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Abstract

In [16], Peterzil and Steinhorn proved that if a group G definable in an o-
minimal structure is not definably compact, then G contains a definable torsion-
free subgroup of dimension one. We prove here a p-adic analogue of the Peterzil-
Steinhorn theorem, in the special case of abelian groups.

Let G be an abelian group definable in a p-adically closed field M . If G is not
definably compact then there is a definable subgroup H of dimension one which
is not definably compact. In a future paper we will generalize this to non-abelian
G.

1 Introduction

In [16], Peterzil and Steinhorn prove that if G is a definable group in an o-minimal
structure M , and G is not definably compact, then G has a definable 1-dimensional
subgroup H that is not definably compact. To prove this, they take a continuous un-
bounded definable curve I : [0,+∞) → G and take H to be the “tangent line at ∞.”
This can be made precise using the language of µ-types and µ-stabilizers developed
later by Peterzil and Starchenko [15]. Say that two complete types q, r ∈ SG(M) are
“infinitesimally close” if there are realizations a |= q and b |= r such that ab−1 is in-
finitesimally close to idG (that is, ab−1 is contained in every M-definable neighborhood
of idG). This is an equivalence relation on SG(M), and equivalence classes are called
“µ-types.” The “µ-stabilizer” stabµ(q) of q ∈ SG(M) is the stabilizer of the µ-type of q.

With these definitions, the “tangent line of I at ∞” is simply the µ-stabilizer of the
type on I at infinity, an unbounded 1-dimensional definable type. (Here, we say that a
type q ∈ SG(M) is “unbounded” if no formula in q defines a definably compact subset
of G.) Peterzil and Steinhorn essentially show that the µ-stabilizer of an unbounded
1-dimensional definable type is a torsion free non-compact definable subgroup of di-
mension 1. More generally, in [15], Peterzil and Starchenko consider a general definable
type q ∈ SG(M), showing that stabµ(q) is a torsion-free definable group of a certain
dimension.

It is natural to ask whether analogous results hold in the theory pCF (p-adically
closed fields). There are many formal similarities between pCF and o-minimal theories,
especially RCF (real closed fields). In both settings, definable groups can be regarded as
real or p-adic Lie groups [17, 18], and are locally isomorphic to real or p-adic algebraic
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groups [7]. In both the real and p-adic contexts, definable sets have a dimension which
has a topological description as well as an algebraic description (the algebro-geometric
dimension of the Zariski closure). On the other hand, definable connectedness behaves
very differently in the two settings.

In this paper, we restrict our attention to one-dimensional definable types, as in the
original work of Peterzil and Steinhorn [16]. Unfortunately, we must also assume that
G is “nearly abelian” for most of our theorems.

Definition 1.1. Let G be a definable group in a model of pCF. G is nearly abelian if
there is a definably compact definable normal subgroup K ⊆ G with G/K abelian.

See Definition 2.1 for a precise definition of “definable compactness,” and Proposi-
tions 2.16 and 2.24 for some equivalent conditions.

Our main results are as follows:

Theorem 1.2. Let G be a definable group over a p-adically closed field M . If G is
not definably compact and G is nearly abelian, then there is a 1-dimensional definable
subgroup H ⊆ G that is not definably compact.

We plan to generalize Theorem 1.2 to non-abelian groups in a future paper.

Theorem 1.3. Suppose that G is a definable group over an ℵ1-saturated p-adically
closed field M . Then for any definable unbounded 1-dimensional type r ∈ SG(M), the
µ-stabilizer stabµ(r) is a 1-dimensional type-definable subgroup of G. If G is abelian (or
nearly abelian), then stabµ(r) is unbounded.

Here, a set or type is “bounded” if it is contained in a definably compact set, and
“unbounded” otherwise (Definition 2.9). The assumption on saturation is necessary. For
example, suppose M = Qp, G is the multiplicative group, and r ∈ SG(Qp) is one of the
definable types consistent with {x | v(x) < Z}. Then stabµ(r) is the intersection of all
n-th powers Pn = {x | x 6= 0 ∧ ∃(x = yn)}, which is the trivial group {1}.

We can also say something when M is not saturated, but we will need a few more
definitions from [15]. Fix a group G definable in a p-adically closed field M . For any
partial type Σ(x) in G, and any L-formula φ(x; y), let stabφ(Σ) denote

⋂

b∈Mk

stab{g ∈ G(M) | Σ ⊢ φ(gx; b)}.

(This can be understood as the stabilizer of the φ(z · x; y)-type generated by Σ(x).)
It turns out that stab(Σ) =

⋂

φ∈L stabφ(Σ). Now suppose that r is a type in SG(M).
Let µ be the partial type of “infinitesimals,” that is, the set of LM -formulas definining
neighborhoods of idG. Let µ · r be the partial type such that (µ · r)(N) = µ(N) · r(N)
for sufficiently saturated N ≻M . It turns out that

stabµ(r) = stab(µ · r) =
⋂

φ∈L

stabφ(µ · r).

Moreover, when r is definable, the groups stabφ(µ · r) are definable, and stab(µ · r) is
type-definable. (This is the reason why stabµ(r) is type-definable in Theorem 1.3. In
the o-minimal case, there is a descending chain condition on definable groups, which
ensures that stabµ(r) is definable in [15].)
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Theorem 1.4. Suppose that G is a definable group over a p-adically closed field M .
Let r ∈ SG(M) be a definable unbounded 1-dimensional type. Then there is a formula
φ ∈ L such that stabφ(µ · r) is a 1-dimensional definable subgroup of G. When G is
abelian (or nearly abelian), stabφ(µ · r) is unbounded.

Our proofs of these theorems are based on the original proofs of Peterzil and Stein-
horn [16], though several important changes are necessary. First of all, the µ-stabilizer
stabµ(r) is no longer definable, but merely type-definable, as mentioned above. For
this reason, it is necessary to compute the stabilizers in an |M |+-saturated elementary
extension N ≻M .

A more serious problem arises when trying to generalize [16, Lemma 3.8]. This
lemma, which is used to show that stabµ(p) 6= {idG}, roughly says the following: if I is
a curve tending to infinity and B is an annulus around idG, then g · B ∩ I 6= ∅ for all
g ∈ I. This follows by a simple connectedness argument (I is connected, so it must cut
across the annulus g ·B on its way from g to infinity). This argument fails critically in the
totally disconnected p-adic context. In Section 4 we develop an alternative argument
to replace [16, Lemma 3.8]. Unfortunately, the argument only works properly in the
abelian (or near-abelian) case.

1.1 Notation and conventions

We shall assume a basic knowledge of model theory, including basic notions such as
definable types, saturation, heirs, and so on. Good references are [12, 21]. We refer
to the excellent survey [1] as well as [13, 7] for the model theory of the p-adic field
(Qp,+,×, 0, 1). In fact, [13] and [7] are also good references for the model theoretic
background required for the current paper.

Let T be a theory in some language L. We write M for a monster model of T ,
in which every type over a small subset A ⊆ M is realized, where “small” means
|A| < κ for some big enough cardinal κ. The letters M,N,M ′ and N ′ will denote small
elementary submodels of M. We will use x, y, z to mean arbitrary n-tuples of variables
and a, b, c ∈ M to denote n-tuples in Mn with n ∈ N. Every formula is an LM-formula.
For an LM -formula φ(x), φ(M) denotes the definable subset of M |x| defined by φ, and
a set X ⊆ Mn is definable if there is an LM -formula φ(x) such that X = φ(M). If
M ≺ N ≺ M, and X ⊆ Nn is defined by a formula ψ with parameters from M , then
X(M) and X(M) will denote ψ(M) and ψ(M) respectively; these are clearly definable
subsets of Mn and Mn respectively.

Following [15, Definition 2.12], we say that a partial type Σ is A-definable or definable
over A if for every formula φ(x; y), there is an LA-formula ψ(y) such that

Σ(x) ⊢ φ(x; b) ⇐⇒ M |= ψ(b)

for all b ∈ M . We will denote the formula ψ(y) by (dΣx)φ(x, y), thinking of dΣ as a
quantifier. The map φ(x; y) 7→ (dΣx)φ(x, y) is called the definition schema of Σ(x).

If Σ(x) is a definable partial type over M , and N ≻ M , then ΣN will denote the
canonical extension of Σ by definitions, i.e., the following partial type over N :

ΣN = {φ(x; a) ∈ LN | N |= (dΣx)φ(x, a)}.
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When p is a complete definable type over M , the canonical extension pN is the same
thing as the unique heir of p over N .

For a definable set D ⊆ Mn, and φ(x) an LM-formula, we say that φ(x) is a D-
formula if M |= φ(x) =⇒ x ∈ D(M). A partial type q(x) (over a small subset) is a
D-type if q(x) ⊢ x ∈ D(M). We write SD(M) for the space of complete D-types over
M .

