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DIMENSION INEQUALITY FOR A DEFINABLY COMPLETE

UNIFORMLY LOCALLY O-MINIMAL STRUCTURE OF THE

SECOND KIND

MASATO FUJITA

Abstract. Consider a definably complete uniformly locally o-minimal ex-
pansion of the second kind of a densely linearly ordered abelian group. Let
f : X → Rn be a definable map, where X is a definable set and R is the uni-
verse of the structure. We demonstrate the inequality dim(f(X)) ≤ dim(X)
in this paper. As a corollary, we get that the set of the points at which f is
discontinuous is of dimension smaller than dim(X). We also show that the
structure is defiably Baire in the course of the proof of the inequality.

1. Introduction

A uniformly locally o-minimal structure of the second kind was first defined and
investigated in the author’s previous work [5]. It enjoys several tame properties such
as local monotonicity. In addition, it admits local definable cell decomposition when
it is definably complete.

In [5], the author defined dimension of a set definable in a locally o-minimal struc-
ture admitting local definable cell decomposition. Many assertions on dimension
known in o-minimal structures [2] also hold true for locally o-minimal structures
admitting local definable cell decomposition which are not necessarily definably
complete [5, Section 5.5]. An exception is the inequality dim(f(X)) ≤ dim(X),
where f : X → Rn is a definable map. The author gave an example which does
not satisfy the above dimension inequality in [5, Remark 5.5]. The structure in the
example is not definably complete. A question is whether the dimension inequality
holds true when the structure is definably complete. This paper gives an affirmative
answer to this question. Our main theorem is as follows:

Theorem 1.1. Let R = (R,<,+, 0, . . .) be a definably complete uniformly locally

o-minimal expansion of the second kind of a densely linearly ordered abelian group.

The inequality

dim(f(X)) ≤ dim(X)

holds true for any definable map f : X → Rn.

We get the following corollary:

Corollary 1.2. Let R = (R,<,+, 0, . . .) be the same structure as Theorem 1.1. Let

f : X → R be a definable function. The set of the points at which f is discontinuous

is of dimension smaller than dim(X).
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2 M. FUJITA

The author proved the dimension inequality in [6, Theorem 2.4] when the uni-
verse of the structure is the set of reals. This fact is not a direct corollary of the
above theorem because the structure should be an expansion of an abelian group
in the theorem.

The paper is organized as follows. In Section 2, we first review definitions used in
the paper. We prove several basic facts in Section 3. Satisfaction of the dimension
inequality is relevant to defiably Baire property introduced in [3]. Section 4 treats
the definably Baire property. We show that a definably complete uniformly locally
o-minimal expansion of the second kind of a densely linearly ordered abelian group
is definably Baire in the section. We finally demonstrate Theorem 1.1 in Section 5.

We introduce the terms and notations used in this paper. The term ‘definable’
means ‘definable in the given structure with parameters’ in this paper. A CBD

set is a closed, bounded and definable set. For any set X ⊂ Rm+n definable in
a structure R = (R, . . .) and for any x ∈ Rm, the notation Xx denotes the fiber
defined as {y ∈ Rn | (x, y) ∈ X}. For a linearly ordered structure R = (R,<, . . .),
an open interval is a definable set of the form {x ∈ R | a < x < b} for some a, b ∈ R.
It is denoted by (a, b) in this paper. We define a closed interval in the same manner
and it is denoted by [a, b]. An open box in Rn is the direct product of n open
intervals. A closed box is defined similarly. Let A be a subset of a topological
space. The notations int(A) and A denote the interior and the closure of the set
A, respectively. The notation |S| denotes the cardinality of a set S.

2. Definitions

We review the definitions given in the previous works. The definition of a de-
finably complete structure is found in [8] and [1]. A locally o-minimal structure is
defined and investigated in [9]. Readers can find the definitions of uniformly locally
o-minimal structures of the second kind and locally o-minimal structures admitting
local definable cell decomposition in [5]. We use DΣ-sets introduced in [1].

