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Abstract. In this note, we construct a distal expansion for the structure (R; +, <,H), where H ⊆ R is
a dense Q-vector space basis of R (a so-called Hamel basis). Our construction is also an expansion of the
dense pair (R; +, <,Q) and has full quantifier elimination in a natural language.

1. Introduction

Distal theories were introduced by Simon in [9] as a way to isolate those NIP theories which are purely
unstable. For example, all o-minimal theories and all P -minimal theories are distal, whereas the theory of
algebraically closed valued fields is non-distal due to the presence of a stable algebraically closed residue
field. Distality has useful combinatorial consequences. For instance, in [3], Chernikov and Starchenko show
that distal theories enjoy a version of the strong Erdös-Hajnal Property. These combinatorial consequences
also apply to theories which have a distal expansion, i.e., to reducts of a distal theory. This paper shows
that a certain class of non-distal theories have a distal expansion. In this introduction, we describe the most
important case of this construction.

In [7], Hieronymi and Nell showed that two particular structures are not distal: (R; +, <,Q) and (R; +, <,H),
where H ⊆ R is a dense Q-vector space basis of R (a so-called Hamel basis). These findings were initially
unexpected, as these structures are closely related to their common o-minimal reduct (R; +, <). Simon
then asked whether these structures at least have some distal expansion. In [8], Nell constructed a distal
expansion of (R; +, <,Q), essentially by equipping the quotient R/Q with a linear order. For the structure
(R; +, <,H), a similar trick could not be employed since this structure has elimination of imaginaries [5]. In
this paper we construct a distal expansion of (R; +, <,H). We now describe our construction, as it applies
to (R; +, <,H), in greater detail.

We expand (R; +, <,H) to a structure (R; +, <,H, v,<1,∞) with three new primitives: a unary function v,
a binary relation <1, and a constant ∞.

First, we define v : R \ {0} → H ⊆ R as follows. Let α ∈ R \ {0} be nonzero. As H is a basis of R as a
vector space over Q, there are n ≥ 1, basis vectors h1, . . . , hn ∈ H and scalars q1, . . . , qn ∈ Q× such that
α = q1h1 + · · ·+ qnhn and h1 < · · · < hn. The data (n, h1, . . . , hn, q1, . . . , qn) is uniquely determined by the
requirement that h1 < · · · < hn. Thus we define v(α) := h1, and this will be well-defined.
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We define the binary relation <1 as the unique ordering which makes (R; +) into an ordered group such that

0 <1 α :⇐⇒ 0 < q1, for every α = q1h1 + · · ·+ qnhn 6= 0 as above.

Finally, we introduce a new element ∞ as a default value:

v(0) = v(∞) = α+∞ = ∞+ α = ∞+∞ := ∞, α < ∞, and α <1 ∞

for every α ∈ R. We introduce this element ∞ mainly for aesthetic reasons. Indeed, this function v : R →
H ∪ {∞} is in fact a convex valuation on the ordered abelian group (R; +, <1) with value set (H ∪ {∞}, <).

In this paper, we work over an arbitrary ordered C-vector space, where C is an ordered field. We call the
valuation v constructed as above a Hamel valuation, as its image is a Hamel basis of the underlying ordered
vector space. Likewise, we call the resulting structure a Hamel space. In a natural language LHam, we
formulate a certain theory THam of these Hamel spaces. The main result of the paper is:

Theorem (5.1). THam is distal.

In §2 we recall the definition of distality for a theory T , as well as for a partitioned formula ϕ(x; y). We also
provide the statement of Distal Criterion 2.6, a criterion we will later use to prove that the theory THam is
distal.

In §3 we introduce I-ordered C-vector spaces. These are vector spaces over an ordered field C, equipped
with a family of compatible linear orderings <i, indexed by i ∈ I. We construct a complete theory TC,I of
these spaces, and show that it is distal. The arguments in this section are routine; however it establishes the
language and theory that we will expand when constructing THam.

In §4 we introduce Hamel valuations and Hamel spaces over C. We give a language LHam of Hamel spaces
over C, and prove that a certain LHam-theory THam admits quantifier elimination and is complete. This
section is the main technical part of the paper. In §5 we prove the main result of the paper. This involves
various lemmas on how indiscernible sequences behave in Hamel spaces and applying Distal Criterion 2.6.
We also point out several consequences of distality which are also of model-theoretic interest.

In §6 we show in what sense models of THam are expansions of an o-minimal structure with a dense inde-
pendent set (like (R; +, <,H)). As a bonus, our models of THam are also expansions of dense pairs (like
(R; +, <,Q)), and we show how this works as well. We also point out some natural follow-up questions.
Finally, in §7 we show that THam is not strongly dependent, in contrast to the theories of dense independent
sets or dense pairs.

Conventions. Throughout, m and n range over N = {0, 1, 2, . . .}.

All orderings are total. Let S be a set and let < be an ordering on S. We say that a subset P ⊆ S is
downward closed, or is a cut, if for all a, b ∈ S, if b ∈ P and a < b, then a ∈ P . A well-indexed
sequence is a sequence (aρ) whose terms aρ are indexed by the elements ρ of an infinite well-ordered set
without a greatest element.