We consider Qp as a structure in the language of rings L = Lr = {+,×,−, 0, 1}. The
valuation ring Zp is definable in Qp. The valuation group (Z,+, <) and the valuation
v : Qp → Z ∪ {∞} are interpretable. A p-adically closed field is a model of pCF :=
Th(Qp). For any M |= pCF, R(M) will denote the valuation ring, and ΓM will denote
the value group. By [11], pCF admits quantifier elimination after adjoining predicates
Pn for the n-th power of the multiplicative group for all n ∈ N+. The theory pCF also
has definable Skolem functions [2].

The p-adic field Qp is a locally compact topological field, with basis given by the
sets

B(a, n) = {x ∈ Qp | x 6= a ∧ v(x− a) ≥ n}

for a ∈ Qp and n ∈ Z. The valuation ring Zp is compact. The topology is definable
(as in Section 2.1 below), so it extends to any p-adically closed field M , making M
a topological field (usually not locally compact). Any definable set X ⊆ Mn has a
topological dimension, denoted by dim(X), which is the maximal k ≤ n such that the
image of the projection π : X → Mn; (x1, . . . , xn) 7→ (xr1 , . . . , xrk) has interior, for
suitable 1 ≤ r1 < · · · < rk ≤ n. As model theoretic algebraic closure coincides with the
field-theoretic algebraic closure, algebraic closure gives a pregeometry on M , and the
algebraic dimension dimalg(X) of X can be calculated in the usual way. The topological
dimension coincides with the algebraic dimension.

1.2 Outline

In Section 2, we review the notion of definable compactness, and how it behaves in
definable manifolds and definable groups in pCF. In Section 3 we review the theory of
dp-rank, which is used in Section 4. In Section 4, we prove a technical statement about
“gaps” in unbounded sets, which replaces the use of connectedness in Peterzil-Steinhorn
[16, Lemma 3.8]. In Section 5, we review the theory of stabilizers and µ-stabilizers from
[15]. Finally, we prove the main theorems in Section 6.

2 Definable compactness

In this section, we review the notion of definable compactness for definable manifolds
and definable groups in p-adically closed fields. The treatment of (p-adic) definable
compactness in the literature is questionable, so we build up the theory from scratch,
out of an abundance of caution.

In Section 2.1 we recall an abstract definition of definable compactness, which be-
haves well in any definable topological space. In the next two sections, we restrict our
attention to p-adic definable manifolds. In Section 2.2 we show that our definition agrees
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with the definition in the literature in terms of curve completion. In Section 2.3 we give
another characterization using specialization of definable types. Finally, in Section 2.4
we list some consequences for definable groups.

2.1 Abstract definable compactness

Let M be an arbitrary structure. A definable topology on a definable set X ⊆ Mn is a
topology with a (uniformly) definable basis of opens. A definable topological space is a
definable set with a definable topology.

Recall that a topological space is compact if any filtered intersection of non-empty
closed sets is non-empty.

Definition 2.1. Let X be a definable topological space in a structure M . Say that X
is definably compact if the following holds: for any definable family F = {Yt : t ∈ T} of
non-empty closed sets Yt ⊆ X , if F is downwards directed, then

⋂

F 6= ∅.
More generally, say that a definable set Y ⊆ X is definably compact if it is definably

compact with respect to the induced subspace topology.

Definable compactness has many of the expected properties:

Fact 2.2.

1. If X is a compact definable topological space, then X is definably compact.

2. If X, Y are definably compact, then X × Y is definably compact.

3. If f : X → Y is definable and continuous, and X is definably compact, then the
image f(X) ⊆ Y is definably compact.

4. If X is a Hausdorff definable topological space and Y ⊆ X is definably compact,
then Y is closed.

5. If X is definably compact and Y ⊆ X is closed and definable, then Y is definably
compact.

6. If X is a definable topological space and Y1, Y2 ⊆ X are definably compact, then
Y1 ∪ Y2 is definably compact.

Definition 2.1 and Fact 2.2 are due independently to Fornasiero [4] and the first
author [9, Section 3.1].

Remark 2.3. Suppose X is a definable topological space in a structureM , and N ≻M .
Then X(N) is naturally a definable topological space in the structure N , and X(N)
is definably compact if and only if X is definably compact. In other words, definable
compactness is invariant in elementary extensions.
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2.2 Definable compactness and definable manifolds in pCF

LetM be a p-adically closed field with valuation group ΓM . Each powerMn is a definable
topological space. We first characterize definable compactness for subsets of Mn.

Lemma 2.4. If X ⊆Mn is definably compact, then X is closed and bounded.

Proof. For t ∈M \ {0}, let Ot be the n-dimensional ball B(0, v(t))n. Each Ot is clopen
in Mn. Therefore {X \ Ot : t ∈ M \ {0}} is a downwards-directed definable family of
closed subsets of X , with empty intersection. By definable compactness, there is some
t such that X \Ot = ∅, or equivalently, X ⊆ Ot. Then X is bounded.

Closedness follows similarly, or by Fact 2.2(4).

Lemma 2.5. If X ⊆Mn is closed and bounded, then X is definably compact.

Proof. Equivalently, if {Yt} is a downwards-directed definable family of non-empty,
closed, bounded sets, then

⋂

t Yt 6= ∅. This claim can be expressed as a countable
conjunction of L-sentences. (We need infinitely many sentences because there is no
bound on the complexity of the definable family {Yt}.) As a countable conjunction of
L-sentences, the claim holds in M if and only if it holds in Qp. Therefore, we may
assume that M = Qp. In this case, the set X will be compact, and hence definably
compact by Fact 2.2(1).

Definition 2.6. Let X be a definable topological space. A Γ-exhaustion is a definable
family {Wγ | γ ∈ ΓM} such that

• Each Wγ is an open, definably compact subset of X . In particular, Wγ is clopen.

• If γ ≤ γ′, then Wγ ⊆Wγ′ .

• X =
⋃

γ∈ΓM
Wγ.

Lemma 2.7. If U ⊆Mn is definable and open, then U has a Γ-exhaustion.

Proof. For any x̄ = (x1, . . . , xn) ∈ Mn and γ ∈ ΓM , let B(x̄, γ) denote the ball of
valuative radius γ around x̄, i.e.,

∏n
i=1 B(xi, γ).

Let Wγ be the set of x ∈ U such that B(x, γ) ⊆ U and 0̄ ∈ B(x,−γ). We claim that
the family Wγ is a Γ-exhaustion.

First of all, for all x′ sufficiently close to x, we have B(x, γ) = B(x′, γ) and B(x,−γ) =
B(x′,−γ), and so x ∈ Wγ ⇐⇒ x′ ∈ Wγ. Therefore Wγ is clopen. Additionally,

x ∈ Wγ =⇒ 0̄ ∈ B(x,−γ) ⇐⇒ x ∈ B(0̄,−γ).

Therefore Wγ is bounded. By Lemma 2.5, Wγ is definably compact.
If γ′ ≥ γ, then B(x, γ′) ⊆ B(x, γ) and B(x,−γ′) ⊇ B(x,−γ). Therefore

x ∈ Wγ =⇒ x ∈ Wγ′,

and the family {Wγ} is monotone.
Lastly, if x ∈ U , then for sufficiently large γ, we have B(x, γ) ⊆ U , because U is

open. Also, 0̄ ∈ B(x,−γ) for sufficiently large γ. Thus x ∈ Wγ for all sufficiently large
γ. This shows U =

⋃

γWγ.
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An n-dimensional definable manifold over M is a Hausdorff definable topological
space X with a covering by finitely may open subsets U1,. . . ,Um, and a definable home-
omorphism from Ui to an open set Vi ⊆ Mn for each i.

Proposition 2.8. Let X be a definable manifold in M . Then X has a Γ-exhaustion.

Proof. Cover X with finitely many open sets Ui homeomorphic to open subsets of Mn.
For each i, let {Wi,γ}γ∈ΓM

be a Γ-exhaustion of Ui. Let Vγ =
⋃

iWi,γ. Then the family
{Vγ} is a Γ-exhaustion of X .

Definition 2.9. Let X be a definable manifold. An arbitrary subset Y ⊆ X is bounded
if Y ⊆ D for some definably compact subset D ⊆ X .

Proposition 2.10(1) gives a more concrete definition of “bounded” in terms of Γ-
exhaustions.

Proposition 2.10. Let X be a definable manifold and Y ⊆ X be an arbitrary subset.

1. Let {Wγ} be a Γ-exhaustion of X. Then Y is bounded if and only if there is γ ∈ Γ
such that Y ⊆Wγ.

2. Suppose Y is definable. Then Y is definably compact if and only if Y is closed and
bounded.

3. Suppose Y is definable. Then Y is bounded if and only if the closure Y is definably
compact.

Proof.

1. If Y ⊆ Wγ , then Y is contained in the definably compact set Wγ . Conversely,
suppose Y is bounded, witnessed by a definably compact set Z ⊆ X with Y ⊆ Z.
The filtered intersection

⋂

γ

(Z \Wγ)

is empty, so there is some γ such that Wγ ⊇ Z ⊇ Y .

