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Abstract

The Wadge hierarchy was originally defined and studied only in the Baire space (and some other
zero-dimensional spaces). We extend it here to arbitrary topological spaces by providing a set-
theoretic definition of all its levels. We show that our extension behaves well in second countable
spaces and especially in quasi-Polish spaces. In particular, all levels are preserved by continuous open
surjections between second countable spaces which implies e.g. several Hausdorft-Kuratowski-type
theorems in quasi-Polish spaces. In fact, many results hold not only for the Wadge hierarchy of sets
but also for its extension to Borel functions from a space to a countable better quasiorder Q.
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1 Introduction

The classical Borel, Luzin, and Hausdorff hierarchies in Polish spaces, which are defined
using set operations, play an important role in descriptive set theory (DST). Recently,
these hierarchies were extended and shown to have similar nice properties also in quasi-
Polish spaces [6] which include many non-Hausdorff spaces of interest for several branches
of mathematics and theoretical computer science.

The Wadge hierarchy, introduced in [46] [47], is non-classical in the sense that it is based
on a notion of reducibility that was not recognized in the classical DST, and on using
ingenious versions of Gale-Stewart games rather than on set operations. For subsets A, B
of the Baire space N' = w*, A is Wadge reducible to B (A <y B), if A = f~1(B) for some
continuous function f on A. The quotient-poset of the preorder (P(N); <y ) under the
induced equivalence relation =y on the power-set of A is called the structure of Wadge
degrees in N'. W. Wadge [47] characterised the structure of Wadge degrees of Borel sets
(i.e., the quotient-poset of (B(N); <w)) up to isomorphism. In particular, this quotient-
poset is semi-well-ordered, hence it is well-founded and has no 3 pairwise incomparable
elements. For more information on Wadge degrees see [45], 1§].

This gives rise to the Wadge hierarchy {¥,(N)}a<, (for a rather large ordinal v) in A/
which is a great refinement of the Borel hierarchy (for more information see the next
section where we also give precise definitions of other notions mentioned in this intro-
duction). The Wadge hierarchy was originally defined only for the Baire space. Using
the methods of [47] it is easy to check that the structure (B(X); <) of Wadge degrees
of Borel sets in any zero-dimensional Polish space X remains semi-well-ordered and the
Wadge hierarchy in such spaces looks rather similar to that in the Baire space.
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The Wadge hierarchy of sets was an important development in classical DST not only as
a unifying concept (it subsumes all hierarchies known before) but also as a useful tool to
investigate second countable zero-dimension spaces. We illustrate this with two examples.
In [I0] a complete classification (up to homeomorphism) of homogeneous zero-dimensional
absolute Borel sets was achieved, completing a series of earlier results in this direction.
In [10] it was shown that any Borel subspace of the Baire space with more than one point
has a non-trivial auto-homeomorphism.

In this paper we attempt to find the “correct” extension of the Wadge hierarchy from
Polish zero-dimensional spaces to arbitrary second countable spaces. There are at least
three approaches to this problem.

The first approach is to show that Wadge reducibility in such spaces behaves similarly
to its behaviour in the Baire space, i.e. it is a semi-well-order. Unfortunately, this is
not the case: for many natural quasi-Polish spaces X the structure (B(X); <y/) is not
well-founded and has antichains with more than 2 elements (see e.g. [13] [16], 30, 15 3], 9]).
Thus, this approach does not lead to a reasonable extension of the Wadge hierarchy to
quasi-Polish spaces.

The second approach was independently suggested in [27, 38]. The approach is based
on the characterization of quasi-Polish spaces as the second countable Ty-spaces X such
that there is a total admissible representation £ from N onto X [6]. Namely, one can
define the Wadge hierarchy {3,(X)}aco in X by X, (X) ={AC X | £71(A) € (N}
One easily checks that the definition of 3,(X) does not depend on the choice of &,
Ua<cr Za(X) = B(X), Z,(X) € Ag(X) for all o < 3 < v, and any X,(X) is downward
closed under the Wadge reducibility in X. This definition is short and elegant but it gives
no real understanding of how the levels ¥,(X) look like, in particular their set-theoretic
descriptions are completely unclear.

The third approach (traditional in classical DST) proposed in [3§] is to apply a refinement
process according to which one starts with the Borel hierarchy and subsequently defines
suitable “natural” refinements of the hierarchies already available. At the first step of
this process we obtain the Hausdorff hierarchies over each level of the Borel hierarchy
thoroughly investigated in [6]. Further refinements may be done using more sophisti-
cated set operations which extend and modify some operations introduced in [47] for the
Baire space. In this way we described in [38] [39] an increasing sequence of pointclasses

{Za(X)}acr, A = sup{wr, wfl,wfll, ...} which exhaust the sets of finite Borel rank, and
we conjectured their coincidence with the corresponding classes from the second approach
and proved the conjecture for some particular cases. Thus, we proposed a way to achieving
a reasonable set-theoretic definition of the Wadge hierarchy in X.

In the present paper we propose such a definition for the whole Wadge hierarchy. The
definition is an infinitary version of the so called fine hierarchy introduced and studied
in a series of my publications (see e.g. [34] for a survey). In fact, this paper develops
a “classical” infinitary version of the effective finitary version of the Wadge hierarchy in
effective spaces and computable quasi-Polish spaces recently developed in [41]. Arguably,
our infinitary fine hierarchy (IFH), and hence also the Wadge hierarchy, is a kind of
“iterated difference hierarchy” over levels of the Borel hierarchy; it only remains to make
precise how to “iterate” the difference hierarchies.



Along with describing (hopefully) the right version of the Wadge hierarchy (by identify-
ing it with the IFH) in arbitrary spaces we show that this version behaves well in second
countable spaces and especially in quasi-Polish spaces. E.g., it provides the description of
all levels 3, (X) in quasi-Polish spaces. Also, all levels of the IFH are preserved by con-
tinuous open surjections between second countable spaces which gives a broad extension
of results by Saint Raymond and de Brecht for the Borel and Hausdorff hierarchies [43], [6].
We also show that several Hausdorff-Kuratowski-type theorems are inherited by the con-
tinuous open images. As a corollary we obtain such theorems in arbitrary quasi-Polish
spaces.

The notions and results of this paper apply not only to the Wadge hierarchy of sets
discussed so far but also to a more general hierarchy of functions A : X — @) from a space
X to an arbitrary quasiorder (). We identify such functions with Q-partitions of X of the
form {A71(¢q)}4eq in order to stress their close relation to k-partitions (obtained when
Q=Fk=1{0,...,k— 1} is an antichain with k-elements) studied by several authors.

For Q-partitions A, B of X, let A <y, B mean that there is a continuous function f on
X such that A(x) <o B(f(z)) for each x € X. The case of sets corresponds to the case
of 2-partitions. Let B(Q¥) be the set of Borel Q-partitions A (for which A~!(q) € B(X)
for all ¢ € Q). A celebrated theorem of van Engelen, Miller and Steel (see Theorem 3.2 in
[10]) shows that if @ is a countable better quasiorder (bqo) then Wy = (B(QV); <) is
a bgo. Although this theorem gives an important information about the quotient-poset
of Wy, it is far from a characterisation.

Many efforts (see e.g. [12]133] 138, [39] and references therein) to characterise the quotient-
poset of Wy were devoted to k-partitions of N'. Our approach in [33] 38, [39] to this
problem was to characterise the initial segments (A%(kV); <y ) for bigger and bigger
ordinals 2 < o < wy. To achieve this, we defined structures of iterated labeled trees and
forests with the so called homomorphism quasiorder and discovered useful properties of
some natural operations on the iterated labeled forests and on @)-partitions.

An important progress was recently achieved in [20] where a full characterisation of the
quotient-poset of Wy for arbitrary countable bgo () is obtained, using an extended set
of iterated labeled trees (7,,(Q); <j) with the homomorphism quasiorder <,. Namely,
(72, (Q); <p) is equivalent to the substructure of Wy formed by the o-join-irreducible
elements (the equivalence means isomorphism of the corresponding quotient-posets) via
an embedding p : 7., (Q) — Wg. The Wadge hierarchy of Q-partitions of A" may be thus
written as the family {Wq(T')}ret,, (@), where Wo(T) = {A € QN | A <w w(T)}, and
it exhausts all principal ideals of Wy formed by o-join-irreducible ()-Wadge degrees. For
the case of 2-partitions this yields a new characterization of the Wadge hierarchy of sets.

Our definition of the Q-IFH may be now sketched as follows. In arbitrary space X (and
even in a more general situation) we define the family {£(X,T)}re7, () of classes of
Q-partitions of X which we call the Q-IFH in X. We then show that if X is quasi-
Polish then L(X,T) ={A: X - Q| Ao € W(T)} for all T € T,,(Q) (at least for
Q = k). For the case of 2-partitions we obtain a set-theoretic characterisation of the
Wadge hierarchy of sets defined above within the second approach. This characterisation
looks rather different from a set-theoretic description of the Wadge hierarchy in [47] (see
also [24]). Note that the characterisations in [47] 24] cannot be straightforwardly extended
to arbitrary spaces since they use specific features of the Baire space. The properties of



Q-IFH in X strongly depend on @ (we distinguish the cases when @ is an arbitrary
quasiorder, a bqo, an antichain, @ = k, @ = 2) and on X (we distinguish the cases when
X is a set, an arbitrary space, a second countable space, a quasi-Polish space, the Baire

space), which is reflected in many formulations below.

Having papers [35], 38, [41] at hand would probably simplify reading of the present paper
because they contain simpler versions of some notions and results based on similar ideas.
The main technical notions for the infinitary case are a bit more complicated than for the
finitary case (considered e.g. in [35] 41]) but the ideas are the same.

After recalling necessary preliminaries in the next section, we define in Section 3] the Q-
IFH and establish its general properties. In Section 4l we prove additional properties of
the Q-IFH in second countable spaces and in quasi-Polish spaces. In particular, we prove
the above-mentioned preservation property and Hausdorff-Kuratowski-type theorems and
show that in the Baire space the Q-IFH coincides with the Q-Wadge hierarchy from [20].
We also examine when levels of this hierarchy have natural representations, are downward
closed under Wadge reducibility and have Wadge complete Q-partition.

In Section B we also briefly discuss the effective finitary version of Wadge hierarchy de-
veloped in [41] and its relation to the non-effective version developed here. We conclude
in Section [0l with some of the remaining open questions.

2 Preliminaries

In this section we briefly recall some notation, notions and facts used throughout the
paper. Some more special information is recalled in the corresponding sections below.

2.1 Well and better quasiorders

We use standard set-theoretical notation. In particular, Y is the set of functions from
X to Y, P(X) is the class of subsets of a set X, C is the class of complements X \ C of
sets C'in C C P(X). We assume the reader to be acquainted with the notion of ordinal
(see e.g. [19]). Ordinals are denoted by a, 3,7, .... Every ordinal « is the set of smaller
ordinals, in particular £ = {0,1,...,k — 1} for each k < w, and w = {0,1,2,...}. We use
some notions and facts of ordinal arithmetic. In particular, o + 3, o - 8 and o” denote
the ordinal addition, multiplication and exponentiation of a and [, respectively. Every
positive ordinal « is uniquely representable in the form o = w® + - - - +w*" where n < w
and a > ag > - -+ > «,; we denote ax = w®. The first non-countable ordinal is denoted
by wy.

