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LOCALLY O-MINIMAL STRUCTURES WITH TAME

TOPOLOGICAL PROPERTIES

MASATO FUJITA

Abstract. We consider locally o-minimal structures possessing tame topo-
logical properties shared by models of DCTC and uniformly locally o-minimal
expansions of the second kind of densely linearly ordered abelian groups. We
derive basic properties of dimension of a set definable in the structures includ-
ing the addition property, which is the dimension equality for definable maps
whose fibers are equi-dimensional. A decomposition theorem into quasi-special
submanifolds is also demonstrated.

1. Introduction

An o-minimal structure enjoys many tame topological properties such as mono-
tonicity and definable cell decomposition [13]. A locally o-minimal structure was
first introduced in [12] as a local counterpart of an o-minimal structure. In spite of
its similarity to an o-minimal structure in its definition, a locally o-minimal struc-
ture does not enjoy the localized tame properties enjoyed by o-minimal structures
such as the local monotonicity theorem and the local definable cell decomposition
theorem. Lack of tame topological properties prevents us to establish a tame dimen-
sion theory for sets definable in the structures. We expect that discrete definable
set is of dimension zero. We also hope that the projection image of a definable
set is of dimension not greater than the dimension of the original set. However,
the projection image of a discrete definable set is not necessarily discrete in some
locally o-minimal structure as in [6, Example 12].

We can recover tame topological properties if we employ additional assumptions
on locally o-minimal structures. We can also establish a tame dimension theory
using such tame topological properties.

For instance, the author proposed uniformly locally o-minimal structures of the
second kind in [3]. Local definable cell decomposition theorem [3, Theorem 4.2]
holds true when they are definably complete. We can derive several natural di-
mension formulae [3, Section 5] and [4, Theorem 1.1, Corollary 1.2] for a definably
complete uniformly locally o-minimal expansion of the second kind of a densely
linearly ordered abelian group using the tame topological properties. A definably
complete uniformly locally o-minimal expansion of the second kind of a densely
linearly ordered abelian group is called a DCULOAS structure in this paper.

Another example is a model of DCTC. Schoutens tried to figure out the common
features of the models of the theory of all o-minimal structures in his challenging
work [10]. A model of DCTC was introduced in it. It enjoys tame topological
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2 M. FUJITA

and dimensional properties as partially given in [10] and also demonstrated in this
paper.

The purpose of this paper is to develop dimension formulae when locally o-
minimal structures are definably complete and enjoy the tame topological property
given in the following definition. The previous two examples possess this property.

Definition 1.1. Consider a locally o-minimal structure. We consider the following
property on it.

(a) The image of a nonempty definable discrete set under a coordinate projec-
tion is again discrete.

The following formulae on dimensions are demonstrated in this paper under the
assumption that definably complete locally o-minimal structures enjoy the property
(a) in Definition 1.1.

(1) The inequality on the dimensions of the domain of definition and the image
of a definable map (Theorem 3.8(5));

(2) The inequality on the dimension of the set of points at which a definable
function is discontinuous (Theorem 3.8(6));

(3) The inequality on the dimensions of a definable set and its frontier (Theo-
rem 3.8(7));

(4) Addition property. The dimension equality for definable maps whose fibers
are equi-dimensional (Theorem 3.14).

In o-minimal structures, definable sets are partitioned into finite number of
nicely shaped definable subsets called cells [13, Chapter 3 (2.11)]. Partitions into
finite cells are unavailable in locally o-minimal structures. We provide alterna-
tive partitions into finite number of another nicely shaped definable subsets called
quasi-special submanifolds. The definition of quasi-special submanifolds is found
in Definition 4.1. Partitions into quasi-special submanifolds are available in locally
o-minimal structures enjoying the property (a) in Definition 1.1 (Theorem 4.4 and
Theorem 4.5). Quasi-special submanifolds only satisfy looser conditions than spe-
cial manifolds defined in [9, 11]. Decomposition theorems into special submanifolds
hold true for locally o-minimal expansions of fields [1] and d-minimal expansions of
the real field [9, 11]. Unlike special submanifolds, our partitions into quasi-special
submanifolds are available without assuming that the structure is an expansion of
an ordered field. It is an advantage of our decomposition theorem.

A DCULOAS structure and a model of DCTC possess the property (a) in Defini-
tion 1.1. Therefore, the above dimension formulae and the decomposition theorem
into quasi-special submanifolds also hold true for them. Some of the assertions
were presented in the previous studies. In the case of a DCULOAS structure, the
dimension inequalities (1) through (3) were demonstrated in [3, 4]. The addition
property (4) and the decomposition theorem first appear in this paper. As to a
model of DCTC, the inequalities in the planar case were proved in [10]. The author
could not find the dimension formulae for higher dimensions in the previous studies.

This paper is organized as follows. We first derive basic topological properties of
the structure in Section 2. Section 3 is devoted for the derivation of the dimension
formulae (1) through (4). We also prove the decomposition theorem into quasi-
special submanifolds in Section 4.

We introduce the terms and notations used in this paper. The term ‘definable’
means ‘definable in the given structure with parameters’ in this paper. For any
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set X ⊂ Mm+n definable in a structure M = (M, . . .) and for any x ∈ Mm, the
notation Xx denotes the fiber defined as {y ∈ Mn | (x, y) ∈ X} unless another
definition is explicitly given. For a linearly ordered structure M = (M,<, . . .), an
open interval is a definable set of the form {x ∈ R | a < x < b} for some a, b ∈ M .
It is denoted by (a, b) in this paper. An open box in Mn is the direct product of n
open intervals. Let A be a subset of a topological space. The notations int(A) and
A denote the interior and the closure of the set A, respectively.

2. Tame topological properties

2.1. Basic lemmas. We first review the definitions of local o-minimality and de-
finably completeness.

Definition 2.1 ([12]). A densely linearly ordered structure without endpointsM =
(M,<, . . .) is locally o-minimal if, for every definable subset X of M and for every
point a ∈M , there exists an open interval I containing the point a such that X ∩ I
is a finite union of points and open intervals.

Definition 2.2 ([8]). An expansion of a densely linearly ordered set without end-
points M = (M,<, . . .) is definably complete if any definable subset X of M has
the supremum and infimum in M ∪ {±∞}.

We give an equivalence condition for a definably complete structure being locally
o-minimal.

Lemma 2.3. Consider a definably complete structure M = (M,<, . . .). The fol-
lowing are equivalent:

(1) The structure M is a locally o-minimal structure.
(2) Any definable set in M has a nonempty interior or it is closed and discrete.

Proof. The implication (1) ⇒ (2) is obvious by the definition of local o-miniality.
We demonstrate the opposite implication. Let X be a definable subset in M .
Consider the boundary Y = X \ int(X). Let J be an arbitrary open interval in
M . We have Y ∩ J = ∅ if and only if J ⊂ int(X) or J ⊂ M \X by [8, Corollary
1.5]. For any arbitrary point a ∈M , there exists an open interval I containing the
point a such that I ∩ Y is an empty set or a singleton {a} because Y is closed and
discrete by the assumption. The open intervals {x ∈ I | x > a} and {x ∈ I | x < a}
are contained in int(X) orM \X. Hence, I ∩X is a finite union of points and open
intervals. We have demonstrated that the structure M is locally o-minimal. �

We introduce two consequences of the property (a) in Definition 1.1.

Lemma 2.4. Consider a definably complete locally o-minimal structure with the
property (a) in Definition 1.1. A definable discrete set is closed.

Proof. LetM = (M,<, . . .) be the structure in consideration. LetX be a nonempty
discrete definable subset of Mn. Let πk : Mn → M be the coordinate projection
onto the k-th coordinate for all 1 ≤ k ≤ n. The images πk(X) are discrete by the
property (a). They are closed by Lemma 2.3. Let x be an accumulation point of
X . We have πk(x) ∈ πk(X) for all 1 ≤ k ≤ n because πk(x) are accumulation
points of πk(X) and πk(X) are closed. We can take open intervals Ik so that
πk(X)∩Ik = {πk(x)} because πk(X) are discrete. It implies that X∩(I1×· · ·×In)
consists of at most one point x because X∩(I1×· · ·×In) ⊆

∏n

k=1 πk(X)∩Ik = {x}.
It means that x ∈ X because x is an accumulation point of X . �
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Lemma 2.5. Consider a definably complete locally o-minimal structure M =
(M,<, . . .) with the property (a) in Definition 1.1. Let f : X → M be a defin-
able map. If the image f(X) and all fibers of f are discrete, then so is X.

Proof. We first reduce to the case in which f is the restriction of a coordinate pro-
jection. Let X be a definable subset of Mn and π : Mn+1 →M be the coordinate
projection onto the last coordinate. Consider the graph Γ(f) of the definable map
f . The image π(Γ(f)) = f(X) and all the fibers Γ(f) ∩ π−1(x) are discrete by the
assumption. If the graph Γ(f) is discrete, the definable set X is also discrete by
the property (a) because X is the projection image of the discrete set Γ(f). We
have reduced to the case in which f is the restriction of the coordinate projection
onto the last coordinate π : Mn+1 → M to a definable subset Y of Mn+1.