2. If Y is definably compact, then Y is closed (Fact 2.2(4), and Y is bounded because
Y ⊆ Y . Conversely, suppose that Y is closed and bounded. Then Y is a definable
closed subset of a definably compact set, so Y is definably compact by Fact 2.2(5).

3. If Y is definably compact, then Y is bounded because Y ⊆ Y . Conversely, suppose
that Y is bounded. Then Y ⊆ Z for some definably compact set Z ⊆ X . The
cosure Y is a definable closed subset of Z, so Y is definably compact by Fact 2.2(5).

Remark 2.11. Definable compactness is a definable property: Let Xt be a definable
manifold depending definably on some parameter t ∈ T . Then

{t ∈ T : Xt is definably compact}

is definable. This can be proved from Proposition 2.10(1,2) by compactness, using Re-
mark 2.3 to reduce to the case where M is highly saturated.
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Remark 2.12. When M = Qp, a definable manifold X is definably compact if and
only if it is compact. One direction is Fact 2.2(1). Conversely, suppose X is definably
compact. Cover X by definable open subsets U1, . . . , Un, each homeomorphic to an open
subset of Mn. As in the proof of Proposition 2.8, let {Wi,γ}γ∈Z be a Γ-exhaustion of Ui,
and let Vγ =

⋃n

i=1Wi,γ, so that {Vγ}γ∈Z is a Γ-exhaustion of X . By Proposition 2.10,
there is some γ ∈ Z such that X = Vγ. Then X =

⋃n
i=1Wi,γ, where each Wi,γ is

definably compact. Lemmas 2.4 and 2.5 imply that definable compactness is equivalent
to compactness for definable subsets of Mn. Therefore each Wi,γ is compact. As X is
covered by finitely many compact sets, X itself is compact.

We now try to relate our notion of definable compactness to the more familiar notions
appearing in [13].

Definition 2.13. Let X be a definable manifold. Let D be a definable subset ofM \{0}
with 0 ∈ D. Let f : D → X be a definable function. Then a ∈ X is a cluster point of f
if (0, a) is in the closure of the graph of f . In other words, for every neighborhood U1

of 0 and every neighborhood U2 of a, there is x ∈ U1 ∩D such that f(x) ∈ U2.

Lemma 2.14. let X be a definable manifold. Let f : R(M) \ {0} → X be a definable
function. Then f is continuous at all but finitely many points of R(M).

Proof. An exercise using the fact that any definable function M → Mn is continuous
off a finite set.

Lemma 2.15. Let X be a definable manifold. Let Y be a definable subset. The following
are equivalent:

1. Y is definably compact.

2. If D is a definable subset of M \ {0} with 0 ∈ D, then every definable function
f : D → Y has a cluster point.

3. Any definable continuous function f : R(M) \ {0} → Y has a cluster point in Y .

4. Any definable continuous function f : B(0, γ) \ {0} → Y has a cluster point in Y .

5. Let {Zγ}γ∈ΓM
be a definable family of non-empty closed subsets of Y , such that

γ ≤ γ′ =⇒ Zγ ⊇ Zγ′. Then
⋂

γ∈ΓM
Zγ 6= ∅.

Proof. (1)⇒(2): the set of cluster points is the intersection

⋂

γ∈ΓM

f(B(0, γ) ∩D).

This is non-empty by definable compactness of Y .
(2)⇒(3) is trivial, and (3)⇒(4) follows by rescaling.
(4)⇒(5): By definable Skolem functions, there is some definable function f : M \

{0} → Y such that f(x) ∈ Zv(x) for all x ∈ M \ {0}. By Lemma 2.14, there is some
δ ∈ ΓM such that f is continuous on B(0, δ) \ {0}. By (4), f has a cluster point a ∈ Y .
Then a ∈

⋂

γ Zγ . Otherwise, take γ large enough that a /∈ Zγ. Because a is a cluster
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point and Zγ is closed in Y , there is some x 6= 0 such that v(x) ≥ γ and f(x) /∈ Zγ . By
choice of f , f(x) ∈ Zv(x) ⊆ Zγ , a contradiction.

(5)⇒(1): We first claim that Y is closed. Take p ∈ Y . Because X is a definable
manifold, we can identify a neighborhood of p in X with the closed ball R(M)n in Mn.
For γ ≥ 0, let Bγ be the closed ball of radius γ around p. For γ ≤ 0 let Bγ = B0.
Then Bγ ∩ Y is a non-empty closed subset of Y for any γ, because p ∈ Y . By (4), the
intersection

⋂

γ(Bγ ∩ Y ) is non-empty, and so p ∈ Y . Therefore Y is closed.
Similarly, Y is bounded. Take a Γ-exhaustion {Uγ}γ∈ΓM

of the definable manifold X .
If Y is unbounded, then Y \Uγ is a closed non-empty subset of Y for each γ. Applying
(5) to the family of sets Y \Uγ, we see that Y 6⊆

⋃

γ Uγ = X , a contradiction. Therefore
Y is closed and bounded. By Proposition 2.10(2), Y is definably compact.

Therefore, we could alternatively define definable compactness as follows:

Proposition 2.16. Let Y be a definable subset of a definable manifold X. Then Y is
definably compact if and only if every definable continuous function f : R(M)\{0} → Y
has a cluster point.

This is essentially the definition of “definable compactness” appearing in [13] (with
the mistake fixed).

2.3 Definable compactness and definable 1-dimensional types

Suppose that N ≻M . Let X be a definable manifold in M .

Definition 2.17. For a ∈ X(M) and b ∈ X(N), say that a and b are infinitesimally
close over M if b is contained in every M-definable neighborhood of a.

Suppose that X, Y are M-definable manifolds and f : X → Y is an M-definable
continuous function. If a ∈ X(M) is infinitesimally close to b ∈ X(N), then f(a) is
infinitesimally close to f(b).

Definition 2.18.

• We let OX(M)(N) denote the set of b ∈ X(N) such that b is infinitesimally close
to at least one a ∈ X(M).

• There is a function stNM : OX(M)(N) → X(M) sending each b to the unique
a ∈ X(M) such that b and a are infinitesimally close. This is well-defined because
X is Hausdorff.

The map stNM is the “standard part” map from OX(M)(N) to X(M).

Definition 2.19. If p is a complete X-type over M , we say that p specializes to a ∈
X(M) if p(x) ⊢ x ∈ U for every M-definable neighborhood U ∋ a.

If b ∈ X(N) is a realization of p, then p specializes to a if and only if stNM(b) = a.
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Fact 2.20. If a′ ∈ N\M is infinitesimally close to a ∈M over M , then there is a coset
C ⊆ N\{0} of

⋂

n≥1 Pn(N) such that tp(a′/M) is determined by the partial type

{v(x− a) > γ | γ ∈ ΓM} ∪ {x− a ∈ C},

and tp(a′/M) is definable over M .

This follows by a similar argument to Lemma 2.1 in [14].

Lemma 2.21. Let C be a definable (i.e., interpretable) family of balls B ⊆M . Suppose
the following conditions hold:

1. C is non-empty.

2. C is a chain: it is linearly ordered by ⊆.

3. C is upwards-closed: if B ⊇ B′ ∈ C for balls B,B′, then B ∈ C.

4. C has no minimal element.

Then there is d ∈M such that C is the set of balls containing d.

Proof. We may assume M = Qp, in which case the lemma is an easy exercise using
spherical completeness of Qp.

Lemma 2.22. Let X be an M-definable set, and p be a 1-dimensional definable type
over M in X. Then there is an elementary extension N ≻ M and elements a ∈ M ,
b ∈ X(M), such that a is infinitesimally close to 0, b ∈ dcl(Ma), and p = tp(b/M).

Proof. Take N ≻ M containing a realization b of p. Because p is 1-dimensional, there
is some singleton c ∈ N such that dcl(Mb) = dcl(Mc). (In fact, we can take c to
be a coordinate of the tuple b.) Replacing c with 1/c if necessary, we may assume
that v(c) ≥ 0. Then tp(c/M) is definable and one-dimensional. Let C be the family of
M-definable balls which contain c. Then C is definable, because tp(c/M) is definable.
Moreover, C satisfies the four conditions of Lemma 2.21:

1. C is non-empty, because it contains the ball R(M) of radius 0.

2. C is a chain, because any two balls which intersect are comparable, and C cannot
contain two disjoint balls.

3. C is upwards-closed, trivially.

4. C has no least element. Otherwise, if B were the smallestM-definable ball contain-
ing c, then we could write B as a disjoint union of smaller balls B = B1∪· · ·∪Bp,
and one of the Bi would belong to C.

