels node by node (as in the thicket context) or uniformly
for a single level (as in the VC context), we pick labels s at a time. As before, the
dual ops-rank and dual ops shatter function of a set system are the ops-rank and
ops shatter function of the dual set system.

Corollary 5.7. Let F be a set system with opRs(F) = k. Then

ψs
F(n) ≤

k
∑

i=0

(2s − 1)n−i

(

n

i

)

.

The proof follows our proof of Theorem 2.5, using j-ary banned sequence prob-
lems.

Proof. Let T be an 2s-ary element tree of height n. Identifying the 2s binary
sequences of length s with [2s], we obtain a hereditary (k + 1)-fold banned 2s-ary

sequence problem of length n, f , as follows. Given S = {s0, . . . , sk} ∈
(

[n]
k+1

)

, where

s0 < s1 < · · · < sk and X ∈ (2s)[n]\S , we obtain a 2s-ary element tree of height
k+1 by taking all paths ξ ∈ (2s)n through T such that X ⊂ τ . Decisions will only
be made at nodes ν, where |ν| ∈ S, so removing all other nodes gives us a 2s-ary
element tree TS,X of height k + 1. Since opRs(F) = k, not all leaves of TS,X can
be properly labeled, so let f(S,X) be the set of all sequences whose corresponding
leaves in TS,X cannot be properly labeled. Then a leaf in T can only be properly
labeled if the corresponding sequence is a solution to f .

It remains to show that f is hereditary. Fix S = {s0, . . . , sk}, and suppose for
contradiction that this choice of S witnesses that f is not hereditary. Then, for
any Zα : S → {0, . . . , 2s − 1}, there is Xα : [n] \ S → {0, . . . , 2s − 1} such that
Zα /∈ f(S,Xα). We obtain a complete 2s-ary tree of height k + 1 specified by each
path Xα ∧ Zα constructed in this manner, restricted to S. Since each Zα is not
banned, we have a 2s-ary tree of height k + 1 in which every leaf can be properly
labeled, a contradiction.

The result then follows from Theorem 5.3. �

The bound of Corollary 5.7 can be improved by using more information—in
particular, when bounding the ops shatter function, we can consider opr-ranks for
r ≤ s. We can already give a better bound for the case where a set system has
opr-rank 0 for some r.

Proposition 5.8. Let F be a set system with opRr(F) = 0. Then

ψs
F (n) ≤

(

r−1
∑

i=0

(

s

i

)

)n

Proof. Call a node live if it the initial segment of a leaf that can be properly labeled.
At each node of the tree, we consider s elements. Observing that opRr(F) = 0 says
precisely that the VC dimension of F is strictly less than r, Theorem 2.2 tells us

that we can find sets which properly label at most
∑r−1

i=0

(

s
i

)

of the possible boolean

combinations of the s elements. That is, each live node has at most
∑r−1

i=0

(

s
i

)

live

successors in the next level. Therefore, there are at most
(

∑r−1
i=0

(

s
i

)

)m

live nodes
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at the level of height m (counting from 0). Since leaves in a tree of height n appear
at the nth level, the result follows. �

The set system of half-spaces in Rr achieves the bound of Proposition 5.8 for the
dual ops shatter function. (This is the famous cake-cutting problem.)

Proposition 5.9. Let F be the dual set system to the set system of Rr consisting
of half-spaces. Then

ψs
F (n) =

(

r
∑

i=0

(

s

i

)

)n

.

In particular, opRr+1(F) = 0.

Proof. It suffices to verify that taking s hyperplanes in general position (i.e. so that
any m hyperplanes intersect in a (r−m)-dimensional subspace) partitions Rr into
∑r

i=0

(

s
i

)

pieces, each of which contains an open set (in the Euclidean topology).
Such a partition corresponds to one level in the 2s-ary tree. Each piece may then
be partitioned further in the same manner for each successive level of the tree.

We proceed by induction. The s = 1 case is obvious, for all r. The r = 1 case is
obvious, for all s.