Take an arbitrary point x ∈ Y . Since π(Y ) is discrete by the assumption, we can
take an open interval I containing the point π(x) such that π(Y )∩ I is a singleton.
Since the fiber π−1(π(x))∩Y is discrete, there exists an open box B containing the
point x such that Y ∩ (B×{π(x)}) is a singleton. The open box B× I contains the
point x and the intersection of Y with B ∩ I is a singleton. We have demonstrated
that Y is discrete. �

2.2. Tame topological properties. We defined the property (a) in Definition
1.1. We also consider the following topological properties in this paper.

Definition 2.6. Consider a locally o-minimal structure M = (M,<, . . .). We
consider the following properties on M.

(b) Let X1 and X2 be definable subsets of Mm. Set X = X1 ∪ X2. Assume
that X has a nonempty interior. At least one of X1 and X2 has a nonempty
interior.

(c) Let A be a definable subset of Mm with a nonempty interior and f : A→
Mn be a definable map. There exists a definable open subset U of Mm

contained in A such that the restriction of f to U is continuous.
(d) Let X be a definable subset of Mn and π : Mn → Md be a coordinate

projection such that the the fibers X∩π−1(x) are discrete for all x ∈ π(X).
Then, there exists a definable map τ : π(X) → X such that π(τ(x)) = x

for all x ∈ π(X).

These properties and the property (a) in Definition 1.1 are not independent. For
definably complete locally o-minimal structures, the property (a) is equivalent to
the properties (c) and (d). The property (c) implies the property (b). They are
demonstrated in Theorem 2.11.

We introduce the following notations for simplicity.

Notation 2.7. Consider a locally o-minimal structure M = (M,<, . . .). A definable
function f : X → M ∪ {∞} denotes a pair of disjoint definable subsets Xo and
X∞ with X = Xo ∪X∞ and a definable function defined on Xo. We consider that
the function f is constantly ∞ on X∞. The function f : X → M ∪ {∞} is called
continuous if X = X∞ or X = Xo and the function f is continuous. If the structure
M enjoys the properties (b) and (c) in Definition 2.6, the restriction of f to some
definable open set is continuous when the domain of definition X has a nonempty
interior. We define g : X →M ∪ {−∞} similarly.

The following lemma is a consequence of the properties (b) and (c).
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Lemma 2.8. Consider a definably complete locally o-minimal structure M =
(M,<, . . .) enjoying the properties (b) and (c) in Definition 2.6. Let X be a defin-
able subset of Mm+n. Set

S = {x ∈Mm | the fiber Xx has a nonempty interior}.

If S has a nonempty interior, X also has a nonempty interior.

Proof. We first consider the case in which n = 1. Take c ∈ M . Consider the
definable sets

X>c = {(x, y) ∈Mm ×M | (x, y) ∈ X, y > c} and

X<c = {(x, y) ∈Mm ×M | (x, y) ∈ X, y < c}.

For any x ∈ S, at least one of the fibers (X>c)x and (X<c)x of X>c and X<c at x
has a nonempty interior by the property (b). Set

S>c = {x ∈Mm | the fiber (X>c)x has a nonempty interior}.

We define S<c in the same manner. We get S = S>c ∪ S<c. Assume that S has
a nonempty interior. At least one of S>c and S<c has a nonempty interior by the
property (b) again. We consider the case in which S>c has a nonempty interior. We
can prove the lemma similarly in the other case. If X>c has a nonempty interior,
the definable set X obviously has a nonempty interior. It implies that the lemma
holds true for X if it holds true for X>c. Therefore, we may assume that there is
c ∈M satisfying y > c for all (x, y) ∈ X .

Consider the definable function f : S →M given by

f(x) = inf{y ∈M | y is contained in the interior of the fiber Xx}.

It is well-defined by the above assumption. Define the definable function g : S →
M ∪ {∞} by

g(x) = sup{y ∈M | Xx contains an interval (f(x), y)}.

There exists an open box V contained in S such that the restrictions of f and g

to V are continuous by the properties (b) and (c) in Definition 2.6. The set X
contains an open set {(x, y) ∈ V ×M | f(x) < y < g(x)}. We have demonstrated
the lemma for n = 1.

We next consider the case in which n > 1. Consider the projection π1 :Mm+n →
Mm+n−1 forgetting the last coordinate and the projection π2 : Mm+n−1 → Mm

onto the first m coordinates. Set π = π2 ◦ π1,

T = {t ∈ π1(X) | the fiber Xt contains a nonempty open interval} and

U = {u ∈ π(X) | the fiber Tu has a nonempty interior}.

The definable set S is contained in U . In particular, U has a nonempty interior.
Applying the lemma to the pair of T and the restriction of π2 to T , we have
int(T ) 6= ∅ by the induction hypothesis. We get int(X) 6= ∅ by the lemma for
n = 1. �

We do not use the following proposition in this paper, but it is worth to be
mentioned. It is a stronger version of definable Baire property discussed in [2, 5].

Proposition 2.9 (Strong definable Baire property). Consider a definably complete
locally o-minimal structure M = (M,<, . . .) enjoying the property (a) in Definition
1.1. Take c ∈ M . Let {X〈r〉}r>c be a parameterized increasing family of definable



6 M. FUJITA

sets of Mn; that is, there exists a definable subset X of Mn+1 such that X〈r〉
coincides with the fiber Xr for any r > c and we have X〈r〉 ⊂ X〈s〉 if r < s. Set
X =

⋃
r>cX〈r〉. The definable set X〈r〉 has a nonempty interior for some r > c if

X has a nonempty interior.

Proof. The properties (b) and (c) in Definition 2.6 follow from the property (a) by
Theorem 2.11. We use this fact.

We prove the proposition by induction on n. We first consider the case in which
n = 1. Assume that X〈r〉 have empty interiors for all r > c. They are closed and
discrete by Lemma 2.3. Set Y = {(r, x) ∈ M2 | r = inf{s ∈ M | x ∈ X〈s〉}}.
The set Y is discrete. In fact, consider the fiber Yr of Y at r. Take r′ ∈ M with
r′ > r. We have Yr ⊂ X〈r′〉 because {X〈r〉}r>c is a parameterized increasing
family. For any x ∈M , there exists an open interval I containing the point x such
that X〈r′〉 ∩ I consists of at most one point because X〈r′〉 is discrete and closed.
Since Yr ⊂ X〈r′〉 whenever r < r′, the intersection Y ∩ ((c, r′) × I) consists of at
most one point. We have shown that Y is discrete. Since X is the projection image
of Y , X is also discrete by the property (a). We have demonstrated that X has an
empty interior.

We next consider the case in which n > 1. Assume that X has a nonempty
interior. An open box B is contained in X . We may assume that X = B considering
X〈r〉 ∩ B instead of X〈r〉. We lead to a contradiction assuming that X〈r〉 have
empty interiors for all r > c. Take an open box B1 in Mn−1 and an open interval
I1 with B = B1 × I1. Set Y 〈r〉 = {x ∈ B1 | (X〈r〉)x contains an open interval}.
The set Y 〈r〉 has an empty interior by Lemma 2.8. We have B1 6=

⋃
r>c Y 〈r〉 by

the induction hypothesis. Take x ∈ B1 \
(⋃

r>c Y 〈r〉
)
. The union

⋃
r>c(X〈r〉)x has

an empty interior because the fibers (X〈r〉)x have empty interiors. It contradicts
the equality

⋃
r>c(X〈r〉)x = I1. �

2.3. Dependence between the properties and local monotonicity prop-

erty. The satisfaction of the property (c) in Definition 2.6 is related to local mono-
tonicity property. Two local monotonicity properties are known. Let M = (M, . . .)
be a locally o-minimal structure. The first one is the weak local monotonicity prop-
erty given below.

Let I be an interval and f : I → M be a definable function. For
any (a, b) ∈ M2, there exist an open interval J1 containing the
point a, an open interval J2 containing the point b and a mutually
disjoint definable partition f−1(J2) ∩ J1 = Xd ∪ Xc ∪ X+ ∪ X−

satisfying the following conditions:
(1) the definable set Xd is discrete and closed;
(2) the definable set Xc is open and f is locally constant on Xc;
(3) the definable set X+ is open and f is locally strictly increasing

and continuous on X+;
(4) the definable setX− is open and f is locally strictly decreasing

and continuous on X−.

The strong local monotonicity property is the same as the weak one except that we
can take J1 = I and J2 =M .