Definition 2.1 (DΣ-sets). Consider an expansion of a linearly ordered structure
R = (R,<, 0, . . .). A parameterized family of definable sets is the family of the
fibers of a definable set. A parameterized family {Xr,s}r>0,s>0 of CBD subsets
of Rn is called a DΣ-family if Xr,s ⊂ Xr′,s and Xr,s′ ⊂ Xr,s whenever r ≤ r′

and s ≤ s′. A definable subset X of Rn is a DΣ-set if X =
⋃

r>0,s>0

Xr,s for some

DΣ-family {Xr,s}r>0,s>0.
A parameterized family of definable sets {Xs}s>0 is a definable decreasing family

of CBD sets if we have Xs = Xr,s for some DΣ-family {Xr,s}r>0,s>0 with Xr1,s =
Xr2,s for all r1, r2 and s.

We next review definably Baire property introduced in [3].

Definition 2.2. Consider an expansion of a densely linearly ordered structure.
A parameterized family of definable sets {Xr}r>0 is called a definable increasing

family if Xr ⊂ Xr′ whenever 0 < r < r′. A definably complete expansion of a
densely linearly ordered structure is definably Baire if the union

⋃

r>0Xr of any

definable increasing family {Xr}r>0 with int
(

Xr

)

= ∅ has an empty interior.

The following proposition is a direct corollary of the local definable cell decom-
position theorem [5, Theorem 4.2].
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Proposition 2.3. Consider a definably complete uniformly locally o-minimal struc-

ture of the second kind. It is definably Baire if and only if the union
⋃

r>0Xr of

any definable increasing family {Xr}r>0 with int(Xr) = ∅ has an empty interior.

Proof. Because int
(

Xr

)

6= ∅ iff int(Xr) 6= ∅ iff Xr contains an open cell in this case
by [5, Theorem 4.2]. �

The dimension of a set definable in a locally o-minimal structure admitting local
definable cell decomposition is defined in [5, Section 5]. We get the following lemma
on the dimension of the projection image. A lemma similar to it is found in [6],
but we give a complete proof here.

Lemma 2.4. Consider a locally o-minimal structureR = (R,<, . . .) admitting local

definable cell decomposition. Let X be a definable subset of Rm+n and π : Rm+n →
Rm be a coordinate projection. Assume that the fibers Xx are of dimension ≤ 0 for

all x ∈ Rm. Then, we have dimX ≤ dimπ(X).

Proof. For any (a, b) ∈ Rm × Rn, there exist open boxes Ba ⊂ Rm and Bb ⊂ Rn

with (a, b) ∈ Ba×Bb and dim(X∩(Ba×Bb)) = dimπ(X∩(Ba×Bb)) by [5, Lemma
5.4]. We have dimπ(X ∩ (Ba ×Bb)) ≤ dim π(X) by [5, Lemma 5.1]. On the other
hand, we have dim(X) = sup

(a,b)∈Rm×Rn

dim(X ∩ (Ba×Bb)) by [5, Corollary 5.3]. We

have finished the proof. �

3. Preliminaries

From now on, we consider a definably complete uniformly locally o-minimal
expansion of the second kind of a densely linearly ordered abelian group R = (R,<

,+, 0, . . .). We demonstrate several basic facts in this section.

Lemma 3.1. Let X be a bounded definable set. There exists a definable decreasing

family of CBD sets {Xs}s>0 with X =
⋃

s>0 Xs.

Proof. We demonstrate the lemma by the induction on d = dim(X). When d = 0,
X is discrete and closed by [5, Corollary 5.3]. We have only to set Xs = X for all
s > 0 in this case.