Let I be an index set. An I-ordering on S is a family (<i)i∈I of orderings on S, and S equipped with this
family is referred to as an I-ordered set. Suppose S is equipped with an I-ordering (<i)i∈I . A subset of
S is viewed as an I-ordered set as well by the induced ordering for each i. We put S∞ := S ∪ {∞}, ∞ 6∈ S,
with I-ordering on S extended to an I-ordering on S∞ by declaring S <i ∞ for each i ∈ I. Occasionally, we
take two distinct elements −∞,∞ 6∈ S and extend the I-ordering on S to S±∞ := S∪{−∞,∞} by declaring
−∞ <i S <i ∞ for each i ∈ I. A polycut in S is a family

(

(Pi, Qi)
)

i∈I
of pairs of subsets of S such that for

each i ∈ I, Pi is a downward closed subset of (S,<i) and Qi = S \ Pi. Given an element b in an I-ordered
set extending S, we say that b realizes the polycut

(

(Pi, Qi)
)

i∈I
if for every i ∈ I, Pi <i b <i Qi. Given

i ∈ I and a, b ∈ S±∞ such that a <i b, we define

(a, b)i := {s ∈ S : a <i s <i b}.

Suppose i ∈ I and A is a finite subset of S. Then by mini A we mean minA with respect to the linear order
(S,<i).
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If G is an expansion of an additively written abelian group, then we set G6= := G \ {0}. For a field C we let
C× := C \ {0} = C 6= be its multiplicative group of units.

In general we adopt the model theoretic conventions of Appendix B of [1]. In particular, L can be a
many-sorted language. For a complete L-theory T , we will sometimes consider a model M |= T and a
cardinal κ(M) > |L| such that M is κ(M)-saturated and every reduct of M is strongly κ(M)-homogeneous.
Such a model is called a monster model of T . In particular, every model of T of size ≤ κ(M) has
an elementary embedding into M. All variables are finite multivariables. By convention we will write
“indiscernible sequence” when we mean “∅-indiscernible sequence”.

2. Preliminaries on distality

Throughout this section L is a language and T is a complete L-theory.

Definition of distality. In this subsection we fix a monster model M of T .

Definition 2.1. We say that T is distal if for every A ⊆ M, for every x, and for every indiscernible sequence
(ai)i∈I from Mx, if

(1) I = I1 + (c) + I2 where I1 and I2 are infinite, and
(2) (ai)i∈I1+I2 is A-indiscernible,

then (ai)i∈I is A-indiscernible. Furthermore, we say that an L-structure M is distal if Th(M) is distal.

It is also convenient to define what it means for a formula ϕ(x; y) to be distal:

Definition 2.2. We say a formula ϕ(x; y) is distal if for every b ∈ My and every indiscernible sequence
(ai)i∈I from Mx, if

(1) I = I1 + (c) + I2 where I1 and I2 are infinite, and
(2) (ai)i∈I1+I2 is b-indiscernible,

then |= ϕ(ac; b) ↔ ϕ(ai; b) for every i ∈ I.

Remark 2.3. The collection of all distal formulas in the variables (x; y) is closed under arbitrary boolean
combinations, including negations. In the literature, there is another local notion of distality: that of a
formula ϕ(x; y) having a strong honest definition (see [2, Theorem 21]). The collection of formulas ϕ(x; y)
which have a strong honest definition is in general only closed under positive boolean combinations.

Lemma 2.4. The following are equivalent:

(1) T is distal;
(2) every ϕ(x; y) ∈ L is distal.

Example 2.5. All o-minimal theories are distal; see [9, Lemma 2.10]. In particular, the theory of ordered
vector spaces over an ordered field C is distal.

A distal criterion. To set the stage for Distal Criterion 2.6 below, we now consider an extension L(f) :=
L ∪ {f} of the language L by a new unary function symbol f involving sorts which are already present in L.
We also consider T (f), a complete L(f)-theory extending T . Given a model M |= T we denote by (M , f) an
expansion of M to a model of T (f). For a subset X of a model M , we let 〈X〉 denote the L-substructure of
M generated by X . If M is a submodel of N , we let M〈X〉 denote 〈M ∪X〉 ⊆ N . For this subsection we
also fix a monster model M of T (f). Note that M↾L is then a monster model of T .

Distal Criterion 2.6 is a many-sorted generalization of [7, 2.1]. The version we give below is a consequence
of [6, 2.6] In the statement of 2.6, x, x′, y, z are variables.

Distal Criterion 2.6. Suppose T is a distal theory and the following conditions hold:

(1) The theory T (f) has quantifier elimination.
(2) For every model (N , f) |= T (f), every substructure M ⊆ N such that f(M) ⊆ M , every x, and every

c ∈ Nx, there is a y and d ∈ f
(

M〈c〉
)

y
such that

f
(

M〈c〉
)

⊆
〈

f(M), d
〉

.
3



(3) Suppose that x′ is an initial segment of x, g, h are L-terms of arities xy and x′z respectively, b1 ∈ My,
and b2 ∈ f(M)z . If (ai)i∈I is an indiscernible sequence from f(M)x′ ×Mx\x′ such that
(a) I = I1 + (c) + I2 where I1 and I2 are infinite, and (ai)i∈I1+I2 is b1b2-indiscernible, and
(b) f

(

g(ai, b1)
)

= h(ai, b2) for every i ∈ I1 + I2,

then f
(

g(ac, b1)
)

= h(ac, b2).

