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YET ANOTHER IDEAL VERSION OF THE BOUNDING

NUMBER

RAFA L FILIPÓW AND ADAM KWELA

Abstract. Let I be an ideal on ω. For f, g ∈ ωω we write f ≤I g if f(n) ≤
g(n) for all n ∈ ω \A with some A ∈ I. Moreover, we denote DI = {f ∈ ωω :

f−1[{n}] ∈ I for every n ∈ ω} (in particular, DFin denotes the family of all
finite-to-one functions).

We examine cardinal numbers b(≥I ∩(DI×DI)) and b(≥I ∩(DFin×DFin))
describing the smallest sizes of unbounded from below with respect to the order
≤I sets in DFin and DI , respectively. For a maximal ideal I, these cardinals
were investigated by M. Canjar in connection with coinitial and cofinal subsets
of the ultrapowers.

We show that b(≥I ∩(DFin × DFin)) = b for all ideals I with the Baire
property and that ℵ1 ≤ b(≥I ∩(DI × DI)) ≤ b for all coanalytic weak P-
ideals (this class contains all Π

0

4
ideals). What is more, we give examples

of Borel (even Σ0

2
) ideals I with b(≥I ∩(DI × DI)) = b as well as with

b(≥I ∩(DI ×DI)) = ℵ1.
We also study cardinals b(≥I ∩(DJ × DK)) describing the smallest sizes

of sets in DK not bounded from below with respect to the preorder ≤I by
any member of DJ . Our research is partially motivated by the study of ideal-
QN-spaces: those cardinals describe the smallest size of a space which is not
ideal-QN.

Contents

1. Introduction 2
2. Preliminaries 3
2.1. Ideals 3
3. Various bounding numbers 4
3.1. The ordinary bounding number 4
3.2. The bounding numbers à la Vojtáš 5
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1. Introduction

For an ideal I on ω we denote DI = {f ∈ ωω : f−1[{n}] ∈ I for every n ∈ ω} (in
particular, DFin denotes the family of all finite-to-one functions) and write f ≤I g
if {n ∈ ω : f(n) > g(n)} ∈ I, where f, g ∈ ωω. By b(≥I ∩(DJ × DK)) we denote
the smallest sizes of sets in DK not bounded from below with respect to the order
≤I by any member of DJ . (We restrict ourself to functions from DJ instead of all
functions from ωω, because every subset of ωω is bounded from below with respect
to ≤I by the constant zero function.)

In 1980s, Canjar [12, 13, 14] studied the smallest sizes of cofinal and coinitial
subsets in ultrapowers ωω/U ordered by ≤I for ultrafilters U = I∗. Among others,
Conjar proved that consistently b(≥I ∩(DFin ×DFin)) and b(≥I ∩(DI ×DI)) can
be equal to any regular cardinal between ℵ1 and b for some maximal ideal I.

In this paper, we examine cardinals b(≥I ∩(DK × DJ )) for various triples of
ideals (I,J ,K), but we do not require from ideals I,J and K to be maximal. We
obtained some facts for arbitrary ideals I,J and K, however, the most interesting
results we proved for Borel ideals. For instance, we showed that there are Borel
ideals I with b(≥I ∩(DI × DI)) = ℵ1 and b(≥I ∩(DFin × DFin)) = b provable in
ZFC.

To make life easier, we restrict our study only to eight cases with at most two
different ideals among I,J ,K and with at least one of them equal to the ideal Fin.
It will follow from results of Section 4 that in fact we can restrict our study only
to four cases: b(≥I ∩(DI ×DI)), b(≥I ∩(DFin ×DI)), b(≥I ∩(DFin ×DFin)) and
b(≥Fin ∩(DI ×DI)).

The paper is organized in the following way. In Section 3 we show that b(>I

∩(DK×DJ )) = b(I,J ,K) and b(≥I ∩(DK×DJ )) = bs(I,J ,K), where b(I,J ,K)
and bs(I,J ,K) are cardinals considered by Filipów and Stanszewski in [19, 36].
This provides us with a very useful combinatorial characterizations of the considered
cardinals, which we use almost exclusively in the rest of the paper.

Section 4 is devoted to showing the basic properties of considered b-like numbers.

Also, we prove that b(≥Fin ∩(DI × DI)) = min{b, add*(I)} and present some
diagrams summarizing basic relationships between considered b-like numbers

In Section 5, we calculate b-like numbers for direct sums and Fubini products
of ideals. Moreover, we compute b-like numbers for not tall ideals. The results of
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that section are used in Section 8 to obtain examples of ideals with distinct values
of various b-like cardinals.

In Section 6, we examine b-like cardinals for nice ideals, where nice means ideals
with the Baire property, ω-diagonalizable ideals or definable ideals. We show that
b(≥I ∩(DFin × DFin)) = b for all ideals I with the Baire property and infer that
for P-ideals with the Baire property all considered cardinals equal b. Moreover, we
show that b(≥I ∩(DFin × DI)) = b for coanalytic weak P-ideals. The latter gives
an upper bound for b(≥I ∩(DI ×DI)) in the case of coanalytic weak P-ideals (by
a result of Debs and Saint Raymond, this class contains all Π0

4
ideals).

Section 7 is devoted to ideals I with b(≥I ∩(DI ×DI)) = ℵ1. In particular, we
give examples of such ideals among not tall Σ0

2
ideals and among tall Σ0

2
ideals.

In Section 8, we show that consistently the values of considered cardinals can be
pairwise distinct.

In the literature, there are considered other ideal versions of the bounding num-
ber b. For instance, Farkas and Soukup [18] consider b(≤I ∩(ωω × ωω) (Canjar
in [12] proved that consistently there are ideals I with b(≤I ∩(ωω × ωω) 6= b(≥I

∩(DFin×DFin)); see also [13]), and Brendle and Mej́ıa [3] consider the number b(I)
defined as the smallest κ such that there is an I − (ω, κ)-gap in (P(ω),⊆I) and call
it the Rothberger number of I (in general, b(I) 6= b(≥I ∩(DI × DI)) because the
former is not defined for maximal ideals whereas the latter is).

2. Preliminaries

By ω we denote the set of all natural numbers. We identify a natural number n
with the set {0, 1, . . . , n− 1}. (Thus, for instance, n \ k means the set {i ∈ ω : k ≤
i < n}). We write A ⊆∗ B or B ⊇∗ A if A \B is finite. For a set A and a finite or
infinite cardinal number κ, we write [A]κ = {B ⊆ A : |B| = κ}.

2.1. Ideals. An ideal on a set X (in short ideal) is a family I ⊆ P(X) that satisfies
the following properties:

(1) if A,B ∈ I then A ∪B ∈ I,
(2) if A ⊆ B and B ∈ I then A ∈ I,
(3) I contains all finite subsets of X ,
(4) X /∈ I.

For an ideal I, we write I+ = {A ⊆ X : A /∈ I} and call it the coideal of I, and
we write I∗ = {A ⊆ X : X \A ∈ I} and call it the dual filter of I.

The ideal of all finite subsets of an infinite set X is denoted by Fin(X) (or Fin
for short).

Let A ⊆ P(X). If X cannot be covered by finitely many members of A then the
smallest ideal containing A i.e. the ideal I = {B ⊂ X : ∃A1, . . . , An ∈ A (B ⊆∗

A1 ∪ · · · ∪An)} is called the ideal generated by A.
An ideal I on X is P-ideal (weak P-ideal, resp.) if for any countable family

A ⊆ I there is B ∈ I∗ (B ∈ I+, resp.) such that A∩B ∈ Fin(X) for every A ∈ A.
While P-ideals can be considered as a classical notion, weak P-ideals are gaining

in popularity nowadays. Usefulness of weak P-ideals follows from the fact that this
property can be characterized in various manners. For instance, an ideal I is a
weak P-ideal if and only if one of the following conditions hold:

• I is not above the ideal Fin⊗ Fin in the Katětov order (see e.g. [37] where
also other orders are used for similar characterizations);
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• I and I∗ can be separated by an Fσ set ([27]);
• Player I does not have a winning strategy in a game introduce by Laflamme

in [28] (see Subsection 6.3 of the present paper for a definition of this game);
• I is ω-diagonalizable by I∗-universal sets (see Subsection 6.2 for a definition

of this notion).

The last characterization is technical, but its combinatorial character turns out to
be very useful for working with weak P-ideals: we use it for examining some b-
like numbers in Subsection 6.2 (for other applications of this characterization see
e.g. [20, 24, 26, 27]).

We say that ideals I,J on X are orthogonal (in short: I ⊥ J ) if there is A ∈ J
with X \A ∈ I

An ideal I on X is tall if for every infinite A ⊆ X there is an infinite B ∈ I such
that B ⊂ A.

For an ideal I on X and for A /∈ I we define I ↾ A = {B ⊆ A : B ∈ I}. It is
easy to see that I ↾ A is an ideal on A.

The vertical section of a set A ⊆ X × Y at a point x ∈ X is defined by (A)x =
{y ∈ Y : (x, y) ∈ A}.

For ideals I,J on X and Y respectively we define the following new ideals:

(1) I ⊕J = {A ⊆ X ×{0}∪ Y ×{1} : {x : (x, 0) ∈ A} ∈ I ∧ {y : (y, 1) ∈ A} ∈
J }},

(2) I ⊕ P(ω) = {A ⊆ X × {0} ∪ ω × {1} : {n : (n, 0) ∈ A} ∈ I},
(3) I ⊗ J = {A ⊆ X × Y : {x : (A)x /∈ J } ∈ I},
(4) I ⊗ {∅} = {A ⊆ X × ω : {x : (A)x 6= ∅} ∈ I}.
(5) {∅} ⊗ J = {A ⊆ ω × Y : (A)x ∈ J for all x}.

For any n ≥ 1 we define the ideals Finn in the following manner: Fin1 = Fin,
and Finn+1 = Fin ⊗ Finn.

By identifying sets of natural numbers with their characteristic functions, we
equip P(ω) with the topology of the Cantor space {0, 1}ω and therefore we can
assign topological complexity to ideals on ω. In particular, an ideal I is Borel (has
the Baire property) if I is Borel (has the Baire property) as a subset of the Cantor
space.

In the sequel, we use the convention that min ∅ = c
+.

For an ideal I on ω we define

add*(I) = min({|F| : F ⊆ I ∧ ∀A ∈ I ∃F ∈ F (|F \A| = ℵ0)}.

Note that add*(I) = ℵ0 for every non P-ideal and add(I) ≥ ℵ1 for every P-ideal.
Moreover, it is easy to see that add∗(I) = c

+ if and only if I = {C ⊆ ω : |C \A| <

ℵ0} for some A ⊂ ω. For instance, add*(Fin) = c
+.

3. Various bounding numbers

3.1. The ordinary bounding number. For f, g ∈ ωω we write f ≤∗ g if f(n) ≤
g(n) for all but finitely many n ∈ ω. The bounding number b is the smallest size of
≤∗-unbounded subset of ωω i.e.

b = min{|F| : F ⊆ ωω ∧ ¬(∃g ∈ ωω∀f ∈ F (f ≤∗ g))}.

The dominating number d is the smallest size of ≤∗-dominating subset of ωω i.e.

d = min{|F| : F ⊆ ωω ∧ ∀g ∈ ωω∃f ∈ F (g ≤∗ f)}.
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3.2. The bounding numbers à la Vojtáš. If R is a binary relation, then by
dom(R) and ran(R) we denote the domain and range of R respectively i.e. dom(R) =
{x : ∃y (x, y) ∈ R} and ran(R) = {y : ∃x (x, y) ∈ R}. A set B ⊆ dom(R) is called
R-unbounded if for every y ∈ ran(R) there is x ∈ B with (x, y) /∈ R. A set
D ⊆ ran(R) is called R-dominating if for every x ∈ dom(R) there is y ∈ D with
(x, y) ∈ R.

Definition 3.1 (Vojtáš [40]). Let R be a binary relation.

b(R) = min({|B| : B is R-unbounded set}.

d(R) = min({|D| : D is R-dominating set}.

