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Abstract

We prove that many seemingly simple theories have Borel complete reducts.
Specifically, if a countable theory has uncountably many complete 1-types, then it
has a Borel complete reduct. Similarly, if 7' (M ) is not small, then M “? has a Borel
complete reduct, and if a theory 7' is not w-stable, then the elementary diagram of
some countable model of 7" has a Borel complete reduct.

1 Introduction

In their seminal paper [1], Friedman and Stanley define and develop a notion of Borel
reducibility among classes of structures with universe w in a fixed, countable language L
that are Borel and invariant under permutations of w. It is well known (see e.g., [3] or
[2]) that such classes are of the form Mod(®), the set of models of & whose universe is
precisely w for some sentence ® € L, ., but here we concentrate on first-order, countable
theories 7'. For countable theories 7', S in possibly different language, a Borel reduction
is a Borel function f : Mod(7") — Mod(.S) that satisfies M = N if and only if f(M) =
f(INV). One says that 1" is Borel reducible to S if there is a Borel reduction f : Mod(7") —
Mod(S). As Borel reducibility is transitive, this induces a quasi-order on the class of all
countable theories, where we say 1" and S are Borel equivalent if there are Borel reductions
in both directions. In [[1], Friedman and Stanley show that among Borel invariant classes
(hence among countable first-order theories) there is a maximal class with respect to <p.
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We say @ is Borel complete if it is in this maximal class. Examples include the theories of
graphs, linear orders, groups, and fields.

The intuition is that Borel complexity of a theory 7' is related to the complexity of
invariants that describe the isomorphism types of countable models of 7. Given an L-
structure M, one naturally thinks of the reducts M, of M to be ‘simpler objects’ hence the
invariants for a reduct ‘should’ be no more complicated than for the original M, but we
will see that this intuition is incorrect. As a paradigm, let 7" be the theory of ‘independent
unary predicates’ i.e., 7" = T'h(2¥, U,,), where each U, is a unary predicate interpreted as
U, = {n € 2¥ : n(n) = 1}. The countable models of T" are rather easy to describe. The
isomorphism type of a model is specified by which countable, dense subset of ‘branches’
is realized, and how many elements realize each of those branches. However, with Theo-
rem we will see that 7" has a Borel complete reduct.

To be precise about reducts, we have the following definition.

Definition 1.1. Given an L-structure M, a reduct M' of M is an L'-structure with the same
universe as M, and for which the interpretation every atomic L'-formula a(xy, ..., ) is
an L-definable subset of M* (without parameters). An L'-theory 1" is a reduct of an
L-theory T if T' = Th(M') for some reduct M’ of some model M of T'.

In the above definition, it would be equivalent to require that the interpretation in M’
of every L'-formula f(x1, ..., x};) is a 0-definable subset of M*.

2 An engine for Borel completeness results

This section is devoted to proving Borel completeness for a specific family of theories. All
of the theories T, are in the same language L. = {E,, : n € w} and are indexed by strictly
increasing functions h : w — w \ {0}. For a specific choice of &, the theory 7}, asserts that

 Each F, is an equivalence relation with exactly h(n) classes; and

» The E,’s cross-cut, i.e., for all nonempty, finite /' C w, Er(x,y) := /\neF E.(z,y)
is an equivalence relation with precisely I1,,c ph(n) classes.

It is well known that each of these theories 7} is complete and admits elimination of
quantifiers. Thus, in any model of 7}, there is a unique 1-type. However, the strong type
structure is complicated So much so, that the whole of this section is devoted to the proof
of:

'Recall that in any structure M, two elements a, b have the same strong type, stp(a) = stp(b), if M |=
E(a,b) for every 0-definable equivalence relation. Because of the quantifier elimination, in any model
M [= Ty, stp(a) = stp(b) if and only if M | E,,(a,b) forevery n € w.
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Theorem 2.1. For any strictly increasing h : w — w \ {0}, T}, is Borel complete.

