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ON EXTENSIONS OF PARTIAL ISOMORPHISMS

MAHMOOD ETEDADIALIABADI AND SU GAO

Abstract. In this paper we study a notion of HL-extension (HL standing for

Herwig–Lascar) for a structure in a finite relational language L. We give a

description of all finite minimal HL-extensions of a given finite L-structure.

In addition, we study a group-theoretic property considered by Herwig–Lascar

and show that it is closed under taking free products. We also introduce

notions of coherent extensions and ultraextensive L-structures and show that

every countable L-structure can be extended to a countable ultraextensive

structure. Finally, it follows from our results that the automorphism group of

any countable ultraextensive L-structure has a dense locally finite subgroup.

1. Introduction

Let C1, C2 be two structures in a given relational language L. A partial iso-

morphism from C1 into C2 is an isomorphism of a substructure of C1 onto a

substructure of C2. A partial automorphism (or a partial isomorphism) of an

L-structure C is an isomorphism between two (possibly different) substructures of

C.

Definition 1.1. Let C be a class of L-structures (containing both finite and infinite

structures). C is said to have the extension property for partial automor-

phisms (EPPA) if whenever C1 and C2 are structures in C, C1 is finite, C1 is a

substructure of C2, and every partial automorphism of C1 extends to an automor-

phism of C2, then there exist a finite structure C3 in C which extends C1 and every

partial automorphism of C1 extends to an automorphism of C3.

Hrushovski [4], was one of the first papers to consider the question of whether a

certain class of structures has the EPPA. More precisely, he showed that the class

of simple graphs has the EPPA, that is, every finite graph G can be extended to

another finite graph, H , such that every partial isomorphism of G extends to an

automorphism of H . Herwig–Lascar [3], generalized the result of Hrushovski to

finite relational structures.

Definition 1.2. If M is an L-structure and T a set of L-structures, we say that

M is T -free if there is no structure T ∈ T and homomorphism h : T →M .

2010 Mathematics Subject Classification. Primary 03C13,03C55; Secondary 20E06,20E26.
Key words and phrases. Hrushovski property, extension property for partial automorphisms

(EPPA), partial isomorphism, HL-extension, HL-map, coherent, ultraextensive, ultrahomoge-

neous, locally finite, Henson Graph.

The second author’s research was partially supported by the NSF grant DMS-1800323.

1

http://arxiv.org/abs/1908.02965v2
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Here we use the same definition of a homomorphism as in [3]. That is, if M and

N are L-structures, a homomorphism from M to N is a map h : M → N such

that, if n is an integer, R is an n-ary relation symbol of L, and a1, a2, . . . , an are

elements of M with M � R(a1, a2, . . . , an), then N � R(h(a1), h(a2), . . . , h(an)).

Theorem 1.3 (Herwig–Lascar [3]). Let L be a finite relational language and T a

finite set of finite L-structures. Then the class of all finite T -free L-structures has

the EPPA.

Inspired by the Herwig–Lascar theorem, we define the following notions. Let L

be a finite relational language and C be an L-structure. An HL-extension of C is a

pair (D,φ), where D is an L-structure extending the structure C, and φ is a map

from the set of all partial isomorphisms of C into the set of all automorphisms of

D such that φ(p) extends p. With this notion, the Herwig–Lascar theorem can be

restated as: Every finite T -free L-structure has a finite T -free HL-extension.

If C is an L-structure and (D,φ) is an HL-extension of C, then we say (D,φ) is

minimal if for all b ∈ D, there are partial isomorphisms p1, . . . , pn of C and a ∈ C

such that

b = φ(p1) · · ·φ(pn)(a).

Our first main result of the paper is a description of all finite T -free, minimal HL-

extensions of a given finite T -free L-structure. To do this, we describe a canonical

collection of finite T -free, minimal HL-extensions from the original construction of

Herwig–Lascar [3], and show that every other finite T -free, minimal HL-extension

is a homomorphic image of one of the canonical extensions.

Our next result is regarding a group-theoretic property in the profinite topology

considered by Herwig–Lascar in [3]. We call it the HL-property. For comparison,

we say that a group G has the RZ-property (RZ standing for Ribes–Zalesskii) if any

finite product of finitely generated subgroups of G is closed in the profinite topology.

Every group with the RZ-property is residually finite. Ribes-Zalesskii [6] proved the

RZ-property for finitely generated free groups. Herwig–Lascar [3] introduced the

HL-property as a strengthening of the RZ-property, and showed that the Herwig–

Lascar theorem is essentially equivalent to the HL-property for finitely generated

free groups. Coulbois [1] gave a characterization of the RZ-property in terms of

extensions of partial isomorphisms and used it to show that the RZ-property is

preserved under taking free products. Rosendal [7] gave a characterization of the

RZ-property in terms of extensions of partial isometries for finite metric spaces.

Here we give a similar characterization for the HL-property of groups, and show

that the HL-property is also preserved under taking free products.

In [8], Solecki proved the EPPA for the class of finite metric spaces. Furthermore,

Siniora–Solecki [9] proved a stronger version of the Herwig–Lascar theorem. They

showed that for a structure C with an HL-extension one can find an HL-extension

(D,φ) with the property that for every triple (p, q, r) of partial isomorphisms of C

with p = q ◦ r we have φ(p) = φ(q) ◦ φ(r). This property has been referred to as

coherence. A similar concept was considered in [5] and [7].
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In this paper we introduce a slightly different notion of coherence between HL-

extensions. If C1 ⊆ C2 are L-structures, (D1, φ1) is an HL-extension of C1, and

(D2, φ2) is an HL-extension of C2, then we say that (D1, φ1) and (D2, φ2) are

coherent if D2 extends D1, φ2(p) extends φ1(p) for every partial isomorphism p

of C1, and the map φ1(p) 7→ φ2(p), where p ranges over all partial isomorphisms

of C1, induces an isomorphism between a subgroup of all automorphisms of D1

and a subgroup of all automorphisms of D2. We will show that, if T is a finite

set of L-structure each of which is a Gaifman clique, then for any C1 ⊆ C2 finite

T -free L-structures and (D1, φ1) a finite T -free HL-extension of C1, there is a finite

T -free HL-extension of C2 coherent with (D1, φ1). In the proof of this result we

use the above-mentioned coherence result of Siniora–Solecki [9]. We should also

mention that Hubička, Konečnỳ, and Nešetřil [5] presented a direct combinatorial

construction of HL-extensions with the same coherence property. The technical

assumption in the theorem about T is necessary and optimal for the proof.

We call an L-structure U ultraextensive if U is ultrahomogeneous, every finite

C ⊆ U has a finite HL-extension (D,φ) where D ⊆ U , and if C1 ⊆ C2 ⊆ U are

finite and (D1, φ1) is a finite minimal HL-extension of C1 with D1 ⊆ U , then there

is a finite minimal HL-extension (D2, φ2) of C2 such that D2 ⊆ U and (D1, φ1) and

(D2, φ2) are coherent.

Recall that ultrahomogeneity means that any finite partial isomorphism can

be extended to an isomorphism of the entire space. Thus ultraextensiveness is a

strengthening of ultrahomogeneity. We will establish the following results about

ultraextensive L-structures.

Theorem 1.4. Every countable L-structure can be extended to a countable ultra-

extensive L-structure. Moreover, if T is a finite set of finite L-structures each of

which is a Gaifman clique, then every countable T -free L-structure can be extended

to a countable T -free ultraextensive L-structure.

Theorem 1.5. If U is an ultraextensive L-structure then every countable substruc-

ture C ⊆ U can be extended to a countable ultraextensive substructure D ⊆ U .

Theorem 1.6. If U is a countable ultraextensive L-structure then the automor-

phism group of U has a dense locally finite subgroup.