The weak local monotonicity property is possessed by strongly locally o-minimal
structures [6, Proposition 11] and by uniformly locally o-minimal structures of
the second kind [3, Corollary 3.1]. A model of DCTC enjoys the strong local
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monotonicity property [10, Theorem 3.2]. On the other hand, the strongly locally
o-minimal structure given in [6, Example 12] is not definably complete, and has
neither the property (a) in Definition 1.1, the property (c) in Definition 2.6 nor
strong local monotonicity property.

We discuss on the dependence between the properties in Definition 1.1 and Def-
inition 2.6. We use the following technical definition in the proof.

Definition 2.10. Consider an expansion of densely linearly ordered structure with-
out endpoints M = (M,<, . . .). Let A be a definable subset ofMm and f : A→M

be a definable function. Let 1 ≤ i ≤ m. The function f is i-constant if, for any
a1, . . . , ai−1, ai+1, . . . , an ∈M , the univariate function f(a1, . . . , ai−1, x, ai+1, . . . , an)
is constant. We define that the function is i-strictly increasing and i-strictly de-
creasing in the same way. The function is i-strictly monotone if it is i-constant, i-
strictly increasing or i-strictly decreasing. The function f is i-continuous if, for any
a1, . . . , ai−1, ai+1, . . . , an ∈M , the univariate function f(a1, . . . , ai−1, x, ai+1, . . . , an)
is continuous.

In the proof of the theorem, the claim that the structure in consideration pos-
sesses the property (a) is simply called the property (a).

Theorem 2.11. Consider a definably complete locally o-minimal structure M =
(M,<, . . .).

(i) The property (c) in Definition 2.6 implies the property (b).
(ii) The property (a) in Definition 1.1 implies the strong local monotonicity

property and the property (d).
(iii) The strong local monotonicity property implies the properties (b) and (c).
(iv) The properties (c) and (d) imply the property (a).

Proof. (i) We can prove it in the same manner as the proof of [3, Theorem 3.3]
using definable completeness instead of uniform local o-minimality of the second
kind. We omit the proof.

(ii) We can prove that the property (a) implies the strong local monotonicity
property in the same manner as the proof of [10, Theorem 3.2] using the property
(a) instead of [10, Lemma 3.1i]. We omit the proof.

We next demonstrate the property (d). We first demonstrate that the property
(d) holds true when n = d+1. We may assume that π is the projection forgetting the
first coordinate without loss of generality. Take an arbitrary element c ∈ M . The
function η : π(X) → M is given by η(x) = inf{x ∈ Xx | x ≥ c} if the definable set
{x ∈ Xx | x ≥ c} is not empty and given by η(x) = sup{x ∈ Xx | x ≤ c} otherwise.
It is a well-defined definable function. The definable function τ : π(X) → Mn is
given by τ(x) = (η(x), x). By Lemma 2.4, the fiber Xx is closed for any x ∈ π(X)
by the assumption. Therefore, we have τ(π(X)) ⊂ X . We have constructed the
desired map.

We next show that the property (d) holds true by induction on m = n− d. We
may assume that π is the projection onto the last d coordinates without loss of
generality. We have proven the case in which m = 1. Consider the case in which
m > 1. Let p :Mn → Mn−1 and q : Mn−1 → Md be the projection forgetting the
first coordinate and the projection onto the last d coordinates, respectively. We
get π = q ◦ p. The definable set p(X) ∩ q−1(x) = p(π−1(x) ∩ X) is discrete by
the property (a) for any x ∈ π(X). Applying the induction hypothesis to p and q,
we can find definable maps τ1 : π(X) → p(X) and τ2 : p(X) → X such that the
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compositions q ◦ τ1 and p ◦ τ2 are identity maps. The composition τ = τ2 ◦ τ1 is the
desired map.

(iii) We demonstrate the properties (b) and (c) by induction onm simultaneously.
The former is obvious because the structure M is locally o-minimal. The property
(c) follows from the strong local monotonicity property.

We consider the case in which m > 1. We first prove the property (b). Assume
that X has a nonempty interior. Take a bounded open box B contained in X . We
may assume that X = B considering X1 ∩ B and X2 ∩ B instead of X1 and X2,
respectively. We have B = B1×I1 for some open interval I1 and an open box B1 in
Mm−1. Set Yi = {x ∈ B1 | the fiber (Xi)x contains an open interval} for i = 1, 2.
Applying the property (b) in the case of m = 1, we obtain B1 = Y1 ∪ Y2. Applying
the property (b) for m− 1 to B1 = Y1 ∪ Y2, Y1 or Y2 has a nonempty interior. We
may assume that int(Y1) 6= ∅ without loss of generality. We may further assume
that Y1 = B1 shrinking B if necessary.

Consider the function f : B1 → I1 given by

f(x) = inf{y ∈ I1 | ∃α ∈ (X1)x, ∃β ∈ (X1)x such that α < y < β

and ∀y′ with α < y′ < β, we have y′ ∈ (X1)x}.

Since (X1)x contains an open interval and M is definably complete, the function f
is well-defined. We next define the function g : B1 → I1 by

g(x) = sup{y ∈ I1 | y > f(x) and ∀y′ with f(x) < y′ < y, we have y′ ∈ (X1)x}.

The function g is also well-defined for the same reason. We have f(x) < g(x) for
all x ∈ B1. Apply the property (c) for m− 1 to f and g. There exists an open box
V such that the restrictions of f and g to V are continuous. The definable set X1

contains the open set {(x, y) ∈ V ×M | f(x) < y < g(x)}. We have proven the
property (b).

We next demonstrate the property (c). We can prove the property (c) for arbi-
trary n by an easy induction on n when the property (c) holds true for n = 1. We
may assume that n = 1. We may further assume that the domain of definition of
f is a bounded open box B without loss of generality. We define I1 and B1 in the
same way as above. Set

X+ = {(x, x′) ∈ I1 ×B1 | the univariate function f(·, x′) is

strictly increasing and continuous on a neighborhood of x},

X− = {(x, x′) ∈ I1 ×B1 | the univariate function f(·, x′) is

strictly decreasing and continuous on a neighborhood of x},

Xc = {(x, x′) ∈ I1 ×B1 | the univariate function f(·, x′) is

constant on a neighborhood of x} and

Xp = B \ (X+ ∪X− ∪Xc).

The fibers (Xp)x are discrete for all x ∈ B1 by the strong local monotonicity
property. In particular, Xp has an empty interior. At least one of X+, X− and
Xc has a nonempty interior by the property (b) we have just proven. Therefore,
we may assume that f is 1-strictly monotone and 1-continuous by considering an
open box contained in one of them instead of B. Applying the same argument
(m − 1)-times, we may assume that f is i-strictly monotone and i-continuous for
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all 1 ≤ i ≤ m. The function f is continuous on B by [13, Lemma 3.2.16]. We have
proven the property (c).

(iv) Let X be a discrete definable subset of Mn. Let π : Mn → Md be a
coordinate projection. We prove that π(X) is discrete. We first reduce to the
case in which d = 1. Assume that the claim is true for d = 1. Take an arbitrary
point x ∈ π(X). Let pi : M

d → M be the projection onto the i-th coordinate for
1 ≤ i ≤ d. Since the composition pi ◦ π is a coordinate projection, pi(π(X)) is
discrete. We can take an open interval Ii such that Ii ∩ pi(π(X)) = {pi(x)}. It is
obvious that π(X)∩ (I1 × · · ·× Id) = {x}. It means that π(X) is discrete. We have
reduced to the case in which d = 1.

When d = 1, there exists a definable map τ : π(X) → X such that the com-
position π ◦ τ is an identity map by the property (d). If π(X) is not discrete, it
contains an open interval I because of local o-minimality. Shrinking the interval I
if necessary, the restriction of τ to I is continuous by the property (c). It means
that X contains the graph of a continuous map defined on an open interval. It
contradicts the assumption that X is discrete. �

2.4. Uniformly locally o-minimal structure of the second kind. We con-
sider DCULOAS structures. They were first introduced in [3] and their properties
were also investigated in [4]. Their significant feature is that local definable cell
decomposition for them is available. We first review the definition of a locally
o-minimal structure of the second kind.

Definition 2.12 ([3]). A locally o-minimal structure M = (M,<, . . .) is a uni-
formly locally o-minimal structure of the second kind if, for any positive integer n,
any definable set X ⊂ Mn+1, a ∈ M and b ∈ Mn, there exist an open interval I
containing the point a and an open box B containing b such that the definable sets
Xy ∩ I are finite unions of points and open intervals for all y ∈ B.

We want to demonstrate that a DCULOAS structure enjoys the properties (a)
through (d) in Definition 1.1 and Definition 2.6.

Proposition 2.13. A DCULOAS structure enjoys the properties (a) through (d)
in Definition 1.1 and Definition 2.6.

Proof. We have only to demonstrate the property (a) by Theorem 2.11. We tem-
porarily employ a definition of dimension different from Definition 3.1. The dimen-
sion considered here is that given in [3, Definition 5.1]. The above two definitions
coincide by Theorem 3.11 once we obtain this proposition.