We use standard notation and terminology on partially ordered sets (posets). Recall that
a quasiorder (qo) is a structure (P; <) satisfying the axioms of reflexivity Vz(x < ) and
transitivity VaVyVz(z < y Ay < z — x < 2). Any qo < on P induces the equivalence
relation defined by a = b < a < b A b < a. The corresponding quotient structure of
(P; <) is called the quotient-poset of P. To avoid complex notation, we sometimes abuse
terminology about posets by applying it also to qo’s; in such cases we just mean the
corresponding quotient-poset.



A qo (P; <) is well-founded if it has no infinite descending chains ag > a; > ---. In this
case there are a unique ordinal rk(P) and a unique rank function rkp from P onto rk(P)
satisfying a < b — rk(a) < rk(b). Tt is defined by induction rkp(x) = sup{rkp(y) + 1 |
y < z}. The ordinal rk(P) is called the rank (or height) of P, and the ordinal rkp(z) is
called the rank of x € P in P.

A well quasiorder (wqo) is a qo @) = (Q; <g) that has neither infinite descending chains nor
infinite antichains. Although wqo’s are closed under many natural finitary constructions
like forming finite labeled words or trees, they are not always closed under important
infinitary constructions. Nevertheless, it turns out possible to find a natural subclass
of wqo’s, called better quasiorders (bqo’s) which contains most of the “natural” wqo’s
(in particular, all finite qo’s) and has strong closure properties also for many infinitary
constructions. The notion of bqo is due to C. Nash-Williams. We omit a bit technical
notion of bqo which is used only in formulations. For more details on bqo’s, we refer the
reader to [42].

Recall that semilattice is a structure (S; U) with binary operation U such that (zUy)Uz =
rU(yUz),zUy=yUxand x Uz =z, for all z,y,z € S. By < we denote the induced
partial order on S: x < y iff x Uy = y. The operation LI can be recovered from <
since z Uy is the supremum of x,y w.r.t. <. By o-semilattice we mean a semilattice
where also supremums | |y; = yo Uy; U -- - of countable sequences of elements yo, y1, . . .
exist. Element x of a o-semilattice S is o-join-irreducible if it cannot be represented as
the countable supremum of elements strictly below x. As first stressed in [32], the o-
join-irreducible elements play a central role in the study of Wadge degrees of k-partitions.
The same applies to several variations of Wadge degrees, including the Wadge degrees of
@-partitions for a countable bqo Q.

2.2 Classical hierarchies in topological spaces

We assume the reader to be familiar with basic notions of topology [11]. The underlying
set of a topological space X will be usually also denoted by X, in abuse of notation.
We usually abbreviate “topological space” to “space”. A space is zero-dimensional if it
has a basis of clopen sets. Recall that a basis for the topology on X is a set B of open
subsets of X such that for every x € X and open U containing x there is B € B satisfying
xr € B CU. We sometimes shorten “countably based Tj-space” to “chg-space”.

Let w be the space of non-negative integers with the discrete topology. Let N' = w* be
the set of all infinite sequences of natural numbers (i.e., of all functions z: w — w). Let
w* be the set of finite sequences of elements of w, including the empty sequence . For
o € w* and x € N, we write o C x to denote that o is an initial segment of the sequence
x. By ox = 0 - x we denote the concatenation of o and x, and by o - N the set of all
extensions of o in N. For z € N, we can write 2 = z(0)z(1) ... where z(i) € w for each
i<w. Forre Nandn <w,let z | n=x(0)...2(n — 1) denote the initial segment of
of length n. By endowing N with the product of the discrete topologies on w, we obtain
the so-called Baire space. The product topology coincides with the topology generated
by the collection of sets of the form o - N for o € w*. It is well known that A x A and
N¥ are homeomorphic to NV.

A tree is a non-empty set T' C w* which is closed downwards under the prefix relation C.



The empty string ¢ is the root of any tree. A leaf of T' is a maximal element of (7;C). A
tree is pruned if it has no leafs. A path through a tree T is an element x € N such that
x [ n €T for each n € w. For any tree and any 7 € T, let [T'] be the set of paths through
T and T(1) = {0 | 70 € T}. The non-empty closed subsets of N coincide with the sets
[T] where T is pruned; every nonempty closed set is a retract of N.

We call a tree T" normal if 7(i + 1) € T imply 7@ € T. A tree is infinite-branching if
with every non-leaf node 7 it contains all its successors 7i; every infinite branching tree is
normal. A tree is well founded if there is no path through it (i.e., (7; 3J) is well founded).
The rank of the latter poset is called the rank of T'; the ranks of well founded trees are
precisely the countable ordinals. By a forest we mean a set of strings 7"\ {€}, for some
tree T'; usually we assume forests to be non-empty. Sometimes we use other obvious
notation on trees. E.g. with any sequence of trees {Tj,T},...} we associate the tree
T={c}U0-ToU1l-TyU--- such that T'(i) = T; for each 1 < w.

A pointclass in a space X is a class T'(X) C P(X) of subsets of X; let I'(X) = {A C
X | X\AeTI(X)}. A family of pointclasses [36] is a family I' = {I'(X)} x indexed by
arbitrary topological spaces X (or by spaces in a reasonable class) such that each T'(X)
is a pointclass in X and T is closed under continuous preimages, i.e. f~'(A) € I'(X) for
every A € I'(Y) and every continuous function f: X — Y. A basic example of a family
of pointclasses is given by the family O = {7x}x of topologies in arbitrary spaces X.

We will use the following operations on families of pointclasses: the operation I' — Ty,
where T'(X), is the set of all countable unions of sets in I'(X), the operation I" — T,
where I'(X); is the set of all countable intersections of sets in I'(X ), the operation " = T,
where I'(X), = I'(X), the operation I' — T'y, where I'(X )4 is the set of all differences of
sets in T'(X), the operation I" + T'5 defined by I's(X) := {3V (A) | A € TN x X)}, where
V(A) :={z € X | Ip € N.(p,x) € A} is the projection of A C N x X along the axis
N, and, finally, the operation T' ++ Ty defined by Ty(X) := {¥N(4) | A € T(N x X)},
where VN(A) == {z € X |Vp € N.(p,z) € A}.

The operations on families of pointclasses enable to provide short uniform descriptions of
the classical hierarchies in arbitrary spaces. E.g., the Borel hierarchy is the sequence of
families of pointclasses {3%} ..., defined by induction on « as follows [31, [6]: X§(X) :=
{0}, 3V := O (the family of open sets), X9 := (X9)ar, and Z(X) = (Uscq Z5(X))eo
for @ > 2. The sequence {30 (X)}a<w, is called the Borel hierarchy in X. We also set
I (X) = (33(X))c and AY(X) = X2(X) NII(X). The classes X9 (X), IT5,(X), AL (X)
are called levels of the Borel hierarchy in X. The class B(X) of Borel sets in X is defined
as the union of all levels of the Borel hierarchy in X it coincides with the smallest o-
algebra of subsets of X containing the open sets. We have X (X) UTI) (X) € Aj(X) for
all o < 8 < wy.

The hyperprojective hierarchy is the sequence of families of pointclasses {31!}, defined
by induction on « as follows: Xj = X9, X! | = (2]).3, X} = (X1,)s3, where o, A < wy,
A is a limit ordinal, and XL ,(X) = {J,., 4(X). In this way, we obtain for any cbo-space
X the sequence {3} (X)},<.,, which we call here the hyperprojective hierarchy in X. The
pointclasses X! (X), IT! (X) = (EL(X)), and AL (X) = ZL(X)NIIL(X) are called levels
of the hyperprojective hierarchy in X. The finite non-zero levels of the hyperprojective
hierarchy coincide with the corresponding levels of the Luzin projective hierarchy.



We do not recall the well known definition of the Hausdorff difference hierarchy over
30(X), @ > 1, which is denoted by {Dg(X%(X))}s<w, or by {Egl’o‘(X)}BQJl. The
definitions may be found e.g. in [17, [38].

We recall some structural properties of pointclasses (see e.g. [17]).

Definition 1. (1) A pointclass I'(X) in X has the separation property if for every two
disjoint sets A, B € T'(X) there is a set C € T'(X)NT(X) with A C C C X \ B.
(2) A pointclass T'(X) has the reduction property i.e. for all Cy,C; € T'(X) there are
disjoint Cf, C1 € T'(X) such that C] C C; for i < 2 and CyUC} = C{UC}. The pair
(C}, C1) is called a reduct for the pair (Cy, Cy).
(3) A pointclass I'(X) in X has the o-reduction property if for each countable sequence

Co, C1, ... in A there is a countable sequence C{, C], ... in I'(X) (called a reduct of
Co, C1, ...) such that C; N Cj = 0 for all i # j and U, Cf = U, Ci-

It is well-known that if I'(X) has the reduction property then the dual class I'(X) has the
separation property, but not vice versa, and that if I'(X) has the o-reduction property
then I'(X) has the reduction property but not vice versa. Let X be a cbg-space. It is
known (see e.g. [17,[36]) that any level X9, (X), a < wy, has the o-reduction property,
and if X is zero-dimensional then also X{(X) has the o-reduction property.

2.3 Quasi-Polish spaces and admissible representations

A space X is Polish if it is countably based and metrizable with a metric d such that
(X, d) is a complete metric space. Examples of Polish spaces are w, A/, the Cantor space
C, the space of reals R and its Cartesian powers R™ (n < w), the closed unit interval [0, 1],
the Hilbert cube [0, 1] and the space R¥.

Quasi-Polish spaces were identified and thoroughly studied by M. de Brecht [6] (see also
[4] for additional information). Informally, this is a natural class of spaces which contains
all Polish spaces, many important non-Hausdorff spaces (like w-continuous domains) and
has essentially the same DST as Polish spaces. Let Pw be the space of subsets of w
equipped with the Scott topology, a countable basis of which is formed by the sets {A C
w | F C A}, where F ranges over the finite subsets of w. By a quasi-Polish space
we mean a space homeomorphic to a II-subspace of Pw. There are several interesting
characterizations of quasi-Polish spaces. For this paper the following characterization in
terms of representations is relevant.

A representation of a set X is a surjection from a subspace of AV onto X. Such a rep-
resentation is total if its domain is N. Representation p is (continuously) reducible to
a representation v (u <. v) if u = v o f for some continuous partial function f on N.
Representations pu, v are (continuously) equivalent (u =, v) if p <. v and v <. u. A
basic notion of Computable Analysis [48] is the notion of admissible representation. A
representation p of a space X is admissible, if it is continuous and any continuous function
v:Z — X from a subset Z C N to X is continuously reducible to p. Clearly, any two
admissible representations of a space are continuously equivalent. As shown in [2], any
continuous open surjection from a subspace of N onto X is an admissible representation
of X. In [6] the following characterization of quasi-Polish spaces was obtained:



Proposition 1. [0] A cby-space X is quasi-Polish iff it has a total admissible represen-
tation iff there is a continuous open surjection from N onto X .

The classical Borel, Luzin and Hausdorff hirarchies in quasi-Polish spaces have properties
very similar to their properties in Polish spaces [6]. In particular, for any uncountable
quasi-Polish space X and any o < wy, 32(X) € II%(X) and ¥} (X) € IIL(X). For any
quasi-Polish space X, the Suslin theorem J,_, X9,,(X) = B(X) = A}(X) and the
Hausdorff-Kuratowski theorem [17, 6] (saying that (J,_,, EEI’Q(X) =AY (X) for all
a > 1) hold.

Quasi-Polish spaces also share properties of Polish spaces related to Baire category [17, 4].
According to Corollary 52 in [6] (see also [4]), every quasi-Polish space X is completely
Baire, in particular every nonempty closed set /' C X is non-meager in F. Using the
technique of category quantifiers [17], one can show the following preservation property
[43), 6] of levels of the Borel hierarchy.