The rest of the paper is organized as follows. In Section 2 we give the char-

acterization of finite T -free, minimal HL-extensions. In Section 3 we study the

HL-property of groups and show that it is preserved under taking free products.

In Section 4 we discuss coherent HL-extensions and ultraextensive structures. The

results in Sections 2 and 4 are analogous to previous work by the authors [2] on

similar concepts in the context of metric spaces.

2. Minimal HL-Extensions

2.1. HL-extensions. We fix some notation to be used in the rest of the pa-

per. Throughout this paper let L be a finite relational language. Let C,D be
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L-structures. We say that D is an extension of C if C is a substructure of D. In-

terchangeably, we use the same terminology when D contains an isomorphic copy

of C.

A homomorphism from C to D is a map π : C → D such that for every n-ary

relation R ∈ L and every a1, . . . , an ∈ C,

RC(a1, . . . , an) ⇒ RD(π(a1), . . . , π(an)).

An isomorphism from C to D is a bijection π : C → D such that for every n-ary

relation R ∈ L and every a1, . . . , an ∈ C,

RC(a1, . . . , an) ⇐⇒ RD(π(a1), . . . , π(an)).

An isomorphism from C to C is also called an automorphism of C. The set of all

automorphisms of C is denoted as Aut(C). Under composition of maps, Aut(C)

becomes a group.

A partial isomorphism of C is an isomorphism between two finite substructures

of C. The set of all partial isomorphisms of C is denoted as P(C). Although P(C)

is not necessarily a group, it is a groupoid and for each p ∈ P(C) we can speak of

the inverse map p−1, which is still a partial isomorphism.

If D is an extension of C, then every partial isomorphism of C is also a partial

isomorphism of D. In symbols, we have P(C) ⊆ P(D) if C is a substructure of D.

If p, q ∈ P(C), we say that q extends p, and write p ⊆ q, if

{(a, p(a)) : a ∈ dom(p)} ⊆ {(a, q(a)) : a ∈ dom(q)}.

We let 1C denote the identity automorphism on C, i.e., 1C(a) = a for all a ∈ C.

Let PC denote the set of all p ∈ P(C) such that p 6⊆ 1C . We refer to elements of

PC as nonidentity partial isomorphisms of C. Note that if p ∈ PC then p−1 ∈ PC

and p−1 6= p.

The main concept we study in this paper is that of an HL-extension.

Definition 2.1. Let C be an L-structure. An HL-extension of C is a pair (D,φ),

where D is an extension of C, and φ : PC → Aut(D) such that φ(p) extends p for

all p ∈ PC .

Note that if (D,φ) is an HL-extension of C then we can always modify φ so that

for all p ∈ PC , φ(p
−1) = φ(p)−1. We will tacitly assume this property for all the

HL-extensions we consider.

Note that an equivalent restatement of Herwig–Lascar theorem (Theorem 1.3)

is that every finite T -free L-structure has a finite T -free HL-extension.

We will need the following notion of homomorphism between HL-extensions.

Definition 2.2. Let C be an L-structure, and let (D1, φ1) and (D2, φ2) be both HL-

extensions of C. A homomorphism from (D1, φ1) to (D2, φ2) is a map ψ : D1 → D2

such that ψ is a homomorphism from the structure D1 to D2, ψ ↾ C is the identity

map on C, and for all p ∈ PC , ψ ◦ φ1(p) = φ2(p) ◦ ψ.

We also define the notion of minimality for an HL-extension as follows.



ON EXTENSIONS OF PARTIAL ISOMORPHISMS 5

Definition 2.3. Let C be an L-structure and (D,φ) be an HL-extension of C. We

say that (D,φ) is minimal if for all b ∈ D \C there are p1, . . . , pn ∈ PC and a ∈ C

such that b = φ(p1) . . . φ(pn)(a).

2.2. A canonical HL-extension. In this subsection we describe a canonical con-

struction of an HL-extension that is essentially due to Herwig–Lascar [3]. In the

rest of the paper let T be a fixed finite set of finite L-structures.

First, note that for every finite L-structure C there is a unique partition of C

into substructures {Ci : i = 1, . . . , n} such that each Ci is a maximal subset of

C satisfying that for every a, b ∈ Ci, the map that sends a to b (that is, the map

{(a, b)}) is a partial isomorphism of C. In other words, we partition C into maximal

subsets whose elements satisfy the same unary predicates. We call this partition

with a specific point from each set a natural factorization of C. That is, a natural

factorization of C is of the form {(Ci, ai) : i = 1, . . . , n}, where each ai ∈ Ci.

Let C be a finite T -free L-structure. Let {(Ci, ai) : i = 1, . . . , n} be a natural

factorization of C. For every 1 ≤ i ≤ n we define

Hi = {g ∈ F(PC) : g(ai) = ai},

where F(PC) is the free group with the generating set PC (with the convention that

the inverse of p ∈ PC in F(PC) coincides with p
−1). By g(ai) = ai we mean that if

g = p1 · · · pm with p1, . . . , pm ∈ PC , then p1(· · · (pm(ai)) · · · ) is defined and

p1(· · · (pm(ai)) · · · ) = ai.

Each Hi is a subgroup of F(PC).

Let Γ be the L-structure with domain

F(PC)/H1 ⊔ · · · ⊔ F(PC)/Hn

and such that for everym-ary relation symbolR ∈ L, we haveRΓ(g1Hi1 , . . . , gmHim)

iff there are p1, . . . , pm ∈ PC and g ∈ F(PC) such that pj(aij ) is defined for each j =

1, . . . ,m, (g1Hi1 , . . . , gmHim) = (gp1Hi1 , . . . , gpmHim), andRC(p1(ai1), . . . , pm(aim)).

Note that C can be viewed as a substructure of Γ. In fact, consider the map

π : C → Γ defined as

π(a) =

{

Hi, if a = ai,

pHi, if a 6= ai and p ∈ PC satisfies p(ai) = a,

for a ∈ Ci. It is easy to see that π is well-defined and is indeed an isomorphic

embedding from C into Γ.

Given any γ ∈ F(PC), the map Φγ defined by Φγ(gHi) = γgHi is an automor-

phism of Γ. Thus, (Γ,Φ) is an HL-extension of C with Φ : PC → Aut(Γ) defined

as Φ(p) = Φp. Note that by definition, (Γ,Φ) is a minimal HL-extension of C.

Assume C has a T -free HL-extension (D,φ). Consider the map ψ : Γ → D

defined by ψ(gHi) = φ(g)(ai), where φ(g) = φ(p1) · · ·φ(pm) if g = p1 . . . pm. Then

ψ is a homomorphism. It follows that Γ is also T -free.
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2.3. Finite HL-extensions. Let C be a finite T -free L-structure as before. We

give a description of all finite T -free, minimal HL-extensions of C. For this we

first describe a finite T -free, minimal HL-extension by replacing each group Hi in

the above canonical Γ with a larger group of the form NiHi, where Ni is a normal

subgroup of F(PC) of finite index.

Let N1, . . . , Nn E F(PC) be normal subgroups of finite index. We define

Γ ~N
= F(PC)/N1H1 ⊔ · · · ⊔ F(PC)/NnHn.

The structure on Γ ~N
is defined analogously to the structure on the canonical HL-

extension Γ. More precisely, to define the structure on Γ ~N
, let R ∈ L be an m-ary

relation symbol. Then RΓ ~N (g1Ni1Hi1 , . . . , gmNimHim) iff there are p1, . . . , pm ∈ PC

and g ∈ F(PC) such that pj(aij ) is defined for each j = 1, . . . ,m,

(g1Ni1Hi1 , . . . , gmNimHim) = (gp1Ni1Hi1 , . . . , gpmNimHim),

and RC(p1(ai1), . . . , pm(aim)).