A discrete definable set is of dimension zero by [3, Lemma 5.2]. The projection
image of the set of dimension zero is again of dimension zero by [4, Theorem 1.1].
It is discrete by [3, Corollary 5.3]. We have demonstrated the property (a). �

2.5. Model of DCTC. Schoutens tried to figure out the common features of the
models of the theory of all o-minimal structures [10]. A model of DCTC was
introduced in his study. He demonstrated tame topological properties enjoyed by
it in [10]. The following is the definition of a model of DCTC.

Definition 2.14 ([10]). A structure M = (M,<, . . .) is a model of DCTC if it
is a definably complete expansion of a densely linearly ordered structure without
endpoints with type completeness property. A structure enjoys type completeness
property by definition if the types a+ and a− are complete for any a ∈M ∪{±∞}.
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Here, a definable set Y ⊂ M belongs to a+ if there exists b ∈ M with b > a and
(a, b) ⊂ Y . We define a− similarly. For instance, any definably complete locally
o-minimal expansion of an ordered field, which is investigated in [1], is a model of
DCTC.

We demonstrate that a model of DCTC enjoys the properties in Definition 1.1
and Definition 2.6.

Proposition 2.15. A model of DCTC is a definably complete locally o-minimal
structure enjoying the properties (a) through (d) in Definition 1.1 and Definition
2.6.

Proof. A model of DCTC is definably complete by the definition. It is also a locally
o-minimal structure by Lemma 2.3 and [10, Proposition 2.6]. The property (a) is
[10, Corollary 4.3]. The properties (b) through (d) follow from Theorem 2.11. �

Corollary 2.16. A definably complete locally o-minimal expansion of a field pos-
sesses the properties (a) through (d) in Definition 1.1 and Definition 2.6.

Proof. The corollary follows from Proposition 2.15 because a definably complete
locally o-minimal expansion of a field is a model of DCTC. �

3. Dimension theory

We develop a dimension theory for locally o-minimal structures possessing the
property (a) in Definition 1.1. The properties (b) through (d) in Definition 2.6
follow from the property (a) in Definition 1.1 by Theorem 2.11. We use this fact
without notification in the rest of this paper.

Definition 3.1 (Dimension). Consider an expansion of a densely linearly order
without endpoints M = (M,<, . . .). Let X be a nonempty definable subset of
Mn. The dimension of X is the maximal nonnegative integer d such that π(X)
has a nonempty interior for some coordinate projection π : Mn → Md. We set
dim(X) = −∞ when X is an empty set.

A definable set of dimension zero is always closed and discrete.

Proposition 3.2. Consider a locally o-minimal structure satisfying the property
(a) in Definition 1.1. A definable set is of dimension zero if and only if it is discrete.
When it is of dimension zero, it is also closed.

Proof. Let X be a definable subset of Mn. The definable set X is discrete if and
only if the projection image π(X) has an empty interior for all the coordinate
projections π : Mn → M by the property (a). Therefore, X is discrete if and only
if dimX = 0. A discrete definable set is always closed by Lemma 2.4. �

The following two lemmas are key lemmas of this paper.

Lemma 3.3. Consider a definably complete locally o-minimal structure M =
(M,<, . . .) enjoying the properties (b) and (c) in Definition 2.6. Let X be a defin-
able subset ofMn of dimension d and π :Mn →Md be a coordinate projection such
that the projection image π(X) has a nonempty interior. There exists a definable
open subset U of Md contained in π(X) such that the fibers X∩π−1(x) are discrete
for all x ∈ U .
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Proof. Permuting the coordinates if necessary, we may assume that π is the pro-
jection onto the first d coordinates. Set

S = {x ∈ π(X) | the fiber X ∩ π−1(x) is not discrete}.

We have S = {x ∈ π(X) | dim(X ∩ π−1(x)) > 0} by Proposition 3.2. We want to
show that S has an empty interior. Assume the contrary. Let ρj :M

n →M be the
coordinate projections onto the j-th coordinate for all d < j ≤ n. Set

Sj = {x ∈ π(X) | ρj(X ∩ π−1(x)) contains an open interval}.

We have S =
⋃

d<j≤n Sj by the definition of dimension. The definable set Sj has

a nonempty interior by the property (b) for some d < j ≤ n. Fix such j. Let
Π : Mn → Md+1 be the coordinate projection given by Π(x) = (π(x), ρj(x)). The
definable set T = {x ∈Md | the fiber (Π(X))x contains an open interval} contains
Sj and it has a nonempty interior. Therefore, the projection image Π(X) has a
nonempty interior by Lemma 2.8. It contradicts the assumption that dim(X) = d.
We have shown that S has an empty interior. Since π(X) has a nonempty interior,
there exists a definable open subset U of π(X) with U ∩ S = ∅ by the property
(b). �

Lemma 3.4. Consider a definably complete locally o-minimal structure M =
(M,<, . . .) enjoying the property (a) in Definition 1.1. Let X ⊂ Y be definable
subsets of Mn. Assume that there exist a coordinate projection π : Mn → Md

and a definable open subset U of Md contained in π(X) such that the fibers Yx are
discrete for all x ∈ U . Then, there exist

• a definable open subset V of U ,
• a definable open subset W of Mn and
• a definable continuous map f : V → X

such that

• π(W ) = V ,
• Y ∩W = f(V ) and
• the composition π ◦ f is the identity map on V .

Proof. Permuting the coordinates if necessary, we may assume that π is the projec-
tion onto the first d coordinates. Let ρj : Mn → M be the coordinate projections
onto the j-th coordinate for all d < j ≤ n. The fiber Yx is discrete for any x ∈ U

by the assumption. Since Xx is a definable subset of Yx, Xx is also a discrete set.
There exists a definable map g : U → X such that the composition π ◦g is the iden-
tity map on U by the property (d). Note that ρj(Yx) is discrete and closed by the
property (a) and Lemma 2.4. Consider the definable functions κ+j : U →M∪{+∞}
defined by

κ+j (x) =

{
inf{t ∈ ρj(Yx) | t > ρj(g(x))} if {t ∈ ρj(Yx) | t > ρj(g(x))} 6= ∅,
+∞ otherwise

for all d < j ≤ n. We define κ−j : U →M ∪ {−∞} similarly. Then, we have

π−1(x) ∩ Y ∩ ({x} × (κ−d+1(x), κ
+
d+1(x)) × · · · × (κ−n (x), κ

+
n (x))) = {g(x)}

for all x ∈ U . There exists a definable open subset V of U such that the restriction
f of g to V and the restrictions of κ−j and κ+j to V are all continuous by the

properties (b) and (c). Set W = {(x, yd+1, . . . , yn) ∈ V ×Mn−d | κ−j (x) < yj <
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κ+j (x) for all d < j ≤ n}. The definable sets V and W and a definable continuous
map f satisfy the requirements. �

Summarizing the above two lemmas, we get the following lemma.

Lemma 3.5. Consider a definably complete locally o-minimal structure M =
(M,<, . . .) enjoying the property (a) in Definition 1.1. Let X ⊂ Y be definable
subsets of Mn of dimension d. There exist

• a coordinate projection π :Mn →Md,
• a definable open subset V of π(X),
• a definable open subset W of Mn and
• a definable continuous map f : V → X

such that

• π(W ) = V ,
• Y ∩W = f(V ) and
• the composition π ◦ f is the identity map on V .

Proof. Immediate from the definition of dimension, Lemma 3.3 and Lemma 3.4. �

We also need the following lemma and its corollary.

Lemma 3.6. Let M = (M,<, . . .) be as in Lemma 3.5. Let C ⊂Mn be a definable
open subset and f : C → Mn be a definable injective continuous map. The image
f(C) has a nonempty interior.

Proof. We may assume that C is an open box without loss of generality. The lemma
is obvious when n = 0. We assume that n > 0. We lead to a contradiction assuming
that f(C) has an empty interior. Set d = dim f(C). We have 0 ≤ d < n. When
d = 0, the set f(C) is discrete by Proposition 3.2. The image f(C) is a singleton by
[8, Proposition 1.6] because the open box C is definably connected. Contradiction
to the assumption that f is injective.

We next consider the case in which d 6= 0. Applying Lemma 3.5, we can take
a coordinate projection π : Mn → Md and a definable open set W of Mn such
that the restriction of π to f(C) ∩W is injective and its image is a definable open
set. We may assume that the restriction of π to f(C) is injective by considering
f−1(W ) instead of C. Since f is injective and continuous by the assumption, the
composition π ◦ f is also injective and continuous.