Proposition 2. [/5, [0] Let f : X — Y be a continuous open surjection between cbg-
spaces, & < wy, and A CY. Then A€ XY, (V) iff f~1(A) € XY, (X). Also, every fiber
f~Xy) is quasi-Polish, hence non-meager in f~(y).

2.4 Wadge hierarchy in N

Here we give some additional information on the Wadge hierarchy in the Baire space
mentioned in the Introduction. In [47] W. Wadge (using the Borel determinacy) proved the
following result: The structure (B(N); <) of Borel sets in the Baire space is semi-well-
ordered (i.e., it is well-founded and for all A, B € B(N) we have A <y B or B <y A).
In particular, there is no antichain of size 3 in (B(N); <y-). He has also computed the
rank v of (B(NV); <y) which we call the Wadge ordinal. Recall that a set A is self-dual
if A <y A. W. Wadge has shown that if a Borel set is self-dual (resp. non-self-dual)
then any Borel set of the next Wadge rank is non-self-dual (resp. self-dual), a Borel
set of Wadge rank of countable cofinality is self-dual, and a Borel set of Wadge rank of
uncountable cofinality is non-self-dual. This characterizes the structure of Wadge degrees
of Borel sets up to isomorphism.

In [44] the following separation theorem for the Wadge hierarchy was established: For any
non-self-dual Borel set A exactly one of the principal ideals {X | X <y A}, {X | X <w
A} has the separation property.

The mentioned results give rise to the Wadge hierarchy which is, by definition, the se-
quence {3,(N)}acy (Where v is the Wadge ordinal) of all non-self-dual principal ideals
of (B(NV); <y ) that do not have the separation property and satisfy for all a < § < v
the strict inclusion 3, (N) C Ag(N') where, as usual, A,(N) = X, (N) NI, (N).

The Wadge hierarchy subsumes the classical hierarchies in the Baire space, in particular

SaN) = B, (A) for each a < wi, Bi(N) = SN, o, (V) = SYN), S0 (V) =

«

39(N') and so on. Thus, the sets of finite Borel rank coincide with the sets of Wadge rank

wwl . . .
less than A = sup{w;, wf%w& ! ), ...}. Note that A is the smallest solution of the ordinal

equation w? = 5. Hence, the reader should carefully distinguish 3,(N) and X2 (N). To



give the reader an impression about the Wadge ordinal we note that the rank of the qo
(A (N); <w) is the w;-st solution of the ordinal equation w? = ¢ [47].

We summarise some properties of the Wadge hierarchy of sets in the Baire space which
will be tested for survival under generalisations to cbg-spaces (or to quasi-Polish spaces)
and to Q)-partitions below:

(1) The levels of the Wadge hierarchy are semi-well-ordered by inclusion.
(2) The Wadge hierarchy does not collapse, i.e. ¥, Z IT, for all & < v.

(3) The Wadge degrees of Borel sets coincide with the sets 3, \ I1,, I1, \ 3., Ayt \
(3o UIL,) (where o < ), and Ay \ (U, Xa) (where X < v is a limit ordinal of
countable cofinality).

(4) If A < v is a limit ordinal of uncountable cofinality then Ay =J,_, ¥

a<\ To

(5) All levels are downward closed under Wadge reducibility.
(6) The levels in item (3) are precisely those having Wadge complete sets.

3 Infinitary fine hierarchies in a set

In this section we define the infinitary fine hierarchy and prove some of its basic properties.
The @-partition version of this hierarchy will be called the Q-IFH, for abbreviation.
Definitions and results in this section extend (and in fact simplify) the corresponding
material from Section 5 in [38]. Three following subsections describe some related technical
notions.

3.1 Iterated ()-trees

Here we describe a notation system for levels of the Q-IFH.

For any qo @, a Q-tree is a pair (7T',t) consisting of an infinite-branching well founded tree
T C w* and a labeling ¢t : T'— Q. Let T(Q) be the set of Q-trees quasi-ordered by the
relation: (7', t) <j (V,v) iff there is a monotone function ¢ : T' — V with Vv € T'(t(x) <g
v(p(x))); such a function ¢ is called a morphism from (T,t) to (V,v). As follows from a
Laver’s theorem on bqo’s, if ) is bqo then so is also (7(Q); <;,) which is usually shortened
to 7(Q). Thus, T is an operator on the class BQO of all bqo’s. The operator 7 and its
iterates like 7 oT o T were introduced in [32] 38] and turned out crucial for characterising
some initial segments of Wy [38 [39)].

In [20] a more powerful iteration procedure was invented which yields the set 7, (Q) of
labeled trees sufficient for characterising Wy, as discussed in the Introduction. We give
a slightly different (but equivalent) definition of 7, (@) which is more convenient for our
purposes here. The differences are caused by our desire to first work only with trees
(introducing forests at the last stage, see below), and to relate the qo < (defined below)
to the qo <.



Let 0 = 0(Q,w1) = {q, S0, Fy, Fu | ¢ € Q, @ < wy} be the signature consisting of constant
symbols ¢, unary function symbols s,, and w-ary function symbols F,, F}, (of course we
assume all signature symbols to be distinct, in particular Q@ Nw; = (). Let T, be the set
of o-terms without variables obtained by the standard inductive definition: Any constant
symbol ¢ is a term; if u is a term then so is also s, (u); if wg, uq, ... are terms then so
are also Fy(ug, ...), Fu(ug,...). Informally, F,(uo,...) and F,(ug,...) are interpreted as
q — (upl--+) and s4(ug) — (upU- - - ) respectively (cf. [20] where e.g. the first expression
denotes the tree e U0-ugU- - - with the root ¢ labeled by ¢), hence our modification simply
avoids forests from the inductive definition.

The o-terms are represented by (or even identified with) the normal well founded trees
with constants on the leafs and other signature symbols on the non-leaf nodes such that
the nodes labeled with s, have the unique successor while the nodes labeled by Fj, of Iy,
have all successors. Such syntactic trees enable definitions and proofs by induction on
terms (i.e., on the ranks of syntactic trees) because the subterms of (the syntactic tree of)
u are precisely the trees u(7), see Section Obviously, the set T, is partitioned into
three parts: constant terms (i.e., the terms ¢ for some ¢ € @), s-terms (i.e., the terms
So(u) for unique @ < wy and u € T,) and F-terms (i.e., the terms F(uo, . ..) or F,(uo,...)
for unique ¢ € @, a < wy, and ug,uy,... € T,). We define by induction on terms the
binary relation < on T, as follows (cf. Definition 3.1 and its extensions in [20]). The
relation < on T, is in fact equivalent to the relation < in [20] restricted to the tree-terms.

Definition 2. (1) ¢ <riff ¢ <g r;

a(uo,...) <riff ¢ <rand u; <r for all ¢ > 0;

(10) Fy(uo,...) < s4(v) iff ¢ < s,4(v) and u; 9 s,(v) for all ¢ > 0;

(11) Fy(uo,...) < Fo(vo,...) iff (¢ Qrand u; < Fi(vg,...) for all i > 0) or Fy(ug,...) <v;
for some i > 0;

(12) Fy(uo,...) < Fg(vg,...) iff (¢ < sp(vo) and u; 9 Fg(vg,...) for all ¢ > 0) or
F,(ug,...) <wv; for some i > 1;

(13) Fu(ug,...) <riff so(up) < rand u; < q forall i > 1;

(14) Fo(uo,...) 9 sg(v) iff s4(ug) < sg(v) and u; < sg(v) for all ¢ > 1;

(15) Fo(uo,...) < Fo(vg,...) iff (sa(ug) < r and uw; < F,(vg,...) for all ¢ > 1) or
F,(ug,...) < wv; for some i > 0;
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(16) Foluo,...) < Fp(vo,...) iff (sa(uo) < sp(vo) and w; < Fg(vg,...) for all ¢ > 1) or
F,(ug,...) < wv; for some i > 1.

The remarks above and the arguments in [20] show that (T,; <) is a bqo. Let T, s be the
set of ¢-terms and s-terms. Then (T, ; <) is bqo, hence (7 (T,s); <p) is also bqo. The
next definition makes precise the relation between the introduced qo’s < and <j.

Definition 3. We associate with any u € T, the labeled tree T'(u) by induction as follows:
T(q) is the singleton tree labeled by ¢, T'(so(u)) is the singleton tree labeled by s,(u),
T(Fy(uo,...) =q— (T(uo)T (ur)U- - - ), T(Fu(ug, - ..)) = saluog) = (T'(ur)UT (ug)U- - ).

Obviously, T'(u) is a singleton tree iff u € T, ;. The next lemma is checked by cases from
Definition 2] using induction on terms.

Lemma 1. The function u — T(u) is an isomorphism between (Ty; <) and (T (Ty.s); <n)-

The next lemma is immediate by induction on terms.

Lemma 2. Any term u € T, satisfies precisely one of the following alternatives:

1) uw=q for a unique q € Q;

U= S5pgy-* 'ng(q) fO’f’ umque m < w, 607 e '75771 <wi, g€ Q;'
u = F,(ug,...) for unique g € Q and uy, ... € T,;

(1)

(2)

(3)

(4) u= F,(ug,...) for unique o < wy, and ug, ... € Ty;

(5) u=sg, -5, (Fy(ug,...)) for unique m < w, Bo,..., L n <wi, ¢ € Q, ug,... € Ty;
(6)

u =58, S, (Fulug,...)) for unigue m < w, By, ..., m <wi, & <wi, Ug,... € Ty.

Terms from items (1,2) above will be called singleton terms. With any singleton term u a
unique element g € @ is associated denoted by g(u). Below we will also need the following
technical notions.

Definition 4. We associate with any u € T, the ordinal sh(u) and the term v’ € T, as
follows: if u is not an s-term then sh(u) = 0 and ' = u, otherwise sh(u) = w? +- - - +wPm
and v’ = ¢ if u satisfies (2), v’ = Fy(uo,...) if u satisfies (5), and v’ = F,(uo,...) if u
satisfies (6).
We collect some obvious properties of u'.
Lemma 3. (1) v’ = u iff u is not an s-term.

(2) u' is a subterm of u, so v’ < u and if u is an s-term then rk(u’) < rk(u).

(3) u' is not an s-term, hence u" = u.

(4) v € Q iff u is a singleton term.

Definition 5. We associate with any non-singleton term u € T, the set F(u) of sequences
S = (10,...) in w* as follows: 75 € T'(u') = (Ty,to); if to(70) is a singleton term then
S = (19), otherwise 7 € T(to(10)") = (T4, t1); if t1(71) is a singleton term then S = (79, 71),
otherwise 7, € T'(t1(m1)") = (15, t2); and so on.
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Lemma 4. (1) For any w € T, and 7 € T(u), t, (1) < u, where t, is the labeling
function on T(u), and rk(t, (7)) < rk(u).

(2) If u is not a singleton term then rk(t, (7)) < rk(u) for every 7 € T'(u).

(3) For any non-singleton term u € T,, every sequence in F(u) is finite.

Proof. (1) For u € T, the assertion is obvious because 7 = ¢ and t,(7) = u. Let
u = F,(up,...), then either 7 = € or 7 € T'(u;) for a unique ¢ > 0. In the first case
t.(7) = ¢ < w and rk(t,(7)) = 0 < rk(u). In the second case by induction we have
tu(T) =ty (1) Qu; <wand rk(t, (7)) = rk(ty, (1)) < rk(u;) < rk(u).