Consider the map π ~N
: C → Γ ~N

defined by

π ~N
(a) =

{

NiHi, if a = ai,

pNiHi, if a 6= ai and p ∈ PC satisfies p(ai) = a,

for a ∈ Ci. Then π ~N
is well-defined. Under suitable assumptions (that will be

discussed in Theorem 2.4), π ~N
becomes an isomorphic embedding. In this case

π ~N
(C) is an isomorphic copy of C as a substructure of Γ ~N

.

We define Φ ~N
: PC → Aut(Γ ~N

) by letting

Φ ~N
(p)(gNiHi) = pgNiHi.

Assuming the above map π ~N
is an isomorphic embedding, and noting that there is

a canonical surjective homomorphism from Γ to Γ ~N
, it follows from the minimality

of (Γ,Φ) that (Γ ~N
,Φ ~N

) is also a minimal HL-extension of C.

We are now ready to describe any finite T -free, minimal HL-extension of C as

a homomorphic image of some (Γ ~N
,Φ ~N

), which is itself a finite T -free, minimal

HL-extension of C.

Theorem 2.4. Let C be a finite T -free L-structure and (D,φ) be a finite T -free,

minimal HL-extension of C. Then, there are N1, . . . , Nn E F(PC) of finite index

such that (Γ ~N
,Φ ~N

) is a finite T -free, minimal HL-extension of C and there is a

homomorphism from (Γ ~N
,Φ ~N

) onto (D,φ).

Proof. For each i = 1, . . . , n, let Di = {φ(g)(ai) : g ∈ F(PC)}. We define

Ni = {g ∈ F(PC) : φ(g)(a) = a for every a ∈ Di}.

Then Ni E F(PC). Since D is finite, each Ni is of finite index.

Let Γ ~N
and π ~N

: C → Γ ~N
be defined as above. We claim that π ~N

is an isomorphic

embedding. To see this, let a, a′ ∈ Ci with a 6= a′. Let p, p′ ∈ PC with p(ai) = a

and p′(ai) = a′. We show that p′−1pHi ∩Ni = ∅, which implies pNiHi 6= p′NiHi.

For this, let g ∈ Hi. Since

φ(p′−1pg)(ai) = φ(p′−1)φ(p)φ(g)(ai) = φ(p′)−1p(ai) 6= ai,
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we have that p′−1pHi ∩Ni = ∅. This shows that π ~N
is injective. It is easy to see

that π ~N
is an isomorphism between the structures C and π ~N

(C).

Now we define ψ ~N
: Γ ~N

→ D by ψ ~N
(gNiHi) = φ(g)(ai). Note that ψ ~N

is well-

defined since if g−1
1 g2 ∈ NiHi then by definition ofNi, Hi we have φ(g

−1
1 g2)(ai) = ai

and therefore φ(g1)(ai) = φ(g2)(ai). ψ ~N
is onto sinceD is minimal. It is also easy to

verify that ψ ~N
is a homomorphism. It follows that Γ ~N

is T -free, and thus (Γ ~N
,Φ ~N

)

is a finite T -free, minimal HL-extension of C.

Finally, it is routine to check that for every p ∈ PC , φ(p) ◦ ψ ~N
= ψ ~N

◦ Φ ~N
(p).

Thus ψ ~N
is a homomorphism from (Γ ~N

,Φ ~N
) onto (D,φ). �

3. The HL-Property of a Group

In this section we consider a property for a group G analogous to the existence

of HL-extensions for free groups.

3.1. The HL-property. First, we need the following definitions.

Definition 3.1 (Herwig–Lascar [3]). Let G be a group and let H1, . . . , Hn ≤ G.

A left system of equations on H1, . . . , Hn is a finite set of equations with variables

x1, . . . , xm and constants g1, . . . , gl such that each equation is of the form

xiHj = gkHj or xiHj = xrgkHj

where 1 ≤ i, r ≤ m, 1 ≤ k ≤ l and 1 ≤ j ≤ n.

Definition 3.2. Let G be a group. We say that G has the HL-property if for every

finitely generated H1, . . . , Hn ≤ G and left system of equations on H1, . . . , Hn that

does not have a solution, there exist normal subgroups of finite index N1, . . . , NnEG

such that the same left system of equations on N1H1, . . . , NnHn does not have a

solution.

By results of [3], Section 3, the Herwig–Lascar theorem (Theorem 1.3) implies

the HL-property for all free groups with finitely many generators. Our results below

will imply that they are actually equivalent.

Recall that we say a group G has the RZ-property if for any finitely gener-

ated subgroups H1, . . . , Hn ≤ G, H1 · · ·Hn is closed in the profinite topology of

G. Equivalently, a group G has the RZ-property iff for any finitely generated

H1, . . . , Hn ≤ G and g /∈ H1 · · ·Hn there exist a normal subgroup N EG of finite

index, such that gN ∩ H1 · · ·Hn = ∅. Ribes–Zalesskii [6] proved the RZ-property

for free groups with finitely many generators. As noted in [3], the HL-property is

a strengthening of the RZ-property, and therefore the Herwig–Lascar theorem is a

strengthening of the Ribes–Zalesskii result.

Rosendal in [7] considered the RZ-property and showed that it is equivalent to

a statement about extensions of partial isometries for finite metric spaces which

he called finite approximability. Earlier, Coulbois [1] gave a characterization of the

RZ-property in terms of extensions of partial isomorphisms of finite structures, and

used it to show that the RZ-property is closed under taking finite free products.

Below we give a characterization of the HL-property also in terms of extensions
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of partial isomorphisms of finite structures. Our characterization is analogous to

Rosendal’s notion of finite approximability.

To state the theorem, we need the following notions. Let G be a group acting

on sets X and Y and let A ⊆ X and F ⊆ G be arbitrary subsets. An F -map from

A to Y is a function π : A → Y such that for all g ∈ F and x ∈ A, if g(x) ∈ A,

then π(g(x)) = g(π(x)). Moreoever, if X and Y are L-structures, then π is called

an F -embedding if π is an injective F -map that is an isomorphism between A and

π(A).

An L-structure C is called a Gaifman clique if for every a, b ∈ C there is a relation

symbol R ∈ L with arity m ≥ 2 and c1, . . . , cm ∈ C with a, b ∈ {c1, . . . , cm} and

RC(c1, . . . , cm).

Theorem 3.3. Let G be a group. Then the following are equivalent:

(i) G has the HL-property;

(ii) Let L be a finite relational language with unary relation symbols S1, . . . , Sn ∈

L. Let T be a finite set of finite L-structures. Let D be a T -free L-structure

such that {SD
1 , . . . , S

D
n } is a partition of the domain of D. Let C be a fi-

nite substructure of D. Let F be a finite subset of G. Suppose that G acts

faithfully by isomorphisms on D and that G acts transitively on each SD
i

for i = 1, . . . , n. Then there exists a finite T -free L-structure D′ on which

G acts by isomorphisms, and an F -embedding from C to D′.

(iii) Clause (ii) with the additional assumption that every structure T ∈ T is a

Gaifman clique.

The next two subsections are devoted to a proof of Theorem 3.3. We will show

(i)⇒(ii)⇒(iii)⇒(i). Since (ii)⇒(iii) is obvious, we focus on showing (i)⇒(ii) and

(iii)⇒(i).