Take an open box B contained in C. Let B1 and B2 be the open boxes in Md

and Mn−d with B = B1 × B2, respectively. Take c ∈ B2. Consider the definable
map g : B1 →Md given by g(x) = π(f(x, c)). It is injective and continuous. There
exists an open box D in Md with D ⊂ g(B1) by the induction hypothesis. Take
a point x0 ∈ B1 with g(x0) ∈ D and a point c′ ∈ B2 sufficiently close to c with
c′ 6= c. We have π(f(x0, c

′)) ∈ D because π ◦ f is continuous. There exists a point
x1 ∈ B1 with π(f(x0, c

′)) = g(x1) = π(f(x1, c)) because D ⊂ g(B1). It contradicts
the fact that π ◦ f is injective. �

Corollary 3.7. Let M = (M,<, . . .) be as in Lemma 3.5. Let B and C be open
boxes in Mm and Mn, respectively. If there exists a definable continuous injective
map from B to C, we have m ≤ n.

Proof. We lead to a contradiction assuming that m > n. Take a definable con-
tinuous injective map f : B → C and c ∈ Mm−n. Consider the definable map
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g : B → C ×Mm−n given by g(x) = (f(x), c). It is obviously continuous and injec-
tive. The image g(B) has a nonempty interior by Lemma 3.6. Contradiction. �

The following theorem is one of the main theorems of this paper.

Theorem 3.8. Consider a definably complete locally o-minimal structure M =
(M,<, . . .) enjoying the property (a) in Definition 1.1. The following assertions
hold true:

(1) Let X ⊂ Y be definable sets. Then, the inequality dim(X) ≤ dim(Y ) holds
true.

(2) Let σ be a permutation of the set {1, . . . , n}. The definable map σ : Mn →
Mn is defined by σ(x1, . . . , xn) = (xσ(1), . . . , xσ(n)). Then, we have dim(X) =
dim(σ(X)) for any definable subset X of Mn.

(3) Let X and Y be definable sets. We have dim(X × Y ) = dim(X) + dim(Y ).
(4) Let X and Y be definable subsets of Mn. We have

dim(X ∪ Y ) = max{dim(X), dim(Y )}.

(5) Let f : X →Mn be a definable map. We have dim(f(X)) ≤ dimX.
(6) Let f : X →Mn be a definable map. The notation D(f) denotes the set of

points at which the map f is discontinuous. The inequality dim(D(f)) <
dimX holds true.

(7) Let X be a definable set. The notation ∂X denotes the frontier of X defined
by ∂X = X \X. We have dim(∂X) < dimX.

Proof. The assertions (1) and (2) are obvious. We omit the proofs.

We demonstrate the assertion (3). Assume that X and Y are definable subsets
of Mm and Mn, respectively. Set d = dim(X), e = dim(Y ) and f = dim(X × Y ).
We first show that d + e ≤ f . In fact, let π : Mm → Md and ρ : Mn → M e be
coordinate projections such that both π(X) and ρ(Y ) have nonempty interiors. The
definable set (π×ρ)(X×Y ) has a nonempty interior. Therefore, we have d+e ≤ f .
We show the opposite inequality. Let Π :Mm+n →Mf be a coordinate projection
with int(Π(X × Y )) 6= ∅. There exist coordinate projections π1 : Mm → Mf1 and
π2 : Mn → Mf2 with Π = π1 × π2. In particular, we get f = f1 + f2. Since
Π(X ×Y ) has a nonempty interior, there exist open boxes C ⊂Mf1 and D ⊂Mf2

with C × D ⊂ Π(X × Y ). We get C ⊂ π1(X) and D ⊂ π2(Y ). Hence, we have
d ≥ f1 and e ≥ f2. We finally obtain d+ e ≥ f1 + f2 = f .

We next show the assertion (4). The inequality dim(X∪Y ) ≥ max{dim(X), dim(Y )}
is obvious by the assertion (1). We show the opposite inequality. Set d = dim(X ∪
Y ). There exists a coordinate projection π : Mn → Md such that π(X ∪ Y ) has a
nonempty interior by the definition of dimension. At least one of π(X) and π(Y )
has a nonempty interior by the property (b) because π(X ∪ Y ) = π(X) ∪ π(Y ).
We may assume that π(X) has a nonempty interior without loss of generality. We
have d ≤ dim(X) by the definition of dimension. We have demonstrated that
dim(X ∪ Y ) ≤ max{dim(X), dim(Y )}.

The next target is the assertion (5). Let X be a definable subset of Mm.
The notation Γ(f) denotes the graph of the map f . We first demonstrate that
dim(Γ(f)) = dim(X). In fact, the inequality dim(X) ≤ dim(Γ(f)) is obvious be-
cause X is the projection image of Γ(f). Set d = dim(Γ(f)) and e = dim(X).



14 M. FUJITA

Applying Lemma 3.5 to the graph Γ(f), we can take a coordinate projection
π :Mm+n →Md, an open box V contained in π(Γ(f)) and a definable continuous
map τ : V → Γ(f) such that the composition π ◦ τ is the identity map on V . In
particular, the map τ is injective.

Let Π : Mm+n → Mm be the projection onto the first m-coordinate. The
restriction of Π to the graph Γ(f) is obviously injective. Applying Lemma 3.5 to
the set X , we can take a coordinate projection ρ :Mm →M e and a definable open
subset W of Mm such that the restriction of ρ to W ∩X is injective. The inverse
image (Π◦τ)−1(W ) contains an open box because Π◦τ is continuous. Replacing V
with the open box, we may assume that the restriction of ρ to Π(τ(V )) is injective.
We finally get the definable continuous injective map ρ ◦Π ◦ τ : V →M e. We have
d ≤ e by Corollary 3.7. We have shown that dimX = dimΓ(f).

It is now obvious that dim f(X) ≤ dimΓ(f) = dimX because f(X) is the
projection image of Γ(f).

We demonstrate the assertion (6). Let X be a definable subset of Mm. We lead
to a contradiction assuming that d = dimX = dimD(f). By Lemma 3.5, there exist
a coordinate projection π : Mm → Md, definable open subsets V ⊂ π(D(f)) and
W ⊂Mm and a definable continuous function g : V → D(f) such that π(W ) = V ,
X ∩W = g(V ) and π ◦ g is the identity map on V . Shrinking V and replacing
W with W ∩ π−1(V ) if necessary, we may assume that f ◦ g is continuous by the
property (c). Since g is a definable homeomorphism onto its image, the function f
is continuous on g(V ) = X ∩W . On the other hand, f is discontinuous everywhere
on X ∩W because X ∩W is open in X and X ∩W = g(V ) is contained in D(f).
Contradiction. We have demonstrated the assertion (6).

The remaining task is to demonstrate the assertion (7). Take distinct elements
c, d ∈M . Consider the definable function f : X →M given by

f(x) =

{
c if x ∈ X and
d otherwise.

It is obvious that D(f) contains ∂X . The assertion (7) follows from the assertions
(1) and (6). �

Remark 3.9. Theorem 3.8 (1) through (3) hold true for any expansion of a densely
linearly order without endpoints. Theorem 3.8 (4) is valid for any locally o-minimal
structure with the property (b).

A constructible set is a finite boolean combination of open sets. We get the
following corollary:

Corollary 3.10. Consider a definably complete locally o-minimal structure enjoy-
ing the property (a) in Definition 1.1. Any definable set is constructible.

Proof. Let X be a definable set of dimension d. We prove that X is constructible
by induction on d. When d = 0, the definable set X is discrete and closed by
Proposition 3.2. In particular, it is constructible. When d > 0, the frontier ∂X is
of dimension smaller than d by Theorem 3.8(7). It is constructible by the induction
hypothesis. Therefore, X = X \ ∂X is also constructible. �

The following theorem gives an alternative definition of dimension. The alter-
native definition is the same as the definition of dimension given in [3, Definition
5.1].
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Theorem 3.11. Consider a definably complete locally o-minimal structure M =
(M,<, . . .) enjoying the property (a) in Definition 1.1. A definable set X is of
dimension d if and only if the nonnegative integer d is the maximum of nonnegative
integers e such that there exist an open box B in M e and a definable injective
continuous map ϕ : B → X homeomorphic onto its image.

Proof. Let d′ be the maximum of nonnegative integers e satisfying the condition
given in the theorem. We first demonstrate d′ ≤ d. In fact, let B be an open
box contained in Md′

and ϕ : B → X be a definable injective continuous map
homeomorphic onto its image. We have dimϕ(B) = dimB = d′ by Theorem
3.8(5). We get d = dimX ≥ dim(ϕ(B)) = d′ by Theorem 3.8(1).

We next demonstrate d ≤ d′. Applying Lemma 3.5 to the definable set X , we
can get a coordinate projection π : Mn → Md, a definable open box U in π(X)
and a definable continuous map τ : U → X such that π ◦ τ is the identity map on
U . In particular, τ is a definable continuous injective map homeomorphic onto its
image. Therefore, we have d ≤ d′ by the definition of d′. �

We get the following corollary:

Corollary 3.12. Let M = (M,<, . . .) be as in Theorem 3.11. Let X be a definable
subset of Rn. There exists a point x ∈Mn such that we have dim(X∩B) = dim(X)
for any open box B containing the point x.