Finally, let u = F,(uo,...). Then either 7 = ¢ or 7 € T'(u;) for a unique 7 > 1. In the first
case t,(T) = so(ug) < w and rk(t, (7)) = rk(sa(uo)) = rk(ug) + 1 < rk(u). In the second
case by induction we have t,(7) = t,,(7) < u; <w and rk(t, (7)) = rk(t,, (7)) < rk(u;) <
rk(u).

(2) Since w is not singleton, u is not a g-term. If w is an s-term then ¢,(7) = u, so by
Lemma B(2) we have rk(t, (7)) = rk(uv') < rk(u). If u = Fy(uo,...) then, by the proof
of item (1), rk(t.(7)) < rk(t.(r)) < rk(u). Finally, let v = F,(ug,...). For 7 # ¢ the
assertion follows again from the proof of item (1). For 7 = ¢ we have t,,(¢) = s,(uo), hence,
by the proof of item (1) and Lemma BI(2), rk(t.(c)") = rk(sa(uo)’) < rk(sa(u)) < rk(u).

(3) Suppose the contrary: the sequence 7,7y, ... from Definition [ is infinite, hence all
terms t(79), t1(71), . . . are not singleton. By item (2) we then have rk(u")) > rk(to(7)") >
rk(ti(m)") > - -+, contradicting the well-foundedness of syntactic trees. O

With any (79,...,7m) € F(u) we associate the constant ¢(t,,(7,,)) € Q. For any ¢ € Q
we set Fy(u) = {(10,...,7m) € F(u) | ¢ = q(tm(7n))}

To be more consistent with notation of previous papers and of Introduction, we sometimes
denote T(T,s) by 7., (Q) and use the structures from Lemma [I] interchangeably. Let
T (Q) be the set of non-empty labeled forests obtained from trees in 7, (Q) by deleting
the root (alternatively and equivalently, one can think of 77/(Q) as the set of countable
disjoint unions of trees in 7, (Q)). The relation <j is extended to the larger structure of
forests in the obvious way.

As observed in [41], any qo @ induces a kind of free o-semilattice Q- which we define
as the qo (Q*; <*) where Q* is the set of non-empty countable subsets of () with the so
called domination go defined by S <* R iff Vs € S3r € R(s <g r). The o-join-irreducible
elements of Q- form an isomorphic copy of Q). The operation | | of countable supremum in
Q" is induced by the operation of countable union in Q*. The construction of 7, (Q) from
T.,(Q) above is a particular case of this general construction. Categorical properties of
the construction @ — Q" and characterisations of some algebras expanding (7% (Q); <p)
as free structures are considered in [40].

The characterisation of Wg (see Introduction) in terms of the iterated labeled trees may
be now described as follows (see [20] for more details). The relation ~ below denotes the
equivalence of qo’s.

Proposition 3. [20] For any countable bgo Q, (TH(Q); <n) ~ (ANQVN);<w). The
isomorphism of quotient-posets is induced by a map p: To, (Q) — ALQN) sending trees
onto the o-join irreducible elements.
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For more details on the map u see Section [4.4] below. There are similar descriptions of
natural initial segments of Wy. For any v < w;, apply the construction above to the
smaller signature o(Q,vy) = {¢, 80, Fy, Fo | ¢ € Q, a0 < 7} in place of 0(Q,wq). The
resulting set of labeled trees is denoted by 7,+(Q). We obtain an operator 7» on BQO.

Finally, for any o < w; we define the operator 7, on BQO as follows: 7Ty is the identity
operator, and for any positive countable ordinal o we set T, = T,00 0 - -0T an Where n < w
and ag > --- > «,, are the unique ordinals with o = w® + --- + w®*. The set of forests
TH(Q) is obtained from 7,(Q) by the above construction. In particular, 7oy = To o T
where 7 is the operator from the beginning of this subsection.

Proposition 4. [20] For any countable bgo Q and any o < wy we have: (TH(Q); <p) ~
(A, (QY); <w).

We conclude this subsection by a lemma on automorphisms of (T,; ).

Lemma 5. For every poset (Q;<g), the automorphism group Aut(Q) of (Q;<g) is iso-
morphic to a subgroup of the automorphism group Aut(T,) of (T,; ).

Proof. We extend any g € Aut(Q) to a function on T, (also denoted by g¢) by induction
as follows: g(q) = g(a) for q € Q. g(sa(u) = sa(g(w)). g(Fy(ua), . )) = Fo(aluo), ),
g(Fo(uo, . ..) = Fu(g(ug),...). By induction, considering 16 cases from Definition 2 it is
straightforward to check that u < v iff g(u) < g(v), and g~ tg(u) = u, for all u,v € T,
and g € Aut(Q). O

3.2 Hierarchy bases

We recall (see e.g. [38]) the technical notion of a (hierarchy) base. Such bases serve as
a starting point for constructing the Q-IFH [38]. They have nothing in common with
topological bases.

Definition 6. By a base in a set X we mean a sequence L£(X) = {La}tacws La =
L,(X) C P(X), such that every L, is closed under countable union and finite intersection
(in particular, 0, X € £,), and L, U L, C LN Lg for all @ < f < wy.

A major natural example of a hierarchy base in a topological space X is the Borel base
L(X) ={2Y,,(X)}acw . Other natural examples are the hyperprojective hierarchy and
many of its refinements. There are of course many “unnatural” bases, e.g. the bases
{B(X),B(X),...} and {P(X), P(X),---} over which any IFH of sets collapses to the
first level.

With any base £(X) in X we associate some new bases as follows. For any f < wy, let
LP(X) = {Ls+a(X)}a; we call this base in X the B-shift of L(X). For any U C X,
let L(U) = {L,(U)} where L,(U) ={UNS | S € L,(X)}; we call this base in U the
U-restriction of L(X).
Lemma 6. (1) (£°)(X) = LPP(X).
(2) If Bx < ax (see Section[21) then L (X) = Lo(X). Therefore, many levels of L(X)
remain unchanged under the [(3-shift.
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Proof. (1) Indeed, (L)) = L2, = Ls1 (1) = Ligiyra = LI

(2) Since B + a = a by the definition of 8 and ax*, LE(X) = L1 4(X) = Lo (X). O
By a morphism g : L(X) — L(Y') of bases we mean a function g : P(X) — P(Y') such that
g@) =10, 9(X) =Y, g(U, U,) = U, g(Uy,) for every countable sequence {U,} in P(X)
(so, in particular, U C V implies g(U) C g(V)), and U € L,(X) implies g(U) € L,(Y)
for each a < wy. Obviously, the identity function on P(X) is a morphism of any base
in X to itself, and if g : £L(X) — L(Y) and h : L(Y) — L(Z) are morphisms of bases
then hog : L(X) — L(Z) is also a morphism. We illustrate the notion of morphism

with the following well known fact. Recall that a function f : X — Y between spaces is
20, -measurable iff f~1(U) € 39, (X) for any open set U in Y.

Lemma 7. Let f: X — Y be 39, -measurable and let L(X), L(Y) be the Borel bases in
X,Y resp. Then f~': P(Y) — P(X) is a morphism from L(Y) to LY X). In particular,
if f is continuous then f~': P(Y) — P(X) is a morphism of L(Y) to L(X).

The following class of bases will be frequently mentioned in the sequel.

Definition 7. A base L£(X) is reducible if every its level £,(X) has the o-reduction
property.

The next fact is known (see e.g. [17] and [30]).

Lemma 8. The Borel base in every zero-dimensional cby-space is reducible. The 1-shift
of the Borel base in every cbg-space is reducible.

We conclude this subsection with introducing some auxiliary notions used in the sequel.
For any tree T' C w* and a T-family {U,} of subsets of X, we define the T-family {U,}
of subsets of X by U, = Ut \ |{U | 7 C 7" € T'}; the sets U, will be called components
of the family {U.}. The T-family {U,} is monotone if U, D U for all 7 C 7 € T. We
associate with any T-family {U,} the monotone T-family {U.} by U. =J._5. U,.

Lemma 9. Let T' be a well founded tree, L(X) be a base, and {U,} be a T-family of L,-

sets. Then the components are differences of L-sets (hence they belong to Lor1 N Las1),
U, U-=U. U, U =U", and U, NU» =0 forrC 7 €T.

Proof. We check only the second assertion, the proofs of others being even simpler. Since
Ur CU;, U, U; 2, U, Conversely, let x € |J_U,. Then theset {r € T' |z € U;} is
nonempty. Since (1'; 3) is well founded, x € U, for some maximal element 7 of ({7 € T |
x € U, };C); but then z € U.,. O

The next lemma is also easy.

Lemma 10. Let T be a well founded tree, L(X) be a base, {U'}; be a sequence of monotone
T-families of Ly-sets, and U, = |J, UL for each 7 € T. Then {U.} is a monotone T-family

of La-sets and U, C |J, Ut for each T € T.

We call a T-family {V;} of L,-sets reduced if it is monotone and satisfies V,; N V,; = 0
for all 74,75 € T. Obviously, for any reduced T-family {V;} of L,-sets the components
V. are pairwise disjoint. The next lemma is checked by a top-down (assuming that trees
grow downwards) application of the o-reduction property.
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Lemma 11. Let T be an infinitely-branching well founded tree, L(X) be a base, {U,} be
a monotone T-family of L,-sets, and let L, have the o-reduction property. Then there
is a reduced T-family {V;} of Ly-sets such that V, C U, J . V; = U, Ur, UAVri | Ti €
Ty =UAVoiNUy | i €T}, and V, C U, for each 7 € T.

Proof. If T'= {e} is singleton, there is nothing to prove. Otherwise, let {V;} be a reduct
of {U;} and let U/. = V;NU,;, for all it € T. Apply this procedure to the trees 7'(i) and
further downwards whenever possible. Since T is well founded, we will finally obtain a
desired reduced family which we call a reduct of {U,}. O

Lemma 12. For every well founded tree T, a base L(X), p € T and o < wy, there is a
unique reduced T-family {U;} of La-sets such that U, = X (and then necessarily U, = 0

for all T € T\ {p}).

Proof. Obviously, it is enough to set U, = X if 7 C p and U, = () otherwise. O

3.3 Defining ()-partitions by iterated families

Here we define the notion of a u-family (v € T,) in a given base £(X) and explain how
such (iterated) families determine @Q-partitions of X. The definition follows the definition
of terms in Section [3.1] induction scheme of Definition Bl and Lemma [Il

Definition 8. (1) F is a ¢-family in £(X) iff F' = {X}.
(2) Fis an s,(u)-family in £(X) iff F is a u-family in £ (X).
(3) Fis an Fj(ug,...)-family in £(X) iff FF = ({U,}, {F;}) where {U,} is a monotone

T-family of Ly-sets with U, = X and, for each 7 € T, F; is a t(7)-family in E(ﬁT),
where (T',t) = T'(F,(uo, - . .)).
(4) Fis an Fy(uo, ...)-family in £(X) iff F = ({U:},{F;}) where {U,} is a monotone

T-family of Ly-sets with U. = X and, for each 7 € T, F; is a t(7)-family in £(U,),
where (T,t) = T'(F,(uo, - ..)).

The notion of a reduced u-family F' is obtained from this definition by requiring {U,}
and F. in items (3,4) to be reduced. Note that Definition [§ and the next definition are
uniform in bases, i.e., for any fixed u, the u-family F' in any item above is defined for all
bases simultaneously.