Then T (f) is distal.

3. I-ordered C-vector spaces

In this section C is an ordered field and I is a nonempty index set. Later we will consider the case where
|I| = 2, but the presentation would not simplify much if we were to restrict ourselves to that special case.

Definition 3.1. An I-ordered C-vector space is a C-vector space G equipped with an I-ordering (<i)i∈I

such that G is an ordered C-vector space with respect to each <i. In other words, G is a vector space over
C, and for every λ ∈ C, x ∈ G and i ∈ I:

λ > 0 & x >i 0 ⇒ λx >i 0.

Let G,G′ be two I-ordered C-vector spaces. We call G an I-ordered C-subspace of G′, or G′ an extension
of G, if, as C-vector spaces, G is a subspace of G′ and the I-ordering on G agrees with the induced I-ordering
from G′ (notation: G ⊆ G′). An embedding of I-ordered C-vector spaces is an embedding j : G → G′ of
C-vector spaces such that for all x ∈ G and i ∈ I, if x >i 0 in G, then j(x) >i 0 in G′.

Lemma 3.2. Let G be an I-ordered C-vector space and
(

(Pi, Qi)
)

i∈I
a polycut in G. Then there is an

I-ordered C-vector space G′ extending G and an element b ∈ G′ such that

(1) for any I-ordered C-vector space extension G∗ of G and an element b∗ ∈ G∗ which realizes the
polycut

(

(Pi, Qi)
)

i∈I
, there is an embedding G′ → G∗ over G of I-ordered C-vector spaces which

sends b to b∗.

Furthermore, given any I-ordered C-vector space G′ extending G and b ∈ G′ satisfying (1) above, we have

(2) b realizes the polycut
(

(Pi, Qi)
)

i∈I
, and

(3) G′ = G⊕ Cb (internal direct sum of C-vector spaces).

Proof. As a C-vector space, let G′ := G ⊕ Cb. For each i ∈ I, extend <i to the unique ordered C-vector
space ordering on G′ such that Pi <i b <i Qi. The universal property then follows by the universal property
in [1, 2.4.16]. (2) and (3) are also clear. �

Definition 3.3. We say that the I-ordering (<i)i∈I on an I-ordered C-vector space G is independent if
for every n, distinct i1, . . . , in ∈ I, and for all pairs a1, b1, . . . , an, bn ∈ G±∞, if ak <ik bk for k = 1, . . . , n,
then

(a1, b1)i1 ∩ · · · ∩ (an, bn)in is nonempty.

Let LC,I be the natural language of I-ordered C-vector spaces:

LC,I =
{

0,+, (λc)c∈C

}

∪ {<i: i ∈ I}.

Let TC,I be the LC,I -theory whose models are precisely the I-ordered C-vector spaces G such that the
orderings (<i)i∈I on G are independent. By applying Lemma 3.2 iteratively starting with the trivial I-
ordered C-vector space with underlying set {0}, we can construct a model of TC,I and thus TC,I is consistent.
Note that since I is nonempty, models of TC,I are necessarily infinite.

Proposition 3.4. The LC,I -theory TC,I admits quantifier elimination and is complete.

Proof. Let G and G∗ be models of TC,I and suppose H ⊆ G is a proper LC,I -substructure of G. Furthermore,
suppose G∗ is |H |+-saturated and i : H → G∗ is an embedding of LC,I -structures. For quantifier elimination,
it suffices to find b ∈ G \H such that i extends to an embedding H + Cb → G∗ (e.g., see [1, B.11.10]).

Take b ∈ G \ H and let
(

(Pi, Qi)
)

i∈I
be the unique polycut in H realized by b. Then the image

(

i(Pi), i(Qi)
)

i∈I
determines a partial type in G∗ over the parameter set i(H):

i(Pi) < x < i(Qi) for every i ∈ I.
4



As the orderings on G∗ are independent and G∗ is |H |+-saturated, we may take b∗ ∈ G∗ realizing this partial
type. Then by Lemma 3.2, there is an embedding H + Cb → G∗ which extends i and sends b to b∗.

Completeness follows from quantifier elimination and the fact that the trivial I-ordered C-vector space
with a single element embeds into every model of TC,I �

Corollary 3.5. TC,I is distal.

Proof. By Proposition 3.4 and Lemma 2.4, it suffices to show each quantifier-free LC,I -formula ϕ(x; y) is
distal. Every atomic formula and negated atomic formula is in a reduct to

{

0,+, (λc)c∈C , <i

}

for some
i ∈ I. Every such reduct is an ordered C-vector space, and hence by Example 2.5 is distal. Therefore, each
formula ϕ(x; y) is equivalent to a boolean combination of distal formulas, hence is distal. �

4. Hamel spaces

Throughout this section, C is an ordered field.

4.1. Hamel valuations. Consider a 2-ordered C-vector space G. We denote the two orderings on G by <0

and <1, thinking of <0 as the “original” ordering, and <1 as the “auxiliary” ordering.