3.2. Proof of Theorem 3.3 (i)⇒(ii). We assume G has the HL-property. Let

C ⊆ D be T -free L-structures, where C is finite. For 1 ≤ i ≤ n, let Di = SD
i and

Ci = SC
i . Then {Di : 1 ≤ i ≤ n} is a partition of D and {Ci : 1 ≤ i ≤ n} is a

partition of C. Without loss of generality, assumeDi 6= ∅ for every 1 ≤ i ≤ n. Then,

by extending C, we may assume that Ci 6= ∅ for every 1 ≤ i ≤ n. Let {(Ci, ai) :

1 ≤ i ≤ n} be a natural factorization of C. Since G acts transitively on each

Di, we have Di = G(ai). By minimizing the structure on D, we may also assume

that for any m-ary relation symbol R ∈ L and for any d1, . . . , dm ∈ D, we have

RD(d1, . . . , dm) iff there are c1, . . . , cm ∈ C and g ∈ G such that RC(c1, . . . , cm)

and (d1, . . . , dm) = (g(c1), . . . , g(cm)).

Define ρ : G → P(C) by letting, for any g ∈ G and c ∈ C, ρ(g)(c) = g(c), if

g(c) ∈ C; ρ(g)(c) is undefined otherwise. Since G acts by isomorphisms on D, if

c ∈ Ci for some 1 ≤ i ≤ n and ρ(g)(c) is defined, then ρ(g)(c) ∈ Ci. Since C is

finite, the set ρ(G) ∩ PC = {ρ(g) ∈ PC : g ∈ G} is finite.

Let F ⊆ G be finite. Since the action of G on D is faithful, by extending C with

finitely many points, we may assume that ρ(F \ {1C}) ⊆ PC . Pick a finite K ⊆ G
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such that F ⊆ K, K−1 = K and ρ(K \ {1C}) = ρ(G \ {1C}) ∩ PC . Define

Hi = {p1 · · · pl : p1, . . . , pl ∈ K and ρ(p1)(· · · ρ(pl)(ai) · · · ) = ai}.

Since C and K are finite, Hi is finitely generated. To see this, consider an edge-

labeled directed graph on C defined as follows: there is an edge from c1 to c2 labeled

by p if p ∈ K is such that p(c1) = c2. Note that this graph can have multiple edges

and loops. The generators of Hi are precisely those p1 · · · pl that give a minimal

cycle from ai back to ai.

Let Γ be the L-structure with domain G/H1 ⊔ · · · ⊔ G/Hn such that for i =

1, . . . , n, SΓ
i = G/Hi, and for any m-ary relation symbol R ∈ L and for any

g1, . . . , gm ∈ G, RΓ(g1Hi1 , . . . , gmHim) iff there are p1, . . . , pm ∈ K and g ∈ G such

that pj(aij ) ∈ Cij for each j = 1, . . . ,m, RC(p1(ai1 ), · · · , pm(aim)), and

(g1Hi1 , . . . , gmHim) = (gp1Hi1 , . . . , gpmHim).

G acts on Γ by left multiplication. Consider the map π : C → Γ defined as

π(c) =

{

Hi, if c = ai,

pHi, if c ∈ Ci, c 6= ai, and p ∈ K with p(ai) = c.

Since G acts transitively on each Di, π is well-defined. We claim that π is an

isomorphic embedding of C into Γ. In fact, π is injective because of the following

fact:

(C1) For every p, q ∈ K and 1 ≤ i ≤ n, if p(ai), q(ai) ∈ Ci and p(ai) 6= q(ai),

then p−1q /∈ Hi.

Furthermore, π is an isomorphism between C and π(C) because of the following

fact:

(C2) For any p1, . . . , pm, q1, . . . , qm ∈ K such that for all j = 1, . . . ,m,

pj(aij ), qj(aij ) ∈ Cij

for some 1 ≤ i1, . . . , im ≤ n, if

RC(p1(ai1), . . . pm(aim)) and ¬RC(q1(ai1), . . . qm(aim)),

then there does not exist g ∈ G such that

(p1Hi1 , . . . , pmHim) = (gq1Hi1 , . . . , gqmHim).

(C2) is true since otherwise in D we would have

RD(p1(ai1), . . . , pm(aim)) and ¬RD(q1(ai1 ), . . . , qm(aim))

and yet (p1(ai1), . . . , pm(aim)) = (gp1(ai1), . . . , gpm(aim)), violating that g is an

isomorphism of the structure D.

Consider the map ψ : Γ → D defined by ψ(gHi) = g(ai). Then ψ is a homomor-

phism from the structure Γ onto the structure D. Since D is T -free, so is Γ. Thus,

we also have the following

(C3) For every structure T ∈ T there is no homomorphism from T into Γ.
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Next we demonstrate that conditions (C1)–(C3) can all be equivalently expressed

as certain left systems of equations on H1, . . . , Hn not having solutions. To do this,

we first establish some general lemmas.

Lemma 3.4. Let G be a group and H ≤ G. For any γ, η ∈ G, γ−1η /∈ H iff the

following left system with variable x does not have a solution

(3.1)
xH = γH

xH = ηH

Proof. It is equivalent to state the lemma as γ−1η ∈ H iff the left system (3.1)

has a solution. Now it is obvious that (3.1) has a solution iff γH = ηH, which is

equivalent to γ−1η ∈ H. �

Lemma 3.5. Let G be a group and H1,Hm ≤ G. For any γ1, . . . , γm, η1, . . . , ηm ∈

G, the following are equivalent:

(i) There does not exist g ∈ G such that (γ1H1, . . . , γmHm) = (gη1H1, . . . , gηmHm);

(ii) The following left system with variables x, x1, . . . , xm does not have a solu-

tion

(3.2)

x1H1 = γ1H1

x1H1 = xη1H1

· · · · · ·

xmHm = γmHm

xmHm = xηmHm

Proof. Again we prove the contrapositives. First, assume that there is g ∈ G such

that (γ1H1, . . . , γmHm) = (gη1H1, . . . , gηmHm). Thus we have m equations

γ1H1 = gη1H1

. . . . . .

γmHm = gηmHm

Each equation, which is of the form γiHi = gηiHi, is equivalent to there existing

xi such that

xiHi = γiHi

xiH = gηiHi,

similar to the proof of Lemma 3.4. Thus the totality of them equations is equivalent

to there existing solutions for the 2m equations in (3.2). Conversely, if (3.2) has a

solution, then each pair of equations involving xi give rise to an equation of the form

γiHi = xηiHi. The solution for x witnesses the existence of the desired element

g ∈ G in clause (i). �

We are now ready to argue that conditions (C1)–(C3) can be equivalently ex-

pressed as certain left systems of equations onH1, . . . , Hn ≤ G not having solutions.

For (C1), simply apply Lemma 3.4 to the appropriate Hi, p, q. Then p−1q /∈ Hi is

equivalent to the following system not having a solution

(3.3)
xHi = pHi

xHi = qHi
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Since K is finite, there are only finitely many such systems. To summarize, there

are finitely many left systems on H1, . . . , Hn such that (C1) holds iff each of the

left systems does not have a solution.

For (C2), apply Lemma 3.5. The left system correspondent to the condition is

(3.4)

x1Hi1 = p1Hi1

x1Hi1 = xq1Hi1

· · · · · ·

xmHim = pmHim

xmHim = xqmHim

Again, since K is finite, there are only finitely many such systems, and (C2) holds

iff each of these left systems does not have a solution.

For (C3), we consider any T ∈ T . Enumerate the elements of T as t1, . . . , tl.

Introduce variables y1, . . . , yl correspondent to t1, . . . , tl. Suppose first there is a

homomorphism of T into Γ. Then there are g1, . . . , gl ∈ G and 1 ≤ i1, . . . , il ≤ n

such that, for any m-ary relation symbol R ∈ L, whenever RT (tj1 , . . . , tjm) where

1 ≤ j1, . . . , jm ≤ l, we have

RΓ(gj1Hij1
, . . . , gjmHijm

).

Note that RΓ(gj1Hij1
, . . . , gjmHijm

) iff there are p1, . . . , pm ∈ K and g ∈ G such

that pk(aijk ) ∈ Cijk
for all k = 1, . . . ,m,

RC(p1(aij1 ), . . . , pm(aijm )),

and

(gj1Hij1
, . . . , gjmHijm

) = (gp1Hij1
, . . . gpmHijm

).