By Lemma 2.21, C is the class of balls around some point d. So there is some d ∈M such
that c is contained in every M-definable ball around d. Therefore, c is infinitesimally
close to d over M . Take a = c− d.
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Lemma 2.23. Let X be a definable manifold over M . Let Y be a definably compact
definable subset of X. Let p be a definable 1-dimensional complete Y -type over M . Then
p specializes to a point in Y .

Proof. Let N be an ℵ1-saturated elementary extension of M , and let M be a monster
model extending N . Let pN be the heir of p over N . We first show that pN specializes to
a point in Y (N). Take c ∈ Y (M) realizing pN . By Lemma 2.22, we can write c as g(a)
for some N -definable function g : M → Y (M) and some a ∈ M infinitesimally close to
0 over N . Because N is ℵ1-saturated, there is some u ∈ N such that a/u ∈ Pn(M) for
all n. Replacing a with a/u, we may assume that a ∈ Pn(M) for all n. For each n, let
Sn ⊆ Y (N) be the definable set of cluster points of g ↾ Pn(N). Each Sn is closed, and
non-empty by Lemma 2.15(2). The intersection

⋂

n Sn is filtered, and therefore non-
empty by ℵ1-saturation. Take b ∈

⋂

n Sn. Let Σ(x) be the partial type saying that x is
infinitesimally close to 0, g(x) is infinitesimally close to b, and x ∈ Pn for all n. Then
Σ(x) is finitely satisfiable, by choice of b. Take a′ ∈ M realizing Σ(x). By Fact 2.20,
tp(a′/N) = tp(a/N). Therefore a satisfies Σ(x), and so g(a) is infinitesimally close to
b. It follows that pN (x) specializes to b.

Let Z be the set of b ∈ Y (N) such that pN specializes to b. The set Z isM-definable,
because pN is definable overM . The above argument shows |Z| > 0. On the other hand,
|Z| ≤ 1 because Y (N) is Hausdorff. Therefore Z is a singleton {b}, and the element b
lies in Y (M). Then p specializes to b.

Proposition 2.24. Work in a model M . Let X be a definable manifold and Y be
a definable subset. Then Y is definably compact if and only if every 1-dimensional
definable Y -type specializes to a point of Y .

Proof. One direction is Lemma 2.23. Conversely, suppose every 1-dimensional definable
type in Y specializes to a point. We claim that Y is definably compact. We use criterion
(3) of Lemma 2.15. Let f : R(M) \ {0} → Y be a definable continuous function. Take
a monster model M ≻ M and a non-zero a ∈ M infinitesimally close to 0 over M . Let
b = f(a). By Fact 2.20, tp(a/M) is definable. Therefore tp(b/M) is 1-dimensional and
definable. Then tp(b/M) specializes to a point c ∈ Y (M). We claim that c is a cluster
point of f . For any M-definable neighborhoods U1 ∋ 0 and U2 ∋ c, we have (a, f(a)) =
(a, b) ∈ U1 × U2. As M ≺ M, there must be some (a′, f(a′)) ∈ U1(M) × U2(M). This
shows that c is a cluster point of f .

Lemma 2.25. Let X be an M-definable manifold and {Ot}t∈ΓM
be a Γ-exhaustion. Let

p be a definable 1-dimensional type in X over M , such that p does not concentrate on
Ot for any t ∈ ΓM . Suppose M ≻ N ≻ M . Suppose that b ∈ X(M) realizes p, and
b /∈ Ot(M) for any t ∈ ΓN . Then b realizes p

N , the heir of p over N .

Proof. By Lemma 2.22, we have b = f(a) for some M-definable function f : M → X
and some a ∈ M infinitesimally close to 0 over M . By Lemma 2.14, f is continuous
on B(0, γ0) for some sufficiently large γ0 ∈ ΓM ; note that v(a) > γ0. We claim that
a is infinitesimally close to 0 over N . Otherwise, there is some γ ∈ ΓN such that
v(a) < γ. Let A be the definable set of x ∈ M such that γ0 < v(x) < γ; note that
a ∈ A. The set A is definably compact and N -definable. Also, f is N -definable and
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continuous on A. Therefore, the image f(A) is N -definable, and definably compact. By
Proposition 2.10, there is some t ∈ ΓN such that f(A) ⊆ Ot. Then b = f(a) ∈ f(A) ⊆
Ot(M), contradicting the assumptions.

This shows that a is infinitesimally close to 0 over N . By Fact 2.20, tp(a/N) is the
heir of tp(a/M), implying that tp(b/N) = tp(f(a)/N) is the heir of tp(f(a)/M) = p.

2.4 Definable groups in pCF

By a definable group over M , we mean a definable set with a definable group operation.
By [18], any group G definable in M admits a unique definable manifold structure
making the group operations be continuous.

Remark 2.26. In particular, there is a canonical notion of “definable compactness”
for abstract definable groups and their definable subsets. As in Remarks 2.3 and 2.11,
one can show that these notions are definable in families and invariant in elementary
extensions.

Definition 2.27. A good neighborhood basis is a definable neighborhood basis of the
form {Ot : t ∈ ΓM} which is also a Γ-exhaustion, and such that Ot = O−1

t for each
t ∈ ΓM .

Proposition 2.28. Every definable group has a good neighborhood basis.

Proof. By Proposition 2.8, the groupG admits a Γ-exhaustion {Wt : t ∈ ΓM}. Replacing
{Wt} with {Wt+γ}, we may assume thatW0 is non-empty. Replacing {Wt} with {a·Wt},
we may assume that idG ∈ W0.

Because G is a definable manifold, there is some definable neighborhood basis {Nt :
t ∈ ΓM , t < 0} such that each Nt is clopen, and Nt depends monotonically on t. Define

Bt =

{

Wt t ≥ 0

W0 ∩Nt t < 0.

Then {Bt : t ∈ ΓM} is a definable neighborhood basis and a Γ-exhaustion. Lastly, define
Ot = Bt ∩ B

−1
t . Then {Ot : t ∈ ΓM} has all the desired properties.

Proposition 2.29. Let {Ot : t ∈ ΓM} be a good neighborhood basis of a definable group
G.

1. For any t ∈ ΓM , there is t′ ∈ ΓM such that Ot′ ·Ot′ ⊆ Ot.

2. For any t ∈ ΓM , there is t′′ ∈ ΓM such that Ot · Ot ⊆ Ot′′.

Proof. (1) is by continuity. For (2), note that the set Ot ·Ot is an image of the definably
compact space Ot × Ot under the definable continuous map (x, y) 7→ x · y. Therefore
Ot · Ot is definably compact. Then t′′ exists by Proposition 2.10.

Lemma 2.30. Let {Ot : t ∈ ΓM} be a good neighborhood basis of a definable group G.
For every t, ǫ ∈ ΓM , there is δ ∈ ΓM such that if a ∈ Oδ and b ∈ Ot, then b

−1ab ∈ Oǫ.

12



Proof. Define Sδ = {(a, b) ∈ Oδ×Ot : b
−1ab /∈ Oǫ}. Suppose for the sake of contradiction

that Sδ 6= ∅ for all δ. The family Sδ is definable, and depends monotonically on δ. Each
set Sδ is closed, because Oǫ, Oδ, and Ot are clopen. By definable compactness of Oδ×Ot,
the intersection

⋂

δ Sδ is non-empty. Therefore there are a, b ∈ G such that

1. a ∈ Oδ for all δ.

2. b ∈ Ot.

3. b−1ab /∈ Oǫ.

The first point implies a = idG, which then implies b−1ab = idG ∈ Oǫ, a contradiction.

3 Review of dp-rank

In Section 4 we will make extensive use of dp-rank, so we review its basic properties
here.

Definition 3.1. Let κ be a cardinal and Σ(x) be a partial type. An ict-pattern of depth
κ in Σ(x) consists of

• A family of formulas {φα(x, yα)}α<κ.

• An array of parameters {bα,i}α<κ, i<ω with |bα,i| = |yα|.

such that for any function η : κ→ ω, the following type is consistent:

Σ(x) ∪ {φα(x, bα,i) : α < κ, i = η(α)} ∪ {¬φα(x, bα,i) : α < κ, i 6= η(α)}.

Definition 3.2. The dp-rank of a partial type Σ(x) is the supremum of cardinals κ
such that, in some elementary extension N � M , there is an ict-pattern of depth κ in
Σ(x). When there is no supremum, the dp-rank is defined to be ∞, a formal symbol
greater than all cardinals.

We write the dp-rank of Σ(x) as dp-rk(Σ). When Σ(x) is a complete type tp(b/A),
we write the dp-rank as dp-rk(b/A).

The following facts can be found in [10], or alternatively [22, Chapter 4].

Fact 3.3. The following are equivalent in a structure M :

1. M is NIP.

2. dp-rk(x = x) <∞.

3. Every partial type has dp-rank <∞.

Fact 3.4. If Σ(x) is a partial type over A, and if the ambient modelM is |A|+-saturated,
then dp-rk(Σ) is the supremum of dp-rk(b/A) as b ranges over realizations of Σ(x).

