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NOTES ON THE DPRM PROPERTY FOR LISTABLE STRUCTURES

HECTOR PASTEN

Abstract. A celebrated result by M. Davis, H. Putnam, J. Robinson, and Y. Matiyasevich shows
that a set of integers is listable if and only if it is positive existentially definable in the language
of arithmetic. We investigate analogues of this result over structures endowed with a listable
presentation. When such an analogue holds, the structure is said to have the DPRM property. We
prove several results addressing foundational aspects around this problem, such as uniqueness of
the listable presentation, transference of the DPRM property under interpretation, and its relation
with positive existential bi-interpretability. A first application of our results is the rigorous proof
of (strong versions of) several folklore facts regarding transference of the DPRM property. Another
application of the theory we develop is that it will allow us to link various Diophantine conjectures
to the question of whether the DPRM property holds for global fields. This last topic includes a
study of the number of existential quantifiers needed to define a Diophantine set.

1. Introduction

1.1. The DPRM theorem. We write N for the semi-ring of non-negative integers. A set X ⊆ Nr

is listable (aka. computably or recursively enumerable) if its elements can be listed by a Turing ma-
chine. On the other hand, X ⊆ Nr is Diophantine if there is a polynomial P ∈ Z[x1, ..., xr , y1, ..., yk]
(depending on X) satisfying X = {a ∈ Nr : ∃b ∈ Nk, P (a,b) = 0}. An elementary fact is that
X ⊆ Nr is Diophantine if and only if it is positive existentially definable over N in the language of
arithmetic La = {0, 1,+,×,=}. Also, it is a classical remark that every Diophantine set is listable.
A celebrated result by Davis-Putnam-Robinson [12] and Matiyasevich [26] gives the converse.

Theorem 1.1 (DPRM theorem). A set X ⊆ Nr is Diophantine if and only if it is listable.

An immediate consequence of this result is a negative solution to Hilbert’s tenth problem. How-
ever, the DPRM theorem goes far beyond undecidability; it gives a complete and satisfactory
classification of the positive existentially definable sets of the structure N over La.

In this article we investigate extensions of the DPRM theorem in the setting of listable structures
(cf. Section 1.3). When such a structure satisfies an analogue of the DPRM theorem, we will
say that it has the DPRM property (cf. Section 1.4). We prove a number of results addressing
foundational aspects of the relation between listable sets and positive existentially definable sets in
listable structures; see Section 1.4 for a brief summary of our results on this setting.

Finally, we discuss applications of our results in two different directions. First, we will provide
rigorous proofs for several folklore facts concerning transference of the DPRM property, in a strong
form (cf. Section 1.5). And secondly, we will apply our results to show that several number-
theoretical conjectures are in fact closely related to the question of whether global fields have the
DPRM property or not (cf. Section 1.6).
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1.2. Analogues of the DPRM theorem. Given a first order language L , an L -structure M =
(M ;L ) is recursive if there is a surjective map onto the domain θ : N → M satisfying that the
pull-back of the interpretation of each element of the signature s ∈ L is decidable; cf. [22].

Starting with Denef’s work [17] on Z[T ], analogues of the DPRM over other structures have been
investigated in the context of recursive rings. We refer the reader to Section 4.2 for a summary of
the known results on analogues of the DPRM theorem.

However, the setting of recursive rings is too restrictive. For instance, the crucial result by Davis-
Putnam-Robinson [12] does not concern rings as the signature contains an exponential function.
Furthermore, the condition that the structure under consideration be recursive is unnatural in the
study of extensions of the DPRM theorem. If M is a recursive and we expand its signature by a
positive existentially definable relation, the new structure can fail to be recursive. For instance,
consider a listable undecidable set H ⊆ N (which is Diophantine by DPRM) and note that the
structure (N; 0, 1,+,×,H,=) is not recursive, although its positive existentially definable sets are
the same as those of (N; 0, 1,+,×,=). This problem is avoided by considering listable structures.

1.3. Listable structures. Let L be a first order language and let M = (M ;L ) be an L -
structure. A listable presentation of M is a surjective map ρ : N → M such that for every s ∈ L

the pull-back under ρ of the interpretation of s is a listable set. In this way, ρ affords a notion of
listable set on M with respect to ρ: A set X ⊆M r is ρ-listable if its pull-back under ρ is listable.

If M admits a listable presentation, we say that it is a listable structure, aka. positive or
recursively enumerable structure, see [42, 43]. In Section 3 we give a detailed study of listable
presentations tailored to our intended applications on extensions of the DPRM property. Among
other results, we prove a transference criterion (Proposition 3.11), a characterization of ρ-listable
sets of M (Lemma 3.4), and the existence of universal ρ-listable sets (cf. Lemma 3.7 together with
Corollary 3.20). We give rigorous proofs of all these results —our arguments do not rely on a naive
notion of “real-world algorithm”. These statements seem to be well-known to the experts, but we
were unable to find proofs in the literature.

In Section 3.4 we discuss a notion of equivalence of listable presentations. A central theme in our
analysis is whether all the listable presentations of a given listable structure are equivalent to each
other; i.e. the problem of unique listability for a structure. Our Theorem 3.27 provides a very gen-
eral criterion for unique listability, which implies unique listability of finitely generated structures
(Proposition 3.33). Uniquely listable structures are convenient since they have an intrinsic notion
of listable sets. We show that this last feature essentially characterizes unique listability (Theorem
3.21). We remark that listable structures are not our main goal, and we cover them because they
are necessary in our study of the DPRM property.

1.4. The DPRM property. All first order definitions are understood to be without parameters,
unless explicitly stated otherwise. Let M be a listable L -structure. It is easy to show that if a set
X ⊆ M r is positive existentially L -definable, then it is ρ-listable for every listable presentation
ρ of M (Corollary 3.9). A listable L -structure M has the DPRM property when the converse
holds, namely, if the positive existentially L -definable sets over M are the same as those which
are ρ-listable for every listable presentation ρ of M —naturally, the definition simplifies when M

is uniquely listable. Our main results on the DPRM property concern the following aspects.

1.4.1. The number of existential quantifiers. Let M be an L -structure with domain M . Given a
set X ⊆ M r we define rankp.e.M (X) as the least number of existential quantifiers needed to give a
positive existential L -definition ofX with parameters fromM . For instance, ifX is a singleton then
rankp.e.M (X) = 0. The quantity rankp.r.M (X) will be called positive existential rank of X. Theorem
4.6 shows that if a uniquely listable structure M = (M ;L ) satisfies the DPRM property, then
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(under some mild assumptions) for each r ≥ 1 there is a uniform parametric positive existential
definition of all the positive existentially definable sets of M contained in M r.

As a consequence, in this setting we have uniform boundedness of the positive existential rank:
There is a bound BM(r) depending only on M and r such that rankp.e.M (X) ≤ BM(r) for every
positive existentially L -definable set X ⊆M r.