Applying Lemma 3.5, the above statement is equivalent to the following: there

are 1 ≤ i1, . . . , il ≤ n such that for any m-ary relation symbol R ∈ L, whenever

RT (tj1 , . . . , tjm) with 1 ≤ j1, . . . , jm ≤ l, there are p1, . . . , pm ∈ K such that

pk(aijk ) ∈ Cijk
for all k = 1, . . . ,m,

RC(p1(aij1 ), . . . , pm(aijm )),

and the following left system with variables y1, . . . , yl, x, z1, . . . , zm has a solution

(3.5)

z1Hij1
= yj1Hij1

z1Hij1
= xp1Hj1

. . . . . .

zmHijm
= yjmHijm

zmHijm
= xpmHijm

Here the variables x, z1, . . . , zm and the left system (3.5) are introduced for each in-

stance of j1, . . . , jm and p1, . . . , pm ∈ K that satisfy the conditions RT (tj1 , . . . , tjm),

pk(aijk ) ∈ Cijk
for all k = 1, . . . ,m, and RC(p1(aij1 ), . . . , pm(aijm )). We call these

j1, . . . , jm and p1, . . . , pm ∈ K a set of witnesses. There are only finitely many pos-

sible sets of witnesses. Accumulating all sets of witnesses together, and introducing

a left system (3.5) with distinct variables x, z1, . . . , zm for each set of witnesses, we

obtain a single finite left system that is the union of all these left systems for each



12 MAHMOOD ETEDADIALIABADI AND SU GAO

set of witnesses. Now this resulting left system has a solution. Conversely, if this

system has a solution, then the solutions for y1, . . . , yl will witness a homomorphism

of T into Γ. Thus the existence of a homomorphism of T into Γ is equivalent to a

single left system having a solution.

Finally, since T is finite, we again have finitely many left systems such that

(C3) holds iff each of the finitely many left systems on H1, . . . , Hn does not have a

solution.

In summary, all conditions (C1)–(C3) can be represented as finitely many left

systems on H1, . . . , Hn not having a solution. Since G has the HL-property, we can

find N1, . . . , NnEG such that each of the left systems described by (C1)–(C3) does

not have a solution with respect to (N1H1, . . . , NnHn). Indeed, for each of the left

system Σ there are such NΣ
1 , . . . , N

Σ
n for the system. For each i = 1, . . . , n, let Ni

be the intersection of all NΣ
i . We thus get N1, . . . , Nn which are still of finite index

in G so that all of the left systems on N1H1, . . . , NnHn still do not have a solution.

This implies that the conditions (C1)–(C3) continue to hold with Hi replaced by

NiHi.

We now define D′ to be the finite L-structure with domain G/N1H1 ⊔ · · · ⊔

G/NnHn such that SD′

i = G/NiHi for all i = 1, . . . , n, and for any m-ary relation

symbol R ∈ L, we have RD′

(g1Ni1Hi1 , . . . , gmNimHim) iff there are p1, . . . , pm ∈ K

and g ∈ G such that pj(aij ) ∈ Cij for all j = 1, . . . ,m, RC(p1(ai1), · · · , pm(aim)),

and

(g1Ni1Hi1 , . . . , gmNimHim) = (gp1Ni1Hi1 , . . . , gpmNimHim).

Consider the map π′ : C → D′ defined as

π′(c) =

{

NiHi, if c = ai,

pNiHi, if c ∈ Ci, c 6= ai, and p ∈ K with p(ai) = c.

Then conditions (C1) and (C2) with Hi replaced by NiHi guarantee that π′ is an

isomorphic embedding. Condition (C3) with Hi replaced by NiHi implies that D′

is T -free. The action of G on D′ is by left multiplication, and each of g ∈ G gives

an isomorphism of the structure D′. Finally, we check that π′ is a K-map, and

therefore an F -map. Let p ∈ K and c ∈ Ci, and assume p(c) ∈ Ci. Suppose q ∈ K

with q(ai) = c and r ∈ K with r(ai) = p(c). Then π′(p(c)) = rNiHi = pqNiHi =

p(π′(c)), where r−1pq ∈ Hi by the definition of Hi. This completes the proof of

(i)⇒(ii).

3.3. Proof of Theorem 3.3 (iii)⇒(i). We assume (iii) holds and show that G

has the HL-property. Suppose H1, . . . , Hn ≤ G are finitely generated subgroups.

Consider a left system Σ with l many equations on H1, . . . , Hn that does not have

a solution. Let A be the finite set of g, g−1 ∈ G for all constants g appearing in

Σ. Let H0 = {1G} ≤ G be the trivial subgroup. Consider a relational structure D

defined as follows:

a) the domain of D is G/H0 ⊔G/H1 ⊔ · · · ⊔G/Hn;

b) there are n + 1 many unary relation symbols S0, . . . , Sn such that SD
i =

G/Hi for i = 0, . . . , n;

c) there is a binary relation symbol U such that UD = D ×D;
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d) for each g ∈ A, there is a binary relation Bg such that BD
g = {(hH0, hgH0) :

h ∈ G};

e) for each tuple t = (i1, . . . , im), where 2 ≤ m ≤ 2l + n + 1 and 0 ≤ ij ≤ n

for each j = 1, . . . ,m, there is an m-ary relation symbol Rt such that

RD
t (g1Hi1 , . . . , gmHim) iff g1Hi1 ∩ · · · ∩ gmHim 6= ∅.

Let L be the language of D. We claim that the left system Σ has a solution iff a

specific finite L-structure T has a homomorphic image inside D.

First we turn Σ into an equivalent left system Σ∗ with the same number of

equations. To do this, collect all equations in Σ of the form xHi = gHi where x

is a variable and g ∈ A. Introduce a new variable y and replace every equation

in the above collection by the equation xHi = ygHi. Denote the resulting left

system as Σ∗. We claim that Σ has a solution iff Σ∗ has a solution. First suppose

Σ has a solution. Then the solution for Σ together with y = 1G is a solution for

Σ∗. Conversely, suppose Σ∗ has a solution in which y = h in particular. Then this

solution with every term left-multiplied by h−1 is still a solution for Σ∗, which, with

y dropped, is a solution for Σ. Thus, without loss of generality, we may assume

that all equations in Σ are of the form xHi = ygHi where x, y are variables and

g ∈ A.

Next we note that every equation of the form xHi = ygHi can be replaced with

two equations of the form xHi = xnewHi and xnewH0 = ygH0, where the last

equation can be rearranged as yH0 = xnewg
−1H0. By repeating this process, we

may obtain an equivalent left system Σ′ with ≤ 2l many equations such that for

any variable x in Σ, the equations in Σ′ involving x are all of the form xHi = yHi

or xH0 = ygH0 for some variable y and constant g ∈ A. Note that for the new

variable xnew above, we get two equations xnewHi = xHi and xnewH0 = ygH0 by

moving the cosets for xnew to the left hand side of the equations. Now for each

variable x in Σ′, consider the left system Σx consisting only of the equations in Σ′

that involve x. From the above discussion we know that Σx can be listed as:

xHi1 = ǫ1Hi1

· · · · · ·

xHik = ǫkHik

for k ≤ 2l and each ǫj is either a variable y or of the form yg (in which case ij = 0)

for a variable y and a constant g ∈ A. Note that Σx has a solution iff the following

expression has a solution:

(3.6) xH0 ∩ xH1 ∩ · · · ∩ xHn ∩ ǫ1Hi1 ∩ · · · ∩ ǫkHik 6= ∅.