Fact 3.5. If b ∈ acl(A), then dp-rk(b/A) = 0. If b /∈ acl(A), then dp-rk(b/A) > 0.
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Fact 3.6. For any b, c, A, we have

dp-rk(b/A) ≤ dp-rk(bc/A) ≤ dp-rk(b/cA) + dp-rk(c/A).

It is also helpful to view dp-rank as a property of definable sets:

Definition 3.7. If D is a definable set, then the dp-rank of D, written dp-rk(D), is
dp-rk(φ(x)) for any formula φ(x) defining D.

The following facts are easy exercises using Facts 3.3–3.6.

Fact 3.8. dp-rk(D) > 0 if and only if D is infinite.

Fact 3.9. If D1, D2 are definable sets, then dp-rk(D1 ×D2) = dp-rk(D1) + dp-rk(D2).

Fact 3.10. If f : D1 → D2 is a definable injection, then dp-rk(D1) ≤ dp-rk(D2). If
f : D1 → D2 is a definable surjection, then dp-rk(D1) ≥ dp-rk(D2).

We will need the following about dp-rank in p-adically closed fields:

Fact 3.11 ([3, Theorem 6.6]). If M is a p-adically closed field, then dp-rk(M) = 1.

Corollary 3.12. If M is a p-adically closed field, then every n-type in M has dp-rank
at most n.

In fact, dp-rank in pCF agrees with the natural notion of dimension (topological
dimension or acl-dimension), by [22, Exercise 4.38]. We will not need this fact, however.

4 Large gaps

In order to apply the strategy of Peterzil and Steinhorn, we need a technical statement
about “gaps” in unbounded curves:

Conjecture 4.1. Let G be a definable group over a p-adically closed field M , with a
good neighborhood basis {Ot | t ∈ ΓM}. Let I be a 1-dimensional unbounded definable
subset of G. Then for every t0 ∈ ΓM , there is t ∈ ΓM such that

{g ∈ I | g(Ot \Ot0) ∩ I = ∅}

is bounded.

The o-minimal analogue of Conjecture 4.1 holds by an easy connectedness argument
[16, Lemma 3.8]. But in a p-adically closed field, everything is totally disconnected and
we need a completely different approach. In the end, we will prove Conjecture 4.1 only
in a special case (Proposition 4.14), namely when G is nearly abelian (Definition 1.1).

Remark 4.2. It is useful to consider what a counterexample to Conjecture 4.1 would
look like. For each t≫ t0, there would be unboundedly many g ∈ I such that

g(Ot \Ot0) ∩ I = ∅,

or equivalently gOt ∩ I = gOt0 ∩ I. Around g, the set I looks like an “island” gOt0 ∩ I
surrounded by a very large empty space g(Ot \Ot0). Since I is unbounded, there must
be infinitely many of these “islands.” Because this holds for any t, the gaps between
the islands must become greater and greater as we move towards “∞”.
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The behavior described above is reminiscent of the behavior of the set 2Z in the
group (R,+, <). The structure (R,+, <, 2Z) is NIP [5, Theorem 6.5] but it does not
have finite dp-rank, and this is a direct consequence of the “large gaps” in 2Z. In a
non-standard elementary extension, by choosing a1 < b1 < a2 < b2 < · · · < an < bn
carefully, one can ensure that the map

n
∏

i=1

(2Z ∩ [ai, bi]) → R

(x1, . . . , xn) 7→
n

∑

i=1

xi

is injective and each set 2Z ∩ [ai, bi] is infinite, showing that the model has dp-rank at
least n (for arbitrary finite n).

Our approach for attacking Conjecture 4.1 is based on this line of argument: take
a set I with large gaps and obtain infinite dp-rank. Unfortunately, the argument only
works in the nearly abelian case (Proposition 4.14), though we can salvage a much
weaker statement in the non-abelian case (Proposition 4.15).

4.1 Notation

Let G be a group. If H is a subgroup of G, we let G/H denote the set of left cosets of
H . If A ⊆ G, we will write A/H to indicate the image of A in G/H . If A,B ⊆ G, we
let AB indicate {b−1ab : a ∈ A, b ∈ B}. Notation like “X \ Y ” will always mean set
subtraction, rather than quotienting by a group action on the left.

Definition 4.3. Let X, Y be subsets of a group G. Define

X ⋄ Y = {g ∈ X : gY ∩X = ∅}.

Note that X ⋄ Y depends negatively on Y . We will write “A ⋄ B \ C” to mean
“A ⋄ (B \ C).”

Remark 4.4. Suppose X, Y are subgroups of G, S ⊆ G, and a, b ∈ S ⋄X \ Y . Then

aX = bX =⇒ aY = bY.

Otherwise, b = aδ for some δ ∈ X \ Y , and so b ∈ a(X \ Y ) ∩ S, contradicting the fact
that a(X \ Y ) ∩ S = ∅.

4.2 The bad gap configuration

Recall that an externally definable set X in a structure M is a set of the form Y ∩Mn

for some elementary extension N ≻M and definable set Y ⊆ Nn. The Shelah expansion
MSh is the expansion ofM by all externally definable sets. When M is NIP, the Shelah
expansion MSh has elimination of quantifiers [22, Proposition 3.23]. Using this, it is
easy to see that MSh has the same dp-rank as M .
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Remark 4.5. Let F be a collection of definable subsets of Mn. If the sets in F are
uniformly definable, and F is linearly ordered by inclusion, then the sets

⋃

F and
⋂

F
are externally definable [6, Kaplan’s Lemma 3.4].

Later, we will use Remark 4.5 in conjunction with Proposition 2.29 to construct
externally definable subgroups of definable groups.

Definition 4.6. Let G be a definable group in a structure M . A bad gap configuration
in G consists of the following

• A finite subgroup F ⊆ G.

• Externally definable subgroups

· · · ⊆ Y2 ⊆ Y1 ⊆ Y0 ⊆ X0 ⊆ X1 ⊆ · · · ⊆ G

• An externally definable subset I ⊆ G.

such that the following conditions hold:

• Y F
i ⊆ Yi for all i.

• Y Xi

i ⊆ Yi−1, for i > 0.

• (Xi ∩ (I ⋄Xi−1 \ FYi−1))/Xi−1 is infinite, for i > 0.

We say that a bad gap configuration is (A-)definable if all of F , the Xi, Yi, and I are
(A-)definable.

Lemma 4.7. If G has finite dp-rank, then there is no bad gap configuration in G.

Proof. Let (F, {Yi}, {Xi}, I) be a bad gap configuration. Replacing M with the Shelah
expansion MSh, we may assume that the bad gap configuration is definable. Passing to
an elementary extension and naming parameters, we may assume thatM is ℵ1-saturated
and the bad gap configuration is ∅-definable.

Note that FYi = YiF is a subgroup of G, and that the index of Yi if FYi is finite,
no more than |F |. Let Di be the definable set Xi ∩ (I ⋄Xi−1 \ FYi−1). By assumption,
Di/Xi−1 is infinite.

Claim 1. Suppose ai, a
′
i ∈ Di for i = 1, . . . , n, and suppose

Ynanan−1 · · · a1 = Yna
′
na

′
n−1 · · · a

′
1. (1)

Then anFYn−1 = a′nFYn−1. If moreover anYn−1 = a′nYn−1, then

Yn−1an−1 · · · a1 = Yn−1a
′
n−1 · · · a

′
1. (2)
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Proof. Note that ai, a
′
i ∈ Xi. Equation (1) implies that

a′na
′
n−1 · · · a

′
1 = ǫanan−1 · · · a1 = anǫ

anan−1 · · · a1 (3)

for some ǫ ∈ Yn. Then ǫ
an ∈ Y Xn

n ⊆ Yn−1 ⊆ Xn−1. For i < n, we have ai, a
′
i ∈ Xi ⊆ Xn−1.

Therefore (3) implies that a′nXn−1 = anXn−1. Both a
′
n and an are in I ⋄Xn−1 \ FYn−1,

so by Remark 4.4 we have a′nFYn−1 = anFYn−1 as desired. Now suppose that anYn−1 =
a′nYn−1. Then a

′
n = anδ for some δ ∈ Yn−1. Then Equation (3) implies

anǫ
anan−1 · · · a1 = anδa

′
n−1a

′
n−2 · · · a

′
1

ǫanan−1 · · · a1 = δa′n−1a
′
n−2 · · · a

′
1.

Both ǫan and δ are in Yn−1, so Equation (2) holds. �Claim

For any n ∈ N, we claim that dp-rk(G) ≥ n. By assumption, the interpretable set
Di/Xi−1 is infinite. The interpretable set Di/Yi−1 is even bigger, because Yi−1 ⊆ Xi−1.
By the properties of dp-rank in Section 3,

∏n

i=1Di/Yi−1 has dp-rank at least n. Take
a tuple b̄ ∈

∏n

i=1Di/Yi−1 such that dp-rk(b̄/∅) ≥ n. Each bi is a coset aiYi−1 for some
ai ∈ Di. Let c = anan−1 · · · a1 ∈ G.