From Lemma 2 we obtain the following information on the structure of u-families in £(X)
where we use notions from Definition [l

Lemma 13. Let F be a u-family in L(X). If u is a singleton term then F = {X},
otherwise F = ({U,},{F;}) where {U,} is a monotone T(u')-family of L5"™-sets with

U. =X and, for each 7 € T(W'), F- is a t(1)-family in LM (U,).
Now we define the notion “a w-family F' in £(X) determines a partition A: X — Q7. In

general, every u-family determines at most one ()-partition, not every u-family determines
a (Q-partition, and every reduced u-family determines a ()-partition.
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Definition 9. (1) A g-family F in £(X) determines A iff A = A\z.q.
(2) An s,(u)-family F in £(X) determines A iff F' determines A as a u-family in £~ (X).

(3) For u € {F,(uo,...), Falug,...)}, a u-family ' = ({U,},{F;}) in £L(X) determines
A iff for each 7 € T'(u), F, determines Al .

By definitions above and Lemma [I3] a u-family F' in £(X) that determines a Q)-partition
A yields a mind-change “algorithm” for computing A(z) for any given x € X as follows.
We use the set F(u) from Definition [}l and Lemma [4]

If u is a singleton term, A is the constant Q-partition Ax.q(u), hence A(z) = q(u).

Otherwise, F' = ({Ur,},{F%}) where {U, } is a monotone u'-family of Egh(u)—sets with
U. = X and, for each 7 € T'(u'), Fy, is a to(7o)-family in £*"®)(U,,) (which coincides with
the to(7o)-family in LW Fshlto()(T 1)), Since the components Uy, (which we call first

level components of F') cover X by Lemma [0 « € U,, for some 1y € T'(u'); 79 is searched
by the usual mind-change procedure working with differences of Egh(u)—sets (see Lemma
Q).

If the term to(79) is singleton, A|UTO is a constant Q-partition and we have computed

A(z) € Q. Otherwise, F;) = ({Uryr, }, {Frn}) and we can continue the computation
as above and find a second level component U, . of F' containing x; this is a harder
mind-change procedure working with differences of Ef)h(")ﬁh(t‘)(m))—se‘gs. We continue this
process until we reach a sequence (7g, ..., 7,) € F(u) such that x € Us,...r,, and t,,(7,,) is
a singleton term; such components U,,....,, are called terminating and have the associated
constants (7o, ..., Tm) = ¢(tm(7n)) € Q. Note that the terminating components cover X
and if the family F' is reduced then the terminating components form a partition of X.

In any case we have: A~Y(q) = U{Uryom | (0, - .-, Tim) € Fy(u)} for each ¢ € Q.

Note also that if the family F' above was reduced then the computation is “linear” since the
components of each level are pairwise disjoint and cover the parent component, otherwise
the computation is “parallel” since already at the first level x may belong to several
components U, .

The described procedure enables to write a u-family F', where u is not a singleton term, in
an explicit (but not completely precise) form of u/-family ({Us,}, {Uryr, }, - . .) in £ (X)
which is sometimes more intuitive than the form ({U.}, {F,}) above.

We formulate some properties of the introduced notions. The next lemma is immediate
by definitions.

Lemma 14. Let u be a non-singleton term and the u'-family ({U.}, {Urn},...) in
LM (X)) determines A € QX.
(1) If v = F,(ug,...) then Aly, is determined by the w;-family ({Uisy }, {Uivgr, }5---) in
LUy, for each i > 0.
(2) If u' = Fy(uo, . ..) then Aly,,, is determined by the w;i-family ({Uis }s {Uicor, }+- - -)
in LMW (Uyy1), for each i > 0.

Let f : X — Y be a function such that f~! is a morphism from L£(Y) to £(X). As-
sociate with any u-family F in £(Y) the u-family f~'(F) in £(X) as follows: if u = ¢
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then f~Y(F) = {X}; if u = s,(v) then f~1(F) is the v-family f~1(F) in £+"(X); in the
remaining cases we have F' = ({U,},{F,}), and we set f~1(F) = ({f~(U,)},{f7HE)}).
Obviously, f~1(F) is indeed a u-family in £(X). The next lemma is immediate by induc-
tion.

Lemma 15. In assumptions of the previous paragraph, if a u-family F in L(Y) determines
A then the u-family f~*(F) in L£(X) determines Ao f.

Now we associate with any u-family F'in £(X) and any V' C X the u-family F'|y in the
V-restriction L£(V') (see Section [3.2)) as follows: if u = ¢ then F|y = {V}; if u = s,(v)
then F|y is the v-family F|y in £~%(V); in the remaining cases we have F' = ({U,}, {F,}),
and we set F|y = ({VNU,}, {F:|v}). Obviously, F|y is indeed a u-family in £(V'). The

next lemma is immediate by induction.

Lemma 16. In assumptions of the previous paragraph, if a u-family F in L(X) deter-
mines A then the u-family F|y in L(V') determines Aly .

Let {G;}, G; = ({U} }.{U.,.,}, - - .), be a sequence of u-families (u is a non—singleton term)
in L(Y;), Y; C X, then G = ({UTO}, {Unn },-..), where Upy = J, UL, Upyr, = U, U sy - -
is a u-family in E( ) where Y = |, Y;. The next lemma follows from definitions and
Lemma [T0l

Lemma 17. Let A € QX. In assumptions of the previous paragraph, if the u-family G;
in L(Y;) determines Aly, for each i > 0 then the u-family G in L(Y') determines Aly.

The next lemma is also clear.

Lemma 18. Let A € Q¥, Y € Lo(X) N Lo(X), Alz) = q forz € X\ Y, let Aly be
determined by a u-family F in L(Y), and let U,,...,,, be a terminating component of F
with ¢ = q(70,...,Tm). Then there is a u-family F' in L(X) such that its (1o,...,Tm)-
terminating component is Us,..,, UY, all other terminating components coincide with
those of ', and F' determines A.

Let F' = ({Ur},{Uryr },-.-) and G = ({V, }, {Vrom }. . - -) be u-families in £(X). We say
that G is a reduct of F' if G is reduced and V,...,, C Uy, ....,, for each (7g,...,7) € F(u).

Lemma 19. Let £L(X) be a reducible base in X and w € T,. Then any u-family F in

L(X) has a reduct G. Moreover, if F' determines A then any reduct of F' also determines
A.

Proof Sketch. We follow the procedure of computing A(z) described above. If u is a
singleton term, we set G = F' = {X}; then F, G determine the same constant Q)-partition.
Otherwise, F has the form as above. Let G as above be obtained from F by repeated
reductions from Lemma [T so in particular Vj,...,, C Us,....,, for each (1o, ..., 7m) € F(u).

For the second assertion, let F' determine A and let G be a reduct of F. For any x € X,
let VTO ., be the unique terminating component of G containing x. Then also x € UTO s
hence A(x) = q(70,...,7m) and G determines A. O

The next lemma follows from the results above.
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Lemma 20. Fvery u-family F in L(X) determines at most one Q-partition of X. Every
reduced u-family G in L(X) determines precisely one Q-partition of X.

Proof. The second assertion follows from the remark that the terminating components of
G form a partition of X. For the first assertion, let F' in £(X) determine Q-partitions
A, B of X. Let x € X. If u is a singleton term, F' determines a constant ()-partition,
so in particular A(x) = B(z). Otherwise, F' = ({U.},{F:}) as specified above. By the
procedure of computing A(x), there is a terminating component Uy..,, > x of F. By
Definition @, A(z) = q(70,...,7m) = B(x). O

3.4 Infinitary fine hierarchy over a base

Here we define the Q-IFH over a given base and prove some of its properties.

Definition 10. Associate with any base £(X) in X, any qo @, and any u € T, the
set L(X,u) of @-partitions of X determined by some u-family in £(X). The family
{L(X,u)}uer, is called the infinitary Q-fine hierarchy over L(X).

The algorithm of computing A(x), where A € L£(X,u) is determined by a u-family, de-
scribed in the preceding subsection, explains in which sence the Q-IFH over £(X) may
be considered as an “iterated difference hierarchy”.

By Lemma [T} we can equivalently denote the Q-IFH over £(X) as {L(X,T)}rer,, (@), a8
we did in the Introduction; so now we have precise definitions of the objects discussed
there. The next property describes the behaviour of Q-IFH w.r.t. the operations on bases
from Section

Lemma 21. (1) For any a < wy, £(X, sq(u)) = £ (X, u) and L(X,u) = LW (X, ).
(2) ForanyV C X, A€ L(X,u) implies Aly, € L(V,u).

(3) Let u be non-singleton and let A be determined by a u-family ({U},{Urn },...) in
L(X). Ifu' = Fy(uo,...) (resp. v = Fy(ug,...)) then A|y, € L(X,w;) for each i >0
(resp. 1 > 1).

(4) Let A € QX, ug,uy,... € Ty, and let {U;}i>o be non-empty open sets not exhausting
X such that Aly = Mv.q (where V.= N\, U;) and Aly, € L(U;,u;) for all i > 0.
Then A € L(X,u) where u = F,(up,...).

(5) Let A€ QX, ug,uy,... € Ty, and let {U;}i>1 be non-empty open sets not exhausting
X such that Aly € L(X, sa(u)) (where V =N\ U;s, Ui) and Aly, € L(U;,w;) for
alli > 1. Then A € L(X,u) where u = Fy(ug,...).

Proof. (1) The second assertion follows from the first one which holds by Definition [

(2) Let A € L(X,u) be determined by a u-family F' in £(X). By Lemma [I6 Al is
determined by the u-family F'|y in £(X), hence A|y € L(V,u).

(3) Follows from Lemma [T4]

(4) Let Aly, € L(X,u;) be determined by a u-family G; = ({U! }, {U% .. },...) in L(U;),

for each i > 0. By Definition 3, T'(u) = ¢ — (T'(ug) UT (uy)U- - - ). We define the u-family
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G=({Vi} {Vapr },---) in L(X) as follows: V. = X, V;;) = U,
Then G determines A, hence A € L(X, u).

(5) Similar to (4). O
Now we discuss inclusions of levels of the Q-IFH.

Lemma 22. (1) L(X,u) C L(X, sq(u)).

) L(X,q) € L(X, Fyug, ).

— (3
Virern = UL, and so on.

(2
(
(4
(
(

3) L(X,u;) C L(X, Fy(uog,...)) forall i > 0.
) L(X,sa(ug)) € L(X, Fy(ug,...)).

5) L(X,uiv1) € L(X, Fy(ug,...)) for alli> 0.
)

6) Let u,v € T,, 3,7 < w1, and LP(X,u) C LY(X,v) over all bases L(X) in X. Then
E‘”ﬁ(X u) C LYM(X,v) for any a < wy and any base L(X) in X.

Proof. (1) Let A € L(X,u), then A is determined by a u-family F' in £(X). By Def-
inition [B, F is also a w-family in £4%(X), hence A € £“"(X,u). By Lemma R2I(1),
A€ L(X,54(u)).

(2) We have to show that Az.q is determined by a u-family F' = ({U,},{F;}) in £(X),
where u = Fj(ug,...) and 7 € T'(u). Let {U,} be the reduced family of Lq-sets with

U. = X from Lemma Let F. = {X}. For any 7 € T(u) \ {e}, let F, be the
trivial reduced ¢(7)-family in £()) with empty components. By Definition [3, the family
F' determines Azx.q.

(3) Let A be determined by a u;-family G in £(X'). We have to show that A is determined
by a u-family F' = ({U,},{F;}) in L£(X), where u = F,(uo,...) and 7 € T'(u). Let {U,}
be the reduced family of Ly-sets with U, = X from Lemma [I2. Let F; = G. For any
7 € T(u)\ {i}, let F, be the trivial reduced ¢(7)-family in £(})) with empty components.
By Definition B the family F' determines A.