In fact, if Σx has a solution x, y, . . . , then x is in the intersection of (3.6). Conversely,

if (3.6) holds for some x, y, . . . then they become a solution of Σx. Thus each Σx

corresponds to a formal relation

(3.7) Rt(xH0, xH1, . . . , xHn, ǫ1Hi1 , . . . , ǫkHik)

for a suitable t of length k + n+ 1 ≤ 2l+ n+ 1.
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We now describe a finite L-structure T . The domain of T is the set of all

formal cosets xHi and xgH0, where x is a variable in Σ′, g ∈ A, and i = 0, . . . , n.

The definition of ST
i is obvious. Also UT = T × T . For each g ∈ A, let BT

g =

{(xH0, xgH0) : x is a variable in Σ′}. The above formal relation (3.7) becomes

now the definition of RT
t . For other relation symbols Rt, R

T
t is empty. Note that

T is a Gaifman clique.

It is now clear that Σ′ has a solution iff there is a homomorphism from the

structure T into the structure D. Since Σ does not have a solution, neither does Σ′

and it follows that D is T -free.

G acts faithfully on D by left multiplication, and it is clear that the left multi-

plication by any g ∈ G preserves the structure of D. It is also clear that G acts

transitively on SD
i = G/Hi for each i = 0, . . . , n.

Let C be a finite substructure of D whose domain consists of all Hi and gHi

for g ∈ A and i = 0, . . . , n. Define ρ : G → P(C) by letting ρ(g)(c) = g(c) if

c, g(c) ∈ C; otherwise ρ(g)(c) is undefined. Since C is finite, the set ρ(G) is finite.

Let F ⊆ G be a finite subset so that A ⊆ F , ρ(F ) = ρ(G) and for each i = 1, . . . , n,

F contains a finite set of generators for Hi. Since the action of G on SD
i is transitive

for each i = 0, . . . , n, the partial action of ρ(F ) on SC
i is also transitive. Apply (iii)

to get a finite T -free extension D′ of C on which G acts by isomorphisms, and an

F -embedding π from C into D′. Note that Hi is an element of C and π(Hi) is an

element of D′, and we may assume that D′ = G(π(H0)) ⊔ · · · ⊔G(π(Hn)). Let

Ni = {g ∈ G : g(a) = a for every a ∈ G(π(Hi))}.

Since D′ is finite, Ni is a normal subgroup of finite index. Now let Σ ~N
be obtained

from Σ by replacing H1, . . . , Hn respectively by N1H1, . . . , NnHn. We claim that

Σ ~N
does not have a solution, which shows that G has the HL-property.

Towards a contradiction, assume the left system Σ ~N
on N1H1, . . . , NnHn has

a solution. Similarly to the above, we can obtain an equivalent left system Σ∗
~N

such that each equation in Σ∗
~N
is of the form xNiHi = ygNiHi. Let M0 = N0 ∩

N1 ∩ · · · ∩ Nn. Then M0 is still a normal subgroup of finite index, and obviously

M0 ≤ Ni for all i = 0, . . . , n. Now each equation of the form xNiHi = ygNiHi in

Σ∗
~N
can be equivalently replaced by xNiHi = xnewNiHi and xnewM0H0 = ygM0H0.

Also, the last equation can be reformulated as yM0H0 = xnewg
−1M0H0 because

of the normality of M0. Thus we obtain an equivalent left system Σ′
~N
in a similar

way as before, whose solution describes a homomorphic image of T in a structure

Γ = G/M0H0⊔G/N1H1⊔· · · ⊔G/NnHn. The exact definition of the structure Γ is

similar to the definition of D above. For notational convenience we define Mi = Ni

for i = 1, . . . , n.

Since D′ is a T -free structure, it is enough to show that there is a homomorphism

from Γ into D′. Consider the map ψ : Γ → D′ defined by ψ(gMiHi) = g(π(Hi)).

Then ψ is the desired homomorphism. Note that ψ is well-defined since if g1MiHi =

g2MiHi then g2 = g1nh for some n ∈Mi ≤ Ni and h ∈ Hi; using the definition ofNi

and Hi and the fact that π is an F -embedding, we have g2(π(Hi)) = g1nh(π(Hi)) =

g1(π(Hi)). More precisely, we can write h = f1 · · · fr with f1, . . . , fr ∈ F as F
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contains a finite set of generators for Hi; since π is an F -embedding, we have

h(π(Hi)) = f1 · · · fr(π(Hi)) = π(f1 · · · fr(Hi)) = π(Hi). Also, by definition of Ni,

for n ∈ Ni we have n(π(Hi)) = π(Hi).

It remains to verify that ψ preserves structure. For this let t = (i1, . . . , im) with

m ≤ 2l + n+ 1 and assume RΓ
t (g1Mi1Hi1 , . . . , gmMimHim), that is,

g1Mi1Hi1 ∩ · · · ∩ gmMimHim 6= ∅.

Then there are nij ∈Mij ≤ Nij and hij ∈ Hij for j = 1, . . . ,m such that

g1ni1hi1 = · · · = gmnimhim = g.

The action of g on D′ sends the tuple (π(Hi1 ), . . . , π(Him)) to

(g1(π(Hi1 )), . . . , gm(π(Him ))) = (ψ(g1Mi1Hi1), . . . , ψ(gmMimHim)).

Note that RC
t (Hi1 , . . . , Him) and therefore RD′

t (π(Hi1 ), . . . , π(Him)). Now since g

acts by an isomorphism on D′, we have RD′

t (g1(π(H1)), . . . , gm(π(Hm))).

Finally, consider (hM0H0, hgM0H0) ∈ BΓ
g for some g ∈ A and h ∈ G. We

need to show that (h(π(H0)), hg(π(H0))) ∈ BD′

g . By the definition of C, we have

H0, gH0 ∈ C and BC
g (H0, gH0). Since g ∈ A ⊆ F and π is an F -embedding, we have

π(gH0) = g(π(H0)) and B
D′

g (π(H0), g(π(H0))). Now h acts by an isomorphism on

D′, and so BD′

g (hπ(H0), hg(π(H0))) as desired.

This finishes the proof of Theorem 3.3.

3.4. Free products of groups with the HL-property. As a corollary to The-

orem 3.3, we show below that the HL-property is closed under taking finite free

products. This is analogous to the theorem of Coulbois [1] which states that the

RZ-property is closed under taking finite free products. In the proof of the corollary

we use the coherence result of Sinora–Solecki [9], which is also established in [5]

with a different proof. We summarize in the following proposition the exact fact

we will need in our proof.

Proposition 3.6. Let C be a finite T -free L-structure. Then, C has a finite T -

free HL-extension (D,φ) such that for every substructure E ⊆ C, φE : Aut(E) →

Aut(D) defined as

φE(p) =

{

φ(p), if p ∈ Aut(E) ∩ PC ,

1D, if p = 1E,

is a group isomorphic embedding.

Proof. It was proved in [9] and [5] that, for any finite T -free L-structure C, there

is a finite T -free extension D of C and a map ϕ : P(C) → Aut(D) such that

p ⊆ ϕ(p) for all p ∈ P(C), and for any p, q, r ∈ P(C) with p ◦ q = r we have

ϕ(p) ◦ ϕ(q) = ϕ(r). We claim (D,ϕ ↾ PC) is the desired HL-extension. Let E ⊆ C

be a substructure. Since 1E ◦ 1E = 1E, we have ϕ(1E) ◦ ϕ(1E) = ϕ(1E). Thus

ϕ(1E) = 1D, and φE = ϕ ↾ Aut(E). The coherence property clearly implies that φE
is a group homomorphism from Aut(E) into Aut(D). Assume g ∈ Aut(E) ⊆ P(C)

and φE(g) = ϕ(g) = 1D, then g = 1E since g ⊆ ϕ(g). Therefore, φE is an

isomorphic embedding from Aut(E) into Aut(D). �
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In the proof of the corollary we will also need a property of Gaifman cliques

proved by Siniora–Solecki in [9]. To explain the property, first recall some defini-

tions.