Proof. Fix a strictly increasing function h : w — w \ {0}. We begin by describing
representatives 3 of the strong types and a group G that acts faithfully and transitively on
B. As notation, for each n, let [h(n)] denote the h(n)-element set {1,...,h(n)} and let
Sym([h(n]) be the (finite) group of permutations of [i(n)]. Let

B={f:w—w:f(n)€lh(n)foraln c w}

and let G = Il,c,Sym([h(n)]) be the direct product. As notation, for each n € w, let

mn : G — Sym([h(n)]) be the natural projection map. Note that G acts coordinate-wise

on Bby: Forg € Gand f € B, g- f is the element of B satisfying g- f(n) = m,(9)(f(n)).
Define an equivalence relation ~ on B by:

[~ f ifandonlyif {ne€w: f(n)# f(n)}is finite.

For f € B, let [f] denote the ~-class of f and, abusing notation somewhat, for W C B

W)= Hlf: few}.

Observe that for every g € G, the permutation of B induced by the action of g maps
~-classes onto ~-classes, i.e., G also acts transitively on B/ ~.

We first identify a countable family of ~-classes that are ‘sufficiently indiscernible’.
Our first lemma is where we use the fact that the function h defining 7}, is strictly increas-
ing.

Lemma 2.2. There is a countable set Y = {f; : i € w} C B such that whenever i # j,

{new: fi(n) = f;(n)} is finite.

Proof. We recursively construct Y in w steps. Suppose {f; : i < k} have been chosen.
Choose an integer /N large enough so that h(N) > k (hence h(n) > k for all n > N).
Now, construct fi € B to satisfy fip(n) # fi(n) foralln > N and all ¢ < k. O

Fix an enumeration (f; : i € w) of Y for the whole of the argument. The ‘indiscerni-
bility’ of Y alluded to above is formalized by the following definition and lemma.

Definition 2.3. Given a permutation o € Sym(w), a group element g € G respects o if
g - [fil = [fo)] forevery i € w.

Lemma 2.4. For every permutation o € Sym(w), there is some g € G respecting o.



Proof. Note that since h is increasing, h(n) > n for every n € w. Fix a permutation o €
Sym(w) and we will define some g € G respecting o coordinate-wise. Using Lemma[2.2]
choose a sequence

0:N0<<N1<<N2<<---
of integers such that for all 7 € w, both f;(n) # f;(n) and f,4)(n) # fs¢;)(n) hold for all
n > N;and all j < i.

Since {/V;} are increasing, it follows that for each i € w and all n > N;, the subsets
{fj(n) : j < i} and {f,;)(n) : j < i} of [h(n)] each have precisely (i + 1) elements.
Thus, for each ¢ < w and for each n > N;, there is a permutation J,, € Sym([h(n)])
satisfying

N\ 0n(f5(n) = foiy(n)

J<i
[Simply begin defining d,, to meet these constraints, and then complete d,, to a permutation
of [h(n)] arbitrarily.] Using this, define g := (J,, : n € w), where each §,, € Sym([h(n)])
is constructed as above. To see that g respects o, note that for every i € w, (g - fi)(n) =
fo@(n) forall n > Ny, s0 (9 f;) ~ foii)- O

Definition 2.5. For distinct integers ¢ # 7, let d; ; € B be defined by:

|} filn) ifneven;
dig(n) = { f(n) ifnodd.

Let 7 := {d@j 01 §£ j}

Note that d; ; ¢ f, for all distinct 7,5 and all & € w, hence {[f;] : ¢ € w} and
{[d;i ;] : i # j} are disjoint.
Lemma 2.6. For all 0 € Sym(w), if g € G respects o, then g - [d; ;| = [dog),0(j)] for all
i # .
Proof. Choose 0 € Sym(w), g respecting o, and i # j. Choose N such that (g-[f;])(n) =
[fo@](n) and (g - [f;])(n) = [fs¢;)](n) for every n > N. Since d; j(n) = fi(n) forn > N
even,

(g - dij)(n) = mn(9)(di;j(n)) = m(g)(fi(n)) = (g - fi)(n) = fo(n)
Dually, (g . dm-)(n) = fg(j)(n) when n 2 N is Odd, SO (g . di,j) ~ do’(i),o’(j)' ]