Claim 2. For each i, we have bi ∈ acl(c, bi+1, . . . , bn).

Proof. Let S be the set of (a′1, . . . , a
′
n) ∈

∏

j Dj such that

• a′na
′
n−1 · · · a

′
1 = c.

• a′jYj−1 = bj = ajYj−1 for j > i.

Then (a1, . . . , an) ∈ S and S is definable over c, bi+1, . . . , bn. If (a
′
1, . . . , a

′
n) ∈ S, then

Yna
′
na

′
n−1 · · · a

′
1 = Ync = Ynanan−1 · · · a1.

By Claim 1 applied (n− i+ 1) times, we see that aiFYi−1 = a′iFYi−1. We have shown

{a′iFYi−1 : (a
′
1, . . . , a

′
n) ∈ S} = {aiFYi−1}.

It follows that aiFYi−1 is definable over c, bi+1, . . . , bn. The fibers of the map G/Yi−1 →
G/(FYi−1) are finite, and so aiYi−1 = bi is algebraic over c, bi+1, . . . , bn. �Claim

By Claim 2 and induction, b̄ ∈ acl(c). Therefore

n ≤ dp-rk(b̄/∅) ≤ dp-rk(c/∅) ≤ dp-rk(G).

As n was arbitrary, G has infinite dp-rank, a contradiction.
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4.3 The saturated case

Until Subsection 4.4, we will work in a monster model M |= pCF. Fix a definable group
G, not definably compact, and fix a good neighborhood basis {Ot : t ∈ ΓM} in the sense
of Definition 2.27.

Lemma 4.8. There is no bad gap configuration in G.

Proof. For definable sets in pCF, dp-rank agrees with dimension. In particular, dp-rank
is finite. Therefore Lemma 4.7 applies to G.

Recall from Definition 2.9 and Proposition 2.10(1) that a subset S ⊆ G(M) is
bounded if S ⊆ Ot for some t ∈ ΓM.

Lemma 4.9. If S ⊆ G(M) is bounded, then S ⊆ X for some bounded externally
definable subgroup X ⊆ G(M).

Proof. Take t0 ∈ ΓM such that S ⊆ Ot0 . By Proposition 2.29, we can build an ascending
sequence

t0 < t1 < t2 < · · ·

in ΓM such that Oti ·Oti ⊆ Oti+1
for each i. By saturation, we can also find some tω > ti

for all finite i. Set X =
⋃

i<ω Oti . The set X is externally definable (Remark 4.5). The
set X is bounded, because X ⊆ Otω . We have X = X−1 because Oti = O−1

ti
for each i.

Lastly, X is closed under the group operation by choice of the ti’s.

Lemma 4.10. Let I be an unbounded subset of G. Let X ⊆ G(M) be a bounded
subgroup. Then there is an externally definable bounded subgroup X ′ ⊇ X such that
(X ′ ∩ I)/X is infinite.

Proof. We claim that I/X is infinite. Otherwise, I is contained in a finite union of
cosets: I ⊆

⋃n
i=1 aiX . Take t ∈ ΓM such that X ⊆ Ot. Then I is a subset of the

definably compact set
⋃n

i=1 aiOt, so I is bounded, a contradiction.
Now take a1, a2, a3, . . . ∈ I such that the cosets aiX are pairwise distinct. By sat-

uration, there is some t ∈ Γ such that {a1, a2, . . .} ⊆ Ot. Then {a1, a2, . . .} and X
are bounded. By Lemma 4.9, there is an externally definable bounded subgroup X ′

containing {a1, a2, . . .} ∪X . Then (X ′ ∩ I)/X is infinite, witnessed by the aiX .

Recall from Definition 1.1 that G is nearly abelian if there is a definably compact
definable normal subgroup K ⊆ G with G/K abelian. Equivalently, G is nearly abelian
if there is a definably compact subgroup K containing the derived group [G,G].

Lemma 4.11. Suppose that G is nearly abelian. Let I be an unbounded definable subset
of G(M). For any bounded set A, there is t ∈ ΓM such that I ⋄Ot \ A is bounded.

Proof. Suppose not.

Claim. For any bounded sets C ⊇ B ⊇ A, the set I ⋄ C \B is unbounded.

Proof. Take t ∈ ΓM such that C ⊆ Ot. Then I ⋄ C \ B contains the unbounded set
I ⋄Ot \ A, because Ot \ A ⊇ C \B. �Claim
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Let K be the normal subgroup witnessing near-abelianity. By Lemma 4.9, there is a
bounded externally definable subgroup X0 ⊇ A∪K. By Lemma 4.10 we can recursively
build an increasing chain of bounded externally definable subgroups

X0 ⊆ X1 ⊆ X2 ⊆ · · ·

such that

• (X1 ∩ I)/X0 is infinite.

• For n > 1, (Xn ∩ (I ⋄ Xn−1 \ X0))/Xn−1 is infinite. This is possible because
I ⋄Xn−1 \X0 is unbounded by the claim.

Let Yi = X0 for all i, and let F = {idG}. Note X0 is normal, because it contains K
which contains [G,G]. We have constructed a bad gap configuration in G, contradicting
Lemma 4.8.

Lemma 4.12. If S ⊆ G(M) is a neighborhood of idG, then S ⊇ X for some externally
definable open subgroup X ⊆ G(M). If, in addition, B ⊆ G(M) is a bounded set, then
we can choose the group X to ensure XB ⊆ X.

Proof. Take t0 ∈ ΓM such that S ⊇ Ot0. By Proposition 2.29 and Lemma 2.30, there is
a descending sequence

t0 > t1 > t2 > · · ·

in ΓM such that Oti+1
·Oti+1

⊆ Oti and also OB
ti+1

⊆ Oti. Take X =
⋂∞
i=1Oti. Then X is

an externally definable subgroup with XB ⊆ X . We can take some tω less than all the
ti’s, and then Otω ⊆ X . Therefore X has interior, and is an open subgroup.

Lemma 4.13. Let I be an unbounded definable subset of G(M). Let F be a finite
subgroup of G(M). Then there exist t, t′ ∈ ΓM such that I ⋄Ot \ (F · Ot′) is bounded.

Proof. Suppose not.

Claim. For any neighborhood A ∋ idG and any bounded set B ⊆ G, the set I ⋄B \ FA
is unbounded.

Proof. Take t, t′ such that

Ot′ ⊆ A and B ⊆ Ot

Ot \ (F · Ot′) ⊇ B \ (F · A)

I ⋄Ot \ (F · Ot′) ⊆ I ⋄B \ (F · A). �Claim

Take any bounded open externally definable subgroup X0 ⊆ G. By Lemma 4.12
there is an externally definable open subgroup Y0 ⊆ X0 such that Y F

0 ⊆ Y0. Recursively
build chains

X0 ⊆ X1 ⊆ · · ·

Y0 ⊇ Y1 ⊇ · · ·

where
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• Xi is a bounded externally definable subgroup, chosen large enough to ensure that
(Xi ∩ (I ⋄Xi−1 \ FYi−1))/Xi−1 is infinite (Lemma 4.10).

• Yi is an open externally definable subgroup with Y F
i = Yi, chosen small enough

that Y Xi

i ⊆ Yi−1 (Lemma 4.12).

This gives a bad gap configuration in G, contradicting Lemma 4.8.

4.4 The general case

Proposition 4.14. Let M be any model of pCF. Let G be a definable non-compact
group and {Ot : t ∈ ΓM} be a good neighborhood basis. Suppose that G is nearly abelian.
Let I be an unbounded definable set. Then for any t ∈ ΓM , there is t′ ∈ ΓM such that
I ⋄Ot′ \Ot is bounded.

Proof. We may replace M with a monster model, and then apply Lemma 4.11.

Proposition 4.15. Let M be any model of pCF. Let G be a definable non-compact
group. Let I be an unbounded definable set. Let F be a finite subgroup of G. Then for
any sufficiently small s and sufficiently large t, the set I ⋄Ot \ (FOs) is bounded.

Proof. We may replace M with a monster model, and then apply Lemma 4.13.

5 Stabilizers and µ-stabilizers

In this section we review some notation and facts from [15].

5.1 Stabilizers

Let G be a group definable in a structure M .

Notation 5.1. (1) If φ(x) and ψ(x) are G-formulas then φ ·ψ denotes the G-formula

(φ · ψ)(x) := ∃u∃v(φ(u) ∧ ψ(v) ∧ x = u · v).

Thus (φ · ψ)(M) = φ(M) · ψ(M).

(2) More generally, if q(x) and r(x) are partial G-types then q · r denotes the G-type

(q · r)(x) := {φ · ψ(x) | q(x) ⊢ φ(x), r(x) ⊢ ψ(x)}.