It is easy to see that the bounding number b is equal to the bounding number
of the relation ≤∗ ∩(ωω × ωω) i.e. b = b(≤∗ ∩(ωω × ωω)), and similarly d = d(≤∗

∩(ωω × ωω)).

3.3. The bounding numbers à la Canjar.

Definition 3.2. For an ideal I we define the relation ≤I= {(f, g) ∈ ωω × ωω :
{n ∈ ω : f(n) > g(n)} ∈ I}. We write f ≤I g if (f, g) ∈≤I . In a similar manner
we define <I , ≥I and >I .

Definition 3.3. For an ideal I we define

DI = {f ∈ ωω : f−1[{n}] ∈ I for every n ∈ ω}.

In [12, 13, 14], Canjar studied cardinals b(≥I ∩(DI ×DI)) and b(≥I ∩(DFin ×
DFin)) for some maximal ideals I. In this paper we will examine the bounding
numbers b(>I ∩(DK × DJ )) and b(≥I ∩(DK × DJ )) for various triples of ideals
(I,J ,K).

Proposition 3.4. Let I,J ,K be ideals on ω.

(1) b(>I ∩(DK ×DJ )) ≤ b(≥I ∩(DK ×DJ )).
(2) b(≥I ∩(DJ ×DJ )) ≤ cf(b(≥I ∩(DK ×DJ ))).
(3) b(>I ∩(DJ ×DJ )) ≤ cf(b(>I ∩(DK ×DJ ))).
(4) If J ⊆ K, then b(≥I ∩(DK × DJ )) and b(>I ∩(DK × DJ )) are regular

cardinals.

Proof. (1) Obvious.
(2) Let F ⊂ DK be an ≥I ∩(DK × DJ )-unbounded family of cardinality b(≥I

∩(DK × DJ )) and F =
⋃

α<cf(b(≥I∩(DK×DJ )) Fα with |Fα| < b(≥I ∩(DK × DJ ))

for every α.
For every α we find gα ∈ DJ with f ≥I gα for every f ∈ Fα. Let G = {gα : α <

cf(b(≥I ∩(DK ×DJ ))}.
Suppose to the contrary that cf(b(≥I ∩(DK ×DJ ))) < b(≥I ∩(DJ ×DJ )).
Since G ⊆ DJ and |G| ≤ cf(b(≥I ∩(DK × DJ )) < b(≥I ∩(DJ × DJ ), there

is g ∈ DJ with gα ≥I g for every α. Consequently, f ≥I g for every f ∈ F , a
contradiction.

(3) This can be proved in a similar way as item 2.
(4) If J ⊆ K, then b(≥I ∩(DK ×DJ )) ≤ b(≥I ∩(DJ ×DJ )) and b(>I ∩(DK ×

DJ )) ≤ b(>I ∩(DJ ×DJ )). Now using (2) and (3), we get b(≥I ∩(DK ×DJ )) ≤
b(≥I ∩(DJ × DJ )) ≤ cf(b(≥I ∩(DK × DJ ))) and b(>I ∩(DK × DJ )) ≤ b(>I

∩(DJ ×DJ )) ≤ cf(b(>I ∩(DK ×DJ ))). �
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3.4. The bounding numbers à la Staniszewski.

Definition 3.5. Let I be an ideal on ω. By P̂I we will denote the family of all
sequences 〈An : n ∈ ω〉 such that An ∈ I for all n ∈ ω and An ∩ Ak = ∅ for
n 6= k. By PI we will denote the family of all sequences 〈An : n ∈ ω〉 such that

〈An : n ∈ ω〉 ∈ P̂I and
⋃
{An : n ∈ ω} = ω.

Definition 3.6. For ideals I, J and K on ω we define

b(I,J ,K) = min



|E| : E ⊆ P̂K ∧ ∀〈An〉∈PJ

∃〈En〉∈E

⋃

n∈ω


An ∩

⋃

i≤n

Ei


 /∈ I



 ,

bs(I,J ,K) = min



|E| : E ⊆ P̂K ∧ ∀〈An〉∈PJ

∃〈En〉∈E

⋃

n∈ω


An+1 ∩

⋃

i≤n

Ei


 /∈ I



 .

Remark. A topological space X is a QN-space if it does not distinguish pointwise
and quasi-normal convergence of sequences of real-valued continuous functions de-
fined on X . QN-spaces were introduced by Bukovský, Rec law and Repický in [9],
and were thoroughly examined in papers [5, 6, 8, 9, 10, 30, 33, 34, 39]. The re-
search on ideal-QN-spaces was initiated by Das and Chandra in [15] and has been
continued in [7, 23, 35, 37].

In [9], the authors proved that the smallest size of non-QN-space is equal to
the bounding number b. The cardinal numbers b(I, J,K) and bs(I,J ,K) were
introduced by Filipów and Staniszewski [19, 36] to characterize the smallest size
of a space which is not ideal-QN. Recently, Repický [31, 32] thoroughly examined
ideal-QN spaces and, among others, characterized the smallest size of non-ideal-
QN-spaces in terms of the cardinal b(≥I ∩(DK ×DJ )). Taking into account Theo-
rem 3.10, we see that both Repický and Staniszewski obtained the same conclusion
but coming from different directions.

In [37], Šupina introduced the cardinal κ(I,J ) which is equal to b(I,J , I).

Proposition 3.7. Let I,J and K be ideals on ω.

(1) b(I,J ,K) ≤ bs(I,J ,K).
(2) If J ∩K ⊆ I, then b(I,J ,K) = bs(I,J ,K).
(3) b(Fin,Fin,Fin) = bs(Fin,Fin,Fin) = b.

Proof. (1) Obvious.

(2) It is enough to show b(I,J ,K) ≥ bs(I,J ,K).

Let E ⊆ P̂K be such that for every 〈An : n ∈ ω〉 ∈ PJ there is 〈En〉 ∈ E with⋃
n∈ω(An ∩

⋃
i≤n Ei) /∈ I.

For every E = 〈En〉 ∈ E we define FE
0 = E0 ∪ E1 and FE

n = En+1 for n ≥ 1.

Then F = {〈FE
n 〉 : E ∈ E} ⊆ P̂K and |F| ≤ |E|.

Let 〈An〉 ∈ PJ . Then there is 〈En〉 ∈ E with B =
⋃

n∈ω(An ∩
⋃

i≤n Ei) /∈ I.

Since A0∩E0 ∈ J ∩K ⊆ I and
⋃

n∈ω(An+1∩
⋃

i≤n FE
i ) = (

⋃
n∈ω(An∩

⋃
i≤n Ei))\

(A0 ∩ E0) = B \ (A0 ∩ E0), we get
⋃

n∈ω(An+1 ∩
⋃

i≤n F
E
i ) /∈ I, and the proof is

finished.

(3) It was proved in [19, 36]. �

Proposition 3.8. Let I, I ′,J ,J ′,K,K′ be ideals on ω.

(1) If I ⊆ I ′, then b(I,J ,K) ≤ b(I ′,J ,K) and bs(I,J ,K) ≤ bs(I
′,J ,K).
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(2) If J ⊆ J ′, then b(I,J ,K) ≤ b(I,J ′,K) and bs(I,J ,K) ≤ bs(I,J ′,K).
(3) If K ⊆ K′, then b(I,J ,K) ≥ b(I,J ,K′) and bs(I,J ,K) ≥ bs(I,J ,K′).

Proof. Straightforward. �

In the sequel we will often use the following equivalent forms of b(I,J ,K) with-
out any reference.

Proposition 3.9. Let I, J and K be ideals on ω. Then b(I,J ,K) = b1(I,J ,K) =
b2(I,J ,K) = b3(I,J ,K), where

b1(I,J ,K) = min



|E| : E ⊆ PK ∧ ∀〈An〉∈PJ

∃〈En〉∈E

⋃

n∈ω


An ∩

⋃

i≤n

Ei


 /∈ I



 ,

b2(I,J ,K) = min

{
|G| : G ⊆ Kω ∧ ∀〈An〉∈PJ

∃〈Gn〉∈G

⋃

n∈ω

(An ∩Gn) /∈ I

}
,

b3(I,J ,K) = min

{
|E| : E ⊆ P̂K ∧ ∀〈An〉∈PJ

∃〈En〉∈E

⋃

k∈ω

(
Ek \

⋃

n<k

An

)
/∈ I

}
.

Proof. First we show b(I,J ,K) = b1(I,J ,K). Since b(I,J ,K) ≤ b1(I,J ,K) is

obvious, we only show b(I,J ,K) ≥ b1(I,J ,K). Let E ⊆ P̂K be such that for every
〈An〉 ∈ PJ there is 〈En〉 ∈ E with

⋃
n∈ω(An ∩

⋃
i≤n Ei) /∈ I. For every E = 〈En〉 ∈

E we define FE
n = En∪{en}, where e1, e2, . . . is an enumeration of B = ω\

⋃
n∈ω En

(if B is finite, we put FE
n = En for n > |B|). Let F = {〈FE

n 〉 : E ∈ E}, and notice
that F ⊆ PK and |F| ≤ |E|. Let 〈An〉 ∈ PJ . There is E = 〈En〉 ∈ E with⋃

n∈ω(An ∩
⋃

i≤n Ei) /∈ I. Then
⋃

n∈ω(An ∩
⋃

i≤n Ei) ⊆
⋃

n∈ω(An ∩
⋃

i≤n F
E
i ), so⋃

n∈ω(An ∩
⋃

i≤n F
E
i ) /∈ I. Thus b1(I,J ,K) ≤ b(I,J ,K).

Now we show b(I,J ,K) ≤ b2(I,J ,K). Let G ⊂ Kω such that for every 〈An〉 ∈
PJ there is 〈Gn〉 ∈ G with

⋃
n∈ω(An ∩Gn) /∈ I. For every G = 〈Gn〉 ∈ G we define

EG
0 = G0 and EG

n = Gn \
⋃

i<n Gi for n ≥ 1. Let E = {〈EG
n 〉 : G ∈ G}, and notice

that E ⊆ P̂K and |E| ≤ |G|. Let 〈An〉 ∈ PJ . Then there is G = 〈Gn〉 ∈ G with⋃
n∈ω(An∩Gn) /∈ I. But

⋃
n∈ω(An∩Gn) =

⋃
n∈ω(An∩

⋃
i≤n E

G
i ), so b(I,J ,K) ≤

|G| and the proof of this case is finished.

Now we show b(I,J ,K) ≥ b2(I,J ,K). Let E ⊂ P̂K such that for every 〈An〉 ∈
PJ there is 〈En〉 ∈ E with

⋃
n∈ω(An ∩

⋃
i≤n Ei) /∈ I. For every E = 〈En〉 ∈

E we define GE
n =

⋃
i≤n Ei for n ∈ ω. Let G = {〈GE

n 〉 : E ∈ E}, and notice

that G ⊆ Kω and |G| ≤ |E|. Let 〈An〉 ∈ PJ . Then there is E = 〈En〉 ∈ E
with

⋃
n∈ω(An ∩

⋃
i≤n Ei) /∈ I. But

⋃
n∈ω(An ∩

⋃
i≤n Ei) =

⋃
n∈ω(An ∩ Gn), so

b2(I,J ,K) ≤ |E| and the proof of this case is finished.
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Finally, we show b(I,J ,K) = b3(I,J ,K). Actually, it suffices to observe (using
the fact that 〈An〉 is a partition of ω) that

x ∈
⋃

n∈ω


An ∩

⋃

i≤n

Ei


 ⇐⇒ (∃n ∈ ω)(∃k ≤ n)(x ∈ An ∧ x ∈ Ek) ⇐⇒

(∃k ∈ ω)(∃n ≥ k)(x ∈ Ek ∧ x ∈ An) ⇐⇒ (∃k ∈ ω)(∀n < k)(x ∈ Ek ∧ x /∈ An)

⇐⇒ x ∈
⋃

k∈ω

(
Ek \

⋃

n<k

An

)
. �

3.5. Staniszewski and Canjar bounding numbers are the same.

Theorem 3.10. Let I,J and K be ideals on ω.

(1) b(>I ∩(DK ×DJ )) = b(I,J ,K).
(2) b(≥I ∩(DK ×DJ )) = bs(I,J ,K).