With the combinatorial preliminaries out of the way, we now prove that 7}, is Borel
complete. We form a highly homogeneous model M* |= T, and thereafter, all models we
consider will be countable, elementary substructures of M/*. Let A = {a; : f € B} and
B = {bs : f € B} be disjoint sets and let //* be the L-structure with universe A U B and
each I, interpreted by the rules:

* Forall f € Bandn € w, E,(ay,by); and
» Forall f, f' € Bandn € w, E,(as,ap) iff f(n) = f'(n).

with the other instances of £, following by symmetry and transitivity. For any finite F' C
w, {fIr: f € B} has exactly II,,cph(n) elements, hence Er(x,y) := A, cr En(7,y) has
II,crh(n) classes in M*. Thus, the {E,, : n € w} cross cut and M* |= Tj,.

Let Eo(,y) denote the (type definable) equivalence relation A, F,(x,y). Then, in
M*, E, partitions M* into 2-element classes {ay, bs}, indexed by f € B. Note also that
every g € GG induces an L-automorphism ¢g* € Aut(M*) by

‘() ag.ry ifx = ayforsome f € B
x) =
g bg.py if x = by for some f € B

Recall the set Y = {f; : i € B} from Lemma[2.2] so [Y] = {[fi] : i € w}. Let
My C M* be the substructure with universe {a; : f € [Y]}. As T}, admits elimination
of quantifiers and as [Y] is dense in B, M, < M*. Moreover, every substructure M of
M* with universe containing M, will also be an elementary substructure of M*, hence a
model of T},

To show that Mod(T},) is Borel complete, we define a Borel mapping from {irreflexive
graphs G = (w, R)} to Mod(1},) as follows: Given G, let Z(R) := {d;; € Z : G =
R(i,j)}, so [Z(R)] = U{ldi;] : dij € Z(R)}. Let Mg < M* be the substructure with
universe

My U {ag,ba : d € [Z(R)]}

That the map G — M is Borel is routine, given that Y and Z are fixed throughout.

Note that in Mg, every E.-class has has either one or two elements. Specifically, for
each d € [Z(R)], the Ex-class [a4]oc = {aa,bs}, while the E-class [af|« = {ay} for
every f € [Y].

We must show that for any two graphs G = (w, R) and H = (w,S), G and H are
isomorphic if and only if the L-structures M and My are isomorphic.

To verify this, first choose a graph isomorphism ¢ : (w, R) — (w,S). Then o €
Sym(w) and, for distinctintegers i # 7, d; ; € Z(R) if and only if d,(;) »(;) € Z(S). Apply
Lemma to get ¢ € G respecting ¢ and let g* € Aut(M*) be the L-automorphism
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induced by ¢g. By Lemma[2.6 and Definition it is easily checked that the restriction of
g* to Mg is an L-isomorphism between M and My .

Conversely, assume that W : Mg — My is an L-isomorphism. Clearly, ¥ maps
E-classes in Mg to E-classes in My. In particular, ¥ permutes the 1-element F-
classes {{as} : f € [Y]} of both M and My, and maps the 2-element E.-classes
{{aa,ba} : d € [Z(R)]} of M onto the 2-element E,-classes {{a4,bs} : d € [Z(S)]} of
Mp. That is, ¥ induces a bijection I : [Y U Z(R)] — [Y U Z(.S)] that permutes [Y].

As well, by the interpretations of the E,’s, for f, f' € [Y U Z(R)|] and n € w,

f(n) = f'(n) ifandonlyif F(f)(n)=F(f)(n).