Thus (q ·r)(N) = q(N)·r(N) for an |M |+-saturated elementary extension N ≻M .

(3) If g ∈ G(M) and φ(x) is a G-formula, then g · φ denotes the G-formula

(g · φ)(x) := ∃u(φ(u) ∧ x = g · u).

Thus (g · φ)(M) = g · φ(M).
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(4) If g ∈ G(M) and p(x) is a partial G-type then g · p denotes the G-type

(g · p)(x) := {g · φ(x) | p(x) ⊢ φ(x)}.

Thus (g · p)(N) = g · p(N) for an |M |+-saturated N ≻ M .

Note that for partial G-types q1, q2, q3 over M , we have

(q1 · q2) · q3 = q1 · (q2 · q3),

as ((q1 · q2) · q3)(N) = q1(N) · q2(N) · q3(N) = (q1 · (q2 · q3))(N) for |M |+-saturated
N ≻M .

Definition 5.2. Given a partial type Σ(x) over M , define stab(Σ) to be the stabilizer,
i.e.,

stab(Σ) := {g ∈ G(M) | gΣ ≡ Σ},

where Σ ≡ Σ′ if Σ(x) ⊢ Σ′(x) and Σ′(x) ⊢ Σ(x). Equivalently, stab(Σ) is {g ∈ G(M) |
gΣ(N) = Σ(N)} for |M |+-saturated N �M .

Definition 5.3. Given a partial type Σ(x) over M and an L-formula φ(x, y), we define

stabφ(Σ) =
⋂

b∈Mk

Xφ,b,

where each Xφ,b is the stabilizer of {g ∈ G(M) | Σ ⊢ (gφ)(x, b)}.

Remark 5.4. Given φ(x; y), let φ′(x; y, z) be the formula φ(z · x; y). Then G acts on
φ′-types by left translation, and stabφ(Σ) is the stabilizer of the φ′-type generated by
Σ.

Remark 5.5. Note that our stabφ is slightly different from the Stabφ considered in
[15], which is more like the set Xφ,b appearing in Definition 5.3 above.

The following two facts are easy exercises.

Fact 5.6. stabφ(Σ) is a definable subgroup of G if Σ is definable.

Fact 5.7. For every partial type Σ over M .

stab(Σ) =
⋂

φ∈L

stabφ(Σ)

In particular, if Σ is definable then stab(Σ) is an intersection of definable subgroups.

Recall the notation ΣN for the canonical extension of a definable type Σ to an
elementary extension N ≻M , and the notation (dΣx)φ(x; y) for the φ-definition of Σ.

Lemma 5.8. If Σ is definable and N ≻M , then stabφ(Σ
N ) = stabφ(Σ)(N), and so

stab(ΣN ) =
⋂

φ∈L

stabφ(Σ)(N).

Proof. Indeed, stabφ(Σ)(M) is defined by the formula

∀y∀g : ((dΣz)φ(g · z; y)) ↔ ((dΣz)φ(x · g · z; y))

and stabφ(Σ
N) is defined by the same formula, because ΣN and Σ have the same defi-

nition schema.
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5.2 µ-types and µ-stabilizers

In this section we assume that G is a Hausdorff topological group definable in M with
a uniformly definable basis {Ot | t ∈ T} of open neighborhoods of the identity. For
each N ≻ M , the group G(N) is again a topological group and the definable family
{Ot(N) | t ∈ T (N)} again forms a basis for the open neighborhoods of idG.

Definition 5.9. The infinitesimal type of G, denoted µ(x), is the partial type consisting
of all formulas x ∈ U with U an M-definable neighborhood of idG.

Thus, if N � M , then µ(N) is the set of elements of G(N) which are infinitesimally
close to idG:

µ(N) =
⋂

{U(N) | U is an M-definable neighborhood of idG}

=
⋂

t∈T (M)

Ot(N).

Fact 5.10 ([15, Corollary 2.5 and Claim 2.15]).

1. If N ≻ M , then µ(N) is a subgroup of G(N) normalized by G(M).

2. For any definable q ∈ SG(M), the partial type µ · q is definable.

Partial types of the form µ · q for q ∈ SG(M) are called µ-types. The µ-stabilizer of
q ∈ SG(M) is the stabilizer of the associated µ-type:

stabµ(q) := stab(µ · q).

Note that if µ is the infinitesimal type of G = G(M), and N � M , then the canonical
extension µN is the infinitesimal type of G(N).

Fact 5.11 ([15, Remark 2.16]). If p is a definable type over M and N ≻ M , then the
product of the canonical extensions is equal to the canonical extension of the product:

µN · pN = (µ · p)N .

Remark 5.12. Let N be an |M |+-saturated extension of M , and µN and pN be the
canonical extensions of µ and p. Then

stab(µN · pN ) = stab((µ · p)N) =
⋂

φ∈L

stabφ(µ · p)(N),

by Lemma 5.8 and Fact 5.11.

By Fact 5.10, µ(N) · G(M) is a subgroup of G(N) as µ(N) ⊆ G(N) is normalized
by G(M). This subgroup is the OG(M)(N) of Definition 2.18. Because µ(N) ∩G(M) =
{idG}, the group µ(N) ·G(M) is a semidirect product of µ(N) and G(M), and there is
a natural homomorphism

OG(M)(N) = µ(N) ·G(M) → G(M).

This map is exactly the “standard part” map stNM of Definition 2.18. For Y ⊆ G(N),
we will write stNM(Y ) as a shorthand for stNM(Y ∩ OG(M)(N)), following [15].
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Lemma 5.13. Let p ∈ SG(M) be a definable type and let β ∈ G(M) realize pN . Then

1. stab(µN · pN) = stMN(p
N(M)β−1);

2. stab(µN · pN) =
⋂

ψ∈pN stMN (ψ(M)β−1);

Proof. Clause (1) is by Claim 2.22 in [15].
For (2), we must show

stMN(p
N(M)β−1) =

⋂

ψ∈pN

stMN(ψ(M)β−1).

The ⊆ direction is clear. For ⊇, suppose that g ∈
⋂

ψ∈pN stMN(ψ(M)β−1). Then for any

ψ ∈ pN , there is hψ ∈ ψ(M) such that hψ · β−1 · g−1 satisfies µN . By compactness there
is h ∈ pN(M) such that h · β−1 · g−1 satisfies µN . Then g ∈ stMN (p

N(M)β−1).

6 Proof of main theorems

From now on M is a p-adically closed field, M ≻ M is the monster model, G ⊆ Mn

denotes a group definable in M , and µ denotes the infinitesimal type of G over M .
All formulas and types will be G-formulas and G-types. We assume G is not definably
compact. Fix a good neighborhood basis {Ot : t ∈ ΓM} of G.

Fix a 1-dimensional definable type p ∈ SG(M) which does not specialize to any point
of G(M). Such a type p exists by Proposition 2.24. Fix a small |M |+-saturated model
N with M ≺ N ≺ M. As usual, pN and µN denote the canonical extensions to N . Fix
an element β ∈ G(M) realizing pN .

Remark 6.1. The types p and pN are “unbounded” in the following sense:

1. If t ∈ ΓM , then Ot /∈ p.

2. If t ∈ ΓN , then Ot /∈ pN .

3. If X is a bounded M-definable subset of G(M), then X /∈ p.

4. If X is a bounded N -definable subset of G(N), then X /∈ pN .

Point (1) follows by Proposition 2.24: if Ot ∈ p then p specializes to a point in Ot(M),
because Ot is definably compact. Point (2) then follows because pN is the heir of p.
Points (3) and (4) reduce to (1) and (2), respectively.

Lemma 6.2. stab(µN · pN) =
⋂

φ∈p st
M
N (φ(N)β−1).

Proof. By Lemma 5.13, it suffices to show

⋂

φ∈p

stMN (φ(M)β−1) ⊆
⋂

φ∈pN

stMN(φ(M)β−1)

Suppose g belongs to the left-hand side. In particular, g ∈ G(N). By a compactness
argument similar to Lemma 5.13, we see that g = ǫbβ−1 for some ǫ ∈ µN(M) and
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b ∈ p(M). It suffices to show b ∈ pN(M). By Lemma 2.25, it suffices to show b /∈ Ot(M)
for any t ∈ ΓN . Suppose b ∈ Ot(M). Since g ∈ N , there is some t′ ∈ ΓN such that
g−1 · O0(M) · Ot(M) ⊆ Ot′(M). Then

β = g−1ǫb ∈ g−1O0(M)Ot(M) ⊆ Ot′(M),

contradicting the fact that tp(β/N) is unbounded.

Note that a similar argument to the proof of Lemma 2.31 of [23] shows the following:

Fact 6.3. Suppose that b ∈ Mk and tp(b/N) is definable. If Y ⊆ G(M) is definable over
b then stMN(Y ) ⊆ G(N) is definable and

dim(stMN(Y )) ≤ dim(Y ).

