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Abstract

The Jordan decomposition theorem states that every function f : [0, 1] → R of bounded

variation can be written as the difference of two non-decreasing functions. Combining this

fact with a result of Lebesgue, every function of bounded variation is differentiable almost

everywhere in the sense of Lebesgue measure. We analyse the strength of these theorems in

the setting of reverse mathematics. Over RCA0, a stronger version of Jordan’s result where all

functions are continuous is equivalent to ACA0, while the version stated is equivalent to WKL0.

The result that every function on [0, 1] of bounded variation is almost everywhere differentiable

is equivalent to WWKL0. To state this equivalence in a meaningful way, we develop a theory

of Martin-Löf randomness over RCA0.
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1 Introduction

A main topic of reverse mathematics is to determine the axiomatic strength of theorems from

classical analysis. For instance, the base system RCA0 proves the intermediate value theorem. Over

RCA0, the fact that every continuous real function on [0, 1] is uniformly continuous is equivalent

to the system WKL0, while the Bolzano-Weierstrass theorem (every bounded sequence of reals has

a convergent subsequence) is equivalent to the stronger system ACA0 (see [11, Thms. II.6.6, IV.2.3

and III.3.2], respectively).

Our purpose is to determine the strength of two important, interrelated theorems from analysis.

Interpreting these theorems over RCA0 necessitates to develop some theory of representations of

functions and of Martin-Löf randomness over this weak base system.

1.1 The axiomatic strength of Jordan’s decomposition theorem

Jordan’s theorem, dating from 1879, states that every function f : [0, 1] → R of bounded variation

can be written as g − h where g and h are nondecreasing functions (see e.g. [2] for background on

real analysis). One calls the pair g, h a Jordan decomposition of f . In the setting of real analysis,

the proof that a Jordan decomposition exists is simple: let g(x) be the variation of f from 0 to x,

and let h = g − f . However, even if f is computable in the usual sense of computable analysis,

the function g is not necessarily computable: the variation of f , which equals g(1), can be any

non-negative left-c.e. real by Rettinger and Zheng [16, Thm. 3.3.(ii)]. They also give in Thm.

5.3 an example of a computable function of bounded variation without any computable Jordan

decomposition. Since the computable sets form a model of RCA0, it follows that Jordan’s theorem

cannot be proved in RCA0.

Our first main topic is to determine the strength of Jordan’s theorem. It turns out that its

strength depends on which functions we admit in a decomposition. The version where all functions

involved are continuous is equivalent to ACA0. The version where the non-decreasing functions g, h

in the decomposition can be discontinuous is equivalent to WKL0. For the second version, we need

to develop a theory of representing such functions g, h in models of RCA0. In Definition 4.1 we

introduce rational presentations of functions, which broadly speaking provide information about

all possible inequalities g(p) < q and g(p) > q for rationals p, q, while leaving open equalities.

Greenberg, Miller and Nies [5, Thm. 1.4 and Section 2.3], going back to unpublished work with

Slaman, built a computable function of bounded variation such that any continuous Jordan de-

composition computes the halting problem, and every Jordan decomposition allowing discontinuity

computes a completion of Peano arithmetic. To prove some of our results above, we adapt their

methods to the setting of reverse mathematics. This will require considerable additional effort.

1.2 The axiomatic strength of Lebesgue’s theorem on a.e. differentiabil-

ity

Lebesgue [7] proved that every nondecreasing function f is almost everywhere differentiable. By

Jordan’s theorem, it follows that the same conclusion holds for functions of bounded variation. See

e.g. [2, Thm. 20.6 and Cor. 20.7].

Our second main topic is the strength of this theorem and of its corollary. We show that

with reasonable interpretations of “almost everywhere” and “differentiable” that work over RCA0,

both are equivalent to weak weak König’s Lemma WWKL0 introduced by Simpson and Yu [15],
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which roughly speaking states that every tree of positive measure has a path. Showing this requires

recasting a fair amount of the methods of Brattka, Miller and Nies [1] over RCA0. In one important

place they used Σ0
2-bounding (in the form of the infinitary pigeon hole principle), which is not

allowed in RCA0. So we have to circumvent this. To get around the fact that a computable

function of bounded variation may not have a computable Jordan decomposition, they use a set

computing a completion of Peano arithmetic, and relativize randomness to it. Since such sets

are unavailable within RCA0, in Lemma 6.5 we will instead recast this idea using an argument of

Simpson and Yokoyama [13]. They extend a model of WWKL0 to a model of WKL0 in a restrictive

way, in that for each of the new sets A, some set in the given model is random relative to A. This

is one of the few examples from earlier years where methods stemming from the algorithmic theory

of randomness have been reviewed with the mindset of reverse mathematics.

It is interesting that of our two topics, proving Jordan decomposability requires the stronger

systems, even though differentiation appears to be a more complex operation than taking a Jordan

decomposition. In fact when we say that f is differentiable at z we cannot assert that the limit of

slopes around z exists in the model of RCA0, as this would be equivalent to ACA0 when considering

suitable functions. To get around this we work with the concept of pseudo-differentiability going

back to Demuth [3]: f is pseudo-differentiable at z if the slopes get closer and closer to each other

as one zooms in on z (similar to the case of Cauchy sequences). If f is continuous at z and pseudo-

differentiable at z, then f is differentiable at z (but the value of the derivative at z may still not

exist in the model).

We mention that Shafer and the first author [9] have recently looked at further connections

between reverse mathematics and randomness. They consider randomness notions for infinite bit

sequences. For instance, they study the reverse mathematical content of a well-known result: the

characterization of 2-randomness of a bit sequence Z via the plain Kolmogorov complexity of initial

segments Z ↾ n.

2 Preliminaries

Effectively uniformly continuous functions

We make the following definitions within RCA0, borrowing terminology from computable analy-

sis. An effectively uniformly continuous function f : [0, 1] → R is presented by a Cauchy name: a

sequence (fs)s∈N of rational polynomials (or, alternatively, polygonal functions with rational break-

points) such that ||fs − fr||∞ ≤ 2−s for all r > s. The sequence (fs)s∈N is intended to describe

f = lims→∞ fs. Within RCA0 this definition is equivalent to the definition of continuous functions

with a modulus of uniform continuity given in [11, Def. IV.2.1]. Note that a uniformly continuous

function may not have a modulus of uniform continuity within RCA0. In contrast, within RCA0

a continuous function with a Cauchy name always has a modulus of uniform continuity, and vice

versa.

Functions of bounded variation

Suppose that Π = {t0, . . . , tn} is a partition of an interval [a, b], i.e., a = t0 < t1, . . . , tn = b

(abbreviated by Π✁ [a, b]). We let

V (f,Π) =
n−1∑

i=0

|f(ti+1)− f(ti)|.

3



We say that a continuous function f : [0, 1] → R is of bounded variation if there is k ∈ N such that

V (f,Π) ≤ k for every partition Π of [0, 1]. We define bounded variation in this way in order to

avoid declaring that the supremum exists. We write vf (t) = supΠ✁[0,t] V (f,Π), and vf = vf (1) in

case the sup exists. For a given rational number q ∈ Q, we will use the assertion “vf (t) ≤ q” in

the sense above. It can be expressed by a Π0
1 formula independent of the sup exists.