Items (4,5) are checked by manipulations similar to those in (2,3).

(6) For the base £(X) in X the given inclusion reads (£%)°(X,u) C (£*)"(X,v). By
Lemma [6(1), £L2T°(X,u) C L2(X,v). O

The main result about inclusions of levels of the Q-IFH is the following assertion checked
by induction on the 16 cases of Definition 2 using lemmas above.

Theorem 1. If Q) is antichain and v < v, then L(X,u) C L(X,v) for all bases L(X).

Proof. (1) Let ¢ < r, then ¢ <g r, hence ¢ = r, hence trivially £(X,q) C L(X, 7).

(2) Let ¢ < sq(u), then ¢ < u, hence by induction and Lemma22(1) £(X,q) C L(X,u) C
L(X,sq(u)).

(3) Let ¢ < F,(uy,...), then ¢ <r or ¢ < u; for some ¢ > 0, and the inclusion follows by
induction and Lemma 22)2,3).

(4) Let ¢ < F,(up, - . .), then ¢ < s,(ug) or ¢ < u; for some ¢ > 1, and the inclusion follows
by induction and Lemma 22/(4,5).
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(5) Let sq(u) < 7, then w < r. By induction, £(X,u) C L(X,r) = {A\x.r}. By the
uniformity of Definition [0, £(X, so(u)) = {Az.r}.

(6) Let sq(u) < sg(v). Then (o < f and u < s3(v)) or (@ =  and u < v) or (o >
f and s,(u) < v). In the first case, by induction we have L(X,u) C L(X,sz(v)) C
£¢°(X,v). By Lemmas22(6),B(2) and 2I(1), £(X, 5q(u)) = £(X,u) C LT (X, v) =
L£°(X,v) = L(X, sg(v)). In the second case, by induction we have £(X,u) C L(X,v),
hence £ (X, u) C £~ (X,v), hence L£(X, sq(u)) C L(X, sg(v)). The third case is even
easier.

(7) Let sqo(u) < F.(vg,...), then so(u) <7 or s,(u) < v; for some ¢ > 0. The assertion
follows by Lemma 22[(2) or (3), resp.

(8) Let sq(u) < Fg(v,...), then sy(u) < sg(vg) or sq(u) < v; for some ¢ > 1. The
assertion follows by Lemma 22/(4) or (5), resp.

(9) Let Fy(uo,...) <, then ¢ < r and w; < r for all ¢ > 0. In this case the argument of
item (5) works.

(10) Let F,(ug,-..) < s4(v), then ¢ 9 s,(v) and u; < s,(v) for all i > 0. If v is a singleton
term, the argument of item (9) works, so let v be a non-singleton term. Without loss of
generality we way think that v is an F-term (otherwise, £ (X, v) = L") (X ¢'), and
we can work with the F-term v’ instead of v).

Let A € L(X, F,(up, . ..)), we have to show that A € L£(X, s,(v)). Let ({Ur}, {Uryr, },--)
be a u-family in £(X) that determines A, then A(z) = ¢ for each z € U. (note that U. €
L7 (X) N L5 (X)) and, by Lemma [[4, A|y, is determined by the u-family ({Us,},...)
in L£(U;) for every i > 0. By induction, Aly, € £ (U;,v) for every i > 0, so let G; =
{VEY{VE },...) be a v-family in £4°(U;) that determines A|y,. By Lemma [T, the
v-family G = |J; Gi = ({Vio}: {Vaom }»--) in L9°(U; Us) determines Ay y,. By Lemma
18 the s, (v)-family G’ determines A, hence A € L( X, s4(v)).

(11) Let F,(ug,...) < F.(vo,...), then (¢ 9 r and u; < F.(v,...) for all ¢ > 0) or
F,(ug,...) < v; for some i > 0; the second case follows from Lemma 22)(3), so consider
the first case. Since () is antichain, ¢ = r. Let A € L(X, F,(uo,...)), we have to
show that A € L(X, F,(vo,...)). Let ({Ur},{Uryr }--..) be a u-family in £(X), where
u = F,(ug,...), that determines A, then A(x) = ¢ for each x € U., and, by Lemma
M4 Aly, is determined by the family ({Ui },...) in £(U;) for each i > 0. By induction,
Aly, € L(U;,v) for each i > 0, where v = Fj(vy, . ..), so A|y, is determined by a v-family
Gi={Vi}{V: . },...) in L(U;). By Lemma[I7, the v-family G = ({V,,}, {Viyr }.---) in
L(UU; U;) determines Al ,. Correcting the v-family G' by changing V. to X, we obtain a
v-family G’ in £(X) that determines A. Thus, A € L£(X,v).

Items (12,15,16) are checked similar to (10,11), item (13) similar to (9), item (14) similar
to (11). O

Corollary 1. The levels of k-IFH over any base L(X) are bgo under inclusion, i.e. for
Q =k the poset ({L(X,u) | u € Ty,}; <) is bgo.

Proof. By Theorem [1 u — L(X,u) is a monotone surjection from bqo (T,;<) onto
{L(X,u) | u e T,};C). Hence, the latter structure is also bqo. O

We conclude this subsection with a result about the reduction property. Let the classes
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red-L(X, u) be defined as the classes £(X, u) in Definition [[0but with the reduced families
in place of arbitrary families.

Proposition 5. If £L(X) is a reducible base then L(X,u) =red-L(X,u) for each u € T,.

Proof. The inclusion from right to left is obvious. Conversely, let A € £(X,u), then A is
determined by a u-family F' in £(X). By Lemma [I9, A is determined by a u-family G in
L(X) which is a reduct of F. Thus, A is in red-L(X, u). O

4 Infinitary fine hierarchies in cbj-spaces

In this section we study the Q-IFH in cby-spaces. We show that some important properties
are preserved by continuous open surjections while others are not, and we give the set-
theoretic description of the ()-Wadge hierarchy in the Baire space. From now on all bases
we discuss are the Borel bases £(X) = {29, (X)}a<w, In cby-spaces X.

4.1 General properties

Here we collect some general properties of Q-IFH in cbg-spaces. Let £(X), L(Y) be the
Borel bases in cbg-spaces X, Y respectively.

Proposition 6. Let f : X — Y be a continuous function and u € T,. Then A € L(Y,u)
implies Ao f € L(X,u).

Proof. Let A € QY be defined by a u-family F' in £(Y). Since the preimage function
f~t: P(Y) — P(X) is a morphism from £(Y) to £(X) by Lemma[Z, Ao f is determined
by the u-family f~(F) in £(X) by Lemma [I5 Therefore, Ao f € L(X, u). O

Next we briefly discuss the relation of Q-IFH in X to the Wadge reducibility <y, of
Q-partitions of X (see Introduction).

Corollary 2. If Q is antichain (in particular, Q = k) then any level of the Q-IFH in X
15 closed downwards under Wadge reducibility.

Proof. Since <, is the equality on ), A <y B iff A = Bo f for some continuous function
f on X. Thus, the assertion is a particular case of Proposition [6l when X =Y. O

Corollaries 2l and [I] show that Properties (1,5) of the Wadge hierarchy of sets in the Baire
space (see the end of Section 2.4]) survive under generalisation to the IFH of k-partitions
in cbg-spaces (the property (1) survives in the weaker form of being bqo). If @ is not
antichain then the closure under Wadge reducibility does not survive in general, and if @
is not a finite antichain then the levels of )-IFH may be not bqgo under inclusion.

To keep the properties (1,5), one could modify the definition of the Q-IFH by taking
the closure £(X,u) = {A € Q¥ | 3B(A <w B € L(X,u))} of levels under the Wadge
reducibility as the new definition. Then we automatically have the closure property (5).
It turns out that also the bqo-modification of property (1) holds under this modification.
The next proposition is proved in the same way as Theorem [Il and the corresponding
lemmas about inclusions of levels of the Q-IFS.
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Proposition 7. If u < v then £(X,u) C L(X,v).
Corollary 3. If Q is a bgo then ({L£(X,u) | u € T,};C) is also a bgo.

One could conclude that taking £(X, u) instead of £(X, ) really improves the definition
of Q-TFH but it also has the negative effect: the important preservation property from
the next subsection holds for classes £(X,u) but (probably) not for classes £(X,u). For
this reason we prefer to keep both modifications which are in fact equivalent for the case
of k-partitions, as we have just discussed.

As we know from Lemma[8, most of levels of the Borel hierarchy in X have the o-reduction
property. By Proposition [, this implies the following simpler characterisation of many
levels of the Q-IFH in X.

Proposition 8. For any cby-space X and any u € T,, red-LY(X,u) = LY(X,u). If X is
zero-dimensional then red-L(X,u) = L(X,u) for all u € T,.

Let T be a family of pointclasses. Recall from [36] that a total representation (TR)
v: N — INX) is a T-TR if its universal set U, = {(a,z) | * € v(a)} is in (N x X),
and v is a principal T-TR if it is a I-TR and any T-TR p : N' — T'(X) is reducible to v.
Note that if v : N'— I'(X) is principal then it is a surjection and that I'(X) has at most
one principal TR, up to equivalence. According to Theorem 5.2 in [36], any level of the
classical hierarchies of sets in arbitrary cbg-space has a principal TR.

The notion of principal TR may be naturally extended to k-partitions [3§] and even to
Q-partitions. Namely, a family of Q-partition classes is a family {I'(X)}x indexed by
cho-spaces such that T'(X) C QX for each X, and Ao f € T'(X) for every continuous
function f: X — Y and every A € I'(Y). ATR v: N — I'(X) is a I'-TR if its universal
Q-partition (a,z) — v(a)(z) is in T(N x X), and v is a principal T'-TR if it is a T-TR,
and any I'-TR p : NV — T'(X) is reducible to v. Note that if v : N' — I'(X) is principal
then it is a surjection and that I'(X') has at most one principal TR, up to equivalence.

According to Proposition[6, {£(X, u)} x is a family of Q-partition classes, for each u € T,,.
But the principal TRs of levels of Q-IFH do not always exist (even for the case of sets).
In particular, for k-partitions, £ > 3, the principal TRs of levels of natural hierarchies
may not exist. E.g., this is the case already for the difference hierarchies of 3-partitions
over the open sets which consists precisely of the classes L(X,T), T € T(3). A reasonable
way to construct a principal TR is to represent all 7T-families of open sets that induce a
3-partition; but this can be done straightforwardly only for reducible bases. Thus, the
problem is again related to the o-reduction property. This also applies to iterated labeled
trees yielding the following sufficient condition which extends Proposition 4.12 in [36] and
other similar results. The proof consists in “effectivisation” of the results above related
to the o-reduction property.

Theorem 2. Let X be a chy-space. Then any level LY(X,u) has a principal total repre-
sentation. If X is zero-dimensional then any level L(X,u) has a principal total represen-
tation.

Proof Sketch. The proof for both assertions is similar, so we consider only the second
one. By Theorem 5.2 in [36] (see also [1]), any level 39, (X)) in arbitrary cbg-space has
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a principal TR m,. Moreover, the operations of countable union and binary intersection
on XY, (X) have continuous realizers w.r.t. m,. The proof of o-reduction property for
20, . (X) also “effectivizes”, i.e., there is a continuous realizer that computes a reduct of
a given (by A-names) sequence of X9 (X)-sets.