We next consider the case in which d > 0. Let ∂X denote the frontier of X .
We have dim ∂X < d by [5, Theorem 5.6]. We get dim(X ∩ ∂X) < d by [5,
Proposition 5.1]. There exists a definable decreasing family of CBD sets {Ys}s>0

with X∩∂X =
⋃

s>0 Ys by the induction hypothesis. Set Zs = {x ∈ X | d(x, ∂X) ≥

s} for all s > 0, where the notation d(x, ∂X) denotes the distance of the point x to

the set ∂X. They are CBD. It is obvious that
⋃

s>0 Zs = X \ ∂X = X \ ∂X. Set
Xs = Ys ∪ Zs. The family {Xs}s>0 is a definable decreasing family we are looking
for. �

Lemma 3.2. Any definable set X is a DΣ-set. That is, there exists a DΣ-family

{Xr,s}r>0,s>0 with X =
⋃

r>0,s>0Xr,s.

Proof. Let X be a definable subset of Rn. Set Xr = X∩ [−r, r]n. We can construct
subsets Xr,s of Xr satisfying the condition in the same manner as the proof of
Lemma 3.2. We omit the details. �

Lemma 3.3. Let X be a bounded definable set and {Xs}s>0 be a definable de-

creasing family of CBD sets with X =
⋃

s>0 Xs. The CBD set Xs has a nonempty

interior for some s > 0 if X has a nonempty interior.
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Proof. We prove the lemma following the same strategy as the proof of [1, 3.1]. Let
X be a definable subset of Rn. We prove the lemma by the induction on n. We
first consider the case in which n = 1. Assume that int(Xs) = ∅ for all s > 0. Fix
an arbitrary point a ∈ R. There exist a positive integer N , an interval I with a ∈ I

and t > 0 such that, for any 0 < s < t, I ∩Xs contains an open interval or consists
of at most N points by [5, Theorem 4.2]. The sets I ∩ Xs consist of at most N

points because int(Xs) = ∅. We get |X ∩ I| =
∣

∣

⋃

s>0(I ∩Xs)
∣

∣ ≤ N . In particular,
X has an empty interior.

We next consider the case in which n > 1. Assume that X has a nonempty
interior. We show that the definable set Xs has a nonempty interior for some s > 0.
A closed box B = C×I ⊂ Rn−1×R is contained in X . We have B =

⋃

s>0(B∩Xs).
Hence, we may assume that X is a closed box B without loss of generality.

Shrinking B if necessary, we may assume that the fiber (Xs)x consists of at most
M points and N closed intervals for some M > 0, N > 0 and any sufficiently small
s > 0 and x ∈ C by [5, Theorem 4.2]. Set I = [c1, c2]. Take 2N distinct points in
the open interval (c1, c2), say b1, . . . , b2N . We may assume that bi < bj whenever
i < j. Set b0 = c1 and b2N+1 = c2. Put Ij = [bj−1, bj] for all 1 ≤ j ≤ 2N + 1.

Consider the sets Y k
s = {x ∈ C | Ik ⊂ (Xs)x} for all s > 0 and 1 ≤ k ≤ 2N + 1.

They are CBD. Therefore,
{

⋃2N+1
k=1 Y k

s

}

s>0
is a definable decreasing family of CBD

sets. We demonstrate that C =
⋃

s

⋃2N+1
k=1 Y k

s . Let x ∈ C be fixed. We have only
to show that Ik ⊂ (Xs)x for some k and s. For any k, there exists sk > 0 such
that int(Ik ∩ (Xsk)x) 6= ∅ by the induction hypothesis because {Ik ∩ (Xs)x}s>0 is
a decreasing family of CBD sets with Ik =

⋃

s Ik ∩ (Xs)x. Take s = min{sk | 1 ≤
k ≤ 2N + 1}. We have int(Ik ∩ (Xs)x) 6= ∅ for all 1 ≤ k ≤ 2N + 1. Assume that
Ik 6⊂ (Xs)x for all k. A maximal closed interval in (Xs)x should be contained in
Ik, Ik ∪ Ik+1 or Ik−1 ∪ Ik for some k. Therefore, int(Ij ∩ (Xs)x) is empty for some
1 ≤ j ≤ 2N +1. Contradiction. We have proven that Ik ⊂ (Xs)x for some k and s.