Consider the s+1 and r+1 case. Removing one of the s+1 hyperplanes, we have
∑r+1

i=0

(

s
i

)

pieces by induction. Restore the hyperplane that we removed. Viewing

that hyperplane as a copy of Rr, it is partitioned into
∑r

i=0

(

s
i

)

pieces by the other

hyperplanes, by induction. Each such piece corresponds to a piece in Rr+1 which
is cut into two pieces by the restored hyperplane. We therefore find that the total
number of pieces is

r+1
∑

i=0

(

s

i

)

+

r
∑

i=0

(

s

i

)

=

r+1
∑

i=0

(

s+ 1

i

)

.

as desired. �

We can further refine our methods further. Fix a base set X . We identify any
set system (X,F) on X with F .

Proposition 5.10. (1) Let F1 ⊆ F2. Then, for any s, opRs(F1) ≤ opRs(F2).
(2) Let s1 < s2. Then opRs1

(F) ≥ ⌊ s2
s1
⌋ opRs2

(F).

Proof. (1) is trivial. For (2), suppose that we have a 2s2 -ary element tree T of
height n2 := opRs2

(F), with labels xν = (xν,0, . . . , xν,s2−1) for each ν ∈ (2s2)<n2 ,
in which every leaf can be properly labeled. Then we can obtain a 2s1-ary element
tree T ′ of height n1 := ⌊ s2

s1
⌋n2 in which every leaf can be properly labeled. Let

t = ⌊ s2
s1
⌋. Intuitively, we split each level of the 2s2-ary tree into t levels of the

2s1-ary tree, with any label xν = (xν,0, . . . , xν,s2−1) splitting into t labels

(xν,0, . . . , xν,s1−1), (xν,s1 , xν,2s1−1), . . . , (xν,(t−1)s1 , . . . , xν,ts1−1).

More formally, suppose ξ ∈ (2s1)i, for i < n1. Suppose i = jt + k, for 0 ≤ k < t.
Then label ξ with

xξ = (xνξ,ks1 , . . . xνξ,(k+1)s1−1),

where νξ ∈ (2s2)j is as follows. Let σl = ξ(l) ∈ 2s1 . Then let τm ∈ 2s2 be the
concatenation of σmt, . . . , σ(m+1)t−1, appending as many 0s as needed to obtain a
sequence of length s2. Then let

νξ := (τ0, . . . , τj−1).
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Then the labeling of T ′ by the xξ gives a 2s1-ary tree of height n1 in which every
leaf can be properly labeled (in particular, by one of the labels of the leaves of the
2s2-ary tree). �

(2) above is somewhat easier to see using the alternative definition—we simply
view the tree as a 2s1-ary tree instead of a 2s2 -ary tree, possibly after removing
some levels. Figure 2 is the 21-ary tree obtained from Figure 1 by this process.

Given F , x0, . . . , xs−1 ∈ X , and σ : [s] → 2, let

Fσ := {Y ∈ F | for all i < n, xi ∈ Y iff σ(i) = 1}.

Call each Fσ a child of F . Then, in an ops-tree with root (x0, . . . , xs−1), Fσ consists
of all sets in F which properly label a leaf whose path begins with σ. Observe that
if for all σ : [s] → 2, opRs(Fσ) ≥ a, then opRs(F) ≥ a+ 1; we can obtain a 2s-ary
tree of height a+ 1 by labeling the root with (x0, . . . , xs−1), and appending 2s-ary
trees of height a witnessing opRs(Fσ) ≥ a at the appropriate successor nodes.

Lemma 5.11. Suppose opRr(F) = a <∞. Then, given any x0, . . . , xs−1 ∈ X, we

have opRr(Xσ) ≤ a− 1 for at least 2s −
∑r−1

i=0

(

s
i

)

children Fσ. More generally, we

have opRr(Xσ) ≤ a− l for at least 2s −
∑lr−1

i=0

(

s
i

)

children Fσ.