Proof. (1) First we show b(>I ∩(DK × DJ )) ≤ b(I,J ,K). Let E ⊆ P̂K be such
that for every 〈An : n ∈ ω〉 ∈ PJ there is 〈En〉 ∈ E with

⋃
n∈ω(An ∩

⋃
i≤n Ei) /∈ I.

For every E = 〈En〉 ∈ E let fE ∈ ωω be such that f−1
E [{n}] = En for every

n ∈ ω. Let F = {fE : E ∈ E}. Then F ⊆ DK and |F| = |E|.
Let g ∈ DJ and An = g−1[{n}] for every n ∈ ω. Since 〈An : n ∈ ω〉 ∈ PJ , there

is E = 〈En〉 ∈ E with B =
⋃

n∈ω(An ∩
⋃

i≤n Ei) /∈ I.

Once we show B ⊆ {k ∈ ω : fE(k) ≤ g(k)}, the proof will be finished in
this case. Let k ∈ B. Then k ∈ An ∩ Ei for some n ∈ ω and i ≤ n. Hence
g(k) = n ≥ i = fE(k).

Now we show b(>I ∩(DK ×DJ )) ≥ b(I,J ,K). Let F ⊆ DK be such that there
is no g ∈ DJ such that for all f ∈ F we have f >I g.

For every f ∈ F and n ∈ ω we define Ef
n = f−1[{n}], and we notice that

E = {〈Ef
n〉 : f ∈ F} ⊆ P̂K and |E| = |F|.

Let 〈An : n ∈ ω〉 ∈ PJ and g ∈ ωω be such that g−1[{n}] = An. Since g ∈ DJ ,
there is f ∈ F with ¬(f >I g). Thus, B = {k ∈ ω : f(k) ≤ g(k)} /∈ I.

Once we show B ⊆
⋃

n∈ω(An ∩
⋃

i≤n E
f
i ), the proof will be finished in this case.

Let k ∈ B. Since k ∈ Ag(k) ∩ Ef
f(k) and f(k) ≤ g(k), k ∈ Ag(k) ∩

⋃
i≤g(k) E

f
i .

(2) First we show b(≥I ∩(DK × DJ )) ≤ bs(I,J ,K). Let E ⊆ P̂K be such that
for every 〈An : n ∈ ω〉 ∈ PJ there is 〈En〉 ∈ E with

⋃
n∈ω(An+1 ∩

⋃
i≤n Ei) /∈ I.

For every E = 〈En〉 ∈ E let fE ∈ ωω be such that f−1
E [{n}] = En for every

n ∈ ω. Let F = {fE : E ∈ E}. Then F ⊆ DK and |F| = |E|.
Let g ∈ DJ and An = g−1[{n}] for every n ∈ ω. Since 〈An : n ∈ ω〉 ∈ PJ , there

is E = 〈En〉 ∈ E with B =
⋃

n∈ω(An+1 ∩
⋃

i≤n Ei) /∈ I.

Once we show B ⊆ {k ∈ ω : fE(k) < g(k)}, the proof will be finished in this
case. Let k ∈ B. Then k ∈ An+1 ∩ Ei for some n ∈ ω and i ≤ n. Hence
g(k) = n + 1 ≥ i + 1 > i = fE(k).

Now we show b(≥I ∩(DK × DJ )) ≥ bs(I,J ,K). Let F ⊆ DK be such that for
every g ∈ DJ there is f ∈ F with ¬(f ≥I g). For every f ∈ F and n ∈ ω we define

Ef
n = f−1[{n}], and we notice that E = {〈Ef

n〉 : f ∈ F} ⊆ P̂K and |E| ≤ |F|.



YET ANOTHER IDEAL VERSION OF THE BOUNDING NUMBER 9

Take any 〈Ak〉 ∈ PJ and define g ∈ ωω by g(n) = k for every n ∈ Ak, k ∈ ω.
Since g ∈ DJ , there is f ∈ F with B = {n ∈ ω : f(n) < g(n)} /∈ I. Once we show

that B ⊆
⋃

k∈ω(Ak+1 ∩
⋃

i≤k E
f
i ), the proof will be finished in this case.

Let n ∈ ω be such that f(n) < g(n) and let k ∈ ω be such that n ∈ Ak. Notice
that k ≥ 1. (Indeed, if k = 0 then n ∈ A0, so g(n) = 0, and consequently f(n) < 0,

a contradiction.) Since f(n) < g(n) = k, n ∈
⋃

i<k E
f
i . Let l = k − 1. Then

n ∈ Al+1 ∩
⋃

i≤l E
f
i . �

Corollary 3.11. Let I,J and K be ideals on ω.

(1) If J ∩K ⊆ I, then b(>I ∩(DK ×DJ )) = b(≥I ∩(DK ×DJ )).
(2) b(≥Fin ∩(DFin ×DFin)) = b(>Fin ∩(DFin ×DFin)) = b.

Proof. (1) Follows from Theorem 3.10 and Proposition 3.7(2).
(2) Follows from Theorem 3.10 and Proposition 3.7(3). �

Corollary 3.12. Let I,J and K be ideals on ω. If J ⊆ K, then b(I,J ,K) and
bs(I,J ,K) are regular cardinals.

Proof. Follows from Theorem 3.10 and Proposition 3.4(4). �

3.6. Extreme cases.

Proposition 3.13. Let I,J ,K be ideals on ω.

(1) 1 ≤ b(I,J ,K) ≤ bs(I,J ,K) ≤ c
+.

(2) If K 6⊆ I, then b(I,J ,K) = 1.
(3) If J ∩K ⊆ I and K 6⊆ I, then bs(I,J ,K) = 1.
(4) If K ⊆ J , then bs(I,J ,K) ≥ ℵ0.
(5) If J ⊆ K and I 6⊥ J , then bs(I,J ,K) ≤ c.
(6) If J ⊆ K, then b(I,J ,K) ≤ c.
(7) If I ⊥ J , then bs(I,J ,K) = c

+.
(8) If J ∩K ⊆ I and I ⊥ J , then b(I,J ,K) = c

+.

Proof. (1) Obvious.
(2) By (1) it is enough to show that b(I,J ,K) ≤ 1. Let E ∈ K \ I and

E = {〈E, ∅, ∅, . . . 〉}. Since E ∈ K, E ∈ P̂K. Let 〈An〉 ∈ PJ . Then
⋃

n∈ω(An ∩⋃
i≤n Ei) =

⋃
n∈ω(An ∩ E) = (

⋃
n∈ω An) ∩ E = ω ∩ E = E /∈ I. Consequently,

b(I,J ,K) ≤ |E| = 1.
(3) Follows from (2) and Proposition 3.7(2).
(4) It follows from [36, Theorem 4.9(5)].
(5) It follows from [36, Theorem 4.9(2)].
(6) If I 6⊥ J , it follows from (5). If I ⊥ J , then K 6⊆ I in this case, so (2)

finishes the proof.
(7) It follows from [36, Theorem 4.9(1)].
(8) Follows from (7) and Proposition 3.7(2). �

Example 3.14. Let I = {A ⊆ ω : A ∩ {2n : n ∈ ω} ∈ Fin} and J = K = {A ⊆
ω : A ∩ {2n + 1 : n ∈ ω} ∈ Fin}. Then by Proposition 3.13 we have b(I,J ,K) = 1
and bs(I,J ,K) = c

+.



10 RAFA L FILIPÓW AND ADAM KWELA

4. Basic relationships between the bounding numbers

In the rest of the paper we examine the cardinals b(I,J ,K) and bs(I,J ,K) only
in the case when |{I,J ,K} \ {Fin}| ≤ 1 i.e. a priori one could consider cardinals
for 8 triples: (Fin,Fin,Fin), (Fin,Fin, I), (Fin, I,Fin), (Fin, I, I), (I,Fin,Fin),
(I,Fin, I), (I, I,Fin), (I, I, I). However, it will follow from Corollary 4.1 and The-
orem 4.2 that in fact we can restrict our study to four nontrivial cases: b(I, I, I),
b(I, I,Fin), b(I,Fin,Fin) and bs(Fin, I, I).

In the second part of this section we present diagrams which summarize most
results proved in the first part.

4.1. Basic properties and relationships.

Corollary 4.1. b(I,J ,K) = bs(I,J ,K) for any triple (I,J ,K) ∈ {(Fin,Fin,Fin),
(Fin,Fin, I), (Fin, I,Fin), (I,Fin,Fin), (I,Fin, I), (I, I,Fin), (I, I, I)}.

Proof. It follows from Proposition 3.7(2). �

Theorem 4.2. Let I be an ideal on ω such that I 6= Fin.

(1) b(Fin,Fin, I) = b(Fin, I, I) = 1.
(2) b(Fin,Fin,Fin) = b(Fin, I,Fin) = b.
(3) (a) If I is not a P-ideal, b(I,Fin, I) = 1.

(b) If I is a P-ideal, b(I,Fin, I) = b(I, I, I).
(4) (a) If I is not a weak P-ideal, b(I, I,Fin) = c

+.
(b) If I is a weak P-ideal, b(I, I,Fin) ≤ d.

(5) ℵ1 ≤ b(I, I, I) ≤ c.
(6) b ≤ b(I,Fin,Fin) ≤ d.
(7) b(I,Fin,Fin) ≤ b(I, I,Fin).
(8) b(I, I, I) and b(I,Fin,Fin) are regular.
(9) b(I, I, I) ≤ cf(b(I, I,Fin)) ≤ b(I, I,Fin).

Proof. (1) It follows from Proposition 3.13(2).
(2) It follows from [19, Proposition 4.5].
(3a) It follows from [19, Proposition 4.1].
(3b) It follows from [19, Corollary 4.4].
(4a) It follows from [36, Theorem 4.9(1)]
(4b) It follows from [23, Corollary 2.10].
(5) It follows from [19, Proposition 4.1].
(6) By (2) and Proposition 3.8 we have b = b(Fin,Fin,Fin) ≤ b(I,Fin,Fin).

Now we show b(I,Fin,Fin) ≤ d. Let F ⊂ ωω be a dominating family in (ωω,≤∗).
Without loss of generality we can assume that every f ∈ F is increasing. We define
Ef

n = [f(n− 1), f(n)) ∩ ω for every f ∈ F , n ∈ ω (here we put f(−1) = 0).

Notice that 〈Ef
n : n ∈ ω〉 ∈ P̂Fin for every f ∈ F . Let 〈An : n ∈ ω〉 ∈ PFin.

Let g ∈ ωω be given by g(n) = max(
⋃

i≤n Ai). Note that if g(n) < f(n), then

An ⊆
⋃

i≤n Ai ⊆ [0, f(n)) =
⋃

i≤n E
f
i .

Since F is dominating, there is f ∈ F with g <∗ f . Let N ∈ ω be such that
g(n) < f(n) for all n ≥ N .

Then
⋃

n∈ω(An∩
⋃

i≤n E
f
i ) ⊇

⋃
n≥N (An∩

⋃
i≤n Ef

i ) =
⋃

n≥N (
⋃

i≤n Ef
i ) = ω /∈ I,

and the proof is finished.
(7) It follows from Proposition 3.8.
(8) It follows from Theorem 3.10(1, 2) and Proposition 3.4(4).
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(9) The second inequality is obvious and the first inequality follows from Theo-
rem 3.10(1) and Proposition 3.4(2). �

Corollary 4.3. b(I,J ,K) and bs(I,J ,K) are regular cardinals for any triple
(I,J ,K) ∈ {(Fin,Fin,Fin), (Fin,Fin, I), (Fin, I,Fin), (Fin, I, I), (I,Fin,Fin),
(I,Fin, I), (I, I, I)}.

Proof. By Corollary 4.1 and Theorem 4.2(2), b(Fin, I,Fin) = bs(Fin, I,Fin) = b,
which is a regular cardinal. The remaining cases follow from Corollary 3.12. �

We were not able to show that b(I, I,Fin) is regular. However, the next result
shows that some values of b(I, I,Fin) are prohibited (for instance, this is the case
for ℵω, as cf(ℵω) = ω).