Proof. Set d = dim(X). There exists an open box U in Md and a definable con-
tinuous injective map ϕ : U → X homeomorphic onto its image by Theorem 3.11.
Take an arbitrary point t ∈ U and set x = ϕ(t). For any open box B containing
the point x, the inverse image ϕ−1(B) is a definable open set. Take a open box V
with t ∈ V ⊂ ϕ−1(B). The restriction ϕ|V V → X ∩ B is a definable continuous
injective map homeomorphic onto its image. Hence, we have dim(X ∩ B) ≥ d by
Theorem 3.11. The opposite inequality follows from Theorem 3.8(1). �

We begin to demonstrate the addition property of dimension for definably com-
plete locally o-minimal structures enjoying the property (a) in Definition 1.1. It is
a counterpart of [13, Chapter 4, Proposition 1.5] in the o-minimal case, that of [14,
Theorem 4.2] in the weakly o-minimal case and that of [3, Lemma 5.4] in the case
of local o-minimal structure admitting local definable cell decomposition. We first
treat a special case.

Lemma 3.13. Consider a definably complete locally o-minimal structure M =
(M,<, . . .) enjoying the property (a) in Definition 1.1. Let ϕ : X → Y be a definable
surjective map whose fibers ϕ−1(y) are discrete for all y ∈ Y . We have dimX =
dimY .

Proof. Let X and Y be definable subsets of Mm and Mn, respectively. Set d =
dim(X) and e = dim(Y ).

We first assume that ϕ is continuous. We have d ≥ e by Theorem 3.8(5). We
demonstrate the opposite inequality. We first reduce to the case in which X is a
definable open subset of Mm. There exist a definable open subset U of Rd and
a definable continuous injective map σ : U → X homeomorphic onto its image
by Theorem 3.11. If the lemma holds true for the composition ϕ ◦ σ, we have
dimX = d = dimU = dimϕ ◦ σ(U) ≤ dim Y = e by Theorem 3.8(1). The lemma
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is also true for the original ϕ. Hence, we may assume that X is open in Mm. In
particular, we have m = d.

Let Π : Mm+n → Mn be the projection onto the last n coordinates. Consider
the graph Γ(ϕ) of ϕ. Note that Π−1(y) ∩ Γ(ϕ) are discrete for all y ∈ Y . Take a
coordinate projection π :Mn →M e such that π(Y ) has a nonempty interior. The
definable set (π ◦Π)−1(z)∩ Γ(ϕ) is discrete and closed if π−1(z)∩ Y is discrete for
z ∈M e by Lemma 2.5. By Lemma 3.3 and Lemma 3.4, there exist definable open
subsets V ⊂ π(Y ) and W ⊂ Mm+n and a definable continuous map τ : V → Γ(ϕ)
such that π ◦Π(W ) = V , W ∩Γ(ϕ) = τ(V ) and π ◦Π ◦ τ is the identity map on V .
In particular, the restriction of π ◦Π to W ∩ Γ(ϕ) is injective.

Let ι : X → Γ(ϕ) be the natural injection. The map ι is continuous because ϕ
is continuous. We may assume that π ◦Π ◦ ι is injective replacing X with an open
box contained in the definable open set ι−1(W ). We finally obtain the definable
continuous injective map from an open box inMd toM e. We get d ≤ e by Corollary
3.7.

We next demonstrate the lemma when ϕ is not necessarily continuous by in-
duction on d. When d = 0, the definable set X is discrete and closed by Proposi-
tion 3.2. In particular, the definable map ϕ is continuous. Therefore, the lemma
holds true in this case. We next consider the case in which d > 0. Let D(ϕ)
be the set of points at which ϕ is discontinuous. We have dimD(ϕ) < dimX

by Theorem 3.8(6). We get dimϕ(D(ϕ)) = dimD(ϕ) by the induction hypoth-
esis. We obtain dim(X \ D(ϕ)) = dimϕ(X \ D(ϕ)) because ϕ is continuous on
X \ D(ϕ). We finally get dimϕ(X) = max{dimϕ(X \ D(ϕ)), dimϕ(D(ϕ))} =
max{dim(X \ D(ϕ)), dim(D(ϕ))} = dim(X) by Theorem 3.8(4). �

The following theorem is the second main theorem of this paper.

Theorem 3.14. Consider a definably complete locally o-minimal structure M =
(M,<, . . .) enjoying the property (a) in Definition 1.1. Let ϕ : X → Y be a definable
surjective map whose fibers are equi-dimensional; that is, the dimensions of the
fibers ϕ−1(y) are constant. We have dimX = dim Y + dimϕ−1(y) for all y ∈ Y .

Proof. Let X and Y be definable subsets of Mm and Mn, respectively. Set d =
dim(ϕ−1(y)), e = dim(Y ) and f = dim(X). We first reduce to the case in which
there exists a coordinate projection π : Mm → Md such that π(ϕ−1(y)) have
nonempty interiors for all y ∈ Y . In fact, consider the set Πm,d of all the coordinate
projections ofMm ontoMd. Set Yπ = {y ∈ Y | π(ϕ−1(y)) has a nonempty interior}.
We get Y =

⋃
π∈Πm,d

Yπ by the assumption. Assume that the theorem is true for

the restrictions of ϕ to ϕ−1(Yπ) for all π ∈ Πm,d. We have

dimX = max
π∈Πm,d

dimϕ−1(Yπ) = d+ max
π∈Πm,d

dimYπ = d+ dim(Y )

by Theorem 3.8(4). The theorem holds true for the original ϕ. We may assume
that there exists a coordinate projection π : Mm → Md such that π(ϕ−1(y)) have
nonempty interiors for all y ∈ Y . We fix such a π through the proof.

We next show that d+e ≤ f . By Lemma 3.5, we can get a coordinate projection
p : Mn →M e, a definable open subset W of M e contained in p(Y ) and a definable
continuous injective map τ : W → Y which is homeomorphic onto its image such
that p ◦ τ is the identity map and p−1(w) ∩ Y is discrete for any w ∈ W . Consider
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the definable set

T = {(w, v) ∈W ×Md | v ∈ π(ϕ−1(τ(w))) and π−1(v) ∩ ϕ−1(τ(w)) is discrete}.

The fiber Tw has a nonempty interior for any w ∈ W by Lemma 3.3. Therefore, the
set T has a nonempty interior by Lemma 2.8. In particular, we have dim(T ) = d+e.

Consider the definable subset S = (p × π)−1(T ) ∩ Γ′(ϕ) ∩ (τ(W ) × Mm) of
Mm ×Mn, where Γ′(ϕ) denotes the reversed graph of the definable map ϕ given
by Γ′(ϕ) = {(y, x) ∈ Y × X | y = ϕ(x)}. It is obvious that (p × π)(S) = T and
S ∩ (p×π)−1(w, v) are discrete for all (w, v) ∈ T . Apply the property (d) to S and
the projection p× π. We can get a definable map ψ′ : T → S such that (p× π) ◦ψ′

is the identity map on T . Set ψ = π ◦ ψ′ : T → X . It is obviously injective. We
have d+ e = dim(T ) = dimψ(T ) ≤ f by Lemma 3.13 and Theorem 3.8(1).

We next demonstrate the opposite inequality d+e ≥ f . There exist a coordinate
projection q :Mm →Mf , a definable open subset U of Mf contained in q(X) and
a definable continuous injective map σ : U → X by Lemma 3.5. The notation D(ϕ)
denotes the set of points at which ϕ is discontinuous. Since dimD(ϕ) < dimX = f

by Theorem 3.8(6), the projection image q(D(ϕ)) has an empty interior. The
difference U \ q(D(ϕ)) has a nonempty interior by the property (b). Shrinking
U if necessary, we may assume that ϕ is continuous on σ(U). Take a coordinate
projection p : Mn → M e and a definable set W as in the proof of the inequality
d+ e ≤ f . Set

Z = {(v, w) ∈Md ×W | π−1(v) ∩ (p ◦ ϕ)−1(w) is discrete}.

We demonstrate that the set Z has a nonempty interior. Fix a point w ∈ W . We
have only to demonstrate that Zw = {v ∈ Md | π−1(v) ∩ (p ◦ ϕ)−1(w) is discrete}
has a nonempty interior for any w ∈ W by Lemma 2.8.