Such a uniform boundedness property is remarkable and it can fail even in some very natural
structures. In fact, building on work by Kollár [25], in Theorem 5.21 we prove unboundedness of the
positive existential rank for the field of complex rational functions C(t). With a similar argument,
the same result can be obtained over any uncountable large field of characteristic zero (e.g. R or
Qp) but we only state the results over C for the sake of simplicity.

1.4.2. Transference of the DPRM property. Denef’s proof [17] of the DPRM property for the ring
Z[T ] implicitly developed a transference principle that takes as input the DPRM property in the
semi-ring N in order to deduce the DPRM property for a recursive integral domain. See for instance
[51] where Denef’s transference principle is made explicit, and see the detailed discussion in [15].

In Theorem 4.8 we prove a much more general transference result. Consider languages L1,L2 and
uniquely listable structures M1,M2 over these languages respectively, such that M2 has the DPRM
property and each structure admits a positive existential interpretation in the other. Theorem 4.8
shows that M1 inherits the DPRM property if and only if the graph of the self-interpretation of
M1 obtained by composing the two given interpretations, is positive existentially definable over
M1. In the special case when M2 is the semi-ring N and M1 is a recursive integral domain, this
specializes to Denef’s transference principle (see Corollary 4.9).

Furthemore, Theorem 4.8 shows that under the previous assumptions, M2 has the DPRM prop-
erty if and only if M1 and M2 are positive existentially bi-interpretable in the sense introduced in
Section 2.6. This aspect is not covered by the classical version of Denef’s transference principle.

Let us stress the fact that for two structuresM1 andM2 to be positive existentially bi-interpretable
it is not enough that each one admits a positive existential interpretation in the other. By definition,
we moreover require that the self-interpretations of M1 and M2 obtained by composing the two
interpretations be positive existentially homotopic to the identity interpretation, see Section 2.6 for
details. If we drop the condition that all formulas involved in the discussion be positive existential,
then we are back in the classical setting of homotopy of interpretations introduced in [2]. Several
useful fundamental facts about bi-interpretability in this sense have been recently proved in [3].
The necessary material for the positive existential counterpart is developed in Section 2.6.

1.4.3. Model-theoretical characterization. Our transference results allow us to obtain, under some
mild assumptions, a characterization of the uniquely listable structures having the DPRM property.

Theorem 1.2 (cf. Theorem 4.10). Let L be a fist order language and let M be a uniquely listable
L -structure with an infinite domain such that the relation 6= is positive existentially L -definable
on M. Then the following are equivalent:

(i) M has the DPRM property.
(ii) M is positive existentially bi-interpretable with the semi-ring N.

Thus, uniquely listable structures having the DPRM property are essentially the same as those
which are positive existentially bi-interpretable with N. In particular, under the assumptions of the
theorem, uniquely listable structures which are not bi-interpretable with N do not have the DPRM
property.

In view of Proposition 3.33, unique listability holds for finitely generated structures. In particular,
this leaves the problem of classifying which finitely generated structures are positive existentially
bi-interpretable with N. Let us remark that the analogous problem for first order bi-interpretations
with N is fully solved in the recent work [3] in the case of commutative finitely generated rings.
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1.5. Application: Some folklore transference results. In Section 4.5 we use our general
results on the DPRM property to prove various folklore facts for which no complete proof seems
to be available in the literature. These include, for instance, the fact that Z is Diophantine in Q

if and only if Q has the DPRM property, as well as analogues for rings of integers and function
fields. In fact, we give a more precise version of the aforementioned equivalence, which relates these
conditions to positive existential bi-interpretability with N.

1.6. Application: Diophantine conjectures over global fields.

1.6.1. An algebraicity conjecture. A real number x ∈ R will be called left-Diophantine if it is
the supremum of a Diophantine subset of Q. We will show that every real algebraic number is
left-Diophantine, and that the class D of left-Diophantine numbers is contained in the class Λ of
real numbers that can be “described” by a Turing machine by producing rational approximations
from below: the left-listable numbers (also known as left recursively enumerable numbers, or left
computably enumerable numbers). These lower and upper bounds for D are far apart, since the
class Λ contains rather exotic transcendental numbers. We conjecture that, in fact, the set D is as
small as possible: it is just the field of real algebraic numbers. In particular, we conjecture that D

is a field, which should be contrasted with the fact that Λ is not a field [2].
As we will explain, the existence of at least one left-listable real number which is not left-

Diophantine would be enough to imply that Z is not Diophantine in Q.
See Section 5.3 for details. In particular, we show that the conjecture that D is exactly the field

of real algebraic numbers follows from a version of Mazur’s conjecture on the topology of rational
points [27, 28, 7] (the necessary material on Mazur’s conjecture is recalled in Section 5.2).

1.6.2. The number of existential quantifiers for global fields. Our result on unboundedness of the
positive existential (p.e.) rank for the field C(t) (Theorem 5.21) leads us to conjecture that the same
failure of uniform boundedness might hold for global fields such as Q and k(t) with k a finite field.
As we will show in Proposition 5.23, the latter would imply that Z and k[t] are not Diophantine in
Q and k(t) respectively. Furthermore, Proposition 5.23 shows that unboundedness of the p.e. rank
over a global field K would imply that K is not positive existentially bi-interpretable with N.

After a first version of this work was released, Philip Dittmann informed us about his joint work
with Nicolas Daans and Arno Fehm [11] where they carry out an independent and very detailed
study the minimal number of existential quantifiers required to define Diophantine sets over fields.
In particular, they relate this notion to other measures of complexity of Diophantine sets, and they
also point out the link with the question of whether Z is Diophantine in Q. However, our result on
C(t) and the connection of the p.e. rank with the DPRM property are not covered in [11].

1.6.3. A Diophantine approximation conjecture. In Section 5.5 we introduce a conjecture in Dio-
phantine approximation (Conjecture 5.24) which would imply that the analogue of the DPRM
theorem fails over every global field.

In simple terms, the main idea of the conjecture is the following: If K is a global field, v is a place
of K, and X is a variety over K whose K-rational points are Zariski dense, then we expect that
there is an effective divisor D on X defined over K such that some sequence of K-rational points
on X v-adically approaches D. The precise statement of the conjecture is more technical because
it allows one to choose D in a family of divisors, and it allows one to discard families of K-rational
points coming from lower dimensional varieties, as such points might have anomalous Diophantine
approximation properties. We provide some evidence for this conjecture in Section 5.5; especially,
we show that in the number field case it would follow from general conjectures of Mazur on the
topology of rational points. In Section 5.6 we show that our Diophantine approximation conjecture
would imply that various natural subsets of global fields are not Diophantine, such as Z in Q, as
well as Fp[t] and {tn : n ∈ N} in Fp(t) —this last case requires results on functional transcendence.
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2. Notation and basic facts

2.1. Functions and sets. Given sets X,Y and a function f : X → Y , we define

Γ(f) = {(y, x) ∈ Y ×X : y = f(x)} ⊆ Y ×X

For a positive integer r we let f (r) : Xr → Y r be the map (x1, ..., xr) 7→ (f(x1), ..., f(xr)). Given

S ⊆ Y r we let f∗(S) = (f (r))−1(S) ⊆ Xr. Although the notation f∗ does not refer to r, the value
of r will always be clear from the context. We will use bold fonts to indicate a tuple whenever the
number of coordinates is clear from the context, for instance, a = (a1, ..., ar).