Corollary 4.4. ℵ1 ≤ b(I, I, I) ≤ cf(b(I, I,Fin)) = cf(bs(I, I,Fin)) for any ideal
I.

Proof. By Proposition 3.4(2) and Theorem 3.10 we have b(I, I, I) ≤ cf(b(I, I,Fin)),
cf(b(I, I,Fin)) = cf(bs(I, I,Fin)) follows from Corollary 4.1 and ℵ1 ≤ b(I, I, I)
follows from Theorem 4.2(5). �

As shown in the next result, for P-ideals the situation is much simpler – many
considered cardinals coincide.

Theorem 4.5. If I is a P-ideal, then

b ≤ b(I,Fin,Fin) = b(I, I, I) = b(I,Fin, I) = b(I, I,Fin) ≤ d.

Proof. Taking into account the previous results and the fact that every P-ideal is
a weak P-ideal, it is enough to show b(I,Fin,Fin) ≥ b(I, I,Fin) and b(I, I, I) ≥
b(I, I,Fin).

First we show b(I,Fin,Fin) ≥ b(I, I,Fin).
Let E ∈ PFin be such that for every 〈An〉 ∈ PFin there is 〈En〉 ∈ E with⋃

n∈ω(An ∩
⋃

i≤n Ei) /∈ I.

Let 〈Bn〉 ∈ PI . Since I is a P-ideal, there is B ∈ I with Bn \B ∈ Fin for every
n ∈ ω. Let B = {bn : n ∈ ω} and set An = (Bn \ B) ∪ {bn} for every n ∈ ω. Then
〈An〉 ∈ PFin, so there is 〈En〉 ∈ E with C =

⋃
n∈ω(An ∩

⋃
i≤n Ei) /∈ I.

Once we show C \ B ⊆
⋃

n∈ω(Bn ∩
⋃

i≤n Ei), the proof of this case will be
finished.

Let k ∈ C \B. Then there is n ∈ ω with k ∈ [An ∩
⋃

i≤n Ei] \B = [((Bn \B) ∪
{bn}) ∩

⋃
i≤n Ei] \B = (Bn \B) ∩

⋃
i≤n Ei ⊆ Bn ∩

⋃
i≤n Ei.

Now we show b(I, I, I) ≥ b(I, I,Fin).
Let E ∈ PI be such that for every 〈An〉 ∈ PI there is 〈En〉 ∈ E with

⋃
n∈ω(An ∩⋃

i≤n Ei) /∈ I.

Since I is a P-ideal, for every E = 〈En〉 ∈ E there is BE ∈ I such that DE
n =

En \BE ∈ Fin for every n ∈ ω. Note that DE
n ∩DE

k = ∅ for every E ∈ E and n 6= k.
Let 〈An〉 ∈ PI . Then there is E = 〈En〉 ∈ E with C =

⋃
n∈ω(An∩

⋃
i≤n Ei) /∈ I.

Once we show C \ BE ⊆
⋃

n∈ω(An ∩
⋃

i≤n DE
i ), the proof of this case will be

finished.
Let k ∈ C \ BE . Then there is n ∈ ω with k ∈ [

⋃
n∈ω(An ∩

⋃
i≤n Ei)] \ BE =⋃

n∈ω(An ∩
⋃

i≤n(Ei \BE)) =
⋃

n∈ω(An ∩
⋃

i≤n D
E
i ). �

The rest of this subsection is devoted to bs(Fin, I, I).
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Lemma 4.6. Let I be an ideal on ω.

(1) If I is not a P-ideal, then bs(Fin, I, I) = ℵ0.
(2) If I is a P-ideal, then ℵ1 ≤ bs(Fin, I, I) ≤ b.

Proof. (1) By Theorem 3.13(4), bs(Fin, I, I) ≥ ℵ0. The revers inequality follows
from [36, Theorem 4.9(3)].

(2) The first inequality follows from [36, Theorem 4.9(4)], whereas the sec-
ond one follows from Theorem 4.2(2) and the observation that bs(Fin, I, I) ≤
bs(Fin, I,Fin) = b(Fin, I,Fin) = b. �

Lemma 4.7. bs(Fin, I, I) ≤ add*(I) for any ideal I.

Proof. If add*(I) = c
+, we are done. Assume that add*(I) ≤ c. Then there is a

family F = {Fα : α < add*(I)} ⊆ I such that for every A ∈ I there is α with
|Fα \ A| = ℵ0. For every α, we define Eα

0 = Fα and Eα
n = ∅ for n ≥ 1. Then

〈Eα
n : n ∈ ω〉 ∈ P̂I .
Take any 〈An〉 ∈ PI . If we show that

⋃
n∈ω(An+1 ∩

⋃
i≤n E

α
i ) /∈ Fin for some α,

the proof will be finished.
Since A0 ∈ I, there is α with |Fα \ A0| = ℵ0. On the other hand, it is easy to

see that Fα \A0 = Eα
0 \A0 ⊆

⋃
n∈ω(An+1 ∩

⋃
i≤n Eα

i ), so we are done. �

Theorem 4.8. bs(Fin, I, I) = min{b, add*(I)} for any ideal I.

Proof. If I is not a P-ideal, then bs(Fin, I, I) = ℵ0 (by Lemma 4.6(1)) and

add*(I) = ℵ0. Since b > ℵ0, we obtain bs(Fin, I, I) = min{b, add*(I)}.
Assume that I is a P-ideal. The inequality “≤” follows from Lemma 4.6(2) and

Lemma 4.7. Below we show the inequality “≥”.

Take κ < min{b, add*(I)}. We will show that κ < bs(Fin, I, I).

Let 〈Eα
n : n ∈ ω〉 ∈ P̂I for α < κ. Since κ · ℵ0 < add*(I), there is A ∈ I such

that |Eα
n \A| < ℵ0 for every α < κ and n ∈ ω.

Let B = ω \ A. Since 〈Eα
n ∩ B〉 ∈ P̂Fin(B) for every α < κ and κ < b =

b(Fin(B),Fin(B),Fin(B)), there is 〈Bn〉 ∈ PFin(B) such that

⋃

n∈ω


Bn ∩

⋃

i≤n

(Eα
i ∩B)


 ∈ Fin(B)

for every α < κ.
Let A0 = A and An = Bn−1 for n ≥ 1. Then 〈An〉 ∈ PI and for every α < κ we

have

⋃

n∈ω


An+1 ∩

⋃

i≤n

Eα
i


 =

⋃

n∈ω


Bn ∩

⋃

i≤n

Eα
i


 =

⋃

n∈ω


Bn ∩

⋃

i≤n

(Eα
i ∩B)


 ∈ Fin.

�

4.2. Diagrams. In this subsection we present some diagrams which show inequal-
ities proved above. In all diagrams, “A → B” means “A ≤ B”. Moreover, to make
diagrams fit into the page, we sometimes write “F” instead of “Fin”.
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b(F, I, I) = 1 → bs(F, I, I) b(F, I,F) = b

b(F,F, I) = 1 b(F,F,F) = b b(I, I, I) b(I, I,F)

b(I,F, I) ∈ {1, b(I, I, I)} b(I,F,F)

Figure 1. All bounding numbers, including the trivial ones, and
inequalities which follow only from Proposition 3.8, Theorem 4.2
and Lemma 4.6.

ℵ1 b b(I,F,F) d c

bs(F, I, I) = min{b, add*(I)} b(I, I, I) b(I, I,F)

add*(I)

Figure 2. Nontrivial bounding numbers and inequalities valid for
arbitrary ideals.

ℵ1 b b(I,Fin,Fin) b(I, I,Fin) d

b(I, I, I)

Figure 3. Inequalities valid for weak P-ideals.

ℵ1 b b(I,Fin,Fin) d c

b(I, I, I)

Figure 4. Inequalities valid for non weak P-ideals.

ℵ1 bs(F, I, I) b
b(I,F,F) = b(I, I, I)

= b(I,F, I) = b(I, I,F)
d

add*(I)

Figure 5. Inequalities valid for P-ideals.



14 RAFA L FILIPÓW AND ADAM KWELA

5. Sums and products of ideals

In this section we examine the considered cardinals for ideals of the form I ⊕J
or I ⊗J . Additionally, we compute the considered cardinals in the case of not tall
ideals.

5.1. Disjoint sums.

Theorem 5.1. Let I and J be ideals on ω.

(1) b(I ⊕ J , I ⊕ J , I ⊕ J ) = min{b(I, I, I), b(J ,J ,J )}.
(2) b(I ⊕ J , I ⊕ J ,Fin) = min{b(I, I,Fin), b(J ,J ,Fin)}.
(3) b(I ⊕ J ,Fin,Fin) = min{b(I,Fin,Fin), b(J ,Fin,Fin)},
(4) bs(Fin, I ⊕ J , I ⊕ J ) = min{bs(Fin, I, I), bs(Fin,J ,J )}.

Proof. We will only prove the first item. The remaining items can be proved in a
similar way.

First we prove that b(I⊕J , I⊕J , I⊕J ) ≤ min{b(I, I, I), b(J ,J ,J )}. We will
prove that b(I⊕J , I⊕J , I⊕J ) ≤ b(I, I, I) (the proof of b(I⊕J , I⊕J , I⊕J ) ≤
b(J ,J ,J ) goes in a similar way).

There is a family {〈Eα
n : n ∈ ω〉 : α < b(I, I, I)} ⊆ P̂I with the property that for

every 〈An : n ∈ ω〉 ∈ PI there is α < b(I, I, I) such that
⋃

n∈ω(An∩
⋃

i≤n Eα
i ) /∈ I.

Consider the family {〈Eα
n × {0} : n ∈ ω〉 : α < b(I, I, I)} ⊆ P̂I⊕J . Let

〈Bn ⊕ Cn : n ∈ ω〉 ∈ PI⊕J . Since 〈Bn : n ∈ ω〉 ∈ PI , there is α < b(I, I, I)
such that C =

⋃
n∈ω(Bn ∩

⋃
i≤n E

α
i ) /∈ I. Then C × {0} /∈ I ⊕ J , and C × {0} ⊆⋃

n∈ω(Bn ⊕ Cn ∩
⋃

i≤n(Eα
i × {0})). That finishes this part of the proof.

Now we prove b(I ⊕ J , I ⊕ J , I ⊕ J ) ≥ min{b(I, I, I), b(J ,J ,J )}. Let κ <

min{b(I, I, I), b(J ,J ,J )} and {〈Eα
n ⊕ Fα

n : n ∈ ω〉 : α < κ} ⊆ P̂I⊕J . Since

κ < b(I, I, I) and {〈Eα
n : n ∈ ω〉 : α < κ} ⊆ P̂I , there is 〈Bn : n ∈ ω〉 ∈ PI such

that
⋃

n∈ω(Bn ∩
⋃

i≤n Eα
i ) ∈ I for all α < κ. Similarly, there is 〈Cn : n ∈ ω〉 ∈ PJ

such that
⋃

n∈ω(Cn ∩
⋃

i≤n Fα
i ) ∈ J for all α < κ. Then 〈Bn ⊕ Cn : n ∈ ω〉 ∈

PI⊕J and
⋃

n∈ω((Bn ⊕ Cn) ∩
⋃

i≤n(Eα
i ⊕ Fα

i )) ∈ I ⊕ J for all α < κ. Thus,

κ < b(I ⊕ J , I ⊕ J , I ⊕ J ). �

5.2. Not tall ideals. Using the results of the previous subsection, we are able to
compute the considered cardinals for not tall ideals.

Theorem 5.2. If I is not a tall ideal, then

ℵ1 ≤ b(I, I, I) ≤ b = b(I,Fin,Fin) = b(I, I,Fin).

Proof. By Theorem 4.2, b(I, I, I) ≤ b(I, I,Fin) and b ≤ b(I,Fin,Fin) ≤ b(I, I,Fin),
so it is enough to show b(I, I,Fin) ≤ b.

