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COUNTABLY PERFECTLY MEAGER SETS

R. POL AND P. ZAKRZEWSKI

Abstract. We study a strengthening of the notion of a perfectly
meager set.

We say that that a subset A of a perfect Polish space X is
countably perfectly meager in X , if for every sequence of perfect
subsets {Pn : n ∈ N} of X , there exists an Fσ-set F in X such that
A ⊆ F and F ∩ Pn is meager in Pn for each n.

We give various characterizations and examples of countably
perfectly meager sets. We prove that not every universally meager
set is countably perfectly meager correcting an earlier result of
Bartoszyński.

1. Introduction

Let us recall that a subset A of a perfect Polish space X is universally
meager (A ∈ UM, see [24], [25], [2], [3]), if for every Borel isomorphism
f between X and any perfect Polish space Y the image of A under f
is meager in Y (this class of sets was earlier introduced and studied by
Grzegorek [8], [9], [10] under the name of absolutely of the first category
sets).

Let us also recall that A is perfectly meager (A ∈ PM), if for all
perfect subsets P of X , the set A∩P is meager in P . Clearly, A ∈ PM
if and only if for every perfect subset P of X , there exists an Fσ-set F
in X such that A ⊆ F and F ∩ P is meager in P (cf. [3, Theorem 6]).

We shall say that A is countably perfectly meager (A ∈ PMσ), if for
every sequence of perfect subsets {Pn : n ∈ N} of X , there exists an
Fσ-set F in X such that A ⊆ F and F ∩Pn is meager in Pn for each n.

It follows directly from the definition that the class PMσ is, exactly
as the other two classes, a σ-ideal of subsets of the underlying space
X (shortly: a σ-ideal on X), i.e., it is hereditary, closed under taking
countable unions and contains all singletons.

One readily checks that UM ⊆ PM and it is consistent that UM (
PM but also that UM = PM (see [2]).

Bartoszyński [3, Theorem 7, (3) ⇒ (2) ⇒ (1)] proved that PMσ ⊆
UM. Actually, it is in that paper where the property used by us
to define the class PMσ first appeared (without any specific name)
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and where it was claimed that this property characterizes universally
meager sets in the Cantor space 2N. Unfortunately, there is a flaw in
the part of the argument showing the inclusion UM ⊆ PMσ (cf. [3,
Theorem 7, (1) ⇒ (3)]).

In fact, the following theorem immediately implies that it is con-
sistent (in particular, true under CH) that there exists a universally
meager subset of 2N which is not countably perfectly meager in 2N.

Theorem 1.1. Let T be a subset of 2N of cardinality 2ℵ0. There exist
a set H ⊆ T × 2N intersecting each vertical section {t} × 2N, t ∈ T ,
in a singleton and a homeomorphic copy E of H in 2N which is not a
PMσ-set in 2N. In particular, T is a continuous injective image of E.

Under the notation from Theorem 1.1 it follows that if T is univer-
sally meager then H is universally meager as well (UM being closed
with respect to preimages under continuous injections (see [24]) and so
is its homeomorphic copy E. A refinement of this argument also shows
that, at least consistently, in contrast to both PM and UM the class
PMσ is not closed with respect to homeomorphic images (see Theo-
rem 3.1(3)). Consequently, unlike in the case of PM and UM, the
statement that a subspace A of a Polish space is countably perfectly
meager makes sense only if we specify a Polish space X in which it is
embedded. We shall therefore speak of countably perfectly meager sets

in X unless X is clear from the context.

In Section 2 we present various characterizations and some exam-
ples of countably perfectly meager sets in 2N. These include (for the
definitions see Section 2.2):

• sets perfectly meager in the transitive sense, in particular:
– γ-sets,
– strongly meager sets.

• sets with the Hurewicz property and no perfect subsets,
• λ′-sets.

Section 3 is largely devoted to a proof of Theorem 1.1. We derive
from it various examples of subsets of 2N which are universally meager
but not countably perfectly meager in 2N.

In particular, if there is a λ-set in 2N of cardinality of the continuum,
then there is also one which is not countably perfectly meager in 2N

(see Theorem 3.1(2)).
Moreover, if there exists a λ′-set in 2N of cardinality of the continuum,

then there is also one whose homeomorphic copy is not countably per-
fectly meager in 2N (see Theorem 3.1(3)). This strengthens the result
of Sierpiński [21] that λ′-property is not invariant under homeomor-
phisms.

We end Section 3 with a proof based on one of the characterizations of
Section 2 that the class PMσ is closed under products in the sense that
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if A and B are PMσ-sets in perfect Polish spaces X and Y , respectively,
then A× B is a PMσ-set in X × Y (see Theorem 3.2).

In Section 4 we gather some additional comments.
In Subsection 4.1 we present an example of a countably perfectly

meager set in 2N which has neither the Hurewicz property nor λ′-
property (see Example 4.1). We also give an example of a countably
perfectly meager set in 2N which is not perfectly meager in the transi-
tive sense (see Example 4.4).

Subsection 4.2 contains remarks on some σ-ideals related to the
classes PM and PMσ.