Lemma 6.4. There is an L-formula φ such that dim(stabφ(µ · p)) ≤ 1.

Proof. Take ψ ∈ p such that dim(ψ(M)) = 1. Then dim(stMN (ψ(M)β−1)) ≤ 1 by Fact 6.3.
By Remark 5.12 and Lemma 5.13,

⋂

φ∈L

stabφ(µ · p)(N) = stab(µN · pN) ⊆ stMN(ψ(M)β−1).

The intersection on the left is directed, and the set on the right is definable, so by
|M |+-saturation of N there is some φ ∈ L such that

stabφ(µ · p)(N) ⊆ stMN(ψ(M)β−1).

Then dim(stabφ(µ · p)) ≤ dim(stMN(ψ(M)β−1)) ≤ 1.

To finish our main result, we now show that each stabφ(µ · p) is not definably com-
pact.

Lemma 6.5. Assume G is nearly abelian (Definition 1.1). For any N-definable set I
containing β, the set stMN (I(M)β−1) is unbounded.

Proof. Suppose stMN(I(M)β−1) is bounded. Then stMN(I(M)β−1) ⊆ Ot(N) for some t ∈
ΓN . By Remark 6.1, I is unbounded. By Proposition 4.14, there is some t′ ∈ ΓN such
that the set I−1 ⋄Ot′ \Ot is bounded. Then

β−1 /∈ (I−1 ⋄Ot′ \Ot)(M)

by Remark 6.1. This means that β−1(Ot′(M) \Ot(M))∩ I(M)−1 6= ∅. Therefore there is
a ∈ Ot′(M) \ Ot(M) such that aβ ∈ I(M). By definable Skolem functions, we can take
a ∈ dcl(Nβ). Note a ∈ I(M)β−1. By Lemma 2.23, stMN (a) exists. Because Ot′ \ Ot is
closed, we see that stMN(a) ∈ Ot′(N) \Ot(N). This contradicts the fact that

stMN(a) ∈ stMN(I(M)β−1) ⊆ Ot(N).

Lemma 6.6. If G is nearly abelian, then the type-definable group stab(µN · pN) ⊆ G(N)
is 1-dimensional and unbounded.
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Proof. The dimension of stab(µN · pN) is at most one by Lemma 6.4 and Remark 5.12. If
stab(µN · pN) is bounded, then stab(µN · pN) ⊆ Ot(N) for some t ∈ ΓN . By Lemma 6.2,
we have

⋂

ψ∈p

stMN(ψ(N)β−1) = stab(µN · pN) ⊆ Ot(N).

The intersection on the left is a filtered intersection of definable sets. There are at most
|M | sets in the intersection, and N is |M |+-saturated. Therefore there is some ψ ∈ p
such that stMN (ψ(N)β−1) ⊆ Ot(N), contradicting Lemma 6.5. Therefore stab(µN · pN )
is unbounded. In particular, it is infinite, so it has dimension at least 1.

Lemma 6.7. Suppose G is nearly abelian. Then there is φ ∈ L such that theM-definable
group stabφ(µ · p) is not definably compact and has dimension 1.

Proof. By Lemma 6.4 there is an L-formula φ such that dim(stabφ(µ · p)) ≤ 1. By
Remark 5.12, we have

stabφ(µ · p)(N) ⊇ stab(µN · pN ),

and therefore stabφ(µ · p) is unbounded by Lemma 6.6. In particular, stabφ(µ · p) is
infinite, and dim(stabφ(µ · p)) ≥ 1.

Theorem 6.8. Let G be a definable group in a p-adically closed field M . Suppose G is
nearly abelian, and not definably compact.

1. G has a one-dimensional definable subgroup which is not definably compact.

2. If p ∈ SG(M) is a definable unbounded 1-dimensional type, then there is φ ∈ L
such that stabφ(µ · p) is a one-dimensional definable subgroup of G which is not
definably compact.

3. Suppose in addition thatM is ℵ1-saturated. If p ∈ SG(M) is a definable unbounded
1-dimensional type, then stabµ(p) is a one-dimensional type-definable subgroup of
G which is unbounded.

Proof. Part (2) is Lemma 6.7. Part (1) then follows because there is at least one un-
bounded 1-dimensional definable type by Proposition 2.24. For Part (3), take a countable
model M0 �M such that G and p are M0-definable. Then apply Lemma 6.6 to M and
M0 in place of N and M (respectively), to see that stab(µ · p) is 1-dimensional and
unbounded. Type-definability is by Fact 5.7.

Recall from [19] that in an NIP context, a global type p ∈ SG(M) is said to be a
definable f -generic, abbreviated as dfg, if there is a small submodel M0 such that every
left G-translate of p is definable over M0. In [19], Pillay and the second author showed
that:

Fact 6.9. A group G definable over Qp has dfg iff there is a normal sequence of definable
subgroups

G0 ⊳ ...Gi ⊳Gi+1...⊳Gn

such that G0 is finite, Gn is a finite index subgroup of G, and each Gi+1/Gi is de-
finably isomorphic to either the additive group Ga, or a finite index subgroup of the
multiplicative group Gm.
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The intuition is that “dfg” means “totally non-compact” in the p-adic context.

Lemma 6.10. Let G be a one-dimensional definable group. If G is not definably com-
pact, then G has dfg.

Proof. Recall from [8, Section 4] that G has finitely satisfiable generics (fsg) if there is
a small model M0 and a global type p(x) in G such that every left G-translate of p is
finitely satisfiable in M0. By [19, Lemma 2.9], G has fsg or dfg.1 It suffices to show that
G does not have fsg. Suppose otherwise, witnessed by p andM0. Recall that a definable
set X ⊆ G is generic if finitely many left translates cover G. By [8, Proposition 4.2],
the complement of a non-generic set is generic, and every generic set intersects G(M0).
Let {Wγ}γ be a Γ-exhaustion of G. By taking γ sufficiently large, we can arrange for
G(M0) ⊆ Wγ, because M0 is small. Then G \Wγ does not intersect G(M0), so it is not
generic. Therefore the complement Wγ is generic. A finite union of left translates of Wγ

will be definably compact, so it cannot be all of G. We conclude that G does not have
fsg, and instead has dfg.

The following is then a corollary of Theorem 6.8.

Corollary 6.11. Let G ⊆Mk be a nearly abelian definable group. If G is not definably
compact, then G has a one-dimensional dfg subgroup.

Next, we consider the general non-abelian case. Let G,M,N,M, p, β be as in the
start of this section.

Lemma 6.12. For any N-definable set I containing β, and any finite N-definable
subgroup F ⊆ G, the set stMN (I(M)β−1) contains a point outside of F .

Proof. As in Lemma 6.5, I is unbounded. Let J be the unbounded set I−1. By Proposi-
tion 4.15, there are s, t ∈ ΓN such that J ⋄Ot\FOs is bounded. Then β

−1 /∈ J ⋄Ot\FOs.
Therefore

β−1(Ot \ FOs) ∩ J 6= ∅,

or equivalently
(Ot \OsF )β ∩ I 6= ∅.

Therefore there is a ∈ Ot(M) \Os(M)F (M) such that aβ ∈ I(M). By definable Skolem
functions, we can take a ∈ dcl(Nβ). Note a ∈ I(M)β−1. Because Ot \OsF is definably
compact, Lemma 2.23 implies that stMN (a) exists and is in Ot \OsF . Then stMN(a) is not
in F , since F ⊆ OsF .

Lemma 6.13. The group stab(µN · pN) is 1-dimensional. In particular, it is infinite.

Proof. As in Lemma 6.6, the dimension is at most 1. If dim(stab(µN · pN)) = 0, then
stab(µN · pN) is a finite subgroup F . By Lemma 6.2, we have

⋂

φ∈p

stMN(φ(N)β−1) = stab(µN · pN) = F.

As in Lemma 6.6, there is some φ ∈ p such that stMN (φ(N)β−1) ⊆ F . This contradicts
Lemma 6.12

1In [19] this is stated only for groups definable over Qp. The assumption is used in order to apply
[20, Theorem 2.4]. However, [20, Remark 2.5] shows that this assumption is unnecessary.

26



By Lemma 6.4 and Remark 5.12, we conclude

Lemma 6.14. There is φ ∈ L such that the M-definable group stabφ(µ · p) has dimen-
sion 1.

We summarize the non-abelian case in the following theorem.

Theorem 6.15. Let G be a definable group in a p-adically closed field M . Suppose G
is not definably compact. Let p ∈ SG(M) be a definable unbounded 1-dimensional type.

1. There is φ ∈ L such that stabφ(µ · p) has dimension 1.

2. If M is ℵ1-saturated, then stabµ(p) is a one-dimensional type-definable subgroup
of G.

Proof. Part (1) is Lemma 6.14. For Part (2), take a countable submodel M0 � M such
that G and p are M0-definable. Then apply Lemma 6.13 with M and M0 in place of N
and M .
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