A Hamel valuation on G is a map v : G → G∞ which satisfies the following:

(1) v : G → G∞ is a (non-surjective) convex valuation which makes G a valued vector space over C
with respect to the ordering <1 on the vector space and the ordering <0 on the value set, i.e., for
all x, y ∈ G and λ ∈ C×:
(a) v(x) = ∞ iff x = 0;
(b) v(x+ y) ≥0 min0

(

v(x), v(y)
)

;
(c) v(λx) = v(x); and
(d) if 0 <1 x <1 y, then vx ≥0 vy.

(2) (Idempotence) vx = v(vx).
(3) (Positivity) vx >1 0.

A Hamel space (over C) is a pair (G, v) where G is a 2-ordered C-vector space, and v is a Hamel valuation
on G.

Definition 4.1. Let (G, v) be a Hamel space. We say that (G, v) is independent if the orderings <0 and
<1 on G are independent. We say that (G, v) is dense if for every a, b ∈ G, if a <0 b, then there is c ∈ G
such that a <0 vc <0 b.

Given an independent Hamel space (G, v), the value set v(G) will not be dense in (G,<1). Indeed, given
x ∈ G6=, we have v(G) ∩ (vx, 2vx)1 = ∅. However, the set G \ v(G) is dense in both orderings:

Lemma 4.2. Suppose (G, v) is an independent Hamel space. Then for every x0, y0, x1, y1 ∈ G such that
x0 <0 y0 and x1 <1 y1, there is z ∈ G such that z 6= vz and x0 <0 z <0 y0 and x1 <1 z <1 y1.

Proof. By independence, there is z′ ∈ G such that x0 <0 z′ <0 y0 and x1 <1 z′ <1 y1. If z′ 6= vz′, then
z := z′ will work. Otherwise, necessarily z′ = vz′ >1 0. Applying independence again, we get z ∈ G such
that z′ <0 z <0 y0 and z′ <1 z <1 min1(2z

′, y1). By convexity, we have vz = vz′ 6= z, so this z works. �

In general, the set v(G6=) in a Hamel space (G, v) will not span G as a C-vector space. However, v(G6=) will
always be C-linearly independent:

Lemma 4.3. Suppose (G, v) is a Hamel space. Then v(G6=) is C-linearly independent.

Proof. Suppose g1, . . . , gn ∈ v(G6=) are such that g1 <0 · · · <0 gn. Take λ1, . . . , λn ∈ C×. Then v(λigi) =
vgi = gi for all i = 1, . . . , n, and so v(λigi) 6= v(λjgj) for i 6= j. Thus

v
(
∑n

i=1
λigi

)

= min0

{

v(λigi) : i = 1, . . . , n
}

= min0{gi : i = 1, . . . , n} = g1 6= ∞.

In particular,
∑n

i=1
λigi 6= 0. �

The following will be used in our proof of Theorem 5.1, namely to verify condition (2) in Distal Criterion 2.6,
with (G, v) playing the role of “(N , f)”. We actually prove something more general:
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Proposition 4.4. Suppose (G, v) is a Hamel space and G0 ⊆ G is a C-linear subspace of G. Given
c1, . . . , cm ∈ G \G0, we have

#
(

v(G0 +
∑m

i=1
Cci) \ v(G0)

)

≤ m.

In particular, there is n ≤ m and distinct

d1, . . . , dn ∈ v(G0 +
∑m

i=1
Cci) \ v(G0)

such that
v(G0 +

∑m

i=1
Cci) ⊆ v(G0) ∪ {d1, . . . , dn}.

Proof. Assume towards a contradiction that there arem+1 distinct d1, . . . , dm+1 ∈ v(G0+
∑m

i=1
Cci)\v(G0).

For each j = 1, . . . ,m + 1, let ej ∈ G0 +
∑m

j=1
Cci such that vej = dj . We claim that e1, . . . , em+1 are

C-linearly independent over G0. This follows from the fact that for g ∈ G0, and λ1, . . . , λm+1 ∈ C, we have

v
(

g +
∑m+1

j=1
λjej

)

= min0
(

{dj : λj 6= 0} ∪ {vg}
)

.

Thus dimC(G0 +
∑m

i=1
Cci)/G0 ≥ m+ 1, a contradiction. �

4.2. Extensions of Hamel spaces. In this subsection (G, v) and (G′, v′) are Hamel spaces. We call (G, v)
a Hamel subspace of (G′, v′), or (G′, v′) an extension of (G, v′), if G ⊆ G′ as 2-ordered C-vector spaces,
and for all x ∈ G, v(x) = v′(x); notation: (G, v) ⊆ (G′, v′). An embedding i : (G, v) → (G′, v′) of Hamel
spaces is an embedding i : G → G′ of the underlying 2-ordered C-vector spaces such that for all x ∈ G,
i
(

v(x)
)

= v′
(

i(x)
)

.

Lemma 4.5 (Growing the value set). Suppose P ⊆ G is a cut in (G,<0). Then there is an extension (G′, v′)
of (G, v) and an element h ∈ G′ such that

(1) h = v′(h),
(2) P <0 h <0 G \ P , and
(3) given any embedding i : (G, v) → (G∗, v∗) and an element h∗ ∈ G∗ such that

i(P ) <0 h∗ = v∗h∗ <0 i(G \ P ),

there is an extension of i to an embedding (G′, v′) → (G∗, v∗) which sends h to h∗.