For any given u € T, it suffices to find a TR of the reduced wu-families in £(X) that
induces the desired principal TR of £(X,u) by Lemma 20, If u is a singleton term the
TR is obvious. Otherwise, a u-family in £(X) has the form ({U,},{F,}) where {U,,}
is a monotone u/-family of £ gets with U. = X and, for each 1, € T(u)), Fy, is a
to(70)-family in £*(U,). The TR mg( induces a TR of all families {U,,}. Moreover,
by the effective version of Lemma [ we obtain a TR of all monotone such families. By
the effective version of Lemma [T1], we obtain a TR of all reduced such families.

If the term ¢y(79) is singleton, the procedure of Definition [lis finished. Otherwise, F;, =
({Urym } {Fryr }) and we can continue the computation above and find a TR of all reduced
families {U,,r, }, for any fixed 75. Continuing this process, we find a desired TR of all
u-families. This TR induces a TR of £(X,u) by Lemma 20 A routine calculation shows
that it is a principal u-TR. O

The Wadge complete elements in levels of )-IFH do not need to exist. We can prove their
existence for the Q-IFH in the Baire space (which coincides with the Wadge hierarchy by
Theorem [6 below) but this was already proved in [20] by different methods. We give a
hint to an elementary proof not using deep facts in [20].

Corollary 4. For any Q, every level LN ,u) has a Wadge complete Q-partition.

Proof. By Theorem [2 there is a principal TR v : N — L(N,u), hence its universal
Q-partition U, (a,z) = v(a)(x) is in LN x N,u). Since N' x N is homeomorphic to N,
we can think that U, € L(N,u). Clearly, any element of L(N,u) is Wadge reducible to
U, which is thus Wadge complete in L(N,u). O

4.2 Preservation property

Here we show that all levels of the Q-IFH are preserved by continuous open surjections.

With any function f : X — Y between chg-spaces we associate the function A — f[A]
from P(X) to P(Y) defined by f[A] = {y € Y | AN f~'(y) is non-meager in f~(y)}.
Its importance stems from Baire-category properties of cby-spaces recalled in Section 2.3
The function A — f[A] (known as the existential category quantifier [17,4]) was used e.g.
in [43] [6], B8]; we changed its notation trying to make it more convenient in our context.

The next two lemmas generalize some results from [43] 6] [38]. Please distinguish f[A] and
the image f(A) of A under f.

Lemma 23. (1) The function A — f[A] is a morphism from L(X) to L(Y), and f[A] C
f(A) for each A C X.

(2) If T is a well founded tree and {U.} is a T-family of 9. ,(X)-sets then {f|U,]} is

a T-family of 9, (Y)-sets, and f[U.] C f[U,] for each T € T.

Proof. (1) Let y € f[A], then AN f~!(y) is non-meager in f~!(y). Then AN f~!(y) is

23



non-empty, hence y € f(A) and f[A] C f(A). In particular, f[0)] = (). To show that
fIX] =Y we have to check that, for any y € Y, f~!(y) is non-meager in f~'(y), and this
follows from quasi-Polishness of f~(y). The property that f[J, U.] = U,, f[Ux] for every
countable sequence {U,,} in P(X) is well known. The (non-trivial) fact that U € X9, (X)
implies f[U] € 39, (Y), follows from Proposition 2] see [43), [6].

—~—

(2) The first assertion follows from (1), so we check the second one. Let y € f[U.], i.e.
y e flUI\NU{fIU~] | € 7 €T}. Then U, N f~(y) is non-meager in f~!(y) and, for
cach 7 C 7 €T, Uy N f(y) is meager in f~'(y). Then (J{U, |TC 7 €T})Nf(y)
is meager in f~'(y), hence U, = U, \ | U{U~ | 7 C 7" € T} is non-meager in f~'(y), i.e.
y € flU;]. O

We associate with any u-family F'in £(X) the u-family f[F]in £(Y") by induction as fol-
lows: if u is a singleton term (hence F' = {X}) then we set f[F| = {Y'}; otherwise, « is an
F-term and F = ({U,}, {F;}) is a v/-family in £"™(X); we set f[F] = {f[U]}, {f[F+]})
which is a u/-family in £ (Y"), hence a u-family in £(Y).

Lemma 24. Letu e T,, AcY = Q, and Ao f € L(X,u) be determined by a u-family
Fin L(X). Then A is determined by the u-family f[F] in L(X).

Proof. If u is a singleton term, the assertion is obvious. Otherwise, v’ is an F-term and the
family F" has the form ({U },{Urn }s---), so f[F] has the form ({f[Ur ]}, {f[Urpr]},---)-
We have to show that A is determined by f[F], i.e. for each y € Y, A(y) = q(70, ..., Tm),

for every terminating component f[Us...,.| of f(F) containing y. Note that such a com-
ponent always exists.

—_——

For any given y € Y and any such component f[Ux....,,| we have y € f[U...,,] by Lemma
23(2), so y = f(x) for some x € U,,...,.. Thus, A(y) = (Ao f)(z) =q(70,. -, Tm)- O

As an immediate corollary of Lemmas and we obtain the following preservation
property for levels of the Q-IFH.

Theorem 3. Let L(X),L(Y) be Borel bases in cby-spaces X, Y respectively, f: X — Y
a continuous open surjection, A 'Y — @, and uw € T,. Then Ao f € L(X, u) iff
Ae LY, u).

Proof. Let A € L(Y,u), then A is determined by a u-family F' in £(Y). By Lemma
05 Ao f € L(X,u). Conversely, let Ao f € L(X,u), then Ao f is determined by a
u-family F'in £(X). By Lemma 24 A is determined by the u-family f[F] in £(Y"), hence
A€ L(Y,u). O

4.3 Inheritance of Hausdorff-Kuratowski-type theorems

Here we apply the preservation theorem to show that some versions of the Hausdorff-
Kuratowski theorem (which we call HK-type theorems for short) are inherited by the
continuous open images.

. ~1,1
Recall that the Hausdorff theorem in a space X says that (s, X5 (X) = A(X).

The difference hierarchy {Egl’l(X )} over the open sets in X is usually defined using a
difference operator on the transfinite sequences of open sets (see e.g. [17, [36]). Since
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in this paper we promote using labeled trees instead of ordinals, we note that levels
E;l’l(X ) are easily characterised using 2-labeled trees in 7(2) (see the beginning of
Section B.I)). Namely, by Proposition 4.9 in [36], there is a tree T € T(2) such that
EEI’I(X) = L(X,Tp), and any T € T(2) is <-equivalent to one of Tj, T, where u + i
is the automorphism induced by ¢ — 1 — 4, see Lemma [Bl Thus, the Hausdorff theorem
for X may be written as | J{L(X,T) | T € T(2)} = AJ(X) (in this subsection it is more
convenient to work with labeled trees rather that with terms, see Lemma [I).

The Kuratowski theorem extends the Hausdorff theorem to any successor level of the Borel
hierarchy in X (see Section 23] for the formulation of this theorem for quasi-Polish spaces).
The Kuratowski theorem has a reformulation in terms of 2-labeled trees in just the same
way as for the Hausdorff theorem. Namely, the tree form of the Hausdorff-Kuratowski
theorem in X looks like (J{L(X,T) | T € To(T(2))} = A}, 1(X) for each a < wy,
where some notation from the end of Section [3.1]is used; in particular, 7, o T = Taq1.

The tree form of the HK-theorem readily extends to Q-partitions which yields our first
example of inheritance of the HK-type theorems. We say that a cbg-space X satisfies the
HEK-theorem for Q-partitions in level 1 + a4+ 1 < wy, iff | {L(X,T) | T € Tor1(Q)} =
A(l)JraH(QX). We define the qo <., on cbg-spaces by: Y <., X iff there is a continuous
open surjection from X onto Y.

Theorem 4. If a cby-space X satisfies the HK-theorem for Q-partitions in level 1+a+1 <
w1, then so does every space Y <., X.

Proof. Since the inclusion | J{L(X,T) | T € Tot1(Q)} C AY, . 1(Q) is easy, we check
only the opposite inclusion. Let A € AY, ,(QY) and let f : X — Y be a continuous
open surjection. Then Ao f € AY, .,(QY), hence Ao f € L(X,T) for some T € Toi1(Q).
By Theorem B A € L(Y,T). O

Our second example is concerned with a version of HK-theorem for limit levels of the
Borel hierarchy. The problem of finding a construction principle for the AS-subsets of the
Baire space in the case that ) is a positive limit countable ordinal was posed long ago by
Luzin and resolved in [47] as an important step to the complete description of the Wadge
hierarchy. We state the inheritance property for an extension of this result from sets to
@-partitions. We say that a cbg-space X satisfies the Wadge property for Q-partitions in
a limit level A < wy, iff J{L(X,T) | T € TA(Q)} = AL(Q¥).

The next result is proved in just the same way as the previous theorem.

Theorem 5. If a cby-space X satisfies the Wadge property for Q-partitions in a limit
level A < wy, then so does every space Y <., X.

4.4 Characterizing ()-Wadge hierarchy in the Baire space

Here we show that the Q-IFH in the Baire space coincides with the Wadge hierarchy of
(@-partitions.

The structure of Wadge degrees of Borel measurable Q-partitions of N was characterised
in [20] (see Proposition [3lin Section B.I]). In particular, a set-theoretic characterisation of
the non-self-dual levels of the Q-Wadge hierarchy (with levels W(N, T') from Introduction)
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was provided (see Lemma 3.16 and its extensions in [20]), by defining classes Xr of

Q-partitions using set-theoretic operations and showing that W(N,T) = Sr for each
T € T, (Q).

The definition of X in [20] uses special features of the Baire space and looks a bit different
from our general definition of levels of the Q-IFH. The main result of this subsection
shows that these classes for the Baire space coincide. For the reader’s convenience, we
cite necessary notions and results from [20] (see also [21]).

Any non-empty closed set C' in N and any Q-partition A : C — @ induce a Q-partition
A N — Q obtained by composing A with the canonical retraction from A onto C'
(abusing notation, A and A are often identified). Similarly, any A : U — @, where U is a
non-empty open set in A/, may be identified with some A : V' — Q (see Observations 3.5
and 3.6 in [20]). We recall (in the slightly different from [20] notation of Section B.]) the
definition of classes Y7 (in fact, we define ¥, for u € T,, where T'= T'(u), see Lemma [I]
cf. Definition 3.7 and its extensions in [20]).

Definition 11. (1) ¥, = {\z.q}.
(2) s, (u) consists of Ao g where A € ¥, and g is a X9 -measurable function on N

(3) & Fy(uo,...) consists of A € QN such that for some pairwise disjoint non-empty open
sets Up, Uy, ... not exhausting N we have: Aly = Av.q (where V = N\ |, U;) and
Aly, € 3, for alli > 0.

(4) £, (uo,. consists of A € Q" such that for some pairwise disjoint non-empty open
sets Uy, Uy, ... not exhausting N we have: Aly € X, ) (where V.= N\ U5, Ui)
and Aly, € X, for all 1 > 1.

Let 5: NV — N be a function with jof = f. We say that a function f: N — N
is f-conciliatory if, for any z,y € N, g(z) = 4(y) implies §(f(z)) = (f(y)). Similarly, a
function A: N — @ is f-conciliatory if, for any x,y € N, i(z) = i(y) implies A(z) = A(y).
We say that f,g: N — N are j-equivalent (written f =, g) if fo f =fog.