3 Jordan decomposition for effectively uniformly continu-

ous BV functions

Jordan’s theorem states that for every function f of bounded variation there is a pair of non-

decreasing functions g, h, called a Jordan decomposition, such that f = g − h. For functions

f, g : [0, 1] → R, write

f ≤slope g iff ∀x∀y[x < y → f(y)− f(x) ≤ g(y)− g(x)];

i.e., the slopes of g are at least as big as the slopes of f . Finding a Jordan decomposition of f

is equivalent to finding a non-decreasing function g such that f ≤slope g: If f = g − h for non-

decreasing functions g, h, then f ≤slope g. Conversely, if f ≤slope g for a non-decreasing function g,

then h = g − f is nondecreasing and f = g − h.

We consider a strong version of the Jordan decomposition theorem: the principle Jordancont,

which states that for every continuous function f of bounded variation, there exist non-decreasing

effectively uniformly continuous functions g, h : [0, 1] → R such that f = g− h. Equivalently, there

is a non-decreasing effectively uniformly continuous function g : [0, 1] → R such that f ≤slope g.

Theorem 3.1. The following are equivalent over RCA0.

1. ACA0

2. Jordancont

3. For every effectively uniformly continuous function f of bounded variation, there exist non-

decreasing continuous functions g, h : [0, 1] → R such that f = g − h.

Proof. To show 1 ⇒ 2, given a continuous function f of bounded variation, we construct a code

for a continuous function vf . Note that within ACA0, vf (t) always exists, and one can describe

the function t 7→ vf (t) by an arithmetical formula. Thus, one can easily construct a code for vf

by arithmetical comprehension. Then g = vf is the desired function.

2 ⇒ 3 is trivial. To show 3 ⇒ 1, let

qn = 1− 2−n−1, and qn,s = qn − 2−n−s−1.

ACA0 is equivalent to the following: if h : N → N is an injective function, then the range of h

exists [11, Lemma III.1.3]. The plan is to encode the range of h into the variation of an effectively

uniformly continuous function f .

For v ∈ R+ and r ∈ N, we let MA(v, r) denote a “sawtooth” function on the interval A with r

many teeth of height v. Given an injective function h, for each s ∈ N, define a continuous function

fs as follows. On each interval of the form Ik = [qh(k),k, qh(k),k+1] put

fs =




MIk(2

−k, 2k−h(k)) if s ≥ k > h(k),

0 otherwise.
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Let fs = 0 elsewhere. Note that on Ik, fs = ft if t > s ≥ k or k > t > s, and ‖fs − ft‖∞ ≤ 2−s

if t ≥ k > s. Thus, the sequence (fs)s∈N defines an effectively uniformly continuous function

f = lims→∞ fs. We show that f is of bounded variation with bound 1. Note that we only need to

examine the variation of f on the disjoint intervals [qh(k),k, qh(k),k+1] since f = 0 elsewhere.

Let m ∈ N. For k ∈ {0, . . . ,m}, let Πk partition Ik. We estimate the variation of f on the

interval
⋃

k≤m Ik. Without loss of generality we may assume that each partition contains the

midpoints and endpoints of the sawteeth defined on Ik.
1 This allows us to easily compute the

variation of f as the piece-wise combination of non-decreasing functions. For all s ≥ m one has

m∑

k=0

V (f,Πk) =

m∑

k=0

V (fs,Πk) ≤
m∑

k=0

2−h(k)+1 < 1,

which establishes the desired bound.

By Jordancont, take g : [0, 1] → R non-decreasing and continuous such that f ≤slope g. Given

that the range of h is encoded in the variation of f , we will use the (easily computable) variation

of g on the interval [qn,k, qn,k+1] to bound to possible pre-images of n under h.

Define a ∆0
1 definable function γ : N → N such that g(qn)− g(qn,γ(n)) < 2−n as follows. There

is a Σ0
0 formula θ(n,m, k) such that

∃mθ(n,m, k) ↔ g(qn)− g(qn,k) < 2−n.

Since g is continuous and lims→∞ qn,s = qn one has ∀n∃k∃mθ(n,m, k). As this sentence is Π0
2,

given any instance of the variable n one can effectively obtain a witness 〈m, k〉 for the Σ0
1 formula

∃k∃mθ(n,m, k) (see, e.g. [11, Theorem II.3.5]). Thus we may put γ(n) = k, where 〈m, k〉 is least

such that θ(n,m, k) holds.

Now if h(k) = n < k then by the monotonicity of g,

g(qn)− g(qn,k) ≥ g(qn,k+1)− g(qn,k).

Let Π be a partition of [qn,k, qn,k+1] containing the endpoints and midpoints of each sawtooth

defined on that interval. Then since g − f ≤ g and the variation of an increasing function is the

difference of its values at its endpoints one has

2−n+1 = V (f,Π) = V (g − (g − f),Π) ≤ V (g,Π) + V (g − f,Π) ≤ 2(g(qn,k+1)− g(qn,k)).

Thus g(qn)− g(qn,k) ≥ 2−n, and then k < γ(n). Hence

n ∈ rng(h) ↔ ∃k < max{γ(n), n+ 1}[h(k) = n],

so the range of h exists by ∆0
1 comprehension.

4 Jordan decomposition for BV functions of rational do-

main

In the foregoing section, we required that a Jordan decomposition consist of effectively uniformly

continuous functions. Then the Jordan decomposition theorem has the same axiomatic strength as

ACA0. To see this, we encoded the range of an injective function h into the variation of a function f

1Indeed, this only refines the partition and provides an improved estimate.
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of bounded variation. A Jordan decomposition of f into uniformly continuous functions allowed

us to recover enough information to decide whether some number was the image of another under

the injective function h.

We now relax the requirement on the Jordan decomposition by only stipulating that the decom-

position is given by functions which are defined on the rationals. Such functions can be represented

by finite strings that cumulatively describe the behaviour of the function at each rational. We will

see that such simple objects do not allow the encoding of sets of high complexity.

Greenberg, Miller and Nies [5] proved that there is a computable function f on [0, 1] of bounded

variation such that every Jordan decomposition of f in this weak sense is PA-complete. One

direction of our argument, 4 ⇒ 1 of Theorem 4.10, is based on their proof; extra effort is required

to make it work over RCA0 as a base theory.

4.1 Rational presentations of functions

Let [0, 1]Q := [0, 1] ∩ Q. We present a function g : [0, 1]Q → R by a set Z ⊆ [0, 1]Q × Q in the

following way. We require that (p, q) ∈ Z if g(p) < q, and (p, q) /∈ Z if g(p) > q. We leave open

whether (p, q) ∈ Z in case that g(p) = q. The formal definition follows.

Definition 4.1. A set Z ⊆ [0, 1]Q × Q is called a rational presentation if

(i) for any p ∈ [0, 1]Q, there exist q, q′ ∈ Q such that (p, q) ∈ Z and (p, q′) /∈ Z, and

(ii) for any p ∈ [0, 1]Q and for any q, q′ ∈ Q with q < q′, (p, q) ∈ Z implies (p, q′) ∈ Z.

A rational presentation Z determines a function gZ : [0, 1]Q → R via

gZ(p) = inf{q ∈ Q : (p, q) ∈ Z}.

We say that Z is a rational presentation of gZ (and also of any function on [0, 1] extending gZ).