Proof. First, we will define the polycut over G that such an element h must realize. Set P0 := P , Q0 := G\P ,

P1 := {g ∈ G : g ≤1 0} ∪ {g ∈ G : vg ∈ Q0},

and Q1 := G \P1. Let G
′ := G+Ch be the extension of G of 2-ordered C-vector spaces given in Lemma 3.2

for the polycut
(

(Pi, Qi)
)

i=1,2
. Next, define the map v′ : G′ → G′

∞ by

v′(g + ch) :=

{

v(g) if vg ∈ P0 or c = 0

h if vg 6∈ P0 and c 6= 0,

for g ∈ G and c ∈ C. It is easily checked that (G′, v′) is an extension of (G, v) with the desired universal
property. �

Lemma 4.6 (Immediate extension). Suppose P ⊆ G is a cut in (G,<0) and (bρ) is a divergent pc-sequence
in G. Then there is an extension (G′, v′) of (G, v) and an element h ∈ G′ such that

(1) bρ  h,
(2) P <0 h <0 G \ P , and
(3) given any embedding i : (G, v) → (G∗, v∗) and an element h∗ ∈ G∗ such that

i(bρ) h∗ and i(P ) <0 h∗ <0 i(G \ P ),

there is an extension of i to an embedding (G′, v′) → (G∗, v∗) which sends h to h∗.

Proof. Let G′ := G + Ch be a C-vector space extension of the underlying C-vector space of G. Next, we
equip G′ with the unique valuation v′ which makes (G′, v′) an immediate extension of (G, v) (as valued
vector spaces over C), such that bρ  h; see [1, 2.3.1]. Then by [1, 2.4.20], there is just one ordering <1 on
G′ which extends <1 on G which makes (G′, <1) an ordered C-vector space and v′ a convex valuation with
respect to <1. We equip G′ with this ordering. Finally, by [1, 2.4.16] there is a unique ordering <0 on G′
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which extends <0 on G such that P <0 h <0 G \P ; we also equip G′ with this ordering. It is easily checked
that equipped with these orderings, (G′, v′) is an extension of (G, v) with the desired universal property. �

Given α ∈ v(G6=), the sets

B(α) := {g ∈ G : vg ≥0 α}, and B(α) := {g ∈ G : vg >0 α}

are convex ordered C-vector spaces with respect to the <1-ordering. As B(α) ⊇ B(α), the <1-ordering
induces an ordering on the quotient G(α) := B(α)/B(α), giving it a natural structure as an ordered C-
vector space. Moreover, given an embedding i : (G, v) → (G′, v′) and α ∈ v(G6=), i induces a natural ordered
C-vector space embedding i : G(α) → G′(iα).

We define an α-cut to be a subset P ⊆ B(α) such that

(1) P is downward closed in (B(α), <1), and
(2) for all x, y ∈ B(α), if x− y ∈ B(α), then x ∈ P iff y ∈ P .

In other words, an α-cut is essentially a lift of a cut in the ordered C-vector space G(α).

Lemma 4.7 (Growing a quotient space). Suppose α ∈ v(G6=), P is an α-cut, and P ′ ⊆ G is a cut in (G,<0).
Then there is an extension (G′, v′) of (G, v) and an element h ∈ G′ such that

(1) P ′ <0 h <0 G \ P ′,
(2) vh = α,
(3) P <1 h <1 B(α) \ P , and
(4) given any embedding i : (G, v) → (G∗, v∗) and an element h∗ ∈ G∗ such that

(a) i(P ′) <0 h∗ < i(G \ P ′),
(b) for all g ∈ G and c ∈ C,

v∗
(

i(g) + ch∗
)

:=

{

min0

(

v∗i(g), i(α)
)

if c 6= 0,

v∗i(g) otherwise, and

(c) i(P ) <1 h∗ <1 B(α) \ P ,
there is an extension of i to an embedding (G′, v′) → (G, v) which sends h to h∗.

Proof. First, we will define the polycut overG that such an element hmust realize. Set P0 := P ′, Q0 := G\P0,

P1 := {g ∈ G : g <1 B(α)} ∪ P,

and Q1 := G \P1. Let G
′ := G+Ch be the extension of G of 2-ordered C-vector spaces given in Lemma 3.2

for the polycut
(

(Pi, Qi)
)

i=1,2
. Next, define the map v′ : G′ → G′

∞ by

v′(g + ch) :=

{

min0(vg, α) if c 6= 0,

vg otherwise,

for g ∈ G and c ∈ C. It is easily checked that (G′, v′) is an extension of (G, v) with the desired property. �

4.3. Model theory of Hamel spaces. Now let LHam be the natural language of Hamel spaces over C,
i.e.,

LHam := LC,2 ∪ {v,∞} = {0,+, (λc)c∈C , <0, <1, v,∞}.

We consider a Hamel space (G, v) as an LHam-structure with underlying set G∞ and the obvious interpre-
tation of the symbols in LHam, with ∞ as a default value:

g +∞ = ∞+ g = λc(∞) = v(∞) = ∞+∞ = ∞

for all g ∈ G and c ∈ C. We let THam be the LHam-theory whose models are the independent and dense
Hamel spaces over C.