2.2. Recursive functions. A partial function over N is a function f : A → N where A ⊆ Nr for
some r called arity. The set of recursive functions R is the smallest class of partial functions over
N satisfying the next two conditions:

• It contains the successor function S(x) = x+1, all coordinate projections, and the constant
function 0 of each arity r ≥ 1.

• It is closed under composition, recursion, and the minimalization operator µ.

For details, see (for instance) [8] or any other textbook on the subject.
It is a classical result that R is precisely the class of partial functions that can be computed by

Turing machines —the domain corresponds to those inputs where the corresponding machine halts.
More generally, we say that a function f : A→ Nk for some A ⊆ Nr is recursive if f = (f1, ..., fk)

where each fj : A→ N is recursive in the previous sense. For k = 1 the definitions agree, of course.
A recursive function of arity r is total if its domain is Nr.

2.3. Decidable and listable sets. Let X ⊆ Nr be a set. We say that X is decidable if its
characteristic function χX : Nr → {0, 1} ⊆ N is total recursive. We say that X is listable if it is the
domain of a recursive function. We have the following standard characterizations:

• X is decidable if and only if X and its complement Xc are both listable.
• X is listable if and only if it is either empty or the image of a total recursive function
f : N → Nr. Furthermore, if X is infinite, then one can ask f to be injective.

The next two lemmas are straightforward.

Lemma 2.1. Let f : Na → Nb be a total recursive function and let B ⊆ im(f) ⊆ Nb. We have that
B is listable if and only if f−1(B) is listable.

Lemma 2.2 (Basic operations with listable sets). The class of listable sets is closed under fi-
nite unions, finite intersections, permutation of coordinates, coordinate projections, and image and
preimage under recursive functions.

We also recall the following important result together with two remarkable consequences.

Theorem 2.3 (Universal recursive function; the enumeration theorem, cf. [8]). Let r ≥ 1. There
is a partial recursive function φunivr : Ur → N with domain Ur ⊆ Nr+1 such that for every partial
recursive function f of arity r, there is an integer i(f) ∈ N such that φunivr (i(f), x1, ..., xr) =
f(x1, ..., xr) as partial functions.

Corollary 2.4 (A universal listable set). Let r ≥ 1. The set Ur = dom(φunivr ) ⊆ Nr+1 is listable
and it has the following property: For every listable set X ⊆ Nr there is nX ∈ N such that X =
{a ∈ Nr : (nX ,a) ∈ Ur}.
Corollary 2.5 (An undecidable listable set: The halting problem). Define the partial recursive
function h(x) = φuniv1 (x, x). The set H = dom(h) ⊆ N is listable but it is not decidable.
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2.4. Structures. Let L be a first order language consisting of symbols of constants, relations,
and functions. For an L -structure M, its domain is denoted by M = |M| and for each s ∈ L we
let sM be the interpretation of s. Thus:

• If s is a symbol of a constant, then sM ∈M .
• If s is a symbol of an n-ary relation, then sM ⊆Mn.
• If s is a symbol of an n-ary function, then sM ⊆Mn+1 (the graph).

We make the important assumption that we only consider languages containing the binary rela-
tion symbol “ =”, and we only consider structures where this symbol is interpreted as equality. We
refer to this assumption as equality hypothesis.

For an L -formula φ, the notation φ[x1, ..., xn] means that the free variables of φ are among the
variables x1, ..., xn, and all these variables are free or do not occur in φ. We do not allow parameters
unless explicitly stated otherwise. Given an L -formula φ[x1, ..., xn], the interpretation of it over
M is φM = {a ∈Mn : M |= φ[a]} ⊆Mn where φ[a] means that φ[x1, ..., xn] is interpreted in M by
interpreting (x1, ..., xn) as a ∈Mn.

An L -formula φ is positive existential (denoted as p.e.) if the only quantifier it uses is ∃, it does
not use negations, and the only connectives that it uses are ∨ and ∧.

2.5. Interpretations. Let L ,K be languages, and let M,N be structures over these languages
with domains M,N respectively. Let r ≥ 1. An interpretation of N in M of rank r is a map
θ : X → N where X = dom(θ) ⊆M r, satisfying the following properties:

(Int1) θ : dom(θ) → N is surjective onto N .
(Int2) dom(θ) is L -definable over M.
(Int3) For each s ∈ K , the set θ∗(sN) is L -definable over M.

We use the notation θ : M 99K N to indicate that θ is an interpretation of N in M, and the rank r
is denoted by rank(θ). We say that the interpretation θ : M 99K N is positive existential (p.e.) if
dom(θ) and each θ∗(sN) for s ∈ K are p.e. L -definable.

Lemma 2.6 (Pull-back of definable sets under interpretations). Let L and K be languages.
Consider an L -structure M, a K -structure N, and an interpretation θ : M 99K N of rank r. Let
S ⊆ Nm. If S is K -definable, then θ∗(S) ⊆M rm is L -definable. Furthermore, if the interpretation
is p.e. and the set S is p.e. K -definable, then θ∗(S) is p.e. L -definable.

A useful standard fact is that interpretations can be composed.

Lemma 2.7 (Composition of interpretations). For i = 1, 2, 3, let Li be a language and Mi an
Li-structure with domain Mi. Let θ1 : M1 99K M2 and θ2 : M2 99K M3 be interpretations. There
is an interpretation ζ : M1 99K M3 with the following properties:

(i) rank(ζ) = rank(θ1) · rank(θ2)
(ii) dom(ζ) = θ∗1(dom(θ2)) ⊆M

rank(ζ)
1 .

(iii) ζ : dom(ζ) →M3 is defined by ζ = θ2 ◦ θ(rank(θ2))1 .
(iv) If θ1 and θ2 are p.e., then ζ is p.e.

In the situation of the previous lemma, the interpretation ζ is said to be the composition of the
interpretations θ1 and θ2, which we denote by ζ = θ2 • θ1. One directly checks

Lemma 2.8. Structures over languages together with p.e. interpretations form a category.

2.6. Homotopy of interpretations. For i = 1, 2 let Mi be an Li-structure with domain Mi. Let
θ, θ′ : M1 99K M2 be interpretations of ranks r and r′ respectively. We define

K(θ, θ′) = {(u,v) ∈M r+r′ : u ∈ dom(θ),v ∈ dom(θ′), and θ(u) = θ′(v)} ⊆M r+r′ .
6



Following [1], the interpretations θ and θ′ are said to be homotopic if K(θ, θ′) is L1-definable over
M1. See [1, 3] for more details on homotopy of interpretations.