From this it follows that F' maps ~-classes onto ~-classes. As F' permutes Y| and as
Y] = U{lfi] : © € w}, F induces a permutation o € Sym(w) given by o (i) is the unique
i* € wsuch that F([fi]) = [fi+]-

We claim that this ¢ induces a graph isomorphism between § = (w, R) and H =
(w, S). Indeed, choose any (i, j) € R. Thus, d; ; € Z(R). As F is ~-preserving, choose
N large enough so that F'(f;)(n) = F(f,u))(n) and F(f;)(n) = F(fs;))(n) for every
n > N. By definitionof d; ;, d; j(n) = fi(n) forn > N even,so F(d; ;)(n) = F(f;)(n) =
fo@)(n) for such n. Dually, for n > N odd, F(d;;)(n) = F(f;)(n) = fo;)(n). Hence,
F(dij) ~ dygiye) € [Z(9)]. Thus, (0(i),0(j)) € S. The converse direction is symmetric
(i.., use U1 in place of ¥ and run the same argument). U

Remark 2.7. If we relax the assumption that i : w — w \ {0} is strictly increasing, there
are two cases. If h is unbounded, then the proof given above can easily be modified to
show that the associated 7}, is also Borel complete. Conversely, with Theorem 6.2 of (6]
the authors prove thatif 4 : w — w \ {0} is bounded, then 7}, is not Borel complete. The
salient distinction between the two cases is that when h is bounded, the associated group
G has bounded exponent. However, even in the bounded case 7}, has a Borel complete
reduct by Lemma 3.1] below.

3 Applications to reducts

We begin with one easy lemma that, when considering reducts, obviates the need for the
number of classes to be strictly increasing.

Lemma3.1. Let L = {E, :n € w}andlet f : w — w\{0, 1} be any function. Then every
model M of T, the complete theory asserting that each F,, is an equivalence relation with
f(n) classes, and that the { E,,} cross-cut, has a Borel complete reduct.



Proof. Given any function f : w — w \ {0, 1}, choose a partition w = | |[{F,, : n € w}
into non-empty finite sets for which e r, f(k) < Hger, f(k) whenever n < m < w. For
each n, let h(n) := lyep, f(k) and let £} (v, y) := A\, cp, Er(2,y). Then, as h is strictly
increasing and { £} is a cross-cutting set of equivalence relations with each E* having
h(n) classes.

Now let M = T} be arbitrary and let L' = {E’ : n € w}. As each E described
above is 0-definable in M, there is an L'-reduct M’ of M. It follows from Theorem 2.1]
that 7" = Th(M’) is Borel complete, so 7' has a Borel complete reduct. O

Theorem 3.2. Suppose T' is a complete theory in a countable language with uncountably
many I-types. Then every model M of T' has a Borel complete reduct.

Proof. Let M |= T be arbitrary. As usual, by the Cantor-Bendixon analysis of the com-
pact, Hausdorff Stone space S;(7") of complete 1-types, choose a set {¢,(x) : ) € 2<“} of
0-definable formulas, indexed by the tree (2<“, <) ordered by initial segment, satisfying:

1. M = Jzp, () for each n € 2<¢;

2. Forv <0, M = Vz(po,(x) = ¢u(2));

3. Foreachn € w, {y,(z) : n € 2"} are pairwise contradictory.
By increasing these formulas slightly, we can additionally require

4. Foreachn € w, M = Va(V, con ¢y(2)).

Given such a tree of formulas, for each n € w, define

On(x) = N\ lpa(@) = @po(2)] and 6,(z) = J\ [pg(z) = oyr(2)]

ne2n ne2n

Because of (4) above, M = Vz(62(z) V 61 (x)) for each n. Also, for each n, let

En(@,y) = [0h(x) <> 0,(y)]
From the above, each F, is a O-definable equivalence relation with precisely two classes.

Claim. The equivalence relations { £, : n € w} are cross-cutting.

Proof. 1t suffices to prove that for every m > 0, the equivalence relation £ (z,y) =
Nncm En(x,y) has 2 classes. So fix m and choose a subset A,, = {a, :n € 2"} C M
forming a set of representatives for the formulas {¢,(z) : n € 2™}. It suffices to show
that M = —E} (a,, a,) whenever  # v are from 2. But this is clear. Fix distinct
n # v and choose any k& < m such that n(k) # v(k). Then M = —Ej(a,,a,), hence
M = —E; (ay, ay). O



Thus, taking the O-definable relations {E,}, M has a reduct that is a model of T
(where f is the constant function 2). As reducts of reducts are reducts, it follows from
Lemma[3.1land Theorem 2. 1lthat M has a Borel complete reduct. O

We highlight how unexpected Theorem [3.2]is with two examples. First, the theory of
‘Independent unary predicates’ mentioned in the Introduction has a Borel complete reduct.