One can determine gZ(p) within RCA0 since for any n ∈ N, one can effectively find q, q′ ∈ Q

such that (p, q) ∈ Z, (p, q′) /∈ Z, and |q − q′| ≤ 2−n. Even though a rational presentation of a

function is not unique if the function has some rational value, we sometimes identify Z with gZ .

For given x, y, z ∈ Q and a rationally presented function gZ : [0, 1]Q → R, the assertion “gZ(x)−

gZ(y) ≤ b” is expressed by a Π0
1 formula with free variables Z, x, y, b:

∀p0, p1, q0, q1 ∈ Q [p0 = x ∧ p1 = y ∧ (p0, q0) /∈ Z ∧ (p1, q1) ∈ Z → q0 − q1 ≤ b].

Similarly, “gZ(x) − gZ(y) ≥ b” can be expressed by a Π0
1 formula, and “gZ(x) − gZ(y) < z”

and “gZ(x) − gZ(y) > z” by Σ0
1 formulas. Thus, the assertion “vgZ (x) ≤ z” is also expressed by

a Π0
1 formula. (Here, we only consider partitions with rational end points.) We say that gZ is of

bounded variation if vgZ (1) ≤ k for some k ∈ N.

A function f : [0, 1]Q → R can be canonically encoded by a function f : [0, 1]Q × N → Q such

that |f(p, n) − f(p, n + k)| ≤ 2−n for each p ∈ [0, 1]Q and n, k ∈ N. Rational presentations are

essentially sufficient for presenting all real-valued functions on [0, 1]Q: as we show next, within

RCA0 any function f : [0, 1]Q → R has a rational presentation up to a vertical shift.

Lemma 4.2 (RCA0). For every function f : [0, 1]Q → R, there exists a real a ∈ R such that

f(p) + a 6∈ Q for any p ∈ [0, 1]Q.

6



Proof. Let {pi}i∈N be an enumeration of [0, 1]Q. We recursively define a sequence of rationals

{ai}i∈N as follows. Let a0 = 0.

For given ai ∈ Q we let ai+1 ∈ Q such that |ai−ai+1| < 4−i and |f(pi)−ai+1| > 4−i/2. One can

always pick such ai+1 effectively since the required condition on ai+1 given ai is Σ
0
1. (Here we use the

well-known fact that a dependent choice function for a Σ0
1 binary predicate of numbers is available

within RCA0. See, e.g., the argument in the proof of [11, Theorem II.5.8], or [14, Theorem 2.1].)

Put a = limn→∞ ai and note that |a−ai+1| ≤ 4−i/3. Therefore |f(pi)−a| > 4−i/2−4−i/3 > 0.

Proposition 4.3.

(i) WKL0 proves that every function f : [0, 1]Q → R has a rational presentation.

(ii) RCA0 proves that every function f : [0, 1]Q → R has a rational presentation up to a vertical

shift. That is, there exists a rational presentation Z and a real r ∈ R such that f + r = gZ .

Proof. (i) Consider the Σ0
1-definable sets A = {(p, q) ∈ [0, 1]Q × Q : f(p) < q} and B = {(p, q) ∈

[0, 1]Q×Q : f(p) > q}. To obtain a rational presentation for f , it suffices to find a set Z ⊆ [0, 1]Q×Q

such that A ⊆ Z ⊆ [0, 1]Q × Q \ B. Such a set Z is obtained by an instance of Σ0
1-separation, an

axiom scheme which follows from WKL0 over RCA0 ([11, Lemma IV.4.4]).

(ii) We may assume that f avoids rational numbers after passing to a vertical shift of f via

Lemma 4.2. Then both A and B are ∆0
1.

Corollary 4.4. (i) WKL0 proves that the restriction to [0, 1]Q of any continuous function f :

[0, 1] → R has a rational presentation.

(ii) RCA0 proves that the restriction to [0, 1]Q of any continuous function f : [0, 1] → R has a

rational presentation on [0, 1]Q up to a vertical shift.

Proof. Within RCA0, one can effectively find the value of a continuous function. Thus, the restric-

tion to [0, 1]Q of a continuous function f : [0, 1] → R has a canonical encoding.

Taking a vertical shift is essential in the above discussion: an effectively uniformly continuous

function itself might not have a rational presentation within RCA0. To see this apply the next fact

to a recursively inseparable pair.

Proposition 4.5. Given a disjoint pair A,B of c.e. sets, there is a computable nondecreasing

function f : [0, 1] → R such that every rational presentation computes a set X such that A ⊆ X ⊆

N \B.

Sketch of proof. We define a uniformly computable sequence of reals (re) such that re is very close

to 2−e; say |re − 2−e| ≤ 2−2e. The function f is then obtained by linear interpolation between the

values f(2−e) = re; in particular f(0) = 0 and f is computable in the usual sense of computable

analysis.

We define re using a Cauchy name, as follows. Initially we let re = 2−e. If stage s is least such

that s ≥ 2e and e ∈ As we subtract 2−s to re and leave re at this value. If stage s is least such

that s ≥ 2e and e ∈ Bs we add 2−s from re and leave re at this value.

If Z is a rational presentation of f , let X = {e : (2−e, 2−e) ∈ Z}. If e ∈ A then f(2−e) < 2−e

and hence e ∈ X . If e ∈ B then f(2−e) > 2−e and hence e 6∈ X .

Proposition 4.6. The assertion “every effectively uniformly continuous function f : [0, 1] → R

has a rational presentation” implies WKL0 over RCA0.
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Proof. It is routine to transfer the computability theoretic proof above into an argument that

the given assertion implies Σ0
1 separation over RCA0. By [11, Lemma IV.4.4] the scheme of Σ0

1

separation is equivalent to WKL0 over RCA0.

The above discussions recast the problem of converting Cauchy representations and Dedekind

cuts for reals studied by Hirst [6]. Proposition 4.6 can be viewed as a strengthening of [6, Theo-

rem 7].

4.2 Jordan decomposition by rationally presented functions

We modify the ≤slope notation for functions of rational domain. For f, g :⊆ [0, 1] → R we let

f ≤∗
slope g iff ∀x, y ∈ [0, 1]Q[x < y → (f(y)− f(x) ≤ g(y)− g(x))].

We will use the following “folklore” fact for the next theorem.

Lemma 4.7 (WKL0). Every Π0
1 definable infinite tree T ⊆ 2<N has a path.

Proof. Suppose that τ ∈ T ↔ ∀n θ(n, τ). By ∆0
1 comprehension, there exists a tree

T̄ = {τ : ∀n ≤ |τ |∀σ � τ θ(n, σ)}.

Then, T ⊆ T̄ , and any path of T̄ is a path of T by the definition of T . By WKL0, T̄ has a path,

thus T has a path.

Theorem 4.8 (WKL0). For every rationally presented function f : [0, 1]Q → R of bounded varia-

tion, there is a rationally presented non-decreasing function g : [0, 1]Q → R such that f ≤∗
slope g.