In the special case when θ and θ′ are p.e. we will need to introduce a refined notion of homotopy.
In this case, we say that θ and θ′ are positive existential homotopic if K(θ, θ′) is p.e. L1-definable.
This will be denoted by θ ≍ θ′. The results we present below for ≍ are analogous to some of the
results given in [3] for homotopy of interpretations (not in the p.e. setting).

Lemma 2.9 (P.e. homotopy is an equivalence relation). For i = 1, 2, let Mi be and Li-structure.
Then ≍ is an equivalence relation in the set of p.e. interpretations of M2 in M1.

Proof. Symmetry is clear. Reflexivity follows from the fact that for any p.e. interpretation θ :
M1 99K M2 the set θ∗(=) = K(θ, θ) is p.e. L1-definable. Let us check transitivity. For i = 1, 2, 3
let θi : M1 99K M2 be a p.e. interpretation of rank ri, such that θ1 ≍ θ2 and θ2 ≍ θ3. The set
Ω = (K(θ1, θ2)×M r3) ∩ (M r1 ×K(θ2, θ3)) ⊆M r1+r2+r3 is p.e. L -definable, and it equals

{(x,y, z) ∈M r1+r2+r3 : x ∈ dom(θ1),y ∈ dom(θ2), z ∈ dom(θ3) and θ1(x) = θ2(y) = θ3(z)}.
By surjectivity of θ2 onto the domain of M2, we get that K(θ1, θ3) is the projection of Ω onto its
first r1 and last r3 coordinates. Hence, K(θ1, θ3) is p.e. L1-definable. �

Lemma 2.10 (Composition respects p.e. homotopy). For i = 1, 2, 3 let Mi be an Li-strucutre.
Let θ1, κ1 : M1 99K M2 and θ2, κ2 : M2 99K M3 be p.e. interpretations with θ1 ≍ κ1 and θ2 ≍ κ2.
Then θ2 • θ1 ≍ κ2 • κ1.

Proof. By Lemma 2.9, it suffices to prove θ2 • θ1 ≍ κ2 • θ1 and κ2 • θ1 ≍ κ2 • κ1. This can be done
as in Lemma 2.1 of [3] since that argument only introduces existential quantifiers (i.e. coordinate
projections of definable sets). �

The (transposed) graph of an interpretation θ : M 99K N is

Γ(θ) = {(x0,x) ∈ N ×M rank(θ) : x ∈ dom(θ) and x0 = θ(x)} ⊆ N ×M rank(θ).

For i = 1, 2 let Mi be an Li-structure with domain Mi. A bi-interpretation is a pair of inter-
pretations θ1 : M1 99K M2 and θ2 : M2 99K M1 such that Γ(θ1 • θ2) is L2-definable over M2 and
Γ(θ2 • θ1) is L1-definable over M1. We say that the bi-interpretation is positive existential if θ1
and θ2 are p.e. interpretations and both Γ(θ1 • θ2) and Γ(θ2 • θ1) are p.e. definable.

Lemma 2.11 (Bi-interpretations in terms of homotopy in the p.e. case). For i = 1, 2 let Mi be an
Li-structure. Let θ1 : M1 99K M2 and θ2 : M2 99K M1 be p.e. interpretations. Then (θ1, θ2) is a
p.e. bi-interpretation if and only if θ2 • θ1 ≍ IdM1

and θ1 • θ2 ≍ IdM2
.

Proof. This is because if ζ : M 99K M is a p.e. interpretation, then K(IdM, ζ) = Γ(ζ). �

When a p.e. bi-interpretation between M1 and M2 exists, we say that M1 and M2 are p.e.
bi-interpretable. One has the following basic property:

Lemma 2.12 (Transitivity of p.e. bi-interpretability). For i = 1, 2, 3 let Mi be an Li-structure.
Suppose that M1 is p.e. bi-interpretable with M2 and that M2 is p.e. bi-interpretable with M3.
Then M1 and M3 are p.e. bi-interpretable.

Proof. Let θ1 : M1 99K M2, θ2 : M2 99K M3, κ1 : M2 99K M1, and κ2 : M3 99K M2 be p.e.
interpretations such that (θ1, κ1) and (θ2, κ2) are p.e. bi-interpretations. Using Lemmas 2.8, 2.10,
and 2.11 we see that (κ1 • κ2) • (θ2 • θ1) = κ1 • (κ2 • θ2) • θ1 ≍ κ1 • IdM2

• θ1 = κ1 • θ1 ≍ IdM1
and

similarly (θ2 • θ1) • (κ1 • κ2) ≍ IdM3
. We conclude by Lemma 2.11. �
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2.7. Examples. The language of arithmetic is La = {0, 1,+,×,=}. By interpreting its symbols
in the obvious way, every semiring (such as N) becomes an La-structure. The following two simple
lemmas are included with just to serve as examples of the previous notions. The proofs are direct
applications of Lagrange’s 4-squares theorem.

Lemma 2.13. The La-structures N and Z are p.e. bi-interpretable.

Proof. By Lagrange’s 4-squares theorem the binary relation ≥ is p.e. La-definable in Z. Consider
the maps θ1 : N2 → Z and θ2 : N = {n ∈ Z : n ≥ 0} → N given by θ1(a, b) = a − b and θ2(n) = n.
One readily checks that they define p.e. interpretations θ1 : N 99K Z and θ2 : Z → N, and that
these interpretations give the desired p.e. bi-interpretation. �

Lemma 2.14. Consider N, Z and Q as La-structures. Then Q is p.e. interpretable in N and in
Z. Furthermore, the map κ : Z× (Z−{0}) → Q given by κ(a, b) = a/b defines a p.e. interpretation
of Q in Z.

Bi-interpretation and p.e. bi-interpretation are in fact two very different conditions. For instance,
it is worth pointing out that by a celebrated theorem of J. Robinson [41] Z is La-definable in Q,
and it easily follows that Z and Q are bi-interpretable as La-structures. However, it is not known
whether they are p.e. bi-interpretable —see Section 4.5 below.

3. Listable structures

3.1. Listable presentations. Let M be an L -structure with domain M . We recall from the
introduction that a listable presentation of M is a surjective set-theoretical function ρ : N → M
such that for every s ∈ L we have that ρ∗(sM) is a listable set. In this setting, we say that M

is a listable L -structure. Of course, if M is a listable L -structure, then M is countable (possibly
finite). We have the basic example:

Lemma 3.1. The La-structure (N; 0, 1,+,×,=) is listable, and the identity map N → N is a
listable presentation.

Let ρ : N → M be a listable presentation for M and let X ⊆ M r. We say that X is ρ-listable
(resp. ρ-decidable) if ρ∗(X) ⊆ Nr is listable (resp. decidable). In particular, the equality hypothesis
implies that the set Eρ = {(m,n) ∈ N2 : ρ(m) = ρ(n)} = ρ∗(=) ⊆ N2 is listable for every listable
presentation ρ : N →M . We observe that

Lemma 3.2. Let M be a listable L -structure and let ρ be a listable presentation for it. If ρ is
bijective, then Eρ is the diagonal in N2 and, in particular, Eρ is decidable.