For any z ∈ p−1(w) ∩ Y , set B(z) = {v ∈Md | π−1(v)∩ϕ−1(z) is not discrete}.
We have dimB(z) < d for any z ∈ p−1(w) by Lemma 2.8. Consider the set
D = {(v, z) ∈ Md × Mn | v ∈ B(z) and z ∈ p−1(w) ∩ Y }. We get dimD =
supz∈p−1(w)∩Y dimB(z) < d by Theorem 3.11 because p−1(w) ∩ Y is discrete. The

definable set
⋃

z∈p−1(w)∩Y B(z) is the projection image of D, and it is of dimension

smaller than d by Theorem 3.8(5). In particular, it has an empty interior. Consider

the definable set Z ′
w =

⋃
z∈p−1(w)∩Y π(ϕ

−1(z)) \
(⋃

z∈p−1(w)∩Y B(z)
)
. The set

Z ′
w has a nonempty interior by the property (b) because

⋃
z∈p−1(w)∩Y π(ϕ

−1(z))

has a nonempty interior by the definition of π. On the other hand, the set Zw

contains the set Z ′
w. In fact, take a point v ∈ Z ′

w. Consider the restriction of ϕ to
π−1(v)∩(p◦ϕ)−1(w). The image is contained in p−1(w)∩Y , and it is discrete. The
fiber at z ∈ p−1(w) ∩ Y is π−1(v) ∩ ϕ−1(z) and it is also discrete by the definition
of B(z) and Z ′

w. Finally, the definable set π−1(v) ∩ (p ◦ ϕ)−1(w) is discrete by
applying Lemma 2.5 to the restriction of ϕ. We have demonstrated that Zw has a
nonempty interior. Therefore, the definable set Z has a nonempty interior.

Take an open box V contained in Z. Consider the definable continuous map
Φ : U → Md ×M e given by Φ(x) = (π ◦ σ(x), p ◦ ϕ ◦ σ(x)). Replacing the open
definable set U with the definable open set Φ−1(V ) if necessary, we may assume
that Φ(U) ⊂ Z. By the definition of Z, the fiber Φ−1(v, w) is discrete for any
(v, w) ∈ Z. Therefore, we have f = dimU = dim(Φ(U)) ≤ d + e by Lemma 3.13
and Theorem 3.8(1). We have finished the proof of the theorem. �
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The following corollary is the addition property theorem for definably complete
locally o-minimal structures enjoying the property (a) in Definition 1.1.

Corollary 3.15 (Addition property). Let M = (M,<, . . .) be as in Theorem 3.14.
Let X be a definable subset of Mm ×Mn. Set X(d) = {x ∈Mm | dimXx = d} for
any nonnegative integer d. The set X(d) is definable and we have

dim


 ⋃

x∈X(d)

{x} ×Xx


 = dimX(d) + d.

Proof. It is easy to prove thatX(d) is definable. We omit the proof. Apply Theorem
3.14 to the restriction of the projection Π :Mm+n →Mm to the set

⋃
x∈X(d){x}×

Xx, then we get the corollary. �

The following corollary also holds true:

Corollary 3.16. Let M = (M,<, . . .) be as in Theorem 3.14. Let X be a definable
subset of Mm+n and π : Mm+n → Mm be a coordinate projection. Fix a non-
negative integer d. Assume that, for any x ∈ Mm+n, there exists an open box U
containing the point x satisfying the inequality dim(π(X ∩U)) ≤ d. Then, we have
dim(π(X)) ≤ d.

Proof. We first reduce to the case in which the fibersX∩π−1(x) are equi-dimensional
for all x ∈ π(X). In fact, set Yk = {x ∈ π(X) | dim(X ∩ π−1(x)) = k} and
Xk = X ∩ π−1(Yk) for all 1 ≤ k ≤ n. They are definable because of the definition
of dimension. Since we have dim(π(Xk ∩ U)) ≤ dim(π(X ∩ U)) for any open box
U by Theorem 3.8(1), the conditions in the corollary are satisfied for Xk. Assume
that the corollary holds true for Xk. We have dim(Yk) = dim π(Xk) ≤ d. We
obtain dim(π(X)) = max1≤k≤n dim(Yk) ≤ d by Theorem 3.8(4). The corollary is
also true for X . We have succeeded in reducing to the case in which the fibers are
equi-dimensional.

Set e = dim(π(X)) and f = dim(X ∩ π−1(x)) for x ∈ π(X). We have dim(X) =
e+f by Theorem 3.14. We can take a point b in Rm+n such that dim(X∩V ) = e+f
for any open box V containing the point b by Corollary 3.12. Choose an open box U
containing the point b so that dim(π(X ∩U)) ≤ d, which exists by the assumption.
SetX ′ = X∩U . It is obvious that the fibersX ′∩π−1(x) are of dimension not greater
than f for all x ∈ π(X∩U) = π(X ′). Set Y ′

k = {x ∈ π(X ′) | dim(X ′∩π−1(x)) = k}

and X ′
k = X ′ ∩ π−1(Y ′

k) for 1 ≤ k ≤ f . Since we have X ′ =
⋃f

k=1X
′
k, we get

dim(X ′
l) = dim(X ′) = e + f for some 1 ≤ l ≤ f by Theorem 3.8(4). Again by

Theorem 3.14 and Theorem 3.8(1), we get e + f = dimπ(X ′
l) + l ≤ dim(π(X ∩

U)) + l ≤ d+ l. We finally obtain e ≤ d because 0 ≤ l ≤ f . �

4. Decomposition into quasi-special submanifolds

A decomposition theorem into quasi-special submanifolds is discussed in this
section. We first define quasi-special submanifolds.

Definition 4.1. Consider an expansion of a densely linearly order without end-
points M = (M,<, . . .). Let X be a definable subset of Mn and π :Mn →Md be
a coordinate projection. A point x ∈ X is (X, π)-normal if there exists an open
box B in Mn containing the point x such that B ∩X is the graph of a continuous
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map defined on π(B) after permuting the coordinates so that π is the projection
onto the first d coordinates.

A definable subset is a π-quasi-special submanifold or simply a quasi-special
submanifold if, π(X) is a definable open set and, for every point x ∈ π(X), there
exists an open box U inMd containing the point x satisfying the following condition:
For any y ∈ X∩π−1(x), there exist an open box V inMn and a definable continuous
map τ : U →Mn such that π(V ) = U , τ(U) = X ∩ V and the composition π ◦ τ is
the identity map on U .

Let {Xi}mi=1 be a finite family of definable subsets of Mn. A decomposition of
Mn into quasi-special submanifolds partitioning {Xi}mi=1 is a finite family of quasi-

special submanifolds {Ci}Ni=1 such that
⋃N

i=1 Ci = Mn, Ci ∩ Cj = ∅ when i 6= j

and Ci has an empty intersection with Xj or is contained in Xj for any 1 ≤ i ≤ m

and 1 ≤ j ≤ N . A decomposition {Ci}Ni=1 of Mn into quasi-special submanifolds
satisfies the frontier condition if the closure of any quasi-special manifold Ci is the
union of a subfamily of the decomposition.

The following lemma guarantees that a definable set X in which all the points
are (X, π)-normal is always a π-quasi-special submanifold. This property makes
the proof of the decomposition theorem easy.

Lemma 4.2. Consider a definably complete locally o-minimal structure M =
(M,<, . . .) enjoying the property (a) in Definition 1.1. Let X be a definable subset
of Mn and π : Mn → Md be a coordinate projection. Assume that all the points
x ∈ X are (X, π)-normal. Then, X is a π-quasi-special submanifold.

Proof. We may assume that π is the projection onto the first d coordinates without
loss of generality. It is obvious that π(X) is open because X is locally the graph of
a continuous map. We fix a point c ∈ π(X). Note that the fiber Xc = X ∩ π−1(c)
is discrete by the assumption. The fiber Xc is also closed by Lemma 2.4. Let
pe :M

d → M e be the projection onto the first e coordinates for all 0 ≤ e ≤ d. We
demonstrate the following claim. The lemma is obvious from the claim for e = d.

Claim. Let e be a nonnegative integer with 0 ≤ e ≤ d. There exists an
open box Ue in M e containing the point pe(c) such that, for any y ∈ Xc, there
exist an open box Ve,y in Md−e and an open box We,y in Mn such that y ∈ We,y,
π(We,y) = Ue×Ve,y and the intersection of X withWe,y is the graph of a continuous
map defined on Ue × Ve,y .

We prove the claim by induction on e. The claim follows from the assumption
that all the points x ∈ X are (X, π)-normal when e = 0. Consider the case in which
e > 0. Let ce be the e-th coordinate of the point c. Take an element d+,e ∈ M

with ce < d+,e. For any y ∈ Xc, let ϕ+(y) be the supremum of the point x′ ∈ M

satisfying

(i) ce < x′ < d+,e, and
(ii) that there exist a ∈M with a < ce, an open box V ′

e,y in Md−e and an open
box W ′

e,y in Mn such that
• y ∈ W ′

e,y,
• π(W ′

e,y) = Ue−1 × (a, x′)× V ′
e,y and

• the intersection of X with W ′
e,y is the graph of a continuous map

defined on π(W ′
e,y).
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Such x′ exists and the value ϕ+(y) is lager than ce by the induction hypothesis.
We get a definable function ϕ+ : Xc → M . The image ϕ+(Xc) is discrete by
the property (a) because the fiber Xc is discrete. It is closed by Lemma 2.4. Set
b′e,+ = inf{z ∈ ϕ+(Xc)}. We have b′e,+ > ce because ϕ+(Xc) > ce. Take be,+ so
that ce < be,+ < b′e,+.