2. Characterizations and examples of countably

perfectly meager sets

2.1. Characterizations of countably perfectly meager sets.

In this subsection A is always a subset of a perfect (i.e., with no
isolated points) Polish (i.e., a separable completely metrizable) topo-
logical space X and PMσ is the family of all subsets of X which are
countably perfectly meager in X .

Let us recall that A is an s0-set if for every perfect (i.e., non-empty,
closed and with no isolated points) set P there is a copy of the Cantor
set K ⊆ P with K ∩ A = ∅. Clearly, every perfectly meager set has
property s0.

Theorem 2.1. The following are equivalent:

(1) A ∈ PMσ.
(2) For every sequence {Kn : n ∈ N} of copies of the Cantor set in

X there is an Fσ-set F in X such that A ⊆ F and Km 6⊆ F for
each m ∈ N.

(3) For every sequence {Kn : n ∈ N} of copies of the Cantor set
in X there are closed sets Fn in X such that A ⊆

⋃

n Fn and
Km 6⊆ Fn for each m,n ∈ N.

(4) For every sequence {Kn : n ∈ N} of pairwise disjoint copies
of the Cantor set in X there are closed sets Fn in X such that
A ⊆

⋃

n Fn and Km 6⊆ Fn for each m,n ∈ N.
(5) A is an s0-set and for every sequence {Kn : n ∈ N} of pairwise

disjoint and disjoint from A copies of the Cantor set in X there
are closed sets Fn in X such that A ⊆

⋃

n Fn and Km 6⊆ Fn for
each m,n ∈ N.

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are obvious.

To prove that (4) ⇒ (5), it only suffices to show that if (4) holds,
then A is an s0-set. To see this, let us fix a perfect set P and let
K0, K1, . . . be pairwise disjoint copies of the Cantor set in P such that
each non-empty relatively open set in P contains some Kn. Now, by
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(4), A ⊆
⋃

n Fn for some closed sets Fn in X such that no Fn covers
any Km. It follows that Fn∩P is nowhere dense in P for each n and so
there exists a perfect set K ⊆ P disjoint from

⋃

n Fn. Then K ∩A = ∅
as well.

To prove that (5) ⇒ (1), we shall need the following simple observa-
tion.

Claim 2.2. For every sequence of perfect sets {Pn : n ∈ N} in X,
there is a sequence of pairwise disjoint Cantor sets {Kn : n ∈ N} with
Kn ⊆ Pn for each n.

Indeed, first pick points xi ∈ Pi with xi 6= xj for i 6= j, and then
choose successively the Cantor sets Kn in Pn disjoint from Ki, for i < n,
and {xj : j > n}.

Now let us assume (5) and let {Pn : n ∈ N} be a sequence of perfect
subsets of X .

For each n let {Un
m : m ∈ N} be a basis of non-empty relatively open

subsets of Pn and for each m let us pick a Cantor set Kn
m ⊆ Un

m. By
the claim and the fact that A is an s0-set we may assume that the sets
Kn

m, n,m ∈ N, are pairwise disjoint and disjoint from A.
By (5), there are closed sets Fi in X such that A ⊆

⋃

i Fi and Kn
m 6⊆

Fi for each m,n, i ∈ N. Letting F =
⋃

i Fi we easily conclude that
F ∩ Pn is meager in Pn for each n.

�

As a corollary let us formulate a characterization of countably per-
fectly meager sets stated and partially proved by Bartoszyński in [2].

Theorem 2.3. The following are equivalent:

(1) A ∈ PMσ.
(2) For every sequence of countable dense-in-itself sets {An : n ∈ N }

there are sets Bn ⊆ An such that An = Bn for each n ∈ N and
⋃

nBn is a Gδ-set relative to A ∪
⋃

n An.

Proof. (1) ⇒ (2) was proved by Bartoszyński [2, Theorem 7, (3) ⇒ (2)].

(2) ⇒ (1). To prove that A ∈ PMσ, we shall check that A satisfies
condition (5) of Theorem 2.1.

First note that A ∈ PM (for a proof see [2, Theorem 6, (2) ⇒ (1)];
in fact, Bartoszyński [2, Theorem 7, (2) ⇒ (1)] proved that A ∈ UM)
which implies that A is an s0-set.

Let {Kn : n ∈ N} be a sequence of (pairwise disjoint but this as-
sumption is superfluous) copies of the Cantor set disjoint from A. We
shall show that there is an Fσ-set F such that A ⊆ F and Kn\F 6= ∅ for
each n. To this end, for each n let us choose a countable dense subset
An of Kn. By (2), there are sets Bn ⊆ An such that Bn = Kn for each
n ∈ N and a Gδ-subset G of X such that (A ∪

⋃

nAn) ∩ G =
⋃

n Bn.
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Let F = X \G. Then A ⊆ F and for each n we have Bn ⊆ Kn \ F , so
F is as required.

�

Remark 2.4. The characterization of PMσ-sets from Theorem 2.3
should be compared with the following characterization of PM-sets by
Bennett, Hosobuchi, and Lutzer [1]. (for a short proof see [2, Theorem
6]):

The following are equivalent:

(1) A ∈ PM.
(2) For every countable dense-in-itself set A0 there exists a set B0 ⊆

A such that A0 = B0 and B0 is a Gδ-set relative to A ∪ A0.

Our last characterization of PMσ-sets is closely related to a charac-
terization of UM sets (cf. Remark 2.7).

Theorem 2.5. The following are equivalent:

(1) A ∈ PMσ.
(2) For every continuous bijection f : NN −→X there are closed sets

Fn in X such that A ⊆
⋃

n Fn and f−1(Fn) is nowhere dense in
NN for each n ∈ N.

Proof. (1) ⇒ (2). Since open sets in NN are mapped by f onto Borel
sets, one can choose a sequence {Bn : n ∈ N} of Borel subsets of X
such that {f−1(Bn) : n ∈ N} is a basis of the topology of NN. For each
n let us pick a Cantor set Kn ⊆ Bn. Since A ∈ PMσ, there are closed
sets Fn in X such that A ⊆

⋃

n Fn and Km 6⊆ Fn for each m,n ∈ N. It
readily follows that f−1(Fn) is nowhere dense in NN for each n ∈ N.

(2) ⇒ (1). To prove that A ∈ PMσ, we shall check condition (4) of
Theorem 2.1.

Let {Kn : n ∈ N} be a sequence of pairwise disjoint Cantor sets in
X .

A key observation is the following fact.

Claim 2.6. There is a continuous bijection f : NN −→X such that
f−1(Kn) is open in NN for each n ∈ N.

To prove the claim, let τ be the (perfect Polish) topology of X and let
us first extend τ to the topology τ ′ whose basic open sets are elements
of τ and relatively open subsets of Kn’s. More precisely, let τn be
the topology generated by τ ∪ {Kn} and then let τ ′ be the topology
generated by

⋃

n τn. This topology is Polish (cf. [12, 13.A]) and it is
easy to check that it is also perfect. It follows (cf. [12, 7.15]) that there
is a bijection f : NN −→X which is continuous in the sense of τ ′ hence
also in the sense of τ .

Having proved the claim we may now apply the assumption about
A to find closed sets Fn in X such that A ⊆

⋃

n Fn and f−1(Fn) is
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nowhere dense in NN for each n ∈ N. But f−1(Km) being open in NN

we conclude that Km 6⊆ Fn for each m,n ∈ N. This shows that A
satisfies condition (4) of Theorem 2.1 completing the proof.

�

Remark 2.7. The characterization of PMσ-sets from Theorem 2.5
should be compared with the following characterization of UM-sets (cf.
[25, Theorem 2.4]):

The following are equivalent:

(1) A ∈ UM.
(2) For every continuous bijection f : NN−→X there are sets Fn

in X such that A ⊆
⋃

n Fn and f−1(Fn) is closed and nowhere
dense in NN for each n ∈ N.

In particular, in view of Theorem 2.5, this gives another proof of the
inclusion PMσ ⊆ UM.

2.2. Examples of countably perfectly meager sets. Let us recall
that a subset A of 2N is perfectly meager in the transitive sense (A ∈
AFC′, cf. [15], [16] and [23]) if for every perfect subset P of 2N, there
exists an Fσ-set F in X such that A ⊆ F and F ∩ (P + t) is meager
in P + t for each t ∈ 2N or, equivalently (cf. [16, Lemma 6]), if for
every sequence {Kn : n ∈ N} of copies of the Cantor set in 2N there
are closed sets Fn in 2N such that A ⊆

⋃

n Fn and Km + t 6⊆ Fn

for each m,n ∈ N and t ∈ 2N. Combining this with Theorem 2.1
we get the following result which somewhat strengthens the fact that
AFC′ ⊆ UM established by Nowik and Weiss [16, Theorem 2] by a
similar argument.

Theorem 2.8. Every subset of 2N which is perfectly meager in the
transitive sense is countably perfectly meager in 2N.

As a corollary we obtain a list of some classical classes of sets which
being perfectly meager in the transitive sense are countably perfectly
meager as well.

Corollary 2.9. The following collections of subsets of 2N are countably
perfectly meager in 2N:

(1) meager-additive sets,
(2) γ-sets,
(3) strongly meager sets,
(4) Sierpiński sets.

Proof. (1). See [26, Proposition 6.6]
(2). See [15]. This also follows from (1), since by [17, Proposition

3.7], every γ-set is meager-additive.

(3). See [15, Theorem 9].

(4). This follows from (3), since Pawlikowski [18] proved that every
Sierpiński set is strongly meager. �
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The following result gives more examples of universally meager sets
which are countably perfectly meager as well.

Let us recall that given a perfect Polish space X a set A ⊆ X

• has the Hurewicz property, if every continuous image of A in NN

is bounded in the ordering ≤∗ of eventual domination,
• is a λ′-set in X if every countable set D ⊆ X is relatively Gδ in
A ∪D.

The cardinal number b is the minimal cardinality of a subset of NN

which is unbounded in the ordering ≤∗.

Proposition 2.10. The following collections of sets are countably per-
fectly meager in the respective spaces:

(1) subsets of a perfect Polish space X with the Hurewicz property
and no perfect subsets; in particular, subsets of X of cardinality
less than b,

(2) λ′-subsets in a perfect Polish space X, in particular:
(a) sets in NN of the form {fα : α < b} where

• α < β < b implies fα <∗ fβ,
• for every f ∈ NN there is α < b with fα �∗ f .

(b) Hausdorff (ω1, ω
∗
1
)-gaps in P(N).

Proof. (1). This was actually shown in Proposition 2.3 of Zakrzewski
[24].

(2). Let A be a λ′-set in X . To prove that A ∈ PMσ, we shall
check condition (5) of Theorem 2.1. Clearly, A is an s0-set. For a
sequence {Kn : n ∈ N} of pairwise disjoint and disjoint from A copies
of the Cantor set in X for each n let us pick a point dn ∈ Kn and let
D = {dn : n ∈ N}. Then, A being a λ′-set, there is an Fσ set F in X
such that A ⊆ F and F ∩D = ∅, so dn witnesses that Kn 6⊆ F for any
n ∈ N.

Sets described in (a) and (b) are classical examples of λ′ sets due to
Rothberger and Hausdorff (see [14]).

�

Remark 2.11. An easier way of proving that every Sierpiński set in 2N

in is PMσ (cf. Corollary 2.9) is to combine Proposition 2.10(1) with
Theorem 7 of Fremlin and Miller [7] which states that every Sierpiński
set has the Hurewicz property.

Likewise, another way of proving that every γ-set in 2N is in PMσ

(cf. Corollary 2.9) is to combine Proposition 2.10(1) with Theorem 2
of Galvin and Miller [6] which states that every γ-set has the Hurewicz
property.

On the other hand, the set described in Proposition 2.10(2)(a), is λ′

in NN but does not have the Hurewicz property as an unbounded subset
of NN. Likewise, not every subset of 2N with the Hurewicz property
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and no perfect subsets (cf. Proposition 2.10(1)) is a λ′-set in 2N, see
Example 4.1 in the comment section below.

3. PMσ versus UM

Theorem 1.1, which we are now going to prove, reveals an essential
difference between the classes UM and PMσ.

Proof of Theorem 1.1. Let C0, C1, . . . be pairwise disjoint meager Can-
tor sets in 2N such that:

(1) each non-empty open set in 2N contains some Cn.

Let P = 2N \
⋃

n Cn.

We shall justify the theorem in three steps (A), (B) and (C).

(A) We claim that there exists a set H ⊆ T × P intersecting each
vertical section {t} × P , t ∈ T , in a singleton, such that each Fσ-set
in 2N × 2N containing H contains also {t} × V for some t ∈ T and a
non-empty open set V in 2N.

Indeed, let {Ft : t ∈ T} be a parametrization on T of all Fσ-sets in
2N × 2N. For each t ∈ T , we pick (t, ϕ(t)) ∈ ({t} × P ) \ Ft, whenever
this is possible, and we let ϕ(t) be an arbitrary fixed element of P ,
otherwise.

Let us check that the graph H = {(t, ϕ(t)) : t ∈ T} has the required
property.

Let F be an Fσ-set in 2N×2N containing H , and let t ∈ T be such that
F = Ft. Then (t, ϕ(t)) ∈ Ft, hence Ft contains {t} ×P . Consequently,
P being a dense Gδ-set in 2N, the Baire category theorem provides a
non-empty open set V in 2N with {t} × V ⊆ Ft, completing the proof
of the claim.

(B) For any s ∈ 2<N let Ns = {x ∈ 2N : s ⊆ x} be the standard
basic open set in 2N determined by s.

Let ∼ be the equivalence relation on 2N × 2N, whose equivalence
classes are given by:

[(x, y)]∼ =

{

Nx|n × {y}, if y ∈ Cn,
{(x, y)}, if y ∈ P

Let π(x, y) = [(x, y)]∼ be the quotient map onto the quotient space
K = (2N × 2N)/ ∼ (whose topology consists of sets U ⊆ K such that
π−1(U) is open in 2N × 2N).

Claim. The space K is homeomorphic to 2N.

The equivalence classes of ∼ form an upper-semicontinuous decom-
position of 2N × 2N (i.e., the saturation of every closed set in 2N × 2N

is closed). It follows that the decomposition space K = 2N × 2N/ ∼ is
metrizable (cf. [5, Theorem 4.2.13]). Moreover, K is compact, zero-
dimensional and has no isolated points, and hence the claim follows.



COUNTABLY PERFECTLY MEAGER SETS 9

However, for reader’s convenience, we shall provide a direct argument
to that effect, avoiding the metrization theorem.

Let B consist of clopen subsets of 2N×2N of the form Ns×Nt, where
s, t ∈ 2<N and Nt ∩Ck = ∅ for each k < length(s). We shall show that
{π(B) : B ∈ B} is a countable basis for K consisting of clopen sets.

First, let us note that each set from B is saturated, i.e., is the union
of equivalence classes. Indeed, if (x, y) ∈ Ns × Nt, Nt ∩

⋃

k<nCk = ∅
and n = length(s), then either y ∈ P and then [(x, y)]∼ = {(x, y)} or
y ∈ Cm for some m ≥ n which implies that [(x, y)]∼ = Nx|m × {y} ⊆
Ns ×Nt.

It follows that for each B ∈ B, π(B) and π((2N×2N)\B) are disjoint
open sets in K, hence π(B) is clopen in K.

Next, let us fix an open set W in K and let c = π(x, y) ∈ W .
Then, since π−1(W ) is open in 2N × 2N and (x, y) ∈ π−1(W ), we have
Nx|n×Ny|m ⊆ π−1(W ) for some n and m. Moreover, if y ∈

⋃

k Ck, then
we additionally assume that n is the unique k for which y ∈ Ck (let
us note that in this case (x, y) ∈ Nx|n × {y} ⊆ π−1(W )). In any case,
y /∈

⋃

k<nCk and
⋃

k<nCk being closed, there is large enough m′ ≥ m
for which Ny|m′ ∩

⋃

k<nCk = ∅. Then B = Nx|n ×Ny|m′ ∈ B and π(B)
is a neighbourhood of c contained in W .

We have checked that {π(B) : B ∈ B} is a countable basis for K
consisting of clopen sets. Clearly, no π(B) is a singleton, hence K has
no isolated points.

Finally, the equivalence classes of ∼ are closed in 2N × 2N, hence the
singletons of K are closed.

It follows that the space K, being T1 and having a basis consisting
of clopen sets, is also Hausdorff and it is compact as a continuous
image of 2N × 2N. Consequently, being a compact, Hausdorff, second
countable, zero-dimensional topological space without isolated points,
K is homeomorphic to 2N, which completes the proof of the claim.

Let us also note that the sets

(2) Ps = π(Ns × Cn),

where s ∈ 2<N and n = length(s), are perfect subsets of K.

(C) Finally, let E = π(H) (cf. (A)). Clearly, E is a homeomorphic
copy of H in K and T is the injective image of E under the continuous
function proj

1
◦ π−1|E, where proj

1
is the projection of 2N × 2N onto

the first axis.

We shall show that

(3) E is not a PMσ-set in K.

To that end, let us consider an Fσ-set F ∗ in K such that E ⊆ F ∗.
Then

(4) F = π−1(F ∗)
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is an Fσ-set in 2N×2N containing H , so there are t ∈ T and a non-empty
open set V in 2N such {t} × V ⊆ F , cf. (A).

Let us fix Cn ⊆ V (cf. (1)) and let s = t|n be the unique sequence
in 2n such that t ∈ Ns. We have {t} × Cn ⊆ F and let us notice that
π({t} × Cn) = Ps (cf. (2)).

Consequently, Ps ⊆ F ∗, cf. (4).
It follows that any Fσ-set in K containing E also contains some Ps,

which confirms (3), completing the proof of the theorem.
�

As a corollary we have the following result which shows that, at least
consistency–wise, the classes UM and PMσ are different (part (1)).

Its part (2) strengthens the result of Nowik, Scheepers and Weiss
[15] that assuming the Continuum Hypothesis there is a λ-set in 2N

which is not perfectly meager in the transitive sense (A a λ-set if every
countable set D ⊆ A is relatively Gδ in A).

Part (3) strengthens the result of Sierpiński [21] that (assuming the
continuum hypothesis) λ′-property is not invariant under homeomor-
phisms.

Theorem 3.1.

(1) If there exists a universally meager set in 2N of cardinality of
the continuum, then there is also one which is not countably
perfectly meager.

(2) If there exists a λ-set in 2N of cardinality of the continuum, then
there is also one which is not countably perfectly meager.

(3) If there exists a λ′-set in 2N of cardinality of the continuum,
then there is also one whose homeomorphic copy in 2N is not
countably perfectly meager. In particular, the class PMσ is not
closed with respect to homeomorphic images.

In particular, assuming the continuum hypothesis there is a λ′-set in
2N whose homeomorphic copy in 2N is not countably perfectly meager.

Proof. We keep the notation from the proof of Theorem 1.1. For a
set T ⊆ 2N of cardinality 2ℵ0 let H ⊆ T × P and E ⊆ 2N satisfy the
assertions of Theorem 1.1.

(1) and (2). It suffices to notice that if T is either universally meager
or a λ-set, then so is E, respectively (cf. [24]). But E 6∈ PMσ.

(3). It can be readily checked that if T is a λ′-set in 2N, then H
is λ′-set in 2N × P . Since P can be homeomorphically embedded as a
dense Gδ-set in 2N, we may identify H with a λ′-set in 2N. But then E
is a homeomorphic copy of H in 2N which is not PMσ in 2N.

�

We close this section by showing that like UM (see [24]) (but, at
least consistency–wise, unlike PM, see [19]), the class PMσ is closed
under products.
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Theorem 3.2. The product of two countably perfectly meager sets is
countably perfectly meager in the sense that if A and B are PMσ-sets
in perfect Polish spaces X and Y , respectively, then A×B is a PMσ-set
in X × Y .

Proof. Let A and B be PMσ-sets in perfect Polish spaces X and Y ,
respectively.

To prove that A×B is a PMσ-set in X×Y , we shall check condition
(3) of Theorem 2.1.

Let {Kn : n ∈ N} be a sequence of Cantor sets in Z = X × Y and
for each n let Ln and Mn be the images of Kn under projections of Z
onto X and Y , respectively.

Let S = {n ∈ N : Ln is uncountable} and for each n ∈ S let us pick
a Cantor set L′

n ⊆ Ln. Likewise, let T = {n ∈ N : Mn is uncountable}
and for each n ∈ T let us pick a Cantor set M ′

n ⊆ Mn.
The sets A and B being countably perfectly meager, there are se-

quences {FA
i : i ∈ N} and {FB

j : j ∈ N} of closed sets in X and

Y , respectively, such that A ⊆
⋃

i F
A
i , B ⊆

⋃

j F
B
j , L′

m 6⊆ FA
i and

M ′
n 6⊆ FB

j whenever m ∈ S, n ∈ T and n,m, j, i ∈ N.

Let Fi,j = FA
i × FB

j for i, j ∈ N.
Clearly, A × B ⊆

⋃

i,j Fi,j and we claim that for any n, i, j we have
Kn 6⊆ Fi,j.

Indeed, let us notice that S ∪ T = N since for each n we have Kn ⊆
Ln × Mn. It follows that either L′

n 6⊆ FA
i (if n ∈ S) or M ′

n 6⊆ FB
j (if

n ∈ T ), so in either case Kn 6⊆ Fi,j . This completes the proof. �

4. Comments

4.1. PMσ versus λ′, Hurewicz property and AFC′. The relation-
ship of classes of subsets of 2N with the Hurewicz property (and no
perfect subsets, cf. Proposition 2.10(1)), or of λ′-sets (cf. Proposition
2.10(2)), or of AFC′-sets (cf. Theorem 2.9) to an apparently larger
class of PMσ-sets seems particularly close.

E.g., the characterizations of PMσ-sets given in Theorem 2.1 some-
what resemble the following characterization of sets with the Hurewicz
property, obtained by Just, Miller, Scheepers and Szeptycki [11, The-
orem 5.7]: A ⊆ 2N has the Hurewicz property if and only if for every
sequence {Kn : n ∈ N} of copies of the Cantor set in 2N disjoint from
A there are closed sets Fn in 2N such that A ⊆

⋃

n Fn and Km∩Fn = ∅
for each m,n ∈ N. In particular, if A ⊆ 2N has either the Hurewicz
property or λ′-property, then for every countable set D ⊆ 2N disjoint
from A there is an Fσ-set F in 2N such that A ⊆ F and F ∩D = ∅.

The following example, based on a result of Bartoszyński and Shelah
[4] and classical ideas of Rothberger (cf. [14]), shows that there exists
(in ZFC) a countably perfectly meager set in 2N of cardinality b which
lacks the latter property and thus has neither the Hurewicz nor λ′
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property. It also shows that the Hurewicz and λ′ properties are not the
same.

Example 4.1. Inductively, one easily constructs a subset {fα : α < b}
of NN with the following properties (cf. Proposition 2.10(2(a))):

• fα is strictly increasing,
• α < β < b implies fα <∗ fβ,
• for every f ∈ NN there is α < b with fα �∗ f .

By identifying each fα with the characteristic function of its range,
we obtain a homeomorphic copy A of {fα : α < b} in 2N.

Let B = A ∪ Q, where Q consists of all eventually zero binary se-
quences. Then:

• {fα : α < b}, being unbounded in NN, does not have the Hurewicz
property,

• {fα : α < b} is a λ′-set in NN (cf. Proposition 2.10(2)(a)),
• B has the Hurewicz property and has no perfect subsets (cf. [4,

Theorem 1], [22, Theorem 2.12] and Remark 4.2 below) so, by
Proposition 2.10(1), B is countably perfectly meager in 2N,

• A is countably perfectly meager in 2N as a subset of B,
• A does not the Hurewicz property as the homeomorphic image
of {fα : α < b},

• if F is any Fσ-set in 2N such that A ⊆ F , then F ∩Q 6= ∅ (since
otherwise F viewed as a subset of NN is bounded, whereas A is
unbounded). In particular, neither A nor B are λ′-sets in 2N.

Remark 4.2. It seems useful to indicate another proof of the fact that
the set B described in Example 4.1 has the Hurewicz property. In fact,
in the argument below it is enough to assume that {fα : α < b} is any
well-ordered by eventual domination and unbounded subset of NN, h :
NN −→P is a homeomorphism onto the set P of irrationals in I = [0, 1],
Q = I \ P , A = {h(fα) : α < b} and B = A ∪Q.

Let us recall that the Hurewicz property of H ⊆ I is equivalent to the
following covering property (this is the original Hurewicz’s definition,
cf. [22]):

ß
for each sequence U1,U2, . . . of open in I covers of H, there are finite

subfamilies Fn ⊆ Un such that H ⊆
⋃

n

⋂

m≥n(
⋃

Fm).

Proof. Let U1,U2, . . . be open in I covers of B and let G =
⋂

n(
⋃

Un).
Since I \ G = P \ G is σ-compact and so is S = h−1(P \ G), there is
f ∈ NN such that g ≤∗ f for any g ∈ S. Let us pick α < b so that
fα �∗ f . Then T = {g ∈ NN : fα ≤∗ g} is an Fσ-set in NN disjoint
from S and fβ ∈ T , whenever β ≥ α.

Let L = h(T ) ∪ Q. Then |B \ L| < b, as B \ L ⊆ {h(fξ) : ξ < α}.
Consequently, B \ L has the Hurewicz property and since B \ L ⊆ G,
there are finite collections F ′

n ⊆ Un such that B\L ⊆
⋃

n

⋂

m≥n(
⋃

F ′
m).
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Let us notice that the set L is σ-compact in I so it also has the
Hurewicz property and since L ⊆ G, we can pick finite F ′′

n ⊆ Un such
that L ⊆

⋃

n

⋂

m≥n(
⋃

F ′
m).

Then, letting Fn = F ′
n ∪ F ′′

n, we get finite collections Fn ⊆ Un

such that B ⊆
⋃

n

⋂

m≥n(
⋃

Fm). This shows that B has the Hurewicz
property. �

The fact that AFC′-subsets of 2N are closely related to PMσ-sets in
2N is revealed by the following characterization of Bartoszyński (private
communication). We are grateful to Tomek Bartoszyński for allowing
us to include his result in our paper.

Proposition 4.3 (T. Bartoszyński). For a set A ⊆ 2N the following
are equivalent:

(1) A ∈ PMσ.
(2) for every perfect subset P of 2N, there exists an Fσ-set F in 2N

such that A ⊆ F and F ∩ (P + q) is meager in P + q for every
q ∈ Q, where Q consists of all eventually zero binary sequences.

Proof. Implication (1) ⇒ (2) follows directly from the definition of
countably perfectly meager sets.

To prove that (2) ⇒ (1), we shall appeal to condition (2) of Theorem
2.1. So let {Kn : n ∈ N} be a sequence of Cantor sets in 2N. For each
n one can pick a non-empty relatively open compact set Ln in Kn (an
intersection of Kn with a basic neighborhood in 2N) and qn ∈ Q such
that all points in Tn = Ln + qn have n first coordinates zero, and the
sets Tn are pairwise disjoint. Then the union P of {0} and the sets Tn

is perfect and (Kn + qn)∩P has relatively non-empty interior in P for
each n ∈ N.

Using (2), we fix an Fσ-set F in 2N such that A ⊆ F and (F + q)∩P
is meager in P for every q ∈ Q.

But now it is clear that Kn ⊆ F for no n ∈ N, since otherwise we
would have (Kn + qn) ∩ P ⊆ (F + qn) ∩ P , contradicting the choice of
F .

�

The following example is a slight modification of a remarkable con-
struction of Rec law [20] and shows that, at least consistently, there
exists a countably perfectly meager in 2N, in fact a λ′-set in 2N, which
is not perfectly meager in the transitive sense (a similar construction
was also used by Weiss [23, Theorem 3] in his proof that the existence
of a universally meager set in 2N of cardinality of the continuum implies
that there is also one which is not perfectly meager in the transitive
sense). This is also yet another (cf. Theorem 3.1) strengthening of the
result of Nowik, Scheepers and Weiss [15] that under the Continuum
Hypothesis there is a λ-set in 2N which is not perfectly meager in the
transitive sense.
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Example 4.4. Let us assume that there exists a λ′-set in 2N of cardi-
nality of the continuum.

Let C, D be disjoint copies of the Cantor set in 2N such that

(1) the operation + of addition is a homeomorphism between C×D
and C + D (cf. [20]).

Let T ⊆ C be a λ′-set in C of cardinality of the continuum.
Arguing as in part (A) of the proof of Theorem 1.1, we obtain a set

H ⊆ T × D intersecting each vertical section {t} × D, t ∈ T , in a
singleton, such that

(2) each Fσ-set in C × D containing H contains also {t} × D for
some t ∈ T .

Now, T being a λ′-set in C, one readily checks that H is a λ′-set in
C ×D (cf. the proof of Theorem 3.1(3)). It follows that, cf. (1), if we
let Y = +(H), then Y is a λ′-set in C + D and hence also in 2N.

On the other hand, Y is not perfectly meager in the transitive sense.
Indeed, if F is an arbitrary Fσ-set in 2N with Y ⊆ F and we let E =
(+)−1(F ∩ (C + D)), then E is an Fσ-set in C × D containing H
so it also contains, cf. (2), {t} × D for some t ∈ T . Consequently,
t + D ⊆ F , completing the proof.

4.2. Remarks on related σ-ideals. In this section F always denotes
a countable (possibly finite but non-empty) collection of perfect sets in
a perfect Polish space X .

If I is a σ-ideal of subsets of X , then by I∗ we denote the σ-ideal
generated by the closed subsets of X which belong to I.

4.2.1. The σ-ideals MGR(F). Following Kechris and Solecki [13] let
us put

MGR(F) = {A ⊆ X : A ∩ P is meager in P for every P ∈ F}.

Let us note that MGR(F) is a σ-ideal on X generated by Borel, in
fact Fσδ-sets, and fulfills the c.c.c. Moreover, the quotient Boolean alge-
bra Bor(X)/(MGR(F)∩Bor(X)) is isomorphic to the Cohen algebra,
cf. [3]. Clearly, the intersection of all σ-ideals of the form MGR(F ) is
precisely the σ-ideal PM.

On the other hand, by [24, Theorem 2.1], the σ-ideal UM is the in-
tersection of all σ-ideals I on X such that the quotient Boolean algebra
Bor(X)/(I ∩ Bor(X)) is isomorphic to the Cohen algebra. Any such
I is precisely of the form M (X, τ), by which we denote the σ-ideal
consisting of meager sets with respect to a perfect Polish topology τ
on X giving the original Borel structure of X .

4.2.2. The σ-ideals MGR∗(F). By the definition (see the beginning of
Section 4.2), the σ-ideal MGR∗(F) consists of such sets A ⊆ X that
there exists an Fσ-set F in X with A ⊆ F and such that F ∩ P is
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meager in P for every P ∈ F . It is the σ-ideal MGR∗(F) (not the σ-
ideal MGR(F ) erroneously employed in [3, Theorem 7, (1) ⇒ (3)]) that
is relevant to the definition of countably perfectly meager sets. Indeed,
the intersection of all σ-ideals of the form MGR∗(F) is precisely the
σ-ideal PMσ.

It turns out that not all of the σ-ideals of the form MGR∗(F) fulfill
the c.c.c. Let us elaborate on this a little further with the help of a
theory developed by Kechris and Solecki [13].

Proposition 4.5.

(1) If every non-empty open set U in X contains a nowhere dense
set P ∈ F , then the σ-ideal MGR∗(F) does not fulfill the c.c.c.

(2) The intersection of all σ-ideals in X generated by closed sets
which fulfill the c.c.c. is precisely the σ-ideal PM.

(3) The intersection of all σ-ideals of the form MGR∗(F) which
fulfill the c.c.c. is precisely the σ-ideal PM.

(4) The intersection of all σ-ideals of the form MGR∗(F) which do
not fulfill the c.c.c. is precisely the σ-ideal PMσ.

Proof. (1). This immediately follows from [13, Lemma 9].
(2) and (3). First, let A ∈ PM and let I be a σ-ideal in X which is

generated by closed sets and fulfills the c.c.c. Then, by [13, Theorem
3], I is of the form MGR(F ) for a countable family of perfect subsets
of X . Consequently, A ∈ I.

For the other direction, assume that A ∈ MGR∗(F) for every F
such that the σ-ideal MGR∗(F) fulfills the c.c.c. Suppose that P is
an arbitrary perfect subset of X and let F = {P}. Then we have
MGR∗(F) = MGR(F ), so the σ-ideal MGR∗(F) fulfills the c.c.c.
Consequently, A ∈ MGR∗(F) which just means that A ∩ P is meager
in P , completing the proof that A ∈ PM.

(4). Let us assume that A ∈ MGR∗(F) for every F such that the
σ-ideal MGR∗(F) does not fulfill the c.c.c. To prove that A ∈ PMσ,
let F be an arbitrary countable family of perfect subsets of X . By
extending F , if necessary, we may assume that every non-empty open
set U in X contains a nowhere dense set P ∈ F . By part (1), the σ-ideal
MGR∗(F) does not fulfill the c.c.c. Consequently, A ∈ MGR∗(F) and
we are done.

�

4.2.3. The σ-ideals M ∗(X, τ). In this subsection τ always denotes a
perfect Polish topology on X giving the original Borel structure of X .
Recall that M (X, τ) is the σ-ideal of meager sets with respect to τ and
M ∗(X, τ) consists of such A ⊆ X that there exists an Fσ-set F in X
(with the original Polish topology) with A ⊆ F and F ∈ M (X, τ).

It turns out that we can characterize perfectly meager and count-
ably perfectly meager sets with the help of the σ-ideals M ∗(X, τ) in
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an analogous way to their characterizations in terms of the σ-ideals
MGR∗(F) (cf. 4.5).

Proposition 4.6.

(1) The intersection of all σ-ideals of the form M ∗(X, τ) which
fulfill the c.c.c. is precisely the σ-ideal PM.

(2) The intersection of all σ-ideals of the form M ∗(X, τ) is pre-
cisely the σ-ideal PMσ. Moreover, for a set A to be countably
perfectly meager it is enough to belong to all σ-ideals of the form
M ∗(X, τ) which do not fulfill the c.c.c.

Proof. (1). This follows directly from points (2) and (3) of Proposi-
tion 4.5, since every σ-ideal of the form MGR∗(F) is also of the form
M ∗(X, τ) which in turn is generated by closed sets.

(2). Let us assume that A ∈ PMσ and let {Un : n ∈ N} be a basis
of a perfect Polish topology τ on X giving the original Borel structure
of X . We assume with no loss of generality that τ extends the original
Polish topology on X . For each n let us pick a Cantor set Kn ⊆ Un. We
complete the argument exactly as in the proof of implication (1) ⇒ (2)
in Theorem 2.5.

For the other direction we again use the fact that every σ-ideal of
the form MGR∗(F) is also of the form M ∗(X, τ) and apply point (4)
of Proposition 4.5.

�
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