We say that a set X ⊆ M r is totally listable if for every listable presentation ρ of M the set X
is ρ-listable. Let us remark the following:

Lemma 3.3. Let M be a listable L -structure and let ρ be a listable presentation for it. The binary
relation 6= on M is ρ-listable if and only if Eρ ⊆ N2 is decidable. In particular, 6= on M is totally
listable if and only if for every listable presentation γ of M we have that Eγ is decidable.

Proof. The set Eρ = ρ∗(=) ⊆ N2 is listable. Thus, Eρ is decidable if and only if Ec
ρ = ρ∗(6=) ⊆ N2

is listable. The latter precisely means that 6= on M is ρ-listable. �

However, it can very well happen that Eρ is undecidable for a listable presentation. For instance,
one can take R ⊆ N2 a listable equivalence relation which is undecidable (see [21]) and consider
the structure (N/R,=). The quotient map π : N → N/R is a listable presentation and Eπ = R is
undecidable. We have an alternative characterization of ρ-listable sets over a listable structure.

Lemma 3.4 (Characterization of ρ-listable sets). Let M be a listable L -structure with domain M
and let ρ be a listable presentation for M. Let X ⊆M r be a subset. The following are equivalent:
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(i) X is ρ-listable; that is, ρ∗(X) ⊆ Nr is listable.

(ii) There is a listable set Z ⊆ Nr with ρ(r)(Z) = X.

(iii) Either X is empty or there is f : N → Nr total recursive with ρ(r)(f(N)) = X.

Proof. (ii) and (iii) are equivalent by the theory of listable sets over N.
If (i) holds, then (ii) holds with Z = ρ∗(X).
Assume that (iii) holds with X non-empty. Write f = (f1, ..., fr). Let ǫ = (ǫ1, ǫ2) : N → N2 be a

total recursive function with image Eρ (this set is listable). Let g = (g0, g1, ..., gr) : N → Nr+1 be a
total recursive bijection. The function

φ(x1, ..., xr) := µy[fj(g0(y)) = ǫ1(gj(y)) and ǫ2(gj(y)) = xj for each j = 1, ..., r]

is partial recursive. By (iii), the domain of φ is

{(x1, ..., xr) ∈ Nr : there exists n such that ρ(fj(n)) = ρ(xj)} = ρ∗(X).

Hence, ρ∗(X) is listable. �

Corollary 3.5 (Finite sets are totally listable). Let M be a listable L -structure with domain M
and let X ⊆M r be finite. Then X is totally listable.

Proof. Let ρ be a listable presentation for M. Then X is ρ-listable by surjectivity of ρ : N → M
and item (iii) in Lemma 3.4. �

In particular, we get the following consequence which implies that the study of listable sets in
structures is more interesting for structures with an infinite domain.

Corollary 3.6. Let M be a listable L -structure whose domain is finite. Then for every r, all
subsets of M r are totally listable.

In the special case when a listable structure has infinite domain and it admits a bijective listable
presentation, the structure inherits universal listable sets from N.

Lemma 3.7 (Universal ρ-listable sets). Let M be an L -structure with infinite domain M and
let ρ : N → M be bijective listable presentation for M. Given r ≥ 1, there is a ρ-listable set
Ur(ρ) ⊆ M r+1 with the following property: For every ρ-listable set X ⊆ M r there is an element
mX ∈M such that X = {x ∈M r : (mX ,x) ∈ Ur(ρ)}.
Proof. Let Ur ⊆ Nr+1 be the universal listable set provided by Corollary 2.4 and let Ur(ρ) =

ρ(r+1)(Ur) ⊆ M r+1. Let X ⊆ M r be a ρ-listable set. Then ρ∗(X) ⊆ Nr is listable and there is an
integer nρ∗(X) ∈ N such that ρ∗(X) = {a ∈ Nr : (nρ∗(X),a) ∈ Ur}. Let mX = ρ(nρ∗(X)). Since ρ

is injective, we have (nρ∗(X),a) ∈ Ur if and only if (mX , ρ
(r)(a)) ∈ Ur(ρ). By surjectivity of ρ we

conclude X = ρ(r)(ρ∗(X)) = {x ∈M r : (mX ,x) ∈ Ur(ρ)}. �

The condition that a listable presentation ρ : N →M be bijective, will be completely character-
ized in Corollary 3.20 below.

3.2. Listability and p.e. definability. The next lemma is straightforward.

Lemma 3.8. Let M be a listable L -structure and let ρ be a listable presentation for M. The class
of ρ-listable subsets over M is closed under cartesian products, coordinate projections, permutation
of coordinates, finite unions, and finite intersections.

Corollary 3.9 (All p.e. definable sets are totally listable). Let M be a listable L -structure. Every
p.e. L -definable set over M is totally listable.

Proof. Fix a listable presentation ρ. Using Lemma 3.8 and the fact that sM is ρ-listable for each
s ∈ L , one gets that for each atomic formula φ, the set φM is ρ-listable. Applying Lemma 3.8
again we get the result. �
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Corollary 3.10. Let M be a listable L -structure. If the binary relation 6= on M is p.e. L -
definable, then for every listable presentation ρ we have that Eρ is decidable.

Proof. By Lemma 3.3 and Corollary 3.9. �

Quite often it happens that the inequality 6= is p.e. definable over interesting structures (see for
instance [32]), so in practice it is not a restrictive assumption to require that Eρ be decidable for
every listable presentation ρ of a structure M. We will not make this assumption in general.

3.3. Listability and p.e. interpretations.

Proposition 3.11 (Transference of listability). For i = 1, 2 let Li be a language and Mi an Li-
structure with domain Mi. Let θ : M1 99K M2 be a p.e. interpretation of rank r and let ρ be a
listable presentation for M1. Let X = ρ∗(dom(θ)) ⊆ Nr. There exists a total recursive function

f : N → Nr with image X, and for any f of this type the function γ = θ ◦ ρ(r) ◦ f : N → M2 is
a listable presentation for M2 having the following property: For every S ⊆ Mk

2 we have that S is
γ-listable if and only if θ∗(S) is ρ-listable.

Proof. The set dom(θ) is p.e. L1-definable, hence, it is ρ-listable by Corollary 3.9. Thus X is
listable and f exists. Take any total recursive f : N → Nr with image X. By construction,
γ : N → M2 is surjective. Let s ∈ L and let n be such that sN ⊆ Mn

2 . Then θ∗(sM2) ⊆ dom(θ)n

is p.e. L1-definable, hence, it is ρ-listable by Corollary 3.9. This implies that ρ∗θ∗(sN) ⊆ Nrn is
listable. Hence, γ∗(sM2) = f∗ρ∗θ∗(sM2) ⊆ Nn is listable (pre-image of a listable set under a total
recursive function). Finally, let S ⊆ Mk

2 . Since f surjects onto X ⊆ Nr and ρ∗θ∗(S) ⊆ Xk ⊆ Nrk,

we have that ρ∗θ∗(S) ⊆ im(f (k)). We conclude by Lemma 2.1: S is γ-listable if and only if
f∗ρ∗θ∗(S) = γ∗(S) ⊆ Nk is listable, which happens if and only if ρ∗θ∗(S) ⊆ Nrk is listable. Thus,
S is γ-listable if and only if θ∗(S) is ρ-listable. �

Lemma 3.12. Let M be a listable L -structure with domain M and let ρ be a listable presentation
for it. Then ρ : N →M defines a p.e. interpretation of M in the La-structure N.