Let A ⊆ ω be infinite such that for every B ⊆ A, B ∈ I ⇐⇒ B is finite.
Let Fin(A) denote the family of all finite subsets of A. Then I = Fin(A) ⊕ (I ↾

(ω \ A)) and, by Theorem 5.1(2), we have b(I, I,Fin) ≤ b(Fin(A),Fin(A),Fin) =
b(Fin,Fin,Fin) = b. �

Corollary 5.3. If I is a not tall P-ideal, then

ℵ1 ≤ bs(Fin, I, I) ≤ b = b(I,Fin,Fin) = b(I, I, I) = b(I, I,Fin).

Proof. Follows from Theorems 4.5 and 5.2. �
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Example 5.4. If I = {∅} ⊗ Fin, then

b = bs(Fin, I, I) = b(I,Fin,Fin) = b(I, I, I) = b(I, I,Fin).

Indeed, it is known that add*(I) = b (see e.g. [22, p. 43]), so bs(Fin, I, I) = b.
The remaining equalities follows from Corollary 5.3, because I is a P-ideal (see [17,
Example 1.2.3(b)]) and it is not tall (indeed, if A = {0}×ω, then for every B ⊆ A,
B ∈ {∅} ⊗ Fin ⇐⇒ B is finite).

5.3. Fubini products. In this subsection we compute the considered cardinals for
Fubini products of ideals. We state the lemmas in a more general form than needed
in this section, because we will apply some of them also in other sections.

5.3.1. The cardinal bs(Fin, I, I).

Theorem 5.5. Let J ,K be ideals on ω.

(1) If I = J ⊗K or I = J ⊗ {∅}, then bs(Fin, I, I) = ℵ0.
(2) If I = {∅} ⊗ K, then bs(Fin, I, I) = bs(Fin,K,K).

Proof. (1) It suffices to observe that J ⊗K and J ⊗ {∅} are not P-ideals.
(2) First we will show bs(Fin, I, I) ≤ bs(Fin,K,K).

If add*(K) = c
+, then bs(Fin, I, I) ≤ b = bs(Fin,K,K) by Theorem 4.8. So

assume that add*(K) ≤ c and let F ⊆ K be such that |F| = add*(K) and for any
A ∈ K there is F ∈ F such that F \A /∈ Fin.

Consider the family {{0} × F : F ∈ F} ⊆ I. We claim that it witnesses add*(I) ≤

add*(K).
Fix A ∈ I. Then (A)0 ∈ K, so there is F ∈ F such that |F \ (A)0| = ℵ0.

We get |{0} × F \ A| = |F \ (A)0| = ℵ0. Thus add*(I) ≤ add*(K) which implies
bs(Fin, I, I) ≤ bs(Fin,K,K) by Theorem 4.8.

Now we show bs(Fin, I, I) ≥ bs(Fin,K,K).
If K is not a P-ideal, then I is not a P-ideal as well and we have bs(Fin, I, I) =

bs(Fin,K,K) = ℵ0. So we can assume that K is a P-ideal.

Let κ < bs(Fin,K,K). We will show that κ < add*(I). By Theorem 4.8, it will
finish the proof.

Fix {Aα : α < κ} ⊆ I. Then {(Aα)n : n ∈ ω, α < κ} ⊆ K has cardinality |ω ·κ| <

bs(Fin,K,K) ≤ add*(K), so there is A ∈ K such that (Aα)n \A ∈ Fin for all n ∈ ω
and α < κ.

Define fα(n) = max((Aα)n\A) for all n ∈ ω and α < κ. Since κ < bs(Fin,K,K) ≤
b, there is g ∈ ωω such that fα ≤∗ g for all α < κ. Define B ⊆ ω × ω by
(B)n = A ∪ {0, 1, . . . , g(n)}. Observe that B ∈ I. If we will show that Aα \ B is
finite for all α < κ, the proof will be finished.

Fix α < κ. There is k ∈ ω such that fα(n) ≤ g(n) for all n ≥ k. Then
(Aα \ B)n ⊆ (Aα)n \ A is finite for all n < k and (Aα \ B)n = (Aα)n \ (B)n =
(Aα)n \ (A ∪ {0, 1, . . . , g(n)}) = ∅ for all n ≥ k. Hence Aα \B is finite. �

5.3.2. The cardinal b(I,Fin,Fin). The following three lemmas will be useful in our
considerations.

Lemma 5.6. Let 〈Bn〉 and 〈Cn〉 be partitions of ω. If Cn ⊆
⋃

m≥n Bm (i.e.,

Cn∩
⋃

m<n Bm = ∅) for all n ∈ ω, then
⋃

n∈ω(Cn∩
⋃

i≤n Ai) ⊆
⋃

n∈ω(Bn∩
⋃

i≤n Ai)

for any 〈An〉.
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Proof. If x ∈ Cn ∩
⋃

i≤n Ai for some n ∈ ω, then there is m ≥ n with x ∈ Bm and

we have x ∈ Bm ∩
⋃

i≤n Ai ⊆ Bm ∩
⋃

i≤m Ai. �

Lemma 5.7. Let J ,K be ideals on ω (here we also allow J = {∅}) and I be an
ideal on ω2. If I ⊆ J ⊗ K, then b(I,Fin(ω2),Fin(ω2)) ≤ b(K,Fin(ω),Fin(ω)).

Proof. Let {〈Eα
n : n ∈ ω〉 : α < κ} ⊆ PFin(ω) witness κ = b(K,Fin,Fin).

For each n ∈ ω and α < κ define Aα
n = ({0, . . . , n− 1}×Eα

n)∪ ({n}×
⋃

i≤n Eα
i ).

Then A = {〈Aα
n : n ∈ ω〉 : α < κ} ⊆ PFin(ω2).

We will show that A witnesses b(I,Fin(ω2),Fin(ω2)) ≤ κ.
Let 〈Bn : n ∈ ω〉 ∈ PFin(ω2). Then 〈(Bn)i : n ∈ ω〉 ∈ PFin(ω) for each i ∈ ω.
Now we inductively define

Cn =


⋃

i≤n

((Bn)i ∪ (Bi)n)


 \

(⋃

i<n

Ci

)
,

and observe that 〈Cn : n ∈ ω〉 ∈ PFin(ω). Therefore, there is α < κ such that⋃
n∈ω(Cn ∩

⋃
i≤n E

α
i ) /∈ K.

If we show that (
⋃

n∈ω(Bn ∩
⋃

i≤n A
α
i ))j /∈ K for every j ∈ ω, then

⋃
n∈ω(Bn ∩⋃

i≤n A
α
i ) /∈ I, and the proof will be finished.

Fix j ∈ ω and note that if n > j then (
⋃

i≤n A
α
i )j = (

⋃
i≤n Eα

i )j , and (Bn)j ∩⋃
i≤n(Eα

i )j ⊇ Cn ∩
⋃

i≤n(Eα
i )j (the inclusion follows from Lemma 5.6 because

Cn ∩
⋃

m<n(Bm)j = ∅). Thus, we have

⋃

n∈ω


Bn ∩

⋃

i≤n

Aα
i






j

⊇


⋃

n>j


Bn ∩

⋃

i≤n

Aα
i






j

=
⋃

n>j


(Bn)j ∩


⋃

i≤n

Aα
i




j




=
⋃

n>j


(Bn)j ∩


⋃

i≤n

Eα
i




j


 ⊇

⋃

n>j


Cn ∩


⋃

i≤n

Eα
i




j


 /∈ K.

�

Lemma 5.8. Let K be an ideal on ω and I be an ideal on ω2. If {∅} ⊗ K ⊆ I,
then b(I,Fin(ω2),Fin(ω2)) ≥ b(K,Fin(ω),Fin(ω)).

Proof. We will show that κ < b(K,Fin(ω),Fin(ω)) implies κ < b(I,Fin(ω2),Fin(ω2)).
Let κ < b(K,Fin,Fin) and {〈Eα

n : n ∈ ω〉 : α < κ} ⊆ PFin(ω2).

For each n, j ∈ ω and α < κ define Aα,j
n = (Eα

n )j . Then {〈Aα,j
n : n ∈ ω〉 : j ∈

ω, α < κ} ⊆ PFin(ω).
Since |ω×κ| = κ < b(K,Fin(ω),Fin(ω)), there is 〈Bn〉 ∈ PFin(ω) with

⋃
n∈ω(Bn∩⋃

i≤n A
α,j
i ) ∈ K for all j ∈ ω and α < κ.

Define 〈Cn〉 ∈ PFin(ω2) by Cn = (
⋃

i<n{i}×Bn)∪ ({n}×
⋃

i≤n Bi) for all n ∈ ω.

Fix α < κ and denote X =
⋃

n∈ω(Cn ∩
⋃

i≤n Eα
i ). If we show that X ∈ I, the

proof will be finished. Since {∅} ⊗ K ⊆ I, it is enough to show that (X)j ∈ K for
every j ∈ ω.

Take j ∈ ω. If n > j, then (Cn)j = Bn, so

(X)j =
⋃

n∈ω


(Cn)j ∩

⋃

i≤n

(Eα
i )j


 ⊆


⋃

n≤j

Bn


 ∪

⋃

n>j


Bn ∩

⋃

i≤n

Aα,j
i


 ∈ K.
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�

Theorem 5.9. Let J ,K be ideals on ω.

(1) If I = J ⊗K or I = {∅} ⊗ K, then b(I,Fin,Fin) = b(K,Fin,Fin).
(2) If I = J ⊗ {∅}, then b(I,Fin,Fin) = b.

Proof. (1) The inequality “≤” follows from Lemma 5.7, and “≥” follows from
Lemma 5.8. (2) Since I ⊆ J ⊗ Fin, by Lemma 5.7 we get b(I,Fin,Fin) ≤
b(Fin,Fin,Fin). By 4.2(2), we have b(Fin,Fin,Fin) = b and the inequality “≥”
follows from Theorem 4.2(6). �

The last item of Theorem 5.9 may be surprising: b(J ⊗ {∅},Fin,Fin) does not
depend on J .

5.3.3. The cardinal b(I, I, I). We will need three lemmas.

Lemma 5.10. Let J ,K be ideals on ω (here we allow K = {∅}) and I be an ideal
on ω2. If J ⊗ {∅} ⊆ I ⊆ J ⊗K, then b(I, I, I) ≤ b(J ,J ,J ).

Proof. We will show that κ < b(I, I, I) implies κ < b(J ,J ,J ). Let κ < b(I, I, I)
and {〈Aα

n : n ∈ ω〉 : α < κ} ⊆ PJ .
For each n ∈ ω and α < κ define Eα

n = Aα
n × ω. Then {〈Eα

n : n ∈ ω〉 : α < κ} ⊆
PI (as J ⊗ {∅} ⊆ I).

Since κ < b(I, I, I), there is 〈Bn〉 ∈ PI such that
⋃

n∈ω(Bn ∩
⋃

i≤n E
α
i ) ∈ I for

all α < κ.
Define

V = {k ∈ ω : (Bn)k ∈ K for all n ∈ ω} .

We will show that V ∈ J . Fix k ∈ V . There is m ∈ ω such that k ∈ A0
m. Then


⋃

n∈ω


Bn ∩

⋃

i≤n

E0
i






k

=


 ⋃

n≥m

Bn




k

= ω \

( ⋃

n<m

Bn

)

k

/∈ K.

Since
⋃

n∈ω(Bn ∩
⋃

i≤n E0
i ) ∈ I and I ⊆ J ⊗ K, we get

V ⊆



k ∈ ω :


⋃

n∈ω


Bn ∩

⋃

i≤n

E0
i






k

/∈ K



 ∈ J .

Define 〈Cn〉 ∈ PJ by V ⊆ C0 and

k ∈ Cn ⇐⇒ n = min{i ∈ ω : (Bi)k /∈ K}

for k /∈ V (each Cn belongs to J as 〈Bi〉 ⊆ I and I ⊆ J ⊗ K).
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Fix α < κ and denote X =
⋃

n∈ω(Cn ∩
⋃

i≤n A
α
i ). If we show that X ∈ J , the

proof will be finished. Suppose to the contrary that X /∈ J . Then

J 6∋ X \ V =



k ∈ ω : ∃n ∈ ω k ∈ Cn ∧ k ∈

⋃

i≤n

Aα
i ∧ (Bn)k /∈ K





=



k ∈ ω : ∃n ∈ ω k ∈ Cn ∧


⋃

i≤n

Eα
i




k

= ω ∧ (Bn)k /∈ K





⊆



k ∈ ω :


⋃

n∈ω


Bn ∩

⋃

i≤n

Eα
i






k

/∈ K



 ,

which contradicts
⋃

n∈ω(Bn ∩
⋃

i≤n Eα
i ) ∈ I ⊆ J ⊗K. �

Lemma 5.11. Let J ,K be ideals on ω (here we allow K = {∅}). If I = J ⊗ K,
then b(I, I, I) ≥ b(J ,J ,J ).