Next, we explore the assumption that a countable, complete theory 7" is not small, i.e.,
for some £ there are uncountably many k-types. We conjecture that some model of T’
has a Borel complete reduct. If & = 1, then by Theorem every model of 7" has a
Borel complete reduct. If £ > 1 is least, then it is easily seen that there is some complete
(k — 1) type p(x1,...,x,_1) with uncountably many complete g(x1,...,z;) extending
p. Thus, if M is any model of T realizing p, say by a = (aq,...,a,_1), the expansion
(M,ay,...,ax_1) has a Borel complete reduct, also by Theorem [3.2l Similarly, we have
the following result.

Corollary 3.3. Suppose T' is a complete theory in a countable language that is not small.
Then for any model M of T, M“? has a Borel complete reduct.

Proof. Let M be any model of 7" and choose k least such that 7" has uncountably many
complete k-types consistent with it. In the language L, there is a sort Uy, and a definable
bijection f : M* — Uj. Hence Th(M®?) has uncountably many 1-types consistent with
it, each extending Uy,. Thus, M*“? has a Borel complete reduct by Theorem 3.2 L

Finally, recall that a countable, complete theory is not w-stable if, for some countable
model M of T, the Stone space S;(M) is uncountable. From this, we immediately obtain
our final corollary.

Corollary 3.4. If a countable, complete T’ is not w-stable, then for some countable model
M of T, the elementary diagram of M in the language L(M) = L U {c,, : m € M} has
a Borel complete reduct.

Proof. Choose a countable M so that Sy (M) is uncountable. Then, in the language L(M),
the theory of the expanded structure M), in the language L(M) has uncountably many 1-
types, hence it has a Borel complete reduct by Theorem 3.2 ]

The results above are by no means characterizations. Indeed, there are many Borel
complete w-stable theories. In [S]], the first author and Shelah prove that any w-stable the-
ory that has eni-DOP or is eni-deep is not only Borel complete, but also A\-Borel complete
for all \B As well, there are w-stable theories with only countably many countable models

2Definitions of eni-DOP and eni-deep are given in Definitions 2.3 and 6.2, respectively, of [5]], and the
definition of A\-Borel complete is recalled in Section ] of this paper.
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that have Borel complete reducts. To illustrate this, we introduce three interrelated theo-
ries. The first, T in the language Ly = {U, V, W, R} is the paradigmatic DOP theory. Tj
asserts that:

o U, V, W partition the universe;

s RCUXV xW;

s Ty |E VaVy3*zR(z,y, 2); [more formally, for each n, Ty = VaVy3="2R(x,y, 2)];
o Ty = VaVa'VyVy'Vz[R(z,y,z2) AN R(2',y, 2) = (z =2 Ny =1)].

T} is both w-stable and w-categorical and its unique countable model is rather tame. The
complexity of 7 is only witnessed with uncountable models, where one can code arbi-
trary bipartite graphs in an uncountable model M by choosing the cardinalities of the sets
R(a,b, M) among (a,b) € U x V to be either 8, or | M.

To get bad behavior of countable models, we expand Th to an L = Lo U {f, : n € w}-
theory T' O T} that additionally asserts:

e Each f,, : U x V — W,
» VaVyR(z,y, fu(x,y)) for each n; and

o for distinct n # m, VaVy(f.(x,y) # f(z,y)).

This 7" is w-stable with eni-DOP and hence is Borel complete by Theorem 4.12 of [5]].
However, T" has an expansion 7 in a language L* := L U {¢, d, g, h} whose models
are much better behaved. Let 7™ additionally assert:

* Ule) NV (d);
* g: U — V is abijection with g(c) = d;

o LettingW* :={z: R(c,d, 2)}, h : UxV xW* — W is an injective map that is the
identity on W* and, for each (z,y) € U x V, maps W* onto {z € W : R(x,y,2)};
and moreover

e h commutes with each f,, i.e., VaVy(h(x,y, fu(c,d)) = fu(z,y)).