Proof. The map ρ : N → M is surjective. For each s ∈ L we have that ρ∗(sM) is listable, and by
the DPRM theorem ρ∗(sM) is p.e. La-definable over N. �

Theorem 3.13. Let M be an L -structure. Then M is p.e. interpretable in the La-structure N if
and only if M is listable.

Proof. The forward implication follows from Lemma 3.1 and Proposition 3.11. The converse follows
from Lemma 3.12 �

Corollary 3.14. The La-structures Z and Q are listable.

Proof. By Lemmas 2.13 and 2.14, and by Theorem 3.13 �

The previous corollary admits, of course, a direct proof.

3.4. Equivalence of listable presentations.

Lemma 3.15. Let M be a listable L -structure and let ρ and γ be listable presentations for it. If
there is a total recursive function φ : N → N with γ = ρ ◦ φ, then there is a total recursive function
ψ : N → N with ρ = γ ◦ ψ.
Proof. Let g = (g0, g1, g2) : N → N3 be a total recursive function with image N × Eρ, which exists
since Eρ is listable. Let us define the function ψ : N → N by

ψ(x) = g0 (µy[φ(g0(y)) = g1(y) and x = g2(y)]) .

Then ψ : N → N is total recursive. Given x, the integer n = ψ(x) satisfies (φ(n), x) ∈ Eρ, that is,
γ(n) = ρ(φ(n)) = ρ(x). This proves γ ◦ ψ = ρ. �
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If ρ and γ are listable presentations of an L -structure M, we write ρ ≈ γ if there is a total
recursive function φ : N → N with γ = ρ ◦ φ. From the previous lemma it follows that

Proposition 3.16. Given a listable L -structure M, the relation ≈ is an equivalence relation on
the set of listable presentations of M.

Hence, if ρ ≈ γ we say that ρ and γ are equivalent. In the special case that all listable presenta-
tions of a structure are equivalent to each other, we say that the structure is uniquely listable.

Proposition 3.17. Let M be a listable L -structure. If the domain of M is finite, then M is
uniquely listable.

Proof. Let ρ and γ be listable presentations of M. Let M be the domain of M and for each m ∈M
let Am = γ−1(m). Then {Am : m ∈ M} is a partition of N and each Am is listable, hence,
decidable (it has listable complement). For each m ∈ M choose ym ∈ ρ−1(m). Define φ : N → N

by φ(x) = ym if x ∈ Am. Then φ is total recursive (defined by decidable cases) and γ = ρ ◦ φ. �

From Lemma 2.2 we deduce

Lemma 3.18 (Equivalent listable presentations have the same listable sets). Let ρ and γ be listable
presentations of an L -structure M. If ρ ≈ γ, then the class of ρ-listable sets is the same as the
class of γ-listable sets over M.

We also have a partial converse to the previous result. First we need:

Lemma 3.19. Let M be a listable L -structure with infinite domain M . Let ρ be a listable pre-
sentation for M and assume that Eρ is decidable. There is an injective total recursive function
ιρ : N → N such that ρ ◦ ιρ : N →M is bijective.

Proof. Let χEρ be the characteristic function of Eρ, which is total recursive by assumption. We
define a function h : N → N as follows: We set h(0) = 0 and for x > 0 we let

h(x) = µy





∑

j<x

χEρ(h(j), y) = 0



 .

The function h is total because M is infinite, and it is recursive because it is defined by minimal-
ization and course-of-values recursion. Given x > 0, we note that h(x) is the least value of y for
which ρ(y) 6= ρ(h(j)) for each j < x, so ρ ◦ h is bijective and we can take ιρ = h. �

Corollary 3.20 (Making a listable presentation bijective). Let M be an infinite L -structure with
a listable presentation ρ. The following are equivalent:

(i) 6= is ρ-listable over M.
(ii) Eρ is decidable.
(iii) There is a bijective listable presentation ρ̃ for M which satisfies ρ̃ ≈ ρ.

Proof. Items (i) and (ii) are equivalent by Lemma 3.3.
Assuming (ii), Lemma 3.19 allows us to take ρ̃ = ρ ◦ ιρ. This proves (iii).
Conversely, if (iii) holds, then Eρ̃ is decidable by Lemma 3.2. Thus, the diagonal ∆ ⊆ M2 is ρ̃-

decidable, which implies that ∆ is ρ-decidable by Lemma 3.18. Hence, Eρ = ρ∗(∆) is decidable. �

With Corollary 3.20 we can give a refinement of Lemma 3.18.

Theorem 3.21 (Equivalence and comparison of listable sets). Let M be a listable L -structure and
let ρ, γ be listable presentations. In the following (i) implies (ii), and (ii) implies (iii):

(i) ρ ≈ γ
(ii) The class of ρ-listable sets is the same as the class of γ-listable sets.
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(iii) The class of ρ-listable sets is contained in the class of γ-listable sets.

Furthermore, if Eρ is decidable, then the three properties are equivalent.

Proof. (i) implies (ii) by Lemma 3.18, and it is clear that (ii) implies (iii). It only remains to show
that (iii) implies (i) assuming that Eρ is decidable. By Proposition 3.17 it suffices to consider the
case when M is infinite.

Assume (iii) and that Eρ is decidable. By Corollary 3.20 we may assume that ρ : N → M is
bijective after replacing it by an equivalent listable presentation —the class of ρ-listable sets in (iii)
remains the same by Lemma 3.18.

Let Tρ = {(ρ(n), ρ(n + 1)) : n ∈ N} ⊆ M2. Since Tρ is ρ-listable, we get that Tρ is γ-listable by
(iii). Let g = (g1, g2) : N → N2 be a total recursive function with image γ∗(Tρ). Define a function
ψ : N → N by choosing any ψ(0) ∈ γ−1(ρ(0)) and for x > 0 we define

ψ(x) = g2 (µy[g1(y) = ψ(x− 1)]) .

Then ψ : N → N is total recursive. Note that for each n ≥ 0 we have (γ(ψ(n)), γ(ψ(n + 1))) ∈ Tρ.
Since γ(ψ(0)) = ρ(0) and ρ is bijective, we deduce γ ◦ ψ = ρ. This proves ρ ≈ γ. �

Corollary 3.22. Let M be a listable L -structure for which the binary relation 6= is totally listable.
Given ρ and γ listable presentations for M, the following are equivalent:

(i) ρ ≈ γ
(ii) The class of ρ-listable sets is the same as the class of γ-listable sets.
(iii) The class of ρ-listable sets is contained in the class of γ-listable sets.