Proof. Let M ∈ N such that vf ≤ M . We fix an effective listing (pn, qn)n∈N of all elements of

[0, 1]Q × Q, and identify Z : N → {0, 1} as {(pn, qn) : Z(n) = 1} ⊆ [0, 1]Q × Q. We construct a

binary tree T such that any path Z through T encodes a non-decreasing function g : [0, 1]Q → R

with f ≤∗
slope g. To do so, we ensure that the following conditions hold:

R0 : for any r ∈ N, 0 ≤ g(pr) ≤ M ;

R1 : for any r, s ∈ N, if ps ≤ pr, qs ≥ qr, and g(ps) > qs then g(pr) > qr;

R2 : for any r, s ∈ N, if ps ≤ pr then f(pr)− f(ps) ≤ g(pr)− g(ps).

Here, R1 guarantees that any g encoded by a path Zg through T is non-decreasing, and R2

guarantees the slope condition. Formally, we will consider a Π0
1 definable tree T to be the set of

all τ ∈ 2<N such that

(r0) ∀r < |τ |
[
(qr ≤ 0 → τ(r) = 0) ∧ (qr ≥ M → τ(r) = 1)

]
,

(r1) ∀r, s < |τ |
[
(pr ≤ ps ∧ qr ≥ qs ∧ τ(r) = 0) → τ(s) = 0

]
,

(r2) ∀r, s < |τ |
[
(pr ≤ ps ∧ τ(r) = 0 ∧ τ(s) = 1) → |f(ps)− f(pr)| ≤ qs − qr

]
.

To see that T is infinite, notice that since f is of bounded variation, the string Zvf |k defined

as s ∈ Zvf |k iff vf (ps) < qs and s < k, which is available from bounded Σ0
1 comprehension (see

[11, Theorem II.3.10]), is an element of T for every k ∈ N. Thus by Lemma 4.7, T has a path Z.

By (r0) and (r1) (for the case pr = ps), Z encodes a rational presentation. Let g be the unique

function [0, 1]Q → R defined as g = gZ .
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Claim 4.8.1. The function g is non-decreasing.

Proof. Take x, y ∈ [0, 1]Q with x < y. Let q ∈ Q. It suffices to show that if g(x) > q then g(y) > q.

There are r, s ∈ N such that ps = y, qs = q, pr = x, and qr = q. If g(pr) > qr then Z(r) = 0, and

then by clause (r1), Z(s) = 0, which means g(ps) > qs. ✸

Claim 4.8.2. f ≤∗
slope g.

Proof. Let x, y ∈ [0, 1]Q such that x < y. It is enough to show that for any q ∈ Q such that

g(y) − g(x) < q, |f(y) − f(x)| < q. By the definition of g, one can find r, s ∈ N such that

x = pr, y = ps, g(pr) > qr, g(ps) < qs and qs − qr < q. Then, by (r2) we have |f(y) − f(x)| =

|f(ps)− f(pr)| ≤ qs − qr < q. ✸

Thus, this g = gZ is the desired function.

It is a well-known fact that every Π0
1-class with only finitely many members has a computable

member. Greenberg, Nies and Slaman used this fact to build a computable function f on [0, 1]

of bounded variation such that any Jordan decomposition of f is PA-complete; see [5, Section 2.3

and in particular Prop. 2.9]. A natural formalization within RCA0 of this fact is as follows: if an

infinite tree T has only boundedly many incomparable nodes that are extendible, then T has a

path that is computable relative to T . Simpson and Yokoyama [12] showed that this formalization

already requires Σ0
2-induction. Instead, we will use the following lemma.

Lemma 4.9 (RCA0). Let T ⊆ 2<N be an infinite tree. If there is a bound on the cardinality of an

arbitrary prefix-free subset of T , then T has a path.

Proof. Take K ∈ N so that |P | < K for any prefix-free set P ⊆ T . By Σ0
1 induction, take

k = max{i ≤ K : there is a prefix-free set P ⊆ T with |P | = i}. (1)

Let Pk ⊆ T witness (1). Let σ = maxPk, where the max is taken with respect to the usual integer

encoding of binary strings. Let ℓ = max{|τ | : τ ∈ Pk}. Any τ ∈ T with |τ | > ℓ must extend an

element of Pk, and can have at most one successor. By the pigeonhole principle (which is available

from Σ0
1 induction), there exists τ ∈ Pk with infinitely many extensions in T . Since each extension

of τ of length exceeding ℓ has exactly one successor, we can effectively find a path through T

extending τ .

We now establish the main theorem of this section.

Theorem 4.10. The following are equivalent over RCA0.

1. WKL0.

2. JordanQ: for every rationally presented function f of bounded variation, there is a rationally

presented non-decreasing function g : [0, 1]Q → R such that f ≤∗
slope g.

3. For every continuous function f of bounded variation, there is a rationally presented non-

decreasing function g : [0, 1]Q → R such that f ≤∗
slope g.

4. For every effectively uniformly continuous function f of bounded variation which has a ratio-

nal presentation, there is a rationally presented non-decreasing function g : [0, 1]Q → R such

that f ≤∗
slope g.
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Proof. 1 ⇒ 2 is Theorem 4.8, 2 ⇒ 3 is a direct consequence of Corollary 4.4(ii), and 3 ⇒ 4 is

trivial. We show 4 ⇒ 1. We reason within RCA0. Let T ⊆ 2<N be an infinite binary tree. Assume

for a contradiction that T has no path. Let T̃ = {τ ∈ 2<N : τ 6∈ T ∧ τ |(|τ |−1) ∈ T }. Without loss

of generality we may assume that T̃ is infinite. Consider the Σ0
1 definable set

Nonext(T ) := {τ ∈ T : τ has only finitely many extensions in T }.

Then, by [11, Lemma II.3.7], there exists a one-to-one function h : N → N such that rng(h) =

Nonext(T ). (Here, we identify a binary string with its usual integer encoding.)

Let (σ̃k)k∈N be an enumeration of T̃ such that |σ̃i| ≤ |σ̃i+1|. Note that for any k, ℓ ∈ N,

|σ̃k| ≤ ℓ → k ≤ 2ℓ. (2)

For all σ ∈ 2<N put Iσ = [0.σ, 0.σ + 2−|σ|]. For each s ∈ N define a polygonal function

fs : [0, 1] → R as follows. On the interval Iσ̃k
set

fs =




MIσ̃k

(2−k, 2k−h(k)) if s ≥ k > h(k),

0 otherwise.
(3)

Let fs = 0 elsewhere. Then (fs)s∈N defines an effectively uniformly continuous function f = lims fs.

By Corollary 4.4(ii), one may replace f with a vertical shift and then assume that f has a rational

presentation.

We show that f is of bounded variation. As in the proof of Theorem 3.1, we only need to

consider the variation of f on the disjoint intervals Iσ̃k
. Let m ∈ N, and for each k ≤ m let Πk be a

partition of Iσ̃k
containing the midpoints and endpoints of each sawtooth defined on that interval.

For all s ≥ m one has

m∑

k=0

V (f,Πk) =

m∑

k=0

V (fs,Πk) ≤
m∑

k=0

2−h(k)+1 < 1,

as required.

By our hypothesis in (5.), there exists a rationally presented non-decreasing function g :

[0, 1]Q → R such that f ≤∗
slope g. Let ∆ : N → R be the function given by ∆(k) = max{g(0.σ +

2−|σ|)− g(0.σ) : σ ∈ T ∧ |σ| = k}. Note that ∆ is non-increasing.

There are two cases to consider. If limn→∞ ∆(n) = 0, then g behaves like a continuous function.