In [20] the following basic fact was established: For any countable ordinal «, there is
a XY, -measurable f-conciliatory function U,: N' — N which is universal; that is, for
every X7, -measurable function f: N — N, there is a continuous function g: N = N
such that f is g-equivalent to U, o g. It was also shown that every o-join-irreducible
Borel function A: NV — @ is Wadge equivalent to a p-conciliatory function. In fact,
for any u € T, there is a ¥,-complete g-conciliatory function pu(u): N — @ defined as
follows: u(q) = Ar.q; p(sa(u)) = p(u) o Upe; p(Fy(uo,...)) = plg) = (u(uo) U---);
u(Fa(uo, .. .)) = p(sa(uo)) = (p(ua) U---).

As usual, let £(N') denote the Borel base in A/. Since this base is reducible, in the proof
below we always assume families in £(N) to be reduced (see Proposition [l).

Theorem 6. In the Baire space, the Q-IFH coincides with the Wadge hierarchy of Q-
partitions, i.e. ¥, = LN, u) for each u € T,.

Proof. The equality ¥, = L(N,q) for ¢ € Q is obvious. To prove X ) = LN, s4(u)),
note that we have %, = L(N,u) by induction and that L(N,s.(u)) = L (N, u) by
Lemma 21[1). Let Ao g € X, (,) where A € &, = L(N,u) and g is £~ (N)-measurable.
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By Lemmas [ and 15, Ao g € £ (N, u), as desired. Conversely, let A € £ (N, u). By
the remarks before the theorem, p(so(u)) = p(u) o Uy« is Wadge complete in L~ (N, u),
hence A = (u(u)ol,)o f for some continuous function f on N'. Then A = p(u)o(Uaof),
pw(u) € LN, u), and Uye o f is L7 (N)-measurable. Thus, A € 3, ).

In proving the equality Xg,(u,,..) = LN, Fy(uo,...)), by induction we can assume that
Y, = LN, u;) for each i > 0. Let A € Y, (uo,...), then for some pairwise disjoint non-
empty open sets Uy, Uy, . .. not exhausting N we have: Aly = Av.q (where V =N\, U;)
and A|y, € X, for all i > 0. By induction, A|y, € L(N,u;) for alli > 0. By Lemmal2T)(4),
A€ LN, F,(ug,...)). The converse inclusion follows from Lemma 2|(3) and Definition
[M1i(3). The case of F,-term is considered similarly. O

4.5 Infinitary fine hierarchies in quasi-Polish spaces

Here we summarise some properties of the Q-IFH in quasi-Polish spaces. For any quasi-
Polish space X we fix a continuous open surjection ¢ from N onto X (Proposition [IJ).
First we give the characterisation of the Wadge hierarchy of k-partitions announced in
Introduction (for & = 2 this of course yields a characterisation of the Wadge hierarchy of
sets).

Theorem 7. Let X be a quasi-Polish space, Q =k, and T € T, (Q). Then W(X,T) =
L(X,T).

Proof. Let £ : N'— X be a continuous open surjection. By Theorem [G and Proposition
BLWWN,T) =%y =LN,T). By Theorem 3], for any A : X — @Q we have: A € W(X,T)
iff Ao e LIN,T)iff Ae L(X,T). O

Next we show that the HK-type theorems hold in any quasi-Polish space, which extends
some known results. From Proposition [Il we know that X is a quasi-Polish space iff
X <., N. This together with Theorems [ and [B] implies the following.

Theorem 8. FEvery quasi-Polish space satisfies the HK-theorem for Q-partitions in any
successor level 1 +a+1 < wy of the Q-IFH, and also the Wadge property for Q-partitions
in any limit level A < wy of the Q-IFH.

Next we make some remarks on which properties of the Wadge hierarchy in the Baire space
(see end of Section 2.4]) hold in arbitrary quasi-Polish spaces. Property (1) holds for the
hierarchies of sets and of k-partitions (for & > 3 in the weakened bqo-form); the non-
collapse property (2) does not automatically hold and requires an additional investigation
in any concrete space; property (3) fails in most of natural spaces; property (4) holds
in arbitrary quasi-Polish space (note that this property is in fact an HK-type theorem);
property (5) holds for the hierarchies of sets and of k-partitions; property (6) does not
automatically hold and requires an additional investigation in any concrete space.

5 Effective Wadge hierarchy

Here we briefly discuss effective versions of some notions and results described so far. For
a detailed presentation of the effective versions see [41].
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For Theoretical Computer Science and Computable Analysis an effective DST for reason-
able classes of effective spaces is especially relevant. A lot of useful work in this direction
was done in Computability Theory but mostly for the discrete space w, the Baire space
N, and some of their relatives [28] 25]. Effective versions of the classical Borel, Hausdorff
and Luzin hierarchies are naturally defined for every effective space (see e.g.[31], 37]) but,
as also in the classical case, they behave well only for spaces of special kind.

By effectivization of a cby-space X we mean a numbering 5 : w — P(X) of a base in X
such that there is a uniform sequence {A4;;} of c.e. sets with 5, N 5; = |JB(A;;), where
B(A) is the image of A under §. The numbering § is called an effective base of X while
the pair (X, ) is called an effective space. We simplify (X, ) to X if 3 is clear from the
context. The effectively open sets in X are the sets (J;oy, (), for some c.e. set W C w.
The standard numbering {W,,} of c.e. sets [28] induces a numbering of the effectively
open sets. The notion of effective space allows to define e.g. computable and effectively
open functions between such spaces [4§].

Recently, a convincing version of a computable quasi-Polish space (CQP-space for short)
was suggested in [7, [14]. Effective versions of some classical facts (e.g., of the Hausdorff
theorem) were established in [37] for CQP-spaces. By a computable quasi-Polish space
we mean an effective space (X, ) such that there exists a computable effective open
surjection £ : N/ — X from the Baire space onto (X, ). As shown in [37, [7, 14], CQP-
spaces do satisfy effective versions of several important properties of quasi-Polish spaces.
E.g. they subsume computable Polish spaces and computable domains and satisfy the
effective Hausdorff and Suslin theorems. The class of CQP-spaces includes most of cbg-
spaces considered in the literature.

Let {29, (X)}n<w be the effective Borel hierarchy and {D, (X% (X))}, be the effective
Hausdorff difference hierarchy over X2 (X) in arbitrary effective space X. Another popular
notation for levels of the difference hierarchy is -1 = D, (2% (X)), with X~1! usually
simplified to X1, Let also {X],,,(X)} be the effective Luzin hierarchy. We do not repeat
the standard definitions (which may be found e.g. in [31 [37]) but mention that the
definitions yield also standard numberings of all levels of the hierarchies, so we can speak
e.g. about uniform sequences of sets in a given level. E.g., ¥9(X) is the class of effectively
open sets in X, ¥, (X) is the class of differences of X9(X)-sets, and X9(X) is the class
of effective countable unions of Y5 (X)-sets.

Levels of the effective hierarchies are denoted in the same manner as levels of the corre-
sponding classical hierarchies, using the lightface letters 3, II, A instead of the boldface
3,11, A used for the classical hierarchies. The boldface classes may be considered as
“limits” of the corresponding light-face levels (where the “limit” is obtained by taking the
union of the corresponding relativised light-face levels, for all oracles). Thus, the effective
hierarchies not only refine but also generalise the classical ones.

In [41] we developed an effective Wadge hierarchy (including the hierarchy of k-partitions)
in effective spaces which subsumes the effective Borel and Hausdorff hierarchies (as well
as many others) and is in a sense the finest possible hierarchy of effective Borel sets.
By effective Wadge hierarchy in a given effective space we mean the fine hierarchy over
{29, ,(X) bnew (see e.g. [34] for a survey). Roughly speaking, the FH is a finitary version
of the IFH where one uses w instead of w; and finite trees instead of well founded trees.
The finitary analogue of 7T, (Q) is denoted as T, (Q) and considered in [41] only for Q = k.
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E.g., a base in a set X is now a sequence L = {L,},<. of subsets of P(X) such that any
L, is closed under union and intersection, contains @, X and satisfies £,UL,, C L,11. The
effective Borel bases L(X) = {X,,,(X)} in effective spaces X are especially relevant The
(finitary) FH of sets over the base £ is now a sequence {S, }a<ey, €0 = sup{w,w,w*", ...},
of subsets of P(X) constructed from the sets in levels of the base in X by mductlon on «
using suitable set operations.

The FH over the effective Borel base in X will be denoted by {¥,(X)}a<-, and called
the effective Wadge hierarchy in X. Denote the corresponding boldface sequence by
{Sa(N)}a<e,.- The sequence {S,(N)}a<e, forms a small but important fragment of the
classical Wadge hierarchy in the Baire space studied e.g. in [29]. In the classical Wadge
hierarchy these pointclasses have of course different notations. It is not hard to show
that S, = Xy(q) for each a < g9 where f : ¢ — v is the monotone function defined by
induction as follows f(0) =0 and

f(wa1~k1+wa2-]€2—|—..)—wl kl"‘wl )'k2+“"

for any non-empty sequence oy > ap > ... of ordinals < €q, and for all k; < w (recall that
any positive ordinal o < g is uniquely representable in the form o = w* -k +w*? ko +. . .).

The finitary FH of k-partitions over the effective Borel base is denoted as {3(X, T') }re7. %)
In particular, we show in [41] that levels of such hierarchies are preserved by the com-
putable effectively open surjections, that if the effective Hausdorff-Kuratowski theorem
holds in the Baire space then it holds in every CQP-space, and we extend the effective
Hausdorff theorem for CQP-spaces [37] to k-partitions. We hope that these results (to-
gether with those already known) show that the effective DST has already reached the
state of maturity.

6 Future work

Many mterestrng questlons related to this paper remain open even for the case of k-
partitions @@ = k = {0,. —1}. We shorten the signature o(k,w;) to o(k) (the
boldface symbols are used to drstlngulsh the elements of k from ordinals 0,...,k—1). By
Proposition [3, the quotient-poset of (T,x); ) contains essential information about the
Wadge hierarchy of (o-join-irreducible) k-partitions of the Baire space. But if for k = 2
most questions about the structure (Ty(); ) follow from the results in [47], for £ > 3
there is still a lot to do. Below we assume that k > 3.

In [23] it was shown that the automorphism group of the quotient-poset of a natural initial
segment of (T, (x); <) is isomorphic to the symmetric group S, on k elements. We guess
that this result extends to the quotient-poset of (T, ;).

In [22] it was shown that the first-order theory of the quotient-poset of a small initial
segment of (Ty(); <) is computably isomorphic to the first-order arithmetic; this implies
that the first- order arithmetic is m-reducible to the first-order theory of the quotient-
poset of (Ty(x); <). This is in contrast with the quotient-poset of (T, (2); <) whose first-
order theory 1s decrdable. Also, in [22] a complete characterisation of first-order definable
relations in the mentioned small initial segment was achieved. This motivates the study of
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definable relations on the quotient-poset of (Ts(x); J); along with first-order definability,
the L, ,-definabilty in this quotient-poset seems especially interesting.

In this paper we hopefully found a convincing set-theoretic definition of ()-Wadge hier-
archy in quasi-Polish spaces, restricting our attention to Borel ()-partitions. For this the
axioms of ZFC suffice. A major open question is to extend the results of this paper to a
reasonable class beyond the Borel Q-partitions (perhaps even to all @-partitions). The
Wadge hierarchy for arbitrary subsets of the Baire space is well known [45] and requires
suitable set-theoretic axioms alternative to ZFC. The definitions of this paper extend
straightforwardly (by taking arbitrarily large ordinal  in the signature o (@), ) in Section
B)) but beyond the Borel Q-partitions proofs could turn out different from those used in
this paper. It is currently not clear which set-theoretic axioms should be used.
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