Lemma 4.8. THam is consistent.
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Proof. We claim that THam has a model. One way to construct a model is to start with the trivial Hamel
space with underlying set {0,∞}, and then iteratively apply Lemma 4.5 for denseness and Lemma 4.7 for
independence.

Alternatively, one can consider the C-linear space, G =
⊕

λ<|C|+ Ceλ, equipped with the lexicographic

ordering <0. By cofinality reasons, one can then recursively construct a C-vector space basis H ⊆ G which
is dense in the <0-ordering. Then one can define v : G → G∞ and <1 on G in an analogous way to the
structure (R,+, <,H) from the Introduction. Then (G, v) together with these two orderings will be a model
of THam. �

Theorem 4.1. The LHam-theory THam admits quantifier elimination and is complete.

Proof. Let (G, v) and (G∗, v∗) be models of THam and suppose (H, v) ⊆ (G, v) is a proper LHam-substructure
of (G, v). Furthermore, suppose (G∗, v∗) is |H |+-saturated and i : (H, v) → (G∗, v∗) is an embedding of
LHam-structures. For quantifier elimination, it suffices to find h ∈ G\H such that i extends to an embedding
(H + Ch, v) → (G∗, v∗) (e.g., see [1, B.11.10]). We consider three cases:

Case 1: There is h ∈ v(G) \ v(H). Choose such an h ∈ G. Set P := {g ∈ H : g <0 h} and Q := H \ P .
By saturation and denseness of (G∗, v∗), there is h∗ ∈ v∗(G∗) ⊆ G∗ such that i(P ) <0 h∗ <0 i(Q). By
Lemma 4.5, i extends to an embedding (H + Ch, v) → (G∗, v∗) which sends h to h∗.

Case 2: There is h ∈ G \ H such that v(h − H) does not have a largest element. Choose such an
h ∈ G. Take a well-indexed sequence (bρ) in H such that

(

v(h − bρ)
)

is strictly increasing and cofinal in
v(h − H). Then (bρ) is a divergent pc-sequence in H such that bρ  h. Set P := {g ∈ H : g <0 h} and
Q := H \ P . Then by saturation and independence of (G∗, v∗) there is h∗ ∈ G∗ such that i(bρ)  h∗ and
i(P ) <0 h∗ <0 i(Q). By Lemma 4.6, i extends to an embedding (H + Ch, v) → (G∗, v∗) which sends h to
h∗.

Case 3: There is h ∈ G such that v(h) ∈ H and there is no g ∈ H such that v(h − g) >0 v(h). Choose
such an h ∈ G. Set P ′ := {g ∈ H : g <0 h}, a cut in (H,<0). Furthermore, define

P := {g ∈ H : vg ≥0 vh and g ≤1 h},

which is an vh-cut in H by the assumption on h. Next, in the quotient space G∗(ivh), pick an element h̄
such that i(P )+B(ivh) <1 h̄ <1 i(H \P )+B(ivh), which can be done by saturation of the ordered C-vector
space G∗(ivh), an interpretable structure in (G∗, v∗). By independence and saturation of (G∗, v∗), there is
an element h∗ ∈ B∗(ivh) ⊆ G∗ such that h∗ +B∗(ivh) = h̄ and i(P ′) <0 h∗ <0 i(H \P ) (note that this also
uses the fact that B∗(ivh) has at least two elements, a consequence of denseness and independence). Then
by Lemma 4.7, i extends to an embedding (H + Ch, v) → (G∗, v∗) which sends h to h∗.

Completeness follows from quantifier elimination and the fact that the trivial Hamel space with underlying
set {0,∞} embeds into every model of THam. �

5. Distality for Hamel spaces

In this section we prove the main result of this paper:

Theorem 5.1. THam is distal.

This has the following consequences, also of interest:

Corollary 5.2. THam has the non-independence property (NIP).

Proof. It is well-known that distality implies NIP; e.g., see [6, Proposition 2.8] for a proof. �

Corollary 5.3. No model of THam interprets an infinite field of positive characteristic.

Proof. See [3, Corollary 6.3]. �

In the rest of this section M is a monster model of THam with underlying set G∞.
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5.1. Indiscernible lemmas. In this subsection we will prove the main lemmas involving indiscernible
sequences in G∞ that we need for verifying condition (3) in Distal Criterion 2.6. We assume in this subsection

that I = I1 + (c) + I2 is an ordered index set with infinite I1 and I2, and i, j, k range over I.

Lemma 5.4. Let (ai)i∈I be a nonconstant indiscernible sequence from G and suppose (b, b′) ∈ G× v(G) is
such that (ai)i∈I1+I2 is bb′-indiscernible. If v(ai − b) = b′ for all i 6= c, then v(ac − b) = b′.

Proof. Without loss of generality we may assume that if i < j, then ai − b ≤1 aj − b. We may also
assume that 0 <1 ai − b for all i. Now for i ∈ I1 and j ∈ I2 we have v(ai − b) = v(aj − b) as well as
0 <1 ai − b ≤1 ac − b ≤1 aj − b, so as v is convex with respect to the <1-ordering, v(ac − b) = b′ as well. �

Lemma 5.5. Let (aia
′
i)i∈I be an indiscernible sequence from G × v(G) such that (ai) and (a′i) are each

nonconstant, and suppose b ∈ G is such that (aia
′
i)i∈I1+I2 is b-indiscernible. If v(ai − b) = a′i for all i 6= c,

then v(ac − b) = a′c.