This provides a decomposition of f that allows us to use an argument similar to the one in Theorem

3.1 to prove the existence of rng(h). One can then find a path through T by avoiding this set.

Otherwise, there is a jump-type discontinuity of g. The intervals around this point correspond

to strings which form an infinite subtree T̂ of T . One can bound the size of any prefix-free subset

of T̂ using the size of this jump, and thus effectively find a path through T̂ .

We now analyse the two cases in detail.

Case 1. limn→∞ ∆(n) = 0. Take γ : N → N such that ∆(γ(n)) < 2−n. Such γ exists by ∆0
1

comprehension since “∆(k) < 2−n” can be described by a Σ0
1 formula. If h(k) = n < k then by

(3),

g(0.σ̃k + 2−|σ̃k|)− g(0.σ̃k) ≥ V (MIσ̃k
(2−k, 2k−h(k)),Πk) = 2−h(k)+1 ≥ 2−n.

Hence |σ̃k| ≤ γ(n), and then by (2) k ≤ 2γ(n). This gives

n ∈ rng(h) ↔ ∃k ≤ max{2γ(n), n}[h(k) = n],
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so rng(h) = Nonext(T ) exists by ∆0
1 comprehension. Thus Ext(T ) = T \ Nonext(T ) exists. Now,

one can construct a path of T by an easy primitive recursion: starting from the empty string, one

can choose the left most immediate extension of a given string in Ext(T ).

Case 2. There exists M ∈ N such that ∀m∃n[n > m ∧∆(n) > 2−M ] Then there are infinitely

many strings σ ∈ T such that

g(0.σ + 2−|σ|)− g(0.σ) > 2−M .

Without loss of generality, we may take K ∈ N such that 0 ≤ g(0) < g(1) ≤ K. Let L =

{i/2M+2 : 0 ≤ i ≤ K2M+2}. Given a rational presentation Z of g, for x, y, z ∈ Q, we write

g(y) − g(x) ≥L z if there exist r, s ∈ N such that x = pr, y = ps, qr, qs ∈ L, Z(r) = 1 (which

implies that g(pr) < qr), Z(s) = 0 (which implies that g(ps) > qs) and qs − qr ≥ z. Since L is

finite, g(y)− g(x) ≥L z is actually ∆0
1 statement as we only need to check finitely many r and s.

Note that if g(y)− g(x) > 2−M , then g(y)− g(x) ≥L 2−M−2 since there are at least two points in

L ∩ (g(x), g(y)).

The tree T̂ ⊆ T defined by T̂ = {σ ∈ T : g(0.σ + 2−|σ|) − g(0.σ) ≥L 2−M−2}. is an infinite

subtree of T . (The case assumption guarantees that T̂ is infinite, and T̂ is closed under prefixes

because g is non-decreasing.) We verify the cardinality of any prefix-free subset of T̂ is bounded.

For any prefix-free P ⊆ T̂ , we have

|P |2−M−2 ≤
∑

σ∈P

g(0.σ + 2−|σ|)− g(0.σ) ≤ g(1)− g(0) ≤ K.

Thus, |P | ≤ K2M+2. Hence by Lemma 4.9, T̂ has a path, and thus T has a path.

We thank Paul Shafer for providing helpful comments on a previous version of this proof.

5 Martin-Löf randomness within RCA0

To study Martin-Löf random reals within RCA0, we need to define a notion of uniform measure

for open sets. A set of binary strings S ⊆ 2<N is a code of an open set U ⊆ 2N if Z ∈ U ↔ ∃σ ∈

S [Z ≻ σ]. We write [[S]] for the open set coded by S. (Note that a Σ0
1-definable set may be used

to code an open set, but one can easily find an (existing) set which codes the same open set by

∆0
1-comprehension.) Given such a code S ⊆ 2<N, let TS := {σ ∈ 2<N : ∀n < |σ|(σ↾n /∈ S)}. Note

that TS forms a tree, which we view as a code of the complement of U . We first define the measure

for a code S of an open set, and also of its complementary code T = TS :

µ(S) := 1− µ(T ) = 1− lim
n→∞

|{σ ∈ T : |σ = n}|

2n
.

Note that if S is prefix free, then µ(S) =
∑

σ∈S 2−|σ|. The existence of the limit is not guaranteed

within RCA0, but one can still make assertions such as µ(S) ≤ a or µ(TS) ≥ a, which can be

expressed by Π0
1-formulas.

Z ∈ 2N is said to be Martin-Löf random relative to X if for any X-computable sequence of

codes for open sets 〈Sn : n ∈ N〉 such that µ(Sn) ≤ 2−n, there exists n ∈ N such that Z /∈ [[Sn]].

The assertion “for any X there exists a Martin-Löf random real relative to X” is equivalent to

WWKL by Simpson and Yu [15]. We always identify a real z ∈ [0, 1] that is not a dyadic rational

with its unique binary expansion viewed as an element of 2N.
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Besides the fact that the measure of an open set may not exist as a real in the model, there is

another problem when developing measure theory within RCA0. There might exist two codes for

open sets S1 and S2 such that ∀x ∈ 2N(x ∈ [[S1]] ↔ x ∈ [[S2]]) but µ(S1) 6= µ(S2). Thus the value

of µ depends on codes. We define the measure for an open set U ⊆ 2N as

µ̄(U) := sup{µ(S) | U = [[S]]}.

This definition agrees with the internal measure of open sets defined in [15, p. 174]. Within

WWKL0, [[S1]] = [[S2]] implies µ(S1) = µ(S2), thus µ and µ̄ coincide. Fortunately, the definition

of Martin-Löf randomness will not be affected even if the two don’t coincide. We take any of the

two equivalent conditions below as a definition in the context of RCA0 that Z is not Martin-Löf

random relative to X .

Proposition 5.1 (RCA0). The following are equivalent for Z,X ∈ 2N.

1. There exists an X-computable sequence 〈Si | i ∈ N〉 of codes of open sets such that µ(Si) ≤ 2−i

and Z ∈
⋂

i∈N[[Si]].

2. There exists an X-computable sequence 〈Si | i ∈ N〉 of codes of open sets such that µ̄([[Si]]) ≤

2−i and Z ∈
⋂

i∈N[[Si]].

Proof. 2 ⇒ 1 is trivial. To show 1 ⇒ 2, let 〈Si | i ∈ N〉 be an X-computable sequence of codes for

open sets such that µ(Si) ≤ 2−i and Z ∈
⋂

i∈N[[Si]]. If Z is of the form σ⌢0N, put S′
i := {σ⌢0i}.

We have µ̄([[S′
i]]) ≤ 2−i and Z ∈

⋂
i∈N[[S

′
i]]. Otherwise, put

S′
i := {σ⌢0k⌢1 : σ ∈ Si, k ∈ N}.

Then TS′
i
= {τ ∈ 2<N | τ = σ⌢0k for some σ ∈ Ti and k ∈ N}. Since TS′

i
⊇ TSi

we have

µ(TS′
i
) ≤ µ(TSi

). We still have Z ∈
⋂

i∈N[[S
′
i]] by the case assumption on Z. On the other hand,

for any Ŝ ⊆ 2<N, if ∀x ∈ 2N(x ∈ [[Ŝ]] → x ∈ [[S′
i]]) then T

Ŝ
⊇ TS′

i
because σ ∈ TS′

i
→ σ⌢0N ∈ [T

Ŝ
].