Apply the induction hypothesis to C =
⋃

s>0

⋃2N+1
k=1 Y k

s . The set
⋃2N+1

k=1 Y k
s has

a nonempty interior for some s > 0. The CBD set Y k
s has a nonempty interior for

some k by [5, Theorem 3.3]. The CBD set Xs has a nonempty interior because
Ik × Y k

s is contained in Xs. �

Lemma 3.4. Assume that R is definably Baire. Let X be a definable set and

{Xr,s}r>0,s>0 be a DΣ-family with X =
⋃

r>0,s>0 Xr,s. The CBD set Xr,s has a

nonempty interior for some r > 0 and s > 0 if X has a nonempty interior.

Proof. Let X be a definable subset of Rn. Set X ′

r,s = Xr,s∩ [−r, r]n. We have X =
⋃

r>0,s>0X
′

r,s. We may assume that Xr =
⋃

r>0,s>0 Xr,s is bounded considering

X ′

r,s instead ofXr,s. The lemma is now immediate from Proposition 2.3 and Lemma
3.3. �

4. On definably Baire property

We demonstrate that the structure R is definably Baire.

Lemma 4.1. Let X be a bounded definable subset of Rn+1. Set

S = {x ∈ Rn | Xx contains an open interval}.

The set S has an empty interior if X has an empty interior.
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Proof. Assume that S has a nonempty interior. There exists a definable decreasing
family of CBD sets {Xs}s>0 with X =

⋃

s>0 Xs by Lemma 3.1. Set Ss = {x ∈
Rn | ∃t ∈ R, [t − s, t + s] ⊂ (Xs)x} for all s > 0. They are CBD by [8, Lemma
1.7] because they are the projection images of the CBD sets Ss = {(x, t) ∈ Rn ×
R | [t − s, t + s] ⊂ (Xs)x}. We have S =

⋃

s>0 Ss. In fact, it is obvious that
⋃

s>0 Ss ⊂ S by the definition. Take a point x ∈ S. There exist t ∈ R and s1 > 0
with [t−s1, t+s1] ⊂ Xx. In particular, we have int(Xx) 6= ∅. We have int(Xs2)x 6= ∅
for some s2 > 0 by Lemma 3.3. We may assume that [t − s1, t + s1] ⊂ (Xs2)x by
taking new s1 and t again. Set s = min{s1, s2}, then we have x ∈ Ss. We have
demonstrated that S =

⋃

s>0 Ss.
Again by Lemma 3.3, we have int(Ss) 6= ∅ for some s > 0. We obtain int(Xs) 6= ∅

by [1, 2.8(2)]. We get int(X) 6= ∅. �

We reduce to the one-dimensional case.

Lemma 4.2. The structure R is definably Baire if the union
⋃

r>0 Sr of any de-

finable increasing family {Sr}r>0 of subsets of R has an empty interior whenever

Sr have empty interiors for all r > 0.

Proof. Let {Xr}r>0 be a definable increasing family of subsets of Rn. Set X =
⋃

r>0Xr. We have only to show that the definable set Xr has a nonempty interior
for some r > 0 if X has a nonempty interior. The definable set X contains a
bounded open box B. We may assume that X is a bounded open box B without
loss of generality by considering B and {Xr ∩ B}r>0 in place of X and {Xr}r>0,
respectively.

We prove the lemma by the induction on n. The lemma is obvious when
n = 0. We next consider the case in which n > 0. We lead to a contradic-
tion assuming that Xr have empty interiors for all r > 0. Let π : Rn → Rn−1

be the projection forgetting the last coordinate. We have B = B1 × I for some
open box B1 in Rn−1 and some open interval I. Consider the set Yr = {x ∈
B1 | the fiber (Xr)x contains an open interval} for all r > 0. They have empty
interiors by Lemma 4.1. The union

⋃

r>0 Yr has an empty interior by the induc-
tion hypothesis. In particular, we have B1 6=

⋃

r>0 Yr and we can take a point

x ∈ B1 \
(
⋃

r>0 Yr

)

. Since x 6∈
⋃

r>0 Yr, the fiber (Xr)x does not contain an open
interval for any r > 0. Therefore, the union

⋃

r>0(Xr)x has an empty interior by the
assumption. On the other hand, we have I =

⋃

r>0(Xr)x because B =
⋃

r>0 Xr.
It is a contradiction. �

We prove that R is definably Baire now.