Take an element d−,e ∈ M with ce > d−,e. For any y ∈ Xc, we define ϕ−(y) as
the infimum of the point x ∈M satisfying

(i’) ce > x > d−,e, and
(ii’) that there exist an open box Ve,y in Md−e and an open box We,y in Mn

such that
• y ∈ We,y,
• π(We,y) = Ue−1 × (x, be,+)× Ve,y and
• the intersection of X with We,y is the graph of a continuous map
defined on π(We,y).

We can take a point x satisfying the above conditions (i’) and (ii’). In fact, we can
take a, V ′

e,y and W ′
e,y satisfying the condition (ii) by putting x′ = be,+. Let x be

an element satisfying the inequality x ≥ a and the condition (i’), then Ve,y = V ′
e,y

and We,y =W ′
e,y ∩ π

−1(Ue−1 × (x, be,+)× Ve,y) satisfy the condition (ii’).
In the same way as above, the supremum b′e,− = sup{z ∈ ϕ−(Xc)} satisfies

the inequality b′e,− < ce. We take be,− so that b′e,− < be,− < ce. Set Ue =
Ue−1 × (be,−, be,+). It is now obvious that Ue satisfies the claim. We have finished
the proofs of both the claim and the lemma. �

We next construct a decomposition of a single definable set.

Lemma 4.3. Consider a definably complete locally o-minimal structure M =
(M,<, . . .) enjoying the property (a) in Definition 1.1. Let X be a definable subset
of Mn. There exists a family {Ci}Ni=1 of mutually disjoint quasi-special submani-

folds with X =
⋃N

i=1 Ci and N ≤ 2n.

Proof. We first define the full dimension of a definable subset X of Mn. Set d =
dimX . The notation Πn,d denotes the set of all the coordinate projections of Mn

onto Md. The set Πn,d is a finite set. The full dimension fdim(X) is (d, e) by
definition if d = dim(X) and e is the number of elements in Πn,d under which the
projection image of X has a nonempty interior. The pairs (d, e) are ordered by the
lexicographic order.

We prove the the theorem by induction on fdim(X). When dim(X) = 0, X is
closed and discrete by Proposition 3.2. The definable set X is obviously a quasi-
special submanifold in this case.

We consider the case in which dim(X) > 0. Set (d, e) = fdim(X). Take a
coordinate projection π : Mn → Md such that π(X) has a nonempty interior. Set
G = {x ∈ X | x is (X, π)-normal} and B = X \ G. It is obvious that any point
x ∈ G is (G, π)-normal. The definable set G is π-quasi-special submanifold by
Lemma 4.2.

We demonstrate that π(B) has an empty interior. Assume the contrary. There
exists an open box U such that the fibers Bx = π−1(x) ∩ B are discrete for all
x ∈ U by Lemma 3.3. We can take a definable map τ : U → B with π(τ(x)) = x

for all x ∈ U because the structure M possesses the property (d) in Definition
2.6. The dimension of points at which the map τ is discontinuous is of dimension
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smaller than d by Theorem 3.8(6). We may assume that the restriction of τ to U
is continuous shrinking U if necessary.

Set Z = ∂(X \ τ(U)). We get dimZ = dim ∂(X \ τ(U)) < dim(X \ τ(U)) ≤
dimX = d by Theorem 3.8(1), (7). We have dimZ = dimZ < d again by Theorem
3.8(4), (7). On the other hand, we have d = dimU = dimπ(τ(U)) ≤ dim τ(U) ≤
dimX = d by Theorem 3.8(1), (5). We get dim(τ(U)) = d. It means that τ(U) 6⊂ Z

by Theorem 3.8(1).
Take a point p in τ(U) \ Z. Take a sufficiently small open box V containing

the point p. We have X ∩ V = τ(U) ∩ V by the definition of Z and p. Since
the restriction of τ to U is continuous, there exists an open box U ′ contained
in U ∩ τ−1(V ). Consider the open box V ′ = V ∩ π−1(U ′). It is obvious that
X ∩ V ′ = τ(U) ∩ V ′ is the graph of the restriction of τ to U ′ by the definition.
Any point τ(U) ∩ V ′ is (X, π)-normal, but it contradicts to the definition of B
and the inclusion τ(U) ⊂ B. We have shown that π(B) has an empty interior. In
particular, we get fdim(B) < fdim(X).

There exists a decomposition B = C1 ∪ . . .∪Ck of B satisfying the conditions in
the lemma by the induction hypothesis. The decomposition X = G∪C1 ∪ . . .∪Ck

is the desired decomposition of X .
It is obvious that the number of quasi-special submanifolds N is not greater than

n∑

d=0

(the cardinality of Πn,d) =

n∑

d=0

(
n

d

)
= 2n.

�

We finally get the following two decomposition theorems:

Theorem 4.4. Consider a definably complete locally o-minimal structure M =
(M,<, . . .) enjoying the property (a) in Definition 1.1. Let {Xi}mi=1 be a finite
family of definable subsets of Mn. There exists a decomposition {Ci}Ni=1 of Mn

into quasi-special submanifolds partitioning {Xi}mi=1 with N ≤ 2m+n.

Proof. Set X0
i = Xi and X

1
i = Mn \Xi for all 1 ≤ i ≤ m. For any σ ∈ {0, 1}m,

the notation σ(i) denotes the i-th component of σ. Set Xσ =
⋂m

i=1X
σ(i)
i for any

σ ∈ {0, 1}m. The family {Xσ}σ∈{0,1}m is mutually disjoint and satisfies the equality

Mn =
⋃

σ∈{0,1}m Xσ. For all σ ∈ {0, 1}m, there exist families {Cσ,j}
Nσ

j=1 of mutually

disjoint quasi-special submanifolds with Xσ =
⋃Nσ

j=1 Cσ,j and Nσ ≤ 2n by Lemma

4.3. The family
⋃

σ∈{0,1}m{Cσ,j}
Nσ

j=1 gives the decomposition we are looking for. �

Theorem 4.5. Consider a definably complete locally o-minimal structure M =
(M,<, . . .) enjoying the property (a) in Definition 1.1. Let {Xi}mi=1 be a finite fam-
ily of definable subsets of Mn. There exists a decomposition {Ci}Ni=1 of Mn into
quasi-special submanifolds partitioning {Xi}mi=1 and satisfying the frontier condi-
tion. Furthermore, the number N of quasi-special submanifolds is not greater than
the number uniquely determined only by m and n.

Proof. By reverse induction on d, we construct a decomposition {Cλ}λ∈Λd
of Mn

into quasi-special submanifolds partitioning {Xi}mi=1 such that the closures of all
the quasi-special submanifolds of dimension not smaller than d are the unions of
subfamilies of the decomposition.
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When d = n, take a decomposition {Dλ}λ∈Λ of Mn into quasi-special submani-
folds partitioning {Xi}mi=1 by Theorem 4.4. Set Λ′

n = {λ ∈ Λ | dim(Dλ) = n}. Get
a decomposition {Eλ}λ∈Λ̃n

of Mn into quasi-special submanifolds partitioning the

family {Dλ}λ∈Λ ∪ {Dλ \Dλ}λ∈Λ′

n
. Consider the set

Λ̃n

′
= {λ ∈ Λ̃n | Eλ is not contained in any Dλ′ with λ′ ∈ Λ′

n}.

We always have dim(Eλ) < n for all λ ∈ Λ̃n

′
by Theorem 3.8(7). Hence, the

family {Dλ}λ∈Λ′

n
∪{Eλ}λ∈Λ̃n

′ is trivially a decomposition of Mn into quasi-special

submanifolds partitioning {Xi}mi=1 we are looking for.
We next consider the case in which d < n. Let {Dλ}λ∈Λd+1

be a decom-
position of Mn into quasi-special submanifolds partitioning {Xi}

m
i=1 such that

the closures of all the quasi-special submanifolds of dimension not smaller than
d + 1 are the unions of subfamilies of the decomposition. It exists by the in-
duction hypothesis. Set Λ′

d = {λ ∈ Λd+1 | dim(Dλ) = d} and Λ′′
d = {λ ∈

Λd+1 | dim(Dλ) ≥ d}. Get a decomposition {Ed
λ}λ∈Λ̃d

of Mn into quasi-special

submanifolds partitioning the family {Dλ}λ∈Λd+1
∪ {Dλ \ Dλ}λ∈Λ′

d
. Set Λ̃d

′
=

{λ ∈ Λ̃d | Eλ is not contained in any Dλ′ with λ′ ∈ Λ′′
d}. The family {Dλ}λ∈Λ′′

d
∪

{Eλ}λ∈Λ̃d

′ is a decomposition of Mn into quasi-special submanifolds partitioning

{Xi}mi=1 we want to construct.
The ‘furthermore’ part of the theorem is obvious from the proof. �
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