Thus, µ̄([[S′
i]]) ≤ µ(S′

i) ≤ 2−i.

6 Differentiability of functions of bounded variation in WWKL0

Lebesgue’s theorem states that functions on [0, 1] of bounded variation are a.e. differentiable. The

main result of this section, Theorem 6.8, shows that several versions of this result are equivalent

to WWKL0 over RCA0. For a function f and distinct reals a, b in the domain of f , we denote the

slope by

Sf (a, b) =
f(b)− f(a)

b− a
.

Definition 6.1 (Section 2.3 of [1], going back to Demuth, within RCA0). Let f :⊆ [0, 1] → R be a

function with domain containing [0, 1]Q (f may be a continuous function or a rationally presented

function). For a given h > 0, the h-derivative of f at x ∈ [0, 1] is the set of reals defined by

Dhf(x) = {Sf(a, b) : a, b ∈ [0, 1]Q ∧ a ≤ x ≤ b ∧ 0 < b− a < h}.

The function f is pseudo-differentiable at z ∈ (0, 1) if limh→0+ diam(Dhf(z)) = 0, or more formally,

for any ε > 0, there exist c, d ∈ Q and h > 0 such that d− c < ε and Dhf(z) ⊆ [c, d].
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The upper and lower pseudo-derivatives of f are defined by D̃f(x) = limh→0+ supDhf(x) and

˜
Df(x) = limh→0+ inf Dhf(x). Then, the assertion limh→0+ diam(Dhf(z)) = 0 formally means

that
˜
Df(z) = D̃f(z) without referring to the limits themselves. The point is that we don’t have

to require that f(z) be defined; for instance we could be interested in a function f only defined on

rationals. In this way we can include in our equivalences with WWKL0 in Theorem 6.8 a statement

about functions with rational presentations. It follows from [1, Lemma 2.5] that if f is defined

and continuous at z, then the pseudo-derivative at z exists iff the usual derivative exists, and they

agree.

Note that the real r = D̃f(x) =
˜
Df(x) may fail to exist in a model of RCA0 even if

˜
Df(z) and

D̃f(z) are equal. We will avoid mentioning the values D̃f(x) or
˜
Df(x) and just consider inequality,

as we already did in the case for bounded variation.

6.1 Pseudo-differentiability of non-decreasing functions within RCA0

Lemma 6.2 (a version of part of [1, Theorem 4.3] that works within RCA0). Let f : [0, 1]Q → R

be a rationally presented non-decreasing function, and let z ∈ [0, 1] be Martin-Löf random relative

to f . Then f is pseudo-differentiable at z.

Proof. Without loss of generality, we may suppose that 0 ≤ f(0) ≤ f(1) ≤ 1. Assume that f is

not pseudo-differentiable at z. If z is rational, then z is not Martin-Löf random, so assume that z

is irrational. We will consider the following two cases.

Case 1.
˜
Df(z) = ∞. Thus, for any m ∈ N, there exists a0 < z < b0 such that for any a, b ∈ Q,

a0 < a < z < b < b0 → Sf (a, b) > 2m. For a given σ ∈ 2<N, we let lσ = 0.σ and rσ = 0.σ + 2−|σ|.

Let ϕ(m,σ) be a Π0
1-formula saying that Sf (lσ, rσ) ≤ 2m. Write ϕ(m,σ) ≡ ∀sθ(s,m, σ) for a

Σ0
0-formula θ, and put

Tm := {σ ∈ 2<N : ∀τ � σ∀s < |σ|θ(s,m, τ)}.

Since f(1) − f(0) ≤ 1, for each m ∈ N and k ∈ N, there are at most 2k strings of length m + k

which are not in Tm. Thus, µ(Tm) ≥ 1 − 2m, and hence 〈2N \ [Tm] : m ∈ N〉 forms a Martin-Löf

test. By the assumption, z /∈ [Tm] for any m ∈ N. Thus z is not Martin-Löf random relative to f .

Case 2.
˜
Df(z) < ∞ and

˜
Df(z) < D̃f(z). We will follow the proof of (iii) → (ii) of [1, Theorem

4.3] halfway within RCA0.

Since f is non-decreasing and
˜
Df(z) < ∞, the limit limy→z f(y) exists by nested interval

completeness [11, Theorem II.4.8] which holds in RCA0. So we may assume that f(z) exists and

f is continuous at z; this will be needed in the following argument when we apply a version of [1,

Lemma 2.5] formalised within RCA0.

For given p, q ∈ Q, an interval A is said to be a (p, q)-interval if it is of the form A = (pi2−n +

q, p(i + 1)2−n + q) for some n ∈ N and i ∈ Z. For a finite set L ⊆ Q2, an interval is said to be

L-interval if it is a (p, q)-interval for some (p, q) ∈ L. One can formalise within RCA0 the proofs

of Lemma 2.5, Lemma 4.1 and most of the proof of Lemma 4.4 of [1]. To see this, note that these

arguments only rely on elementary arithmetic, which can be formalised within RCA0. Hence we

have the following.

Claim 6.2.1. There exist rationals β > γ > 0 and a finite set L ⊆ Q2 such that

γ > lim
h→0

inf{Sf (A) : A is an L-interval ∧ |A| ≤ h ∧ z ∈ A},

β < lim
h→0

sup{Sf (A) : A is an L-interval ∧ |A| ≤ h ∧ z ∈ A}.
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In the final step of the proof of [1, Lemma 4.4] for both inequalities there, one picks (p, q) and

(r, s) from L which by themselves witness the two inequalities above, respectively; that is, we only

need to look at (p, q) intervals for the first, and at (r, s)-intervals for the second. However, this is

impossible within RCA0 since it requires an essential use of the infinite pigeonhole principle (also

known as RT1) which is equivalent to BΣ0
2. Thus, we need to take a detour around this part of

the proof.

We fix β, γ and L ⊆ Q2 as in Claim 6.2.1. An n-depth alternation L-sequence is a length 2n+1

decreasing sequence of L-intervals [0, 1] ⊇ A0 ⊇ A1 ⊇ · · · ⊇ A2n such that Sf (A2i) < γ for any

i ≤ n, Sf(A2i+1) > β for any i < n. For (p, q), (r, s) ∈ L, an n-depth alternation (p, q);(r, s)-

sequence is an n-depth alternation L-sequence such that A2i is a (p, q)-interval for any i ≤ n and

A2i+1 is an (r, s)-interval for any i < n. The last interval of an n-depth alternation (p, q);(r, s)-

sequence is called an n-depth (p, q);(r, s)-interval. By Claim 6.2.1, for any n ∈ N, there exists an

n-depth alternation L-sequence such that z ∈ A2n. Furthermore, by the finite pigeon hole principle,

every n|L|2-depth alternation L-sequence contains an n-depth alternation (p, q);(r, s)-subsequence

for some (p, q), (r, s) ∈ L. Thus, we have the following claim.

Claim 6.2.2. For any n ∈ N there exist (p, q), (r, s) ∈ L and an n-depth (p, q);(r, s)-interval A

such that z ∈ A.

Note that we cannot fix (p, q), (r, s) ∈ L for all n ∈ N in this claim since it would require BΣ0
2

again.