Proof. We will show that κ < b(J ,J ,J ) implies κ < b(I, I, I).
Let κ < b(J ,J ,J ) and {〈Eα

n : n ∈ ω〉 : α < κ} ⊆ Iω .
For each n ∈ ω and α < κ define Aα

n = {i ∈ ω : (Eα
n )i /∈ K}. Then {〈Aα

n : n ∈
ω〉 : α < κ} ⊆ J ω .

Since κ < b(J ,J ,J ), there is 〈Bn〉 ∈ PJ such that
⋃

n∈ω(Bn ∩Aα
n) ∈ J for all

α < κ.
Define 〈Cn〉 ∈ PI by Cn = Bn × ω for all n ∈ ω.
Fix α < κ and denote X =

⋃
n∈ω(Cn ∩ Eα

n ). If we show that X ∈ I, the proof
will be finished. Since I = J ⊗ K, it is enough to show that {i ∈ ω : (X)i /∈ K} ⊆⋃

n∈ω(Bn ∩Aα
n).

Take i /∈
⋃

n∈ω(Bn ∩ Aα
n). Since 〈Bn〉 is a partition, there is n ∈ ω with i ∈ Bn.

Then i /∈ Aα
n, so (Eα

n )i ∈ K. Moreover, i ∈ Bn implies (Cn)i = ω, so (X)i =
(Bn ∩Eα

n )i = ω ∩ (Eα
n )i ∈ K. �

Lemma 5.12. Let J ,K be ideals on ω, J ′ be an ideal on ω2 and denote I =
{∅} ⊗ K.

(1) If {{0} ×A : A ∈ J } ⊆ J ′, then b(I, I,J ′) ≤ b(K,K,J ).
(2) If J ′ ⊆ {∅} ⊗ J , then b(I, I,J ′) ≥ b(K,K,J ).

Proof. (1) Let {〈Aα
n : n ∈ ω〉 : α < b(K,K,J )} ⊆ J ω be such that for any

〈Bn : n ∈ ω〉 ∈ PK there is α < b(K,K,J ) such that
⋃

n∈ω(Bn ∩ Aα
n) /∈ K.

Consider the family {〈{0} × Aα
n : n ∈ ω〉 : α < b(K,K,J )} ⊆ (J ′)ω. Fix any

〈Cn : n ∈ ω〉 ∈ PI and define Bn = {i ∈ ω : (0, i) ∈ Cn} for all n ∈ ω. Then
〈Bn : n ∈ ω〉 ∈ PK, so there is α < b(K,K,J ) such that

⋃
n∈ω(Bn ∩ Aα

n) /∈ K. We
have

⋃

n∈ω

(Cn ∩ ({0} ×Aα
n)) ⊇ {0} ×

(⋃

n∈ω

(Bn ∩ Aα
n)

)
/∈ I.

(2) Let {〈Aα
n : n ∈ ω〉 : α < b(I, I,J ′)} ⊆ (J ′)ω be such that for any 〈Bn :

n ∈ ω〉 ∈ PI there is α < b(I, I,J ′) such that
⋃

n∈ω(Bn ∩ Aα
n) /∈ I. For each

α < b(I, I,J ′) and n, k ∈ ω define Eα,k
n = (Aα

n)k. Consider the family {〈Eα,k
n :

n ∈ ω〉 : k ∈ ω, α < b(I, I,J ′)} ⊆ J ω. Fix any 〈Cn : n ∈ ω〉 ∈ PK and define
Bn = ω×Cn for all n ∈ ω. Then 〈Bn : n ∈ ω〉 ∈ PI , so there is α < b(I, I,J ′) such
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that
⋃

n∈ω(Bn ∩ Aα
n) /∈ I. Thus, there is k ∈ ω such that (

⋃
n∈ω(Bn ∩ Aα

n))k /∈ K.
We have

⋃

n∈ω

(Cn ∩ Eα,k
n ) ⊇

(⋃

n∈ω

(Bn ∩ Aα
n)

)

k

/∈ K.

�

Theorem 5.13. Let J ,K be ideals on ω.

(1) If I = J ⊗K or I = J ⊗ {∅}, then b(I, I, I) = b(J ,J ,J ).
(2) If I = {∅} ⊗ K, then b(I, I, I) = b(K,K,K).

Proof.
(1) The inequality “≤” follows from Lemma 5.10, and “≥” follows from Lemma 5.11.
(2) Follows from Lemma 5.12. �

5.3.4. The cardinal b(I, I,Fin).

Theorem 5.14. Let J ,K be ideals on ω.

(1) If I = J ⊗K, then b(I, I,Fin) = c
+.

(2) If I = J ⊗ {∅}, then b(I, I,Fin) = b(J ,J ,Fin).
(3) If I = {∅} ⊗ K, then b(I, I,Fin) = b(K,K,Fin).

Proof. (1) Follows from Theorem 4.2(4) since J ⊗K is not a weak P-ideal.
(2) First we show b(I, I,Fin) ≤ b(J ,J ,Fin).
Let {〈Aα

n : n ∈ ω〉 : α < b(J ,J ,Fin)} ⊆ Finω be such that for any 〈Bn : n ∈
ω〉 ∈ PJ there is α < b(J ,J ,Fin) such that

⋃
n∈ω(Bn ∩ Aα

n) /∈ J . Consider the

family {〈Aα
n×{0} : n ∈ ω〉 : α < b(J ,J ,Fin)} ⊆ Fin(ω2)ω. Fix any 〈Cn : n ∈ ω〉 ∈

PI and define Bn = {i ∈ ω : (i, 0) ∈ Cn} for all n ∈ ω. Then 〈Bn : n ∈ ω〉 ∈ PJ ,
so there is α < b(J ,J ,Fin) such that

⋃
n∈ω(Bn ∩ Aα

n) /∈ J . We have

⋃

n∈ω

(Cn ∩ (Aα
n × {0})) ⊇

(⋃

n∈ω

(Bn ∩ Aα
n)

)
× {0} /∈ I.

Now we show b(I, I,Fin) ≥ b(J ,J ,Fin).
Let {〈Aα

n : n ∈ ω〉 : α < b(I, I,Fin)} ⊆ Fin(ω2)ω be such that for any 〈Bn :
n ∈ ω〉 ∈ PI there is α < b(I, I,Fin) such that

⋃
n∈ω(Bn ∩ Aα

n) /∈ I. For each
α < b(I, I,Fin) and n ∈ ω define Eα

n = {i ∈ ω : (∃j ∈ ω)((i, j) ∈ Aα
n)}. Consider

the family {〈Eα
n : n ∈ ω〉 : α < b(I, I,Fin)} ⊆ Finω. Fix any 〈Cn : n ∈ ω〉 ∈ PJ

and define Bn = Cn × ω for all n ∈ ω. Then 〈Bn : n ∈ ω〉 ∈ PI , so there is
α < b(I, I,Fin) such that

⋃
n∈ω(Bn ∩ Aα

n) /∈ I. Thus, {i ∈ ω : (∃j ∈ ω)((i, j) ∈⋃
n∈ω(Bn ∩Aα

n))} /∈ J . We have

⋃

n∈ω

(Cn ∩Eα
n ) ⊇

{
i ∈ ω : (∃j ∈ ω)

(
(i, j) ∈

⋃

n∈ω

(Bn ∩ Aα
n)

)}
/∈ J .

(3) Follows from Lemma 5.12. �

Example 5.15. If I = Fin ⊗ {∅}, then

ℵ0 = bs(Fin, I, I) < b = b(I, I, I) = b(I,Fin,Fin) = b(I, I,Fin).

Indeed, bs(Fin, I, I) = ℵ0 by Theorem 5.5(1). Moreover, b(I,Fin,Fin) = b by
Theorem 5.9(2), and b(I, I,Fin) = b by Theorems 5.14(2) and 4.2(2). Hence, it is
enough to show b ≤ b(I, I, I). But this inequality follows from Theorem 5.13(1).
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6. Nice ideals

In this section we will compute b(I,Fin,Fin) for ideals I with the Baire property
and b(I, I,Fin) for coanalytic weak P-ideals. The latter gives an upper bound for
b(I, I, I) in the case of coanalytic weak P-ideals (by a result of Debs and Saint
Raymond, this class contains all Π0

4
ideals).

6.1. Ideals with the Baire property. In this subsection an interval [a, b) will
mean [a, b) ∩ ω i.e. the set {n ∈ ω : a ≤ n < b}.

Theorem 6.1 (Talagrand [38, Théorème 21] (see also [1, Theorem 4.1.2])). An
ideal I on ω has the Baire property if and only if there is an increasing sequence
n1 < n2 < . . . such that if there are infinitely many k with [nk, nk+1) ⊆ A, then
A /∈ I.

Corollary 6.2. Let I be an ideal with the Baire property. For every g ∈ ωω there
is h ∈ ωω such that

(1) h is strictly increasing,
(2) g ≤ h,
(3) if A ∈ I, then the set {n : [h(n), h(n + 1)) ⊆ A} is finite.

Proof. By Theorem 6.1 there is a sequence n0 < n1 < . . . such that {k : [nk, nk+1) ⊆
A} is finite for every A ∈ I.

It is enough to define h such that h is increasing, g ≤ h and [h(n), h(n + 1))
contains at least one interval [nk, nk+1) for every n ∈ ω. We can define h inductively
in the following manner. Let h(0) = g(0). Suppose that h(i) has been defined for
i ≤ n. Let k0 = min{k : h(n) ≤ nk}. We put h(n+1) = max{nk0+1, h(n)+1, g(n+
1)}. �

Theorem 6.3. If an ideal I has the Baire property, then b(I,Fin,Fin) = b.

Proof. By Theorem 4.2(6) we only have to show that b(I,Fin,Fin) ≤ b. We will
show that κ < b(I,Fin,Fin) implies κ < b.

Let κ < b(I,Fin,Fin) and gα ∈ ωω for α < κ.
By Corollary 6.2 we can assume that gα are strictly increasing and

⋃

n∈A

[gα(n), gα(n + 1)) /∈ I

for every infinite A ⊆ ω and α < κ.
For α < κ we define Aα

0 = [0, gα(1)) and Aα
n = [gα(n), gα(n + 1)) for n ≥ 1.

Since {〈Aα
n : n ∈ ω〉 : α < κ} ⊆ PFin and κ < b(I,Fin,Fin), there is a partition

〈Bn : n ∈ ω〉 ∈ PFin such that
⋃

n∈ω(Bn ∩
⋃

i≤n A
α
i ) ∈ I for every α < κ.

We define g ∈ ωω by g(n) = max(
⋃

i≤n Bi). If we show that gα ≤∗ g for every
α < κ, the proof will be finished.

Let α < κ. Since B =
⋃

n∈ω(Bn ∩
⋃

i≤n Aα
i ) ∈ I, the set A = {n : [gα(n), gα(n+

1)) ⊆ B} is finite.
Now we show that gα(n) ≤ g(n) for every n ∈ ω\A (i.e. gα ≤∗ g). Let n ∈ ω\A.

Since [gα(n), gα(n + 1)) ∩ (ω \ B) 6= ∅, there is m ∈ [gα(n), gα(n + 1)) ∩ (ω \ B).
Then gα(n) ≤ m. On the other hand, m /∈ B =

⋃
n∈ω(Bn ∩

⋃
i≤n Aα

i ) and m ∈
[gα(n), gα(n + 1)) = Aα

n . Thus m /∈ Bi for every i ≥ n, so m ∈ Bi for some i < n.
Hence g(n) = max(

⋃
i≤n Bi) ≥ m ≥ gα(n). �
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Corollary 6.4. If I is a P-ideal with the Baire property, then

ℵ1 ≤ bs(Fin, I, I) ≤ b = b(I,Fin,Fin) = b(I, I, I) = b(I, I,Fin).