Then 7™ is w-stable and two-dimensional (the dimensions being |U| and |WW* \ { f,.(c, d) :
n € w}l|), hence T has only countably many countable models. However, 7 visibly has
a Borel complete reduct, namely 7.



4 Observations about the theories 7,

In addition to their utility in proving Borel complete reducts, the theories 7}, in Section 2
illustrate some novel behaviors. First off, model theoretically, these theories are extremely
simple. More precisely, each theory 7}, is weakly minimal with the geometry of every
strong type trivial (such theories are known as mutually algebraic in [4]).

Additionally, the theories 7}, are the simplest known examples of theories that are Borel
complete, but not A-Borel complete for all cardinals A. For A\ any infinite cardinal, \-Borel
completeness was introduced in [5]. Instead of looking at L-structures with universe w,
we consider X7, the set of L-structures with universe \. We topologize X7 analogously;
namely a basis consists of all sets

Up(on,om) = {M € X7 : M = o, ..., )}

for all L-formulas ¢(z1,...,7,) and all (a1,...,q,) € A". Define a subset of X} to be
A-Borel if it is is the smallest AT -algebra containing the basic open sets, and call a function
f:X 21 - X 22 to be A\-Borel if the inverse image of every basic open set is A\-Borel. For
T, S theories in languages L1, Lo, respectively we say that Mod(7") is A-Borel reducible
to Mod,(S) if there is a A-Borel f : Mod,(T') — Mod,(S) preserving back-and-forth
equivalence in both directions (i.e., M =, N < f(M) =« f(N)).

As back-and-forth equivalence is the same as isomorphism for countable structures,
A-Borel reducibility when A = w is identical to Borel reducibility. As before, for any
infinite A, there is a maximal class under A-Borel reducibility, and we say a theory is \-
Borel complete if it is in this maximal class. All of the ‘classical’ Borel complete theories,
e.g., graphs, linear orders, groups, and fields, are A\-Borel complete for all \. However, the
theories 7}, are not.

Lemma 4.1. If T is mutually algebraic in a countable language, then there are at most 2,
pairwise =, ,-inequivalent models (of any size).

Proof. We show that every model M has an (0o, w)-elementary substructure of size 280,
which suffices. So, fix M and choose an arbitrary countable M, < M. By Propositon 4.4
of [4], M \ My can be decomposed into countable components, and any permutation of
isomorphic components induces an automorphism of M fixing M, pointwise. As there
are at most 280 non-isomorphic components over M, choose a substructure N C M
containing M, and, for each isomorphism type of a component, N contains either all of
copies in M (if there are only finitely many) or else precisely Ny copies if M contains
infinitely many copies. It is easily checked that N <, ,, M. U

Corollary 4.2. No mutually algebraic theory T in a countable language is \-Borel com-
plete for \ > 1. In particular;, T}, is Borel complete, but not \-Borel complete for large
A
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Proof. Fix A > J,. It is readily checked that there is a family of 2* graphs that are
pairwise not back and forth equivalent. As there are fewer than 2* =0 w-Classes of models
of T, there cannot be a A\-Borel reduction of graphs into Mod, (7). U

In [8]], another example of a Borel complete theory that is not A-Borel complete for all
A is given (it is dubbed T'K there) but the 7}, examples are cleaner. In order to understand
this behavior, in [8]] we call a theory T" grounded if every potential canonical Scott sentence
o of amodel of T (i.e., in some forcing extension V|G| of V, o is a canonical Scott sentence
of some model, then o is a canonical Scott sentence of a model in V. Proposition 5.1 of
[8] proves that every theory of refining equivalence relations is grounded. By contrast, we
have

Proposition 4.3. If T' is Borel complete with a cardinal bound on the number of = -
classes of models, then T is not grounded. In particular, T}, is not grounded.

Proof. Let k denote the number of =, ,-classes of models of 7. If 7" were grounded,
then x would also bound the number of potential canonical Scott sentences. As the class
of graphs has a proper class of potential canonical Scott sentences, it would follow from
Theorem 3.10 of [[8] that 7" could not be Borel complete. ]
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