Proof. By Lemma 3.3 and Theorem 3.21. �

Given ρ, γ : N →M listable presentations of an L -structure M, we define

∆(γ, ρ) := {(m,n) ∈ N2 : γ(m) = ρ(n)} ⊆ N2.

In particular, note that Eρ = ∆(ρ, ρ).

Lemma 3.23 (Diagonal test for equivalence). Let γ, ρ : N → M be listable presentations for M.
We have that γ ≈ ρ if and only if ∆(γ, ρ) ⊆ N2 is listable.

Proof. Assume ρ ≈ γ and let ψ : N → N be a total recursive function with γ ◦ ψ = ρ. Let
ǫγ = (ǫγ1 , ǫ

γ
2) : N → N2 be a total recursive map with image Eγ . Define the partial function

δ(m,n) = µy[ǫγ2(y) = m and ǫγ1(y) = ψ(n)].

The function δ is partial recursive and its domain is ∆(γ, ρ). Thus, ∆(γ, ρ) is listable.
Conversely, assume that ∆(γ, ρ) is listable. It is non-empty, so, there is a total recursive f =

(f1, f2) : N → N2 with image ∆(γ, ρ). Observe that both f1, f2 : N → N are total recursive and
surjective. Define

φ(n) = f2(µy[f1(y) = n])

Then φ : N → N is total recursive and it satisfies ρ(φ(n)) = γ(n) for all n ≥ 0. Hence ρ ≈ γ. �

In view of Lemma 3.12 we get

Corollary 3.24. If ρ, γ : N →M are listable presentations for an L -structure M, we have ρ ≈ γ
if and only if ρ ≍ γ as p.e. interpretations.

Proof. Note that in this case K(γ, ρ) = ∆(γ, ρ). By the DPRM theorem, we see that K(γ, ρ) is
p.e. La-definable over N if and only if ∆(γ, ρ) is listable. We conclude by Lemma 3.23. �
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3.5. Uniquely listable structures. We have seen that listable structures with finite domain are
uniquely listable (cf. Proposition 3.17). However, not all listable structures are uniquely listable.
For instance, let H ⊆ N be a listable undecidable set and consider the structure (N;H,=). The
identity map ρ : N → N is a listable presentation. Another listable presentation is given by the
set-theoretical bijection γ : N → N mapping 2n to the n-th element of H and 2n + 1 to the n-th
element of Hc. Since Hc is γ-listable but it is not ρ-listable, we conclude ρ 6≈ γ.

Let us discuss the problem of determining whether a listable structure is uniquely listable. First,
we have the following basic transference property.

Lemma 3.25 (Transference of unique listability). Let L and K be languages. Let M be a listable
L -structure with domain M , and let N be a uniquely listable K -structure with domain N . Suppose
that there is a bijective function θ : M → N defining a p.e. interpretation θ : M 99K N. Then M

is uniquely listable.

Proof. Given ρ, γ : N → M listable presentations for M we have that θ ◦ ρ and θ ◦ γ are listable
presentations of N (by Proposition 3.11 with f = IdN) and therefore they are equivalent. Let
φ : N → N be a total recursive function with θ ◦ ρ ◦ φ = θ ◦ γ, then ρ ◦ φ = γ because θ is injective,
and we get ρ ≈ γ. �

Unfortunately, this transference property is rather restrictive and a more flexible criterion for
unique listability is necessary.

Let M be a listable L -structure with domain M . A universal listing for M is a surjective set-
theoretical function τ : N →M satisfying that for every listable presentation ρ : N →M there is a
total recursive function aτρ : N → N such that ρ ◦ aτρ = τ .

Universal listings are relevant for us due to the following relation with unique listability.

Lemma 3.26 (Universal listings and unique listability). Let M be a listable L -structure which
admits a universal listing τ . Then M is uniquely listable and τ is a listable presentation for it.

Proof. Let ρ be any listable presentation for M. By assumption, τ is surjective. Since τ = ρ ◦ aτρ
and aτρ : N → N is total recursive, we see that for every s ∈ L the set τ∗(sM) = (aτρ)

∗(ρ∗(sM)) is
listable. Hence, τ is a listable presentation for M and the relation τ = ρ ◦ aτρ implies ρ ≈ τ . �

Naturally, there is the problem of showing that a given structure actually has some universal
listing. For this we have:

Theorem 3.27 (Criterion for unique listability). Let M be a listable L -structure. Let r, k be
positive integers and let c ∈ N. Let us choose the following:

• a total recursive function h = (h1, ..., hr) : N → Nr such that hj(n) < n for each j = 1, ..., r
and all n > c,

• a partition A1, ..., Ak of N>c with each Ai decidable,
• for each i = 1, 2, ..., k, a p.e. L -definable function Fi : Vi →M with domain Vi ⊆M r.

Let τ : N →M be a set-theoretical function satisfying the following conditions:

(i) τ is surjective.
(ii) If n ∈ Ai and n > c, then h(n) ∈ τ∗(Vi).
(iii) For each n > c, we have

τ(n) =















F1(τ(h1(n)), ..., τ(hr(n))) if n ∈ A1

...

Fk(τ(h1(n)), ..., τ(hr(n))) if n ∈ Ak.

Then τ is a universal listing. In particular, M is uniquely listable and τ is a listable presentation.
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Proof. Let ρ : N →M be a listable presentation. Let

Γi = {(x0, ..., xr) : x0 = Fi(x1, ..., xr)} ⊆M r+1

and note that Γj is p.e. L -definable. By Corollary 3.9 the set ρ∗(Γi) ⊆ Nr+1 is listable. For each
i = 1, ..., k let fi = (fi0, ..., fir) : N → Nr+1 be a total recursive map with image ρ∗(Γi). We note
that (fi1, ..., fir) : N → Nr has image ρ∗(Vi) because Vi is the domain of Fi.

We claim that there is a total recursive function α : N → N satisfying the following:

(a) For each n ∈ N we have ρ(α(n)) = τ(n).
(b) For each n ∈ Ai with n > c we have (α(h1(n)), ..., α(hr(n))) ∈ ρ∗(Vi).
(c) For each n > c,

(3.1) α(n) =















f10(µy[f1j(y) = α(hj(n)) for each j = 1, ..., r]) if n ∈ A1

...

fk0(µy[fkj(y) = α(hj(n)) for each j = 1, ..., r]) if n ∈ Ak.

Let us choose any values α(n) ∈ ρ−1(τ(n)) for n ≤ c. Then ρ(α(m)) = τ(m) for m = 0, 1, ..., c. We
will recursively construct the values of the function α(n) for larger values of n by using (c), and
along the construction we will inductively prove that (a) and (b) hold.