Proof. Without loss of generality, assume that (a′i)i∈I is strictly increasing in the <0-ordering. Let i, j ∈
I1 + I2 with i < j. Then

v(ai − aj) = v
(

(ai − b) + (b− aj)
)

= min
0

(a′i, a
′
j) = a′i.

By indiscernibility, for j ∈ I2, v(ac − aj) = a′c and so

v(ac − b) = v
(

(ac − aj) + (aj − b)
)

= min
0

(a′c, a
′
j) = a′c �

In the next two lemmas L := {0,+, (λc)c∈C , <0, <1,∞} ⊆ LHam.

Lemma 5.6. Let g, h be L-terms of arities n+ k and m+ l respectively with m ≤ n, b1 ∈ Mk, b2 ∈ v(M)l,
(ai)i∈I be an indiscernible sequence from v(M)m ×Mn−m such that

(1) (ai)i∈I1+I2 is b1b2-indiscernible,
(2) v

(

g(ai, b1)
)

= h(ai, b2) for every i 6= c, and

(3)
(

g(ai, b1)
)

i∈I1+I2
is a constant sequence.

Then v
(

g(ac, b1)
)

= h(ac, b2).

Proof. This is routine and left to the reader. See the proof of [6, Lemma 4.3]. �

Lemma 5.7. Let h(x, y) be an L-term of arity m+ n, b ∈ Mn, and (ai)i∈I an indiscernible sequence from
v(M)m, with ai = (ai,1, . . . , ai,m). Assume that h(ai, b) ∈ v(M) for infinitely many i. Then one of the
following is true:

(1) h(ai, b) = ∞ for every i;
(2) there is β ∈ v(G6=) such that h(ai, b) = β for every i;
(3) there is l ∈ {1, . . . ,m} such that h(ai, b) = ai,l for every i.

Proof. This is an exercise in simplification and bookkeeping which mimics the proof of [6, Lemma 4.4], except
that it uses the fact that the value set v(G6=) is a C-linearly independent subset of G (Lemma 4.3). �

5.2. Proof of Theorem 5.1. In this subsection we prove Theorem 5.1 by verifying the hypotheses of Distal
Criterion 2.6. In the language of 2.6, the role of T will be played by the reduct T := THam ↾ L, where
L := LHam \ {v} = {0,+, (λc)c∈C , <0, <1,∞}. The L-theory T is bi-interpretable with the LC,2-theory TC,2.
Indeed, T is essentially the same thing as TC,2, except that T has an extra point ∞ at infinity with respect
to both orders which serves as a default value with respect to the C-vector space structure. As distality is
preserved under bi-interpretability, by Corollary 3.5 we have that T is distal.

In the language of 2.6, we also construe THam as THam = T (v), and in particular, LHam = L(v). Since THam

has quantifier elimination (Theorem 4.1), this verifies condition (1) in 2.6. Condition (2) in 2.6 follows from
Proposition 4.4.

Finally we will verify condition (3) in 2.6. Let f, g be L-terms of arities n+ k and m+ l respectively, with
m ≤ n, b1 ∈ Mk, b2 ∈ v(M)l, (ai)i∈I be an indiscernible sequence from v(M)m ×Mn−m such that

(a) I = I1 + (c) + I2 with infinite I1 and I2, and (ai)i∈I1+I2 is b1b2-indiscernible, and
(b) v

(

g(ai, b1)
)

= h(ai, b2) for every i ∈ I1 + I2.
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Our job is to show that v
(

g(ac, b1)
)

= h(ac, b2). We have several cases to consider:

Case 1:
(

g(ai, b1)
)

i∈I1+I2
is a constant sequence. In this case, v

(

g(ac, b1)
)

= h(ac, b2) follows from

Lemma 5.6.
For the remainder of the proof, we assume that

(

g(ai, b1)
)

i∈I1+I2
is not a constant sequence. In particular,

the symbol ∞ does not play a non-dummy role in g(ai, b1), so the L-term g(x, y) is essentially a C-linear
combination of its arguments. By grouping these C-linear combinations, we get b ∈ G, and a nonconstant
indiscernible sequence (a′i)i∈I from M such that

(c) g(ai, b1) = a′i − b for every i ∈ I,
(d) (ai, a

′
i)i∈I is an indiscernible sequence from v(M)m ×Mn−m+1,

(e) (aia
′
i)i∈I+I1 is b1b2b-indiscernible, and

(f) v(a′i − b) = h(ai, b2) for every i ∈ I1 + I2.

We now must show that v(a′c − b) = h(ac, b2). Since h(ai, b2) ∈ v(M) for all i ∈ I1 + I2, by Lemma 5.7 we
have three more cases to consider:

Case 2: h(ai, b2) = ∞ for every i ∈ I. In this case, we have v(a′i − b) = ∞ for every i ∈ I1 + I2, so a′i = b
for every i ∈ I1 + I2. Thus (a

′
i)i∈I is a constant sequence and thus v(a′c − b) = ∞ as well.