Next, we will calculate the size of n-depth (p, q);(r, s)-intervals. Fix (p, q), (r, s) ∈ L and

let {As}s<u be a finite collection of n-depth (p, q);(r, s)-intervals. Take an n-depth alternation

(p, q);(r, s)-sequence As
0 ⊇ · · · ⊇ As

2n = As for each s < u, and let Āi =
⋃

s<u A
s
i . For a fi-

nite union of intervals Ā which is described by a finite disjoint union as Ā =
⊔

j<l[aj , bj], put

|Ā| :=
∑

j<l(bj − aj) and ∆f (Ā) :=
∑

j<l(f(bj)− f(aj)). Since any two (p, q)-intervals (or (r, s)-

intervals) are disjoint, or one includes the other, we have that ∆f (Ā2i)/|Ā2i| < γ for any i ≤ n

and ∆f (Ā2i+1)/|Ā2i+1| > β for any i < n. Thus, for any i < n,

|Ā2i+2| ≤ |Ā2i+1| <
∆f (Ā2i+1)

β
≤

∆f (Ā2i)

β
<

γ

β
|Ā2i|.

Hence,

µ̄

(
⋃

s<u

As

)
= |Ā2n| <

(
γ

β

)n

|Ā0| ≤

(
γ

β

)n

. (4)

Now, put

U (p,q);(r,s)
n :=

⋃
{A : A is an n-depth (p, q);(r, s)-interval},

Un :=
⋃

(p,q),(r,s)∈L

U (p,q);(r,s)
n .

Note that one can enumerate all n-depth (p, q);(r, s)-intervals f -computably. By (4), µ̄(U
(p,q);(r,s)
n ) ≤

(γ/β)n. Thus, µ̄(Un) ≤ (γ/β)n|L|2. By Claim 6.2.2, z ∈
⋂

n∈N Un. Thus z is not Martin-Löf ran-

dom relative to f .

Remark 6.3. By a careful formalization of the notion of test for computable randomness within

RCA0, one can reformulate the above proof to obtain the following assertion within RCA0: for any

rationally presented non-decreasing function f : [0, 1]Q → R, there exists a computable test relative
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to f such that f is pseudo-differentiable at z ∈ [0, 1] if z passes the test. On the other hand, one can

easily see within RCA0 that for any computable test relative to X , there exists a real computable

from X which can pass it. Thus, within RCA0, every rationally presented non-decreasing function

is pseudo-differentiable at some point. However, as we will see in Theorem 6.8, this does not imply

that every rational presented non-decreasing function is pseudo-differentiable almost surely (as

defined below).

6.2 A.e. pseudo-differentiability of functions of bounded variation

We introduce a notion of a.e. differentiability in a form that is appropriate within RCA0. In that

setting, any open set U ⊆ [0, 1] can be identified with an open set in 2N via the canonical surjection

π : 2N → [0, 1] defined by π(Z) =
∑

n∈Z 2−n. We define the measure for open sets in [0, 1] by

µ̄(U) = µ̄(π−1(U)). This µ̄ coincides with the Lebesgue measure on [0, 1] as in [15, p. 174].

Definition 6.4. A function f :⊆ [0, 1] → R with domain containing [0, 1]Q is pseudo-differentiable

almost surely if µ̄(U) = 1 for any open set U ⊆ [0, 1] containing every point of pseudo-differentiability

of f .

For the main results of this section we need two preliminaries. The first one is a model-theoretic

generalization of the fact that any Martin-Löf random real is Martin-Löf random relative to some

PA-degree by Downey, Hirschfeldt, Miller and Nies [4, Proposition 7.4] and Reimann and Slaman

[10, Lemma 4.5].

Lemma 6.5 (Simpson/Yokoyama [13]). For any countable model (M,S) |= WWKL0 there is

Ŝ ⊇ S satisfying

1. (M, Ŝ) |= WKL0, and

2. for any A ∈ Ŝ there is Z ∈ S such that Z is Martin-Löf random relative to A.

The following is related to a well known result of Kučera; also see [8, Proposition 3.2.24]. We

say that W is a tail of a set Z ⊆ N if there is n such that W (i) = Z(n+ i) for each i.

Lemma 6.6 (RCA0). Let U ⊆ [0, 1] be an open set such that µ̄(U) < 1, and let S ⊆ 2<N be a code

for an open set such that [[S]] = π−1(U). Let Z ∈ 2N be Martin-Löf random relative to S. There

exists a tail W of Z such that 0.W = π(Z) ∈ [0, 1] \ U .

Proof. Choose q ∈ Q such that µ(S) ≤ µ̄(U) ≤ q < 1. Then, µ(TS) ≥ 1 − q. Let T̃ = {τ ∈ 2<N :

τ 6∈ TS ∧ τ |(|τ |−1) ∈ TS}. Put

T n := {σ⌢
0 . . .⌢ σk : k < n ∧ [∀i < k σi ∈ T̃ ] ∧ σk ∈ TS}.

Then, we have µ(T n) ≥ 1 − qn. Thus, for large enough l ∈ N, 〈2N \ [T ln] : n ∈ N〉 forms a

Martin-Löf test relative to S, and hence Z ∈ [T ln] for some n ∈ N. By Σ0
1-induction, take

m = max{m′ : ∃c ≤ ln ∃〈σi ∈ T̃ : i < c〉(Z|m′ = σ⌢
0 . . .⌢ σc−1)}.

Then, the tail W of Z defined by W (i) = Z(i+m) is in [TS ], whence 0.W ∈ [0, 1] \ U .

Theorem 6.7 (WWKL0). Every rationally presented function of bounded variation is pseudo-

differentiable at some point, and is actually pseudo-differentiable almost surely.
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Proof. We show that the result holds in any countable model (M,S) ofWWKL0. Let f : [0, 1]Q → R

be a rationally presented function of bounded variation in (M,S), and let U ⊆ [0, 1] be an open

set such that µ̄(U) < 1. We will show that there exists a real z ∈ [0, 1] \ U such that f is

pseudo-differentiable at z. Let (M, Ŝ) |= WKL0 be the model given by Lemma 6.5. By Theorem

4.10,

(M, Ŝ) |= JordanQ.

Hence Ŝ contains a non-decreasing function g : [0, 1]Q → R such that f ≤∗
slope g.

Within (M, Ŝ), define h : [0, 1]Q → R by h(x) = g(x) − f(x). By Lemma 6.5 again, there

is a real z ∈ [0, 1] such that z ∈ S and z ∈ MLR
g⊕h⊕U . By Lemma 6.6, we may assume that

z ∈ [0, 1] \ U . The functions g and h are pseudo-differentiable at z in (M, Ŝ) by Lemma 6.2.

Therefore f is pseudo-differentiable at z in (M, Ŝ), and hence in (M,S).

A continuous function f : [0, 1] → R is said to be absolutely continuous if for any ε > 0 there

exists δ > 0 such that for any 0 ≤ a0 ≤ · · · ≤ an ≤ 1 with an − a0 < δ,
∑

i<n |f(ai+1)− f(ai)| < ε.

Note that every absolutely continuous function is of bounded variation within RCA0.

Theorem 6.8. The following are equivalent over RCA0.