Theorem 4.3. A definably complete uniformly locally o-minimal expansion of the

second kind of a densely linearly ordered abelian group is definably Baire.

Proof. Let R = (R,<,+, 0, . . .) be the considered structure. Let {Xr}r>0 be a
definable increasing family of subsets of R. Set X =

⋃

r>0Xr. We have only to
show that the definable set X has an empty interior if Xr have empty interiors for
all r > 0 by Lemma 4.2. Note that Xr are discrete and closed because the structure
is locally o-minimal.

Assume that X has a nonempty interior. The definable set X contains an open
interval. Take a point a contained in the open interval. Consider the definable
function f : {r ∈ R | r > 0} → {x ∈ R | x > a} defined by f(r) = inf{x >

a | x ∈ Xr}. It is obvious that f is a decreasing function because {Xr}r>0 is a
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definable increasing family. We demonstrate that limr→∞ f(r) = a. Let b be an
arbitrary point sufficiently close to a with b > a. Since X =

⋃

r>0 Xr contains a
neighborhood of a, there exists a positive element r ∈ R with b ∈ Xr. We have
a < f(r) ≤ b by the definition of f . We have shown that limr→∞ f(r) = a.

Consider the image Im(f) of the function f . Take a sufficiently small open
interval I containing the point a with I ⊂ X . The intersection I ∩ Im(f) is a finite
union of points and open intervals because it is definable in the locally o-minimal
structure R. Take an arbitrary point b ∈ Im(f) and a point r > 0 with b = f(r).
Since Xr is closed, we have b ∈ Xr. Any point b′ ∈ Im(f) with b′ > b is also
contained in Xr. In fact, take a point r′ > 0 with b′ = f(r′). If r′ > r, the set Xr′

contains the point b because Xr ⊂ Xr′ . We have b′ = f(r′) ≤ b by the definition of
the function f . It is a contradiction. If r′ < r, we have b′ ∈ Xr′ ⊂ Xr.

Set b1 = inf{b′ ∈ Im(f) | b′ > b}. We have b1 ∈ Xr and b1 > b because
{b′ ∈ Im(f) | b′ > b} ⊂ Xr and Xr is closed and discrete. The open interval
(b, b1) has an empty intersection with Im(f). We have shown that I ∩ Im(f) does
not contain an open interval. The set I ∩ Im(f) consists of finite points. It is a
contradiction to the fact that limr→∞ f(r) = a. �

Remark 4.4. It is already known that a definably complete expansion of an ordered
field is definably Baire [7]. Our research target is a uniformly locally o-minimal
structure of the second kind. A uniformly locally o-minimal expansion of the second
kind of an ordered field is o-minimal by [5, Proposition 2.1]. In this case, it is
trivially definably Baire by the definable cell decomposition theorem [2, Chapter 3,
(2,11)]. We have more interest in the case in which the structure is not an expansion
of an ordered field.

5. Proof of Theorem 1.1

We demonstrate Theorem 1.1 in this section. We first show that a definable map
is continuous on an open subset of the domain of definition.

Lemma 5.1. A definable map f : U → Rn defined on an open set U is continuous

on a nonempty definable open subset of U .

Proof. The structure R is definably Baire by Theorem 4.3. We may use Lemma
3.4 in the proof.