Proof. We obtain an independent r-fold banned binary sequence problem f of

length s as follows. For each S ∈
(

[s]
r

)

, let f(S) be those functions η : S → 2
such that opRr(Fη) ≤ a− 1, where

Fη := {Y ∈ F | for all i ∈ S, xi ∈ Y iff η(i) = 1}.

Each f(S) is nonempty, or else those Xη witness that that opRr(F) ≥ a + 1, a

contradiction. Then σ : [s] → 2 is banned by f if there is some S ∈
(

[s]
r

)

such that
opRr(Fσ|S ) ≤ a − 1, whence opRr(Fσ) ≤ a − 1. So sequences banned by f have

the corresponding child drop in opr-rank, of which there are at least 2s −
∑r−1

i=0

(

s
i

)

many.
For the more general case, we instead obtain an independent lr-fold banned

binary sequence problem. For each S ∈
(

[s]
lr

)

, let f(S) be those η : S → 2 such
that opRr(Fη) ≤ a − l. Each f(S) is nonempty, or else those Fη witness that
opRr(F) ≥ a+ 1. Then sequences banned by f have the corresponding child drop

in opr-rank by at least l, of which there are at least 2s −
∑lr−1

i=0

(

s
i

)

many. �

The boundary between finite and infinite op-ranks serves as an important pa-
rameter in obtaining better bounds. It is also of model-theoretic interest, coinciding
with other known properties.

Definition 5.12. The op-dimension of a set system F is

sup{r | opRr(F) = ∞}.

Expressed in model-theoretic terms, the op-dimension of a (type-)definable set X
in some model is the supremum of the op-dimension of set systems on X generated
finite sets of formulas. In this context, op-dimension coincides with o-minimal
dimension in o-minimal theories and dp-rank in distal theories [4].

We use Lemma 5.11 to obtain better bounds on the ops shatter function by using
op-dimension.

Definition 5.13. Let ψs
r,b(n) be the greatest possible number of properly labeled

leaves in a 2s-ary tree of height n by any set system F with opRr(F) ≤ b < ω.
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Theorem 5.14. Let a0 :=
∑r−1

i=0

(

s
i

)

and a1 = 2s − a0. Then

ψs
r,b(n) ≤

b
∑

i=0

(

n

i

)

an−i
0 ai1.

Proof. The case n = 0 is trivial for all b. We proceed by induction on b. The case
b = 0 is Proposition 5.8.

For the case b + 1, we observe that, by monotonicity of ψs
r,b(n) in b, we maxi-

mize the possible number of properly labeled leaves by having as many children as
possible not decrease in opr-rank. We now proceed by induction on n. By Lemma
5.11, we can have at most a0 such children, and the remaining a1 children must
drop in opr-rank by at least 1. We therefore obtain the recurrence

ψs
r,b+1(n) ≤ a0ψ

s
r,b+1(n− 1) + a1ψ

s
r,b(n− 1)

≤ a0

b+1
∑

i=0

(

n− 1

i

)

an−i−1
0 ai1 + a1

b
∑

i=0

(

n− 1

i

)

an−i−1
0 ai1 by induction

≤
b+1
∑

i=0

(

n− 1

i

)

an−i
0 ai1 +

b
∑

i=0

(

n− 1

i

)

an−i−1
0 ai+1

1

≤

(

n− 1

0

)

an0 +

b+1
∑

i=1

(

n− 1

i

)

an−i
0 ai1 + sumb+1

i=1

(

n− 1

i− 1

)

an−i
0 ai1

≤

(

n

0

)

an0 +

b+1
∑

i=1

(

n

i

)

an−i
0 ai1

≤
b+1
∑

i=0

(

n

i

)

an−i
0 ai1

as desired.
�

In particular, for a set system with op-dimension d, we take r = d + 1. Then
the op shatter function is bounded by an exponential function with the base a0
determined by d. Furthermore, coefficients for lower order terms can be improved
when r ≤ s

2 , as then the more general case of Lemma 5.11 dictates that some
children must drop in opr-rank by more than 1. This creates a more complicated
recurrence, but the result remains exponential in a0.
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