Definition 3.7. Let L be a relational language and C1, C2 and C be L-structures.

Assume C ⊆ C1, C2. Then the free amalgamation of C1 and C2 over C is the

structure on D = (C1 \C)⊔C ⊔ (C2 \C) where for every relation R in the language

RD = RC1 ∪ RC2 . A class C of L-structures has the free amalgamation property if

the free amalgamation of any two structures in C over a structure in C is still in C.

Siniora–Solecki proved in Lemma 4.5 of [9] that a class C of L-structures has the

free amalgamation property iff there is a set T of L-structures each of which is a

Gaifman clique such that C is exactly the collection of all L-structures C for which

there does not exist any isomorphic embedding from any T ∈ T into C. Note that

in our context (where T is a finite set of finite L-structures) the statement implies

that the class of finite T -free L-structures has the free amalgamation property iff

all T ∈ T are Gaifman cliques. This is because, if T is a set of Gaifman cliques

and if we let T ′ to be the set of all homomorphic images of structures in T , then

T ′ is still a finite set of Gaifman cliques, and the collection of T -free structures is

exactly the collection of structures into which no T ∈ T ′ isomorphically embed.

Corollary 3.8. Let G1, G2 be two groups with the HL-property. Then, the free

product of G1 and G2, G1 ∗G2, has the HL-property.

Proof. Suppose G1, G2 have the HL-property. To show that G1 ∗ G2 has the HL-

property, we use the equivalence between clauses (i) and (iii) of Theorem 3.3. Specif-

ically, we show the following:

Let L be a finite relational language with unary relation symbols S1, . . . , Sn.

Let T be a finite set of finite L-structures such that every T ∈ T is a

Gaifman clique. Let D be a T -free L-structure such that {SD
1 , . . . , S

D
n }

is a partition of the domain of D. Let C be a finite substructure of D.

Let F be a finite subset of G1 ∗ G2. Suppose that G1 ∗ G2 acts faithfully

by isomorphisms on D and that G1 ∗ G2 acts transitively on each SD
i for

i = 1, . . . , n. Then there exists a finite T -free L-structure D′ on which

G1 ∗G2 acts by isomorphisms, and an F -embedding from C into D′.

In the following we construct the desired structure D′.

Let F1 ⊆ G1 and F2 ⊆ G2 be finite subsets such that F ⊆ F1 ∗ F2. Let C
′ ⊆ D

be a finite structure extending C such that for every f = f1f2 · · · fl ∈ F where

fi ∈ F1 ∪ F2 for every i = 1, 2, . . . , l, and every a ∈ C where f(a) ∈ C, we have

fj · · · fl(a) ∈ C′ for every 1 ≤ j ≤ l. Since G1 and G2 have the HL-property, we

can find finite T -free L-structures D′
1 and D′

2 such that for k = 1, 2:

(1) Gk acts by isomorphisms on D′
k, and

(2) there exists an Fk-embedding πk from C′ to D′
k.

Let D0 be the free amalgamation of D′
1 and D′

2 over π1(C
′) ∼= π2(C

′), that is,

the underlying set of D0 is (D′
1 \π1(C

′))⊔C′ ⊔ (D′
2 \π2(C

′)) and for every relation

R in the language RD0 = RD′

1 ∪ RD′

2 . Since T consists of only Gaifman cliques,
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the collection of all T -free L-structures has the free amalgamation property. Thus

D0 is T -free.

By Proposition 3.6, there exists a finite T -free HL-extension (D′, φ) of D0 such

that for every finite substructure E ⊆ D0, φ induces a group isomorphic embedding

from Aut(E) to Aut(D). In particular, this holds for E = D′
1, D

′
2. Therefore, φ

induces an action ofGk onD′ by g(a) = φ(g)(a) for k = 1, 2. By considering the free

product of these two actions, we get an action of G1 ∗G2 on D′ by isomorphisms. It

remains to show that there exists an F -embedding π from C to D′. Let π : C′ → D′

denote the inclusion map. We claim π ↾ C is as desired. Let f = f1f2 · · · fl ∈ F

where fi ∈ F1 ∪F2 for every i = 1, 2, . . . , l, and a ∈ C be such that f(a) ∈ C. Note

that for k = 1, 2, since π is an Fk-embedding from C′ to D′
k, we have that π is also

an Fk-embedding from C′ to D′. Therefore,

π(f(a)) = π(f1 · · · fk(a)) = f1(π(f2 · · · fl(a))) = · · · = f1 · · · fl(π(a)) = f(π(a)).

�

4. Coherent HL-extensions and Ultraextensive Structures

In this section we introduce a notion of ultraextensive L-structures using a new

notion of coherent HL-extensions. Coherence in our sense is slightly weaker than the

coherence notion of Siniora–Solecki [9] but is sufficient for deriving the interesting

properties of ultraextensive structures. These notions are generalizations of similar

notions in [2] in the context of metric spaces.

Definition 4.1. Let C1 ⊆ C2 be L-structures and (Di, φi) be an HL-extension of

Ci for i = 1, 2. We say that (D1, φ1) and (D2, φ2) are coherent if

(i) D2 extends D1,

(ii) φ2(p) extends φ1(p) for all p ∈ PC1
⊆ PC2

, and

(iii) letting Ki = 〈φi(PCi
)〉 ≤ Aut(Di) for i = 1, 2, and letting κ : φ1(PC1

) →

φ2(PC2
) be such that κ(φ1(p)) = φ2(p) for all p ∈ PC1

, then κ has a unique

extension to a group isomorphic embedding from K1 into K2.

Definition 4.2. An L-structure U is ultraextensive if

(i) U is ultrahomogeneous, i.e., there is a φ such that (U, φ) is an HL-extension

of U ;

(ii) Every finite C ⊆ U has a finite HL-extension (D,φ) where D ⊆ U ;

(iii) If C1 ⊆ C2 ⊆ U are finite and (D1, φ1) is a finite minimal HL-extension of

C1 with D1 ⊆ U , then there is a finite minimal HL-extension (D2, φ2) of

C2 such that D2 ⊆ U and (D1, φ1) and (D2, φ2) are coherent.

Theorem 4.3. Let T be a finite set of finite L-structures each of which is a Gaif-

man clique. Suppose C1 ⊆ C2 are finite T -free L-structures and (D1, φ1) is a finite

T -free HL-extension of C1. Then there is a finite T -free HL-extension (D2, φ2) of

C2 so that (D2, φ2) is coherent with (D1, φ1).

Proof. Since every T ∈ T is a Gaifman clique, the collection of all T -free structures

has the free amalgamation property. Let C be the free amalgamation of D1 and C2
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over C1. Then C is T -free. We will again use the main theorem of [9] and [5], which

states that, for any finite T -free L-structure C, there is a finite T -free extension

D2 of C and a map ϕ : P(C) → Aut(D2) such that p ⊆ ϕ(p) for all p ∈ P(C), and

for any p, q, r ∈ P(C) with p ◦ q = r we have ϕ(p) ◦ ϕ(q) = ϕ(r).

Define φ2 : PC2
→ Aut(D2) as

φ2(p) =

{

ϕ(φ1(p)), if p ∈ PC1
⊆ PC2

,

ϕ(p), if p ∈ PC2
\ PC1

⊆ P(C).

Then (D2, φ2) is an HL-extension of C2. It is also clear that D2 extends D1.