Case 3: There is β ∈ v(G6=) such that h(ai, b2) = β for every i ∈ I. This case follows from Lemma 5.4.
Case 4: There is l ∈ {1, . . . ,m} such that h(ai, b2) = ai,l for every i ∈ I. This case follows from

Lemma 5.5.

6. Connection to dense pairs and independent sets

In [7], Hieronymi and Nell considered whether certain commonly studied pair structures were distal. These
include expansions of o-minimal structures by dense independent sets [5] and dense pairs of o-minimal
structures [12]. That is, expansions by a dense independent set and expansions by proper, dense elementary
substructures. We now show that a model of THam interprets both the expansion of an ordered C-vector
space by a dense C-independent set and the expansion by a proper, dense elementary substructure.

Corollary 6.1. Let M be a model of THam with underlying set G∞. Then there are

(1) a definable, dense, C-linearly independent H ⊆ G and
(2) a definable S ( G that is the underlying set of an elementary substructure of G as an ordered

C-vector space.

Hence THam interprets a distal expansion for both independent pairs of ordered C-vector spaces and dense
pairs of ordered C-vector spaces.

Proof. Note that H := v(G6=) is C-linearly independent by Lemma 4.3 and <0-dense in G, since M is dense
as a Hamel space. Thus the structure (G; +, <0, (λc)c∈C , H) is an independent pair of ordered C-vector
spaces.

With H as above, consider the upward-closed subset of the value set:

H0 := {h ∈ H : h >0 0} ∪ {∞}.

This yields a certain “generalized ball”:

S :=
{

g ∈ G : v(g) ∈ H0

}

.

S is closed under C-linear combinations. Furthermore, as M is independent, S is dense in G. Thus the pair
(G; +, <0, (λc)c∈C , S) is a dense pair of ordered C-vector spaces. �

Thus a model of THam interprets distal expansions for both independent pairs and dense pairs of ordered
C-vector spaces. While this was known previously for dense pairs [8], this was unknown for independent
pairs. In fact, the strategy used for dense pairs relied on manipulating imaginary sorts in the quotient by
the substructure. However, independent pairs eliminate imaginaries [5]. Thus a new approach was necessary
for this case.

Of course, in this paper we restricted our attention to the case where the base o-minimal theory is an ordered
vector space. The case of expanding a field is also of interest:
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Question 6.2. Suppose R is an o-minimal expansion of (R; +, ·) and H ⊆ R is a dense and dclR-independent
subset of R. Does (R, H) have a distal expansion?

We believe the answer to be yes, and perhaps such a distal expansion can be constructed in a manner similar
to our construction here (with a new valuation v and auxiliary ordering <1). However, such an expansion
will undoubtedly require stronger results from o-minimality than we used here.

Finally, we would like to point out a somewhat curious observation arising from the proof of Corollary 6.1.
In our construction, a dense pair shows up as a certain ball in the valuation. Likewise, an independent set
H shows up as the value set for the same valuation. This suggests that, for instance, the two expansions
(R; +, <,H) and (R; +, <,Q) of (R; +, <) are in some sense “orthogonal” to each other. Is this just a
coincidence or is there something going on here? Our instinct says it is the latter and perhaps a more
general Hamel space-like construction might serve to formalize the connection between dense pairs and
independent sets.

7. DP-rank

For the sake of completeness, in this final section we characterize the complexity of the theory THam with
regard to the notion of dp-rank. Among NIP theories, dp-rank provides a finer form of classification of the
complexity of a theory. In this scale, dp-minimal is the simplest, then followed by having finite dp-rank, and
then being strongly dependent. We show that THam is not strongly dependent, which is on the complicated
end of the scale. For definitions of these concepts, see [11] or [10, Chapter 4].

Theorem 7.1. THam is not strongly dependent. Therefore it is not dp-minimal and does not have finite
dp-rank.

It is sufficient to show that THam is not strong, a consequence of strongly dependent (see [4]). For this, we
will use the following:

Proposition 7.2. [4, 2.14] Suppose that M = (M ; +, <, . . .) is an expansion of a densely-ordered abelian
group. Let N be a saturated model of Th(M), and suppose that for every ε > 0 in N there is an infinite
definable discrete set X ⊆ N such that X ⊆ (0, ε). Then Th(M) is not strong.

Proof of Theorem 7.1. Let N be a saturated model of THam. For the purposes of this proof and using
Proposition 7.2, we construe N = (N ; +, <1, . . .) as an expansion1 of a densely-ordered abelian group with
respect to the <1-ordering. Let ε >1 0 be such that ε 6= ∞. Pick g ∈ N such that ∞ 6= g = vg >0 vε, which
is possible by denseness. It is easily checked that the definable set

X := {x ∈ N : x 6= ∞ & x = vx & x >0 g}

is an infinite discrete set (with respect to the order topology induced by <1) such that X ⊆ (0, ε)1. Thus
THam is not strong. �

In general, among NIP theories there is no clear correlation between distality and dp-rank. We started with
a non-distal structure (R; +, <,H) with is strongly dependent [5, 2.28], and constructed a distal expansion
(R; +, <,<1, v,∞) which is not strongly dependent. Perhaps there is a “milder” distal expansion out there:

Question 7.3. Does (R; +, <,H) admit a strongly dependent distal expansion?
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