1. WWKL0

2. Every rationally presented function of bounded variation is pseudo-differentiable almost surely.

3. Every rationally presented non-decreasing function is pseudo-differentiable almost surely.

4. Every continuous function of bounded variation is pseudo-differentiable almost surely.

5. Every effectively uniformly continuous and absolutely continuous function which has a ratio-

nal presentation is pseudo-differentiable at some point.

Proof. 1 ⇒ 2 is Theorem 6.7, 2 ⇒ 3 is trivial, 2 ⇒ 4 is straightforward from Corollary 4.4. For 4

⇒ 5, within RCA0, we have µ̄(∅) = 0, since if [[S]] = ∅, then S is empty, so µ(S) = 0. Thus, if an

open set U ⊆ [0, 1] has positive measure, then U is not empty. It remains to show ¬1 ⇒ ¬3 and

¬1 ⇒ ¬5.

We show ¬1 ⇒ ¬3. Assuming ¬1 we first construct an open set U ⊆ [0, 1] such that µ̄(U) < 1

and [0, 1]\U only contains rationals. The idea is similar to the one in the proof of Proposition 5.1:

If WWKL fails, there is a tree T with no paths such that µ(T ) ≥ ε where ε > 0. Put

T ′ = {τ ∈ 2<N | τ = σ⌢0k for some σ ∈ T and k < |τ |},

T̃ = {τ ∈ 2<N | τ /∈ T ′ and τ ||τ |−1 ∈ T ′}, and

U =
⋃

τ∈T̃
(0.τ, 0.τ + 2−|τ |) ⊆ [0, 1].

As in the proof of Proposition 5.1, we have µ̄(2N \ [T ′]) ≤ 1 − µ(T ) < 1, and any path of T ′ is

rational. Thus µ̄(U) ≤ µ̄(2N \ [T ′]) < 1 and [0, 1] \ U only contains rationals.

Next we construct a rationally presented non-decreasing function which is not pseudo-differentiable

at any rational. Let {qi}i∈N be an enumeration of [0, 1]Q. Define a function f : [0, 1]Q → R by

f(p) =
∑

qi<p 2
−i. Clearly, f is non-decreasing and not pseudo-differentiable at any rational. By

Proposition 4.3, some vertical shift of f has a rational presentation. Thus we have ¬3.

Finally, we show ¬1 ⇒ ¬5. This implication is related to [1, Theorem 6.7] (originally due to

Demuth) in the setting of reverse mathematics. If WWKL fails, there is a tree T with no path such

that µ(T ) ≥ ε where ε > 0. We construct a sequence of trees 〈Tn : n ∈ N〉 such that no Tn has a

path and µ(Tn) ≥ 1− 2−4n. Let the T i be defined as in the proof of Lemma 6.6 where q = 1− ε.
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No T i has a path, and µ(T i) ≥ 1− (1− ε)i. Thus, one can effectively choose i0 < i1 < . . . so that

µ(T in) ≥ 1− 2−4n. Now let Tn = T in .

Let T̃n = {τ ∈ 2<N : τ 6∈ Tn ∧ τ ||τ |−1 ∈ Tn}. As before put Iσ := [0.σ, 0.σ+2−|σ|]. Since Tn has

no path we have [0, 1] =
⋃

σ∈T̃n
Iσ for any n. Since µ(Tn) ≥ 1− 2−4n we have

∑
σ∈T̃n

|Iσ| ≤ 2−4n.

Note that if σ ∈ T̃n and m < n, there exists τ ∈ T̃m such that τ � σ. Note also that |σ| ≥ n for

any σ ∈ T̃n.

For v ∈ R+ and r ∈ N, recall MA(v, r) denotes a sawtooth function on the interval A with r

many teeth of height v. For each n, s ∈ N define a polygonal function fn,s : [0, 1] → R as follows.

For σ ∈ T̃n, on the interval Iσ , set

fn,s =




MIσ (2

−2n−|σ|, 25n) if |σ| ≤ s,

0 otherwise.

Then (fn,s)s∈N defines an effectively uniformly continuous function fn. For these functions fn one

can check the following properties.

(i) If σ ∈ T̃n, x ∈ Iσ and m ≥ n, then 0 ≤ fm(x) ≤ 2−2m−|σ|. In particular, |fn| ≤ 2−2n.

(ii) For any 0 ≤ x < y ≤ 1 and for any n ∈ N, |fn(x)− fn(y)|/|x− y| ≤ 23n+1.

(iii) vfn ≤ 2−n+1.

(i) and (ii) follow from the definition. To see (iii),

vfn =
∑

σ∈T̃n

vMIσ (2−2n−|σ|,25n) =
∑

σ∈T̃n

23n−|σ|+1 ≤ 23n+12−4n = 2−n+1.

Define an effectively uniformly continuous function f by f =
∑

n∈N fn. Then, f is of bounded

variation since vf =
∑

n∈N vfn ≤ 2. Actually, f is absolutely continuous. One can see this as

follows. For any x ∈ [0, 1] and ε > 0, take large enough n ∈ N so that
∑

j>n vfj < ε/2. Since each

fi, i ≤ n, is absolutely continuous by (ii), one can find δ > 0 so that
∑

i≤n(fi(x) − fi(y)) < ε/2

for any y such that |x− y| < δ.

By Corollary 4.4(ii), after replacing f with a vertical shift we may assume that f has a rational

presentation.

We will see that this f is not pseudo-differentiable at any point. Let x ∈ [0, 1], δ > 0 and

K ∈ N. We will find a ≤ x ≤ b so that b − a < δ and |Sf (a, b)| > K. Take n ∈ N large enough

so that 23n−1 > K and |Iσ | < δ for any σ ∈ T̃n. Since Tn has no path, there exists σ ∈ T̃n such

that x ∈ Iσ. Let a ≤ x ≤ b so that a, b are nearest to x yielding extreme values of the saw-tooth

function MIσ (2
−2n−|σ|, 25n). Then, |fn(b) − fn(a)| = 2−2n−|σ| and b − a = 2−5n−1−|σ|. By (i),

|fj(b) − fj(a)| ≤ 2−2j−|σ| for any j > n, and by (ii), |fi(b)− fi(a)|/|b − a| ≤ 23i+1 for any i < n.

Thus,

|f(b)− f(a)|

|b− a|
≥

|fn(b)− fn(a)|

|b− a|
−
∑

j>n

|fj(b)− fj(a)|

|b− a|
−
∑

i<n

|fi(b)− fi(a)|

|b− a|

≥
2−2n − |σ|

2−5n−1−|σ|
−
∑

j>n

2−2j−|σ|

2−5n−1−|σ|
−
∑

i<n

23i+1

≥ 23n+1 − 23n − 23n−1 = 23n−1.

Hence, |Sf (a, b)| > K.
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Remark 6.9. The equivalence of conditions 1 and 3 in the foregoing theorem seems rather strange

compared to [1, Theorem 4.3] and our discussion in Remark 6.3 since there is no appearance of

Martin-Löf random reals. Note that the existence of computable random reals doesn’t imply

WWKL over RCA0. This tricky situation may be understood that it is caused by a bad behavior

of the Lebesgue measure within RCA0. For example, one cannot say that every open set U ⊆ [0, 1]

is of measure 1 if [0, 1] \ U is countable. In fact, this is equivalent to WWKL by the argument in

the previous proof.
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