Let us fix an n > c and let us assume that for each m < n we have that α(m) ∈ N is already
defined and that ρ(α(m)) = τ(m) holds. Let i be the index with n ∈ Ai. Note that hj(n) < n for
each j = 1, ..., r, hence (α(h1(n)), ..., α(hr(n))) ∈ Nr is already defined and

(3.2) (ρ(α(h1(n))), ..., ρ(α(hr(n)))) = (τ(h1(n)), ..., τ(hr(n))) ∈ Vi

by condition (ii). That is,

(α(h1(n)), ..., α(hr(n))) ∈ ρ∗(Vi) ⊆ Nr

as required by (b).
Since ρ∗(Vi) is the image of (fi1, ..., fir) : N → Nr, there is some y ∈ N such that fij(y) = α(hj(n))

for each j = 1, ..., r. Therefore, (3.1) uniquely defines α(n) ∈ N. Furthermore, if y0 is the minimal
such y for our chosen n, then

ρ(α(n)) = ρ(fi0(y0)) = Fi(ρ(fi1(y0)), ..., ρ(fir(y0))) by definition of fi : N → Nr+1

= Fi(ρ(α(h1(n))), ..., ρ(α(hr(n)))) by choice of y0

= Fi(τ(h1(n)), ..., τ(hr(n))) by (3.2)

= τ(n) by condition (iii).

This proves that ρ(α(n)) = τ(n) holds, as required by (a).
Finally, it only remains to observe that the function α : N → N that we have constructed is total

recursive. In fact, we already proved that α is a total function, and it is defined by the first chosen
values α(1), ..., α(c) together with the condition (3.1) for n > c. The condition (3.1) shows that α is
recursive because it only involves the total recursive functions fij and hj, the schema of definition
by decidable cases, the minimalization operator, and the schema of course-of-values recursion.

In particular, we have constructed a total recursive function α : N → N satisfying condition (a).
The function τ : N → M is surjective by assumption (i), and the choice aτρ = α shows that τ is a
universal listing. We conclude by Lemma 3.26. �

3.6. Examples. A first example to explain how to use the previous results on unique listability:

Proposition 3.28. Let N be an L -structure with domain N such that

(i) For each s ∈ L , the set sN is listable.
(ii) 0 ∈ N and the successor function S : N → N, S(x) = x+ 1 are p.e. L -definable in N.
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Then N is uniquely listable. In particular, this holds for (N; 0, S,=) and (N; 0, 1,+,×,=).

Proof. The identity function gives a listable presentation by (i). It remains to prove uniqueness up
to equivalence. We apply Theorem 3.27 with c = 0, r = k = 1, A1 = N, h(n) = max{0, n − 1},
F1 = S, V1 = N, and τ = IdN. The result follows. �

Next we consider the case of Q in detail. We begin with a folklore fact.

Lemma 3.29. Let q : Z>0 → Q>0 be the function defined by q(1) = 1 and for n ≥ 2:

q(n) =

{

q(n/2) + 1 if n ≥ 2 is even

1/q(n − 1) if n ≥ 2 is odd.

Then q : Z>0 → Q>0 is bijective.

Proof. Take any rational number r > 0 and recall that it admits a unique continued fraction
expansion [a0; a1, ..., ad] for some d ≥ 1 under the requirements a0 ≥ 0, aj ≥ 1 for j ≥ 1, and
ad = 1. We note that choosing the positive integer

(3.3) n = 2a0(2a1(...(2ad−2(2ad−1 + 1) + 1)...) + 1)

we get q(n) = r, so q(Z>0) = Q>0. Furthermore, q is injective because the expression (3.3) always
exists and is unique for a given n ≥ 1 under the requirements a0 ≥ 0 and aj ≥ 1 for j ≥ 1
—expanding the product in (3.3) we get the binary expansion of n. �

Corollary 3.30. Let τ : N → Q be defined by τ(0) = 0, τ(1) = 1, τ(2) = −1 and for n ≥ 3

τ(n) =











τ((n− 1)/2) + 1 if n ≡ 3 mod 4

τ(n/2)− 1 if n ≡ 0 mod 4

1/τ(n − 2) if n ≡ 1, 2 mod 4.

Then τ : N → Q is bijective.

Proof. This follows from Lemma 3.29, since the sequence of values τ(n) for n = 0, 1, 2, ... is precisely
0, q(1), −q(1), q(2), −q(2), ... �

Proposition 3.31. Let Q be an L -structure with domain Q such that

(i) Q admits some listable presentation.
(ii) The constant 0 ∈ Q, the successor function S : Q → Q, S(x) = x+1, and the multiplicative

inverse function R : Q× → Q, R(x) = 1/x are p.e. L -definable in Q.

Then Q is uniquely listable and the function τ : N → Q of Corollary 3.30 is a listable presentation.

Proof. First we note that the function P : Q → Q given by y = P (x) = x− 1 is p.e. L -defined by
the formula x = S(y).

Let us apply Theorem 3.27 to show that the function τ : N → Q from Corollary 3.30 is a universal
listing for Q. We choose c = 2, r = 1, k = 3, A1 = {n ≥ 3 : n ≡ 3 mod 4}, A2 = {n ≥ 3 : n ≡
0 mod 4}, A3 = {n ≥ 3 : n ≡ 1, 2 mod 4}, and the total recursive function h : N → N given by

h(n) =











(n− 1)/2 if n ≡ 3 mod 4

n/2 if n ≡ 0 mod 4

max{0, n − 2} if n ≡ 1, 2 mod 4.

With these choices, the function τ : N → Q from Corollary 3.30 satisfies τ(0) = 0, τ(1) = S(0),
τ(2) = P (0) and for n ≥ 3 we have

τ(n) =











S(h(n)) if n ∈ A1

P (h(n)) if n ∈ A2

R(h(n)) if n ∈ A3.
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Theorem 3.27 implies that τ is a universal listing. Hence the result. �

Corollary 3.32. The La-structure Q is uniquely listable.

Proof. By Corollary 3.14 and Proposition 3.31. �

In a similar fashion, one can get several other results. We include here the case of a certain class
of finitely generated structures, which generalizes the examples we have presented in detail so far
in this section. The proofs goes along the same lines.

Proposition 3.33. Let M be a listable L -structure with domain M . Suppose that there is a finite
list of elements g0, g1, ..., gc ∈M and functions F1, ..., Fk :M r →M such that

• each gj and each Fi is p.e. L -definable over M, and
• M is generated by the elements gj and the functions Fi, in the sense that each element of
M is obtained by applying a suitable composition of the Fi to the elements gj .

Then M is uniquely listable.

One immediately gets the following generalization of Corollary 3.32:

Corollary 3.34. Let M be a finitely generated ring. Let L = La ∪ {g0, g1, ..., gc} where gi are
symbols of constant interpreted in M as a list of ring generators. Then M seen as an L -structure
is uniquely listable. The same result holds if M is a finitely generated field, in which case the gi
should be taken to correspond to a list of field generators.

Proof. It is a standard fact that finitely generated rings and fields are p.e. interpretable in the
La-structure N; see for instance Corollary 2.14 in [3] and note that the constructed interpretation
is p.e. (idea: it suffices to interpret rings of the form Z[x1, ..., xn] and then take quotients and
localizations, which leads to