Let U be a definable open subset ofRm. Consider the projection π : Rm+n → Rm

onto the firstm coordinates. The notation Γ(f) denotes the graph of f . There exists
a DΣ-family {Xr,s}r,s with Γ(f) =

⋃

r,s Xr,s by Lemma 3.2. Note that π(Xr,s) is

CBD by [8, Lemma 1.7]. We have U =
⋃

r,s π(Xr,s) and the fiber π−1(x)∩Γ(f) is a

singleton for any x ∈ U . Therefore, we obtain Xr,s = Γ(f |π(Xr,s)), where f |π(Xr,s)

is the restriction of f to π(Xr,s). Take a closed box B contained in U . The family
{π(Xr,s)∩B} is a DΣ-family and B =

⋃

r,s π(Xr,s)∩B. The CBD set π(Xr,s)∩B

has a nonempty interior for some r and s by Lemma 3.4. Take a closed box B′

contained in π(Xr,s)∩B. The set Xr,s ∩ (B′ ×Rn) = Γ(f |B′) is closed. Therefore,
f is continuous on int(B′). �

We finally prove Theorem 1.1.

Proof of Theorem 1.1. We prove the following assertion:
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(∗): The inequality dim(f(X)) ≤ dim(X) holds true for any definable map
f : X → Rn.

Lemma 3.4 is available as in the proof of Lemma 5.1 for the same reason.
Set d = dim(f(X)). We demonstrate that dim(X) ≥ d. We can reduce to the

case in which the image f(X) is an open box B of dimension d. In fact, there
exist an open box B in Rd and a definable map g : B → f(X) such that the map
g is a definable homeomorphism onto its image by the definition of dimension [5,
Definition 5.1]. Set Y = f−1(g(B)) and h = g−1◦f |Y : Y → B. When dim(Y ) ≥ d,
we get dim(X) ≥ d by [5, Lemma 5.1] because Y is a subset of X . We may assume
that f(X) = B by considering Y and h instead of X and f , respectively.

We next reduce to the case in which the map f is the restriction of a coordinate
projection. Consider the graph G = Γ(f) ⊂ Rm+d of the definable map f . Let
π : Rm+d → Rd be the projection onto the last d coordinates. We have dim(X) ≥
dim(G) ≥ d by Lemma 2.4 when dim(G) ≥ d. We may assume that f : X → B is
the restriction of the projection π : Rm+d → Rd to X .

We have a DΣ-family {Xr,s}r>0,s>0 with X =
⋃

r,s Xr,s by Lemma 3.2. The

family {f(Xr,s)}r>0,s>0 is also a DΣ-family by [8, Lemma 1.7] because f is the
restriction of a projection. We have B =

⋃

r,s f(Xr,s). The CBD set f(Xr,s) has
a nonempty interior for some r > 0 and s > 0 by Lemma 3.4. We fix such r > 0
and s > 0. Take an open box U contained in f(Xr,s). Note that the inverse image
{y ∈ Xr,s | f(y) = x} of x ∈ U is CBD because f is continuous. Consider a
definable function ϕ : U → Xr,s given by ϕ(x) = lexmin{y ∈ Xr,s | f(y) = x},
where the notation lexmin denotes the lexicographic minimum defined in [8]. We
can get an open box V contained in U such that the restriction ϕ|V of ϕ to V

is continuous by Lemma 5.1. The definable set Xr,s is of dimension ≥ d by the
definition of dimension because it contains the graph of the definable continuous
map ϕ|V defined on the open box V in Rd. We have dimX ≥ dim(Xr,s) ≥ d by [5,
Lemma 5.1]. We have proven Theorem 1.1. �

The proof of Corollary 1.2 is the same as that of [6, Corollary 2.6]. We give a
proof here because it is brief.

Proof of Corollary 1.2. Let D be the set of points at which the definable function
f is discontinuous. Assume that the domain of definition X is a definable subset
of Rm. Let G be the graph of f . We have dim(G) = dim(X) by Lemma 2.4 and
Theorem 1.1. Set E = {(x, y) ∈ X×R | y = f(x) and f is discontinuous at x}. We
get dim(E) < dim(G) by [5, Theorem 4.2, Corollary 5.3]. Let π : Rm+1 → Rm be
the projection forgetting the last coordinate. We have D = π(E) by the definitions
of D and E . We finally obtain dim(D) = dim(π(E)) ≤ dim(E) < dim(G) = dim(X)
by Theorem 1.1. �
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