For p ∈ PC1
, our definition of φ2 gives that φ2(p) = ϕ(φ1(p)) ⊇ φ1(p). Now

define κ : K1 → K2 by letting κ(φ1(p)) = φ2(p) and extending the definition of

κ to all finite products in K1 = 〈φ1(PC1
)〉 ≤ Aut(D1). We first verify that κ

is well-defined. For this let p1, . . . , pn ∈ PC1
such that φ1(p1) · · ·φ1(pn) = 1K1

.

We need to show that φ2(p1) · · ·φ2(pn) = 1K2
. Both products take place in an

automorphism group, so they are compositions. By the coherent property of ϕ, we

have ϕ(φ1(p1)) · · ·ϕ(φ1(pn)) = ϕ(1K1
), and so φ2(p1) · · ·φ2(pn) = 1K2

. Thus we

have shown that κ is a group homomorphism. To see that it is a group isomorphic

embedding, we show that the kernel of κ is trivial. For this let p1, . . . , pn ∈ PC1
so

that φ2(p1) · · ·φ2(pn) = 1K2
. Restricting all maps onD1, we get φ1(p1) · · ·φ1(pn) =

1K1
. �

We remark that the condition in the above theorem for T to consist only of

Gaifman cliques is necessary. If T fails this property, not only the proof fails to

work because of the failure of the free amalgamation property for the collection of

T -free L-structures, but also the statement of the theorem can fail.

We give a counterexample below.

Consider L = {R,S} where R is a binary relation symbol and S is a quar-

ternary relation symbol. Let T = {0, 1, 2, 3, 4, 5, 6}whereRT = {(0, 1), (1, 2), (2, 0)}

and ST = {(a, b, c, d) : a, b, c, d ∈ {3, 4, 5, 6}}. Let C2 = {x, y, z} with RC2 =

{(x, y), (y, z), (z, x)} and SC2 = ∅. Let C1 = {x, y} be the induced substruc-

ture of C2. Let D1 = {x, y, u, v} where RD1 = {(x, y), (y, u), (u, v), (v, x)} and

SD1 = {(a, b, c, d) : a, b, c, d ∈ {x, y, u, v}}. Then PC1
= {x 7→ y, y 7→ x} and

(D1, φ1) is an HL-extension of C1, with φ1 : PC1
→ Aut(D1) extending x 7→ y to

the automorphism {x 7→ y, y 7→ u, u 7→ v, v 7→ x} and extending y 7→ x to the

automorphism {y 7→ x, x 7→ v, v 7→ u, u 7→ y}. Note that C1, C2, D1 are T -free

L-structures. Now there is no T -free HL-extension (D2, φ2) of C2 that is coherent

with (D1, φ1).

Theorem 4.4. Let T be a finite set of finite L-structures each of which is a Gaif-

man clique. Then every countable T -free L-structure can be extended to a countable

T -free ultraextensive L-structure.

Proof. Let C be a countable T -free L-structure. Write C as an increasing union

of finite T -free L-structures Fn for n = 1, 2, . . . . For n ≥ 1, inductively define

increasing sequences of finite T -free L-structure Cn, Dn and Zn as follows. Let

C1 = F1 and (D1, φ1) be a finite T -free, minimal HL-extension of C1. We define
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Z1 ⊇ D1 such that for every pair (D,D′) with D ⊆ D′ ⊆ D1 and any minimal HL-

extension (E, φ) of D where E ⊆ D1, there exists a T -free minimal HL-extension

(E′, φ′) of D′ where E′ ⊆ Z1, such that (E, φ) and (E′, φ′) are coherent. Note that

this is possible since there are only finitely many triples (D,D′, E) and for any such

triple by Theorem 4.3 we can fix a coherent extension E′. Finally, to construct Z1,

we add E′ \E to D1 for all E′ corresponding to the triple (D,D′, E) such that the

union of the new points (E′ \ E) and E ⊆ D1 is an isomorphic copy of E′. Z1 is

a free amalgamation of T -free structures, and hence is T -free. Let C2 be the free

amalgamation of Z1 and F2 over F1.

In general, assume a finite Cn has been defined for n > 1. Apply Theorem 4.3

to obtain a finite T -free, minimal HL-extension (Dn, φn) of Cn that is coherent

with (Dn−1, φn−1). We use a similar construction to the construction of Z1 from

D1 to define Zn ⊇ Dn. Note that Zn has the property that for every minimal

HL-extension in Dn, that is, for every D,E ⊆ Dn where (E, φ) is a minimal HL-

extension of D, every D ⊆ D′ ⊆ Dn has a minimal HL-extension in Zn that is

coherent with (E, φ). Let Cn+1 be the free amalgamation of Zn and Fn+1 over Fn.

All structures obtained are T -free.

Let D be the union of the increasing sequence (Dn)
∞
n=1. We verify that D is

ultraextensive. To verify Definition 4.2 (i), let p ∈ PD. Then there is n ≥ 1

such that p ∈ PCn
. Let np be the least such n. Then for all m ≥ np, p ⊆

φm(p) ⊆ φm+1(p) by the coherence of (Dm, φm) with (Dm+1, φm+1). Define φ(p) =
⋃

m≥np
φm(p). Then φ(p) is an isomorphism of D that extends p.

For Definition 4.2 (ii), let F ⊆ D be finite. Then there is n such that F ⊆ Cn,

and it follows that (Dn, φn ↾ PF ) is an HL-extension of F .

Finally, for Definition 4.2 (iii), let F ⊆ F ′ ⊂ D be finite and assume that (E, φ)

is a finite minimal HL-extension of F with E ⊆ D. Then, there is a natural number

n such that F ′, E ⊆ Dn. By the construction of Zn, there exists a minimal HL-

extension (E′, φ′) of F ′ (corresponding to the triple (F, F ′, E)) such that E′ ⊆ Zn ⊆

D and that (E′, φ′) is coherent with (E, φ). �

We derive some properties of ultraextensive structures below.

Theorem 4.5. If U is an ultraextensive L-structure, then every countable sub-

structure C ⊆ U can be extended to a countable ultraextensive substructure D ⊆ U .

Proof. We use a similar argument to the argument in the proof of Theorem 4.4

to construct D. The differences are that in the construction instead of applying

Theorem 4.3 we use the properties of ultrextensive structures to find (Dn, φn); and

we consider union of structures instead of free amalgamation to find Cn, Zn. Clearly,

all the structures Cn, Dn, Zn are substructures of U and therefore, D ⊆ U . �

Theorem 4.6. If U is a countable ultraextensive L-structure then Aut(U) has a

dense locally finite subgroup.

Proof. Let {Ci}∞i=1 be an increasing sequence of finite substructures of U such that

U =
⋃∞

i=1
Ci. Since U is an ultraextensive L-structure, we can find an increasing

sequence {(Di, φi)}
∞
i=1, where eachDi ⊆ U , such that (Di, φi) is an HL-extension of
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Ci and (Di+1, φi+1) is coherent with (Di, φi) for i = 1, 2, . . . . Then,
⋃∞

i=1
Aut(Di)

is a dense locally finite subgroup of Aut(U). �

Definition 4.7. Let C be a class of L-structures. We say C has the coherent

extension property if it has the EPPA and for finite structures D ⊆ D′ in C and a

finite minimal HL-extension (E, φ) of D where E is also in C, there exists a finite

minimal HL-extension (E′, φ′) of D′ where E′ is in C and (E, φ) and (E′, φ′) are

coherent.

Theorem 4.8. Let C be a Fräıssé class and U be the Fräıssé limit of C. Then,

U is ultraextensive iff C has the coherent extension property. In particular, if T is

a finite set of Gaifman cliques and C is the class of T -free structures, then U is

ultraextensive.

Proof. The equivalence is clear by Definition 4.7. The second part is the direct

consequence of Theorem 1.3 and Theorem 4.3. �

Corollary 4.9. The Henson graph Gn, the Fräıssé limit of the class of Kn-free

graphs, is ultraextensive for every natural number n.
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