Proof. Follows from Theorems 4.5 and 6.3. �

For f : ω → [0,∞) satisfying
∑

n∈ω f(n) = ∞ we define the summable ideal by

If =

{
A ⊂ ω :

∑

n∈A

f(n) < ∞

}

(for instance, I1/n = {A ⊆ ω :
∑

n∈A 1/(n + 1) < ∞} is the summable ideal), and
for f : ω → [0,∞) satisfying

∑
n∈ω f(n) = ∞ and limn→∞ f(n)/(

∑
i≤n f(i)) = 0,

we define the Erdős-Ulam ideals by

EUf =

{
A ⊂ ω : lim sup

n→∞

∑
i∈A∩n f(i)∑
i∈n f(i)

= 0

}

(for instance, the ideal Id = {A : limn |A ∩ n|/n = 0} of all sets of asymptotic
density zero is an Erdős-Ulam ideal).

Corollary 6.5. If I is a tall summable ideal or a tall Erdős-Ulam ideal, then

add(N ) = bs(Fin, I, I) ≤ b = b(I,Fin,Fin) = b(I, I, I) = b(I, I,Fin),

where add(N ) is the smallest size of a family of Lebesgue null sets with non-null
union.

Proof. It was proved by Hernández and Hrušák [21, Theorem 2.2] that add*(I) =
add(N ) in these cases. Since add(N ) ≤ b (see e.g. [1, p. 35]), we get bs(Fin, I, I) =
add(N ). Moreover, since I is a P-ideal with the Baire property (see e.g. [17,
Examples 1.2.3(c,d)]), Corollary 6.4 finishes the proof. �

Corollary 6.6. Let n ∈ ω \ {0, 1}. If I = Finn, then

ℵ0 = bs(Fin, I, I) < b = b(I,Fin,Fin) = b(I, I, I) ≤ d ≤ c < b(I, I,Fin) = c
+.

Proof. Since I in not a P-ideal, we get bs(Fin, I, I) = ℵ0. Since I has the Baire
property (see e.g. [22]), we can apply Theorem 6.3 to obtain b(I,Fin,Fin) = b.
Since I = Finn = Fin⊗Finn−1, we can apply Theorem 5.13(1) to obtain b(I, I, I) =
b(Fin,Fin,Fin) = b. Since I is not a weak P-ideal, we can apply Proposition 4.2(4a)
to obtain b(I, I,Fin) = c

+. �

6.2. ω-diagonalizable ideals. We need to recall the following technical notion.
We will apply it in the next subsection to the cases of coanalytic weak P-ideals and
Π0

4
ideals.

Let I be an ideal on ω. A family Z ⊆ [ω]<ω \ {∅} is I∗-universal if for each
F ∈ I∗ there is Z ∈ Z with Z ⊆ F . We say that I is ω-diagonalizable by I∗-
universal sets if there exists a family {Zk : k ∈ ω} of I∗-universal families such
that for each F ∈ I∗ there is k ∈ ω such that Z ∩ F 6= ∅ for every Z ∈ Zk.

Theorem 6.7. If an ideal I is ω-diagonalizable by I∗-universal sets, then

ℵ1 ≤ b(I, I, I) ≤ b = b(I,Fin,Fin) = b(I, I,Fin).
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Proof. By Theorem 4.2, we only need to show b(I, I,Fin) ≤ b.
Let {fα : α < b} be an unbounded family on ωω. Without loss of generality we

can assume that each fα is strictly increasing.
For each n ∈ ω and α < b define Fα

n = {i ∈ ω : i ≤ fα(n)}. We will show that
{〈Fα

n : n ∈ ω〉 : α < b} ⊆ Finω witnesses b(I, I,Fin) ≤ b.
Fix 〈Bn : n ∈ ω〉 ∈ PI . Let {Zk : k ∈ ω} be a family of I∗-universal sets

ω-diagonalizing I. For each k, let Zk = {Zn
k : n ∈ ω}.

For each k, n ∈ ω find i(k, n) ∈ ω such that Z
i(k,n)
k ∩ (B0 ∪ . . . ∪ Bn) = ∅

and define gk ∈ ωω by gk(n) = maxZ
i(k,n)
k . Let g ∈ ωω be given by g(i) =

max{g1(i), . . . , gi(i)}.
There is α < b such that fα(i) > g(i) for infinitely many i. If we show that for

each k ∈ ω there is i ∈ ω with Zi
k ⊆

⋃
j∈ω(Bj ∩ Fα

j ), then, by ω-diagonalizability

of I, it will follow that
⋃

j∈ω(Bj ∩ Fα
j ) /∈ I, and the proof will be finished.

Fix k ∈ ω. There is n > k such that fα(n) > g(n) ≥ gk(n) = maxZ
i(k,n)
k .

Thus, Z
i(k,n)
k ⊆ Fα

n ⊆ Fα
n+1 ⊆ . . . and Z

i(k,n)
k ⊆ Bn+1 ∪ Bn+2 ∪ . . .. Hence,

Z
i(k,n)
k ⊆

⋃
j>n(Bj ∩ Fα

j ) ⊆
⋃

j∈ω(Bj ∩ Fα
j ) and we are done. �

6.3. Coanalytic weak P-ideals and Π0

4
ideals.

Theorem 6.8. If I is a coanalytic weak P-ideal, then

ℵ1 ≤ b(I, I, I) ≤ b = b(I,Fin,Fin) = b(I, I,Fin).

Proof. Consider the game G (I), defined by Laflamme (see [28]) as follows: Player
I in his n’th move plays an element Cn ∈ I, and then Player II responses with any
Fn ∈ [ω]

<ω
such that Fn ∩ Cn = ∅. Player I wins if

⋃
n∈ω Fn ∈ I. Otherwise,

Player II wins.
By [26, Theorem 5.1], G (I) is determined for coanalytic ideals (see also [25,

Theorem 1.6]). Moreover, by [28, Theorem 2.16], Player I has a winning strategy
in G (I) if and only if I is not a weak P-ideal. Thus, in our case Player II has a
winning strategy. Again by [28, Theorem 2.16], this is in turn equivalent to I being
ω-diagonalizable by I∗-universal sets. Using Theorem 6.7 we get ℵ1 ≤ b(I, I, I) ≤
b = b(I,Fin,Fin) = b(I, I,Fin) and we are done. �

Corollary 6.9. If I is a Π0

4
ideal, then

ℵ1 ≤ b(I, I, I) ≤ b = b(I,Fin,Fin) = b(I, I,Fin).

Proof. By [16, Theorems 7.5 and 9.1], each Π0

4
ideal is a weak P-ideal. Thus, the

corollary follows from Theorem 6.8. �

Example 6.10. The eventually different ideal is defined by

ED = {A ⊆ ω × ω : ∃m,n ∈ ω ∀k ≥ n (|{i : (k, i) ∈ A}| ≤ m)}.

If I = ED, then

ℵ0 = bs(Fin, I, I) < b(I, I, I) ≤ b = b(I,Fin,Fin) = b(I, I,Fin).

Indeed, since I is not a P-ideal, bs(Fin, I, I) = ℵ0 (see Lemma 4.6(1)). Since I is
a Σ0

2
ideal, we can use Theorem 6.9 to obtain the remaining (in)equality. (Note

that since Fin ⊗ {∅} ⊆ ED ⊆ Fin ⊗ Fin, we could also use Lemma 5.10 to obtain
the inequality b(I, I, I) ≤ b.)
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7. Ideals with b(I, I, I) = ℵ1

In this section we will show that b(I, I, I) = ℵ1 for some ideals (even Σ0

2
ideals).

All results of this section follow from the next lemma.

Lemma 7.1. Let A ⊆ [ω]ω be an uncountable family with the property that A \
(A0 ∪ . . .∪An) /∈ Fin for all n ∈ ω and A,A0, . . . An ∈ A with A 6= Ai for all i ≤ n.
If I is an ideal generated by A, then b(I, I, I) = ℵ1.

Proof. Let {Aα
n ∈ A : n ∈ ω, α < ℵ1} be such that Aα

n 6= Aβ
m whenever (α, n) 6=

(β,m). We will show that {〈
⋃

i≤n Aα
i : n ∈ ω〉 : α < ℵ1} ⊆ Iω witnesses

b(I, I, I) = ℵ1.
Let 〈Bn : n ∈ ω〉 ∈ PI . Then there is α < ℵ1 such that Aα

n \
⋃

i<m Bi /∈ Fin for
all n,m ∈ ω. Indeed, for each m there are Cm

0 , . . . , Cm
lm

∈ A such that
⋃

i<m Bi ⊆∗

Cm
0 ∪ . . .∪Cm

lm
. Since C = {Cm

i : m ∈ ω, i ≤ lm} is countable, there is α < ℵ1 with
{Aα

n : n ∈ ω} ∩ C = ∅. Then

Aα
n \

⋃

i<m

Bi ⊇
∗ Aα

n \ (Cm
0 ∪ . . . ∪Cm

lm) /∈ Fin

for each n,m ∈ ω.
Let B =

⋃
n∈ω(Bn ∩

⋃
i≤n A

α
i ). If we show that B /∈ I, the proof will be

finished. Suppose to the contrary that B =
⋃

n∈ω(Bn ∩
⋃

i≤n Aα
i ) ∈ I. Then there

are D0, . . . , Dk ∈ A with B ⊆∗ D0 ∪ . . . ∪Dk. Find j ∈ ω such that Aα
j 6= Di for

all i = 0, . . . , k.
We have Aα

j \
⋃

n<j Bn /∈ Fin and

Aα
j \

⋃

n<j

Bn = Aα
j ∩

⋃

n≥j

Bn ⊆
⋃

n≥j


Bn ∩

⋃

i≤n

Aα
i


 ⊆

⋃

n∈ω


Bn ∩

⋃

i≤n

Aα
i


 = B.

On the other hand, (Aα
j \
⋃

n<j Bn) \
⋃

n≤k Dn = Aα
j \ (

⋃
n<j Bn ∪

⋃
n≤k Dn) ⊇∗

Aα
j \ (

⋃
n≤lj

Cj
n∪
⋃

n≤k Dn) /∈ Fin. This contradicts B ⊆∗ D0∪ . . .∪Dk and finishes

the proof. �

Theorem 7.2. Let A ⊆ [ω]ω be an uncountable almost disjoint family. If I is an
ideal generated by A, then b(I, I, I) = ℵ1.

Proof. This follows directly from Lemma 7.1 – it suffices to observe that for any
almost disjoint family A, if A,A0, . . . An ∈ A are such that A 6= Ai for all i ≤ n,
then A ∩ (A0 ∪ . . . ∪An) is finite, so A \ (A0 ∪ . . . ∪ An) is infinite. �

Let 2<ω be the set of all finite sequences of zeros and ones. Let Ib denote the
ideal on 2<ω generated by all branches i.e. sets of the form Bx = {s ∈ 2<ω : s ⊆ x}
for x ∈ 2ω. It is easy to see that the ideal Ib is Σ0

2
and not tall.

Corollary 7.3. b(Ib, Ib, Ib) = ℵ1.

Proof. It follows from Theorem 7.2, as the family {Bx : x ∈ 2ω} is almost disjoint
of size c. �

Let Ω be the set of all clopen subsets of the Cantor space 2ω having Lebesgue
measure 1/2 (note that Ω is countable). Let S denote the Solecki’s ideal on Ω
i.e. the ideal generated by sets of the form Gx = {A ∈ Ω : x ∈ A} for all x ∈ 2ω. S
is a tall Σ0

2
ideal (see e.g. [22]).
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Theorem 7.4. b(S,S,S) = ℵ1.

Proof. It follows from Lemma 7.1, as the family {Gx : x ∈ 2ω} has cardinality c and
for any x, x0, . . . , xn ∈ 2ω with x 6= xi for all i ≤ n, we have Gx\(Gx0

∪ . . .∪Gxn
) =

{A ∈ Ω : x ∈ A ∧ ∀i ≤ n (xi /∈ A)} is infinite. �

8. Consistency results

In this section we apply some known consistency results to the case of the con-
sidered cardinals. The main aim of this section is to show that consistently the
values of considered cardinals can be pairwise distinct. We start with two results
about bs(Fin, I, I).

Proposition 8.1. It is consistent that there is a P-ideal I with

bs(Fin, I, I) < b(I, I, I) = b(I,Fin,Fin) = b(I, I,Fin).

Proof. It follows from Corollary 6.5 and the fact that it is consistent that add(N ) <
b (see e.g. [2]). �

Theorem 8.2 (Essentially Louveau). Under Martin’s axiom, there is a maximal
ideal I with bs(Fin, I, I) = κ for all regular ℵ1 ≤ κ ≤ c.

Proof. Louveau [29, Théorèmes 3.9 and 3.12] proved that there is a maximal ideal

I with add*(I) = κ (see also [4, p. 2647]). On the other hand, it is well known that
b = c under Martin’s axiom. Thus, bs(Fin, I, I) = κ. �

Now we want to reformulate Canjar’s results from [12], [13] and [14]. He studied
d(≥I ∩(DFin × DFin)) and d(≥I ∩(DI × DI)) in the case of maximal ideals I. It
is not difficult to see that for a maximal ideal I we have d(≥I ∩(DFin × DFin)) =
b(≥I ∩(DFin ×DFin)) and d(≥I ∩(DI ×DI)) = b(≥I ∩(DI ×DI)). On the other
hand, by Theorem 3.10(2), b(I,Fin,Fin) = b(≥I ∩(DFin ×DFin)) and b(I, I, I) =
b(≥I ∩(DI ×DI)). Thus, we have the following two results.

Theorem 8.3 (Canjar [12] and [14]). The following is true in the model obtained
by adding λ Cohen reals to a model of GCH.

(1) There exists an ideal I with b(I,Fin,Fin) = κ for all regular cardinals
ℵ1 ≤ κ < λ.

(2) There exist 2κ ideals I with b(I, I, I) = κ for all regular cardinals ℵ1 ≤
κ < λ.

Theorem 8.4 (Essentially Canjar [13]).

(1) There is an ideal I such that b(I,Fin,Fin) = cf(d).
(2) If d = c, then there is a P-ideal I such that b(I,Fin,Fin) = cf(d).

Recall that consistency of b < cf(d) and b < cf(d) ≤ d = c follows for instance
from [2, Theorem 2.5].

Corollary 8.5.

(1) If b < cf(d), then there is an ideal I such that b < b(I,Fin,Fin) = cf(d).
(2) If b < cf(d) ≤ d = c, then there is a P-ideal I such that

b < b(I,Fin,Fin) = b(I, I, I) = b(I, I,Fin) = cf(d).

Proof. Follows directly from Theorems 8.4 and 4.5. �
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Next three results will establish that consistently the values of b(I, I, I), b(I,Fin,Fin)
and b(I, I,Fin) can be pairwise distinct

Theorem 8.6. If b < b(J ,Fin,Fin) for some ideal J (e.g. if b < cf(d)), then there
is an ideal I, which is not a weak P-ideal, such that b(I, I, I) = b < b(I,Fin,Fin).

Proof. Consider the ideal I = Fin ⊗ J . Obviously, I is not a weak P-ideal as
Fin ⊗ Fin ⊆ I. By Theorems 5.13(1), 5.9(1) and 4.2(2) we have b(I, I, I) =
b(Fin,Fin,Fin) = b and b(I,Fin,Fin) = b(J ,Fin,Fin) > b. �

Theorem 8.7. If b < b(J ,J ,J ) for some ideal J (e.g. if b < cf(d) ≤ d = c),
then there is an ideal I, which is not a weak P-ideal, such that b(I,Fin,Fin) = b <
b(I, I, I).

Proof. Consider the ideal I = J ⊗ Fin. Obviously, I is not a weak P-ideal as
Fin ⊗ Fin ⊆ I. By Theorems 5.13(1), 5.9(1) and 4.2(2) we have b(I, I, I) =
b(J ,J ,J ) > b and b(I,Fin,Fin) = b(Fin,Fin,Fin) = b. �

Theorem 8.8. If b < b(J ,Fin,Fin) for some ideal J (e.g. if b < cf(d)), then
there is a weak P-ideal I such that

b(I, I, I) ≤ b = b(I,Fin,Fin) < b(I, I,Fin).

Proof. Consider the ideal I = (Fin ⊗ Fin) ∩ (J ⊗ {∅}).
First we show that I is a weak P-ideal (this fact is also shown in [23, Lemma 2.3],

however we prove it here for the sake of completeness). Fix a partition 〈Xn〉 ∈ PI .
Define by induction two sequences 〈mn〉, 〈kn〉 ∈ ωω such that for each n ∈ ω we
have (n,mn) ∈ Xkn

and

mn =

{
min{m ∈ ω : m /∈ (

⋃
{Xki

: i < n})n} if ω 6⊆ (
⋃

i<n Xki
)n,

min{m ∈ ω : m ∈ (
⋃
{Xk : |(Xk)n| = ω})n} otherwise.

Then Y = {(n,mn) : n ∈ ω} /∈ I as {n ∈ ω : (Y )n 6= ∅} = ω /∈ J . Moreover,
Y ∩Xn is finite for all n (otherwise we would have |(Xn)k| = ω for infinitely many
k ∈ ω). Thus I is a weak P-ideal.

As I ⊆ Fin⊗Fin and Fin⊗Fin is meager, I is meager as well. Thus, I has the
Baire property and b(I,Fin,Fin) = b by Theorem 6.3.

By Lemma 5.10 we have b(I, I, I) ≤ b(Fin,Fin,Fin) = b, as Fin ⊗ {∅} ⊆ I ⊆
Fin ⊗ Fin.

To finish the proof we need to show that b(I, I,Fin) ≥ b(J ,Fin,Fin). Let
κ < b(J ,Fin,Fin) and {〈Eα

n : n ∈ ω〉 : α < κ} ⊆ Fin(ω2)ω. We will show that this
family does not witness b(I, I,Fin) ≤ κ.

For each n ∈ ω and α < κ define

Aα
n = {k ∈ ω : (Eα

n )k 6= ∅}.

Since {〈Aα
n : n ∈ ω〉 : α < κ} ⊆ Finω and κ < b(J ,Fin,Fin), there is 〈Bn〉 ∈ PFin

such that
⋃

n∈ω (Bn ∩Aα
n) ∈ J for all α < κ.

Define Cn = Bn × ω for all n ∈ ω. Then 〈Cn〉 ∈ PI .
Fix α < κ and denote X =

⋃
n∈ω (Cn ∩ Eα

n ). If we show that X ∈ I, the proof
will be finished.

Observe that for each k ∈ ω there is j ∈ ω with k ∈ Bj . Then (X)k = (Eα
j )k, so

(X)k is finite. Thus, X ∈ {∅} ⊗ Fin ⊆ Fin ⊗ Fin.



26 RAFA L FILIPÓW AND ADAM KWELA

Moreover,

{k ∈ ω : (X)k 6= ∅} = {k ∈ ω : ∃n ∈ ω ∃i ∈ ω (k, i) ∈ Cn ∩ Eα
n}

=
⋃

n∈ω

{k ∈ ω : ∃i ∈ ω (i ∈ (Cn ∩ Eα
n )k)}

⊆
⋃

n∈ω

({k ∈ ω : ∃i ∈ ω(i ∈ (Cn)k)} ∩ {k ∈ ω : ∃i ∈ ω(i ∈ (Eα
n )k)})

=
⋃

n∈ω

(Bn ∩ Aα
n) ∈ J .

Thus, X ∈ J ⊗ {∅} and we can conclude that X ∈ I. �

We were not able to compute the exact value of b(I, I, I) in Theorem 8.8. Thus,
we have the following open question.

Question 1. Is it consistent that there is a weak P-ideal I such that b(I, I, I) <
b(I,Fin,Fin) < b(I, I,Fin)?

There is another closely related open question.

Question 2. Is it consistent that there is a weak P-ideal I such that b(I,Fin,Fin) <
b(I, I, I) < b(I, I,Fin)?

9. Questions and remarks about b(I, I, I)

In this section we collect some remarks indicating difficulties in obtaining any
general results concerning b(I, I, I) for Borel ideals.

Remark. Observe that I ⊆ J does not give us any information about the relation
between b(I, I, I) and b(J ,J ,J ). Indeed, let I be an ideal generated by an
uncountable family F ⊆ ωω of pairwise almost disjoint graphs (i.e., {n ∈ ω :
f(n) = g(n)} ∈ Fin for any f, g ∈ F , f 6= g). Then Fin(ω2) ⊆ I ⊆ Fin ⊗ Fin,
however b(Fin(ω2),Fin(ω2),Fin(ω2)) = b(Fin ⊗ Fin,Fin ⊗ Fin,Fin ⊗ Fin) = b (by
Corollary 6.6) and b(I, I, I) = ℵ1 (by Theorem 7.2).

Remark. We have non-tall ideals with b(I, I, I) = ℵ1 (e.g. the branching ideal Ib)
as well as non-tall ideals with b(I, I, I) = b (this is the case for instance for Fin,
Fin ⊗ {∅} or {∅} ⊗ Fin). The same holds for tall ideals – S is a tall ideal with
b(S,S,S) = ℵ1 whereas the ideal Id is a tall ideal with b(Id, Id, Id) = b.

Remark. Σ0

2
ideals may have different values of b(I, I, I). Indeed, there are Σ0

2

ideals with b(I, I, I) = ℵ1 (e.g. the branching ideal Ib or the Solecki’s ideal S) as
well as Σ0

2
ideals with b(I, I, I) = b (e.g. ideals Fin, Fin ⊗ {∅} or {∅} ⊗ Fin).

Remark. Note that actually we cannot compute b(I, I, I) basing on the descriptive
complexity of I. Indeed, for each n ≥ 1 the ideal Finn is an Σ0

2n
-complete ideal

such that b(Finn,Finn,Finn) = b (see Corollary 6.6). On the other hand, Calbrix
in [11] proved that given a Σ0

α-complete, α > 1, (respectively: Π0

α-complete, α > 2)
subset A of 2ω, the ideal IA on 2<ω generated by the family {Bx : x ∈ A} is Σ0

α-
complete (respectively: Π0

α-complete). Moreover, since the family {Bx : x ∈ A} is
almost disjoint, by Theorem 7.2 we get b(IA, IA, IA) = ℵ1.

We end with two natural open questions about b(I, I, I).

Question 3. Is b(I, I, I) ≤ d for every ideal I?

Question 4. Is it consistent that ℵ1 < b(I, I, I) < b for some ideal I?
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22. Michael Hrušák, Combinatorics of filters and ideals, Set theory and its applications, Contemp.
Math., vol. 533, Amer. Math. Soc., Providence, RI, 2011, pp. 29–69. MR 2777744

23. Adam Kwela, Ideal weak QN-spaces, Topology Appl. 240 (2018), 98–115. MR 3784399
24. Adam Kwela and Ireneusz Rec law, Ranks of F-limits of filter sequences, J. Math. Anal. Appl.

398 (2013), no. 2, 872–878. MR 2990109
25. Adam Kwela and Marcin Sabok, Topological representations, J. Math. Anal. Appl. 422 (2015),

no. 2, 1434–1446. MR 3269521
26. Adam Kwela and Marcin Staniszewski, Ideal equal Baire classes, J. Math. Anal. Appl. 451

(2017), no. 2, 1133–1153. MR 3624783



28 RAFA L FILIPÓW AND ADAM KWELA
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35. Viera Šottová and Jaroslav Šupina, Principle S1(P,R): ideals and functions, Topology Appl.
258 (2019), 282–304. MR 3924519

36. Marcin Staniszewski, On ideal equal convergence II, J. Math. Anal. Appl. 451 (2017), no. 2,
1179–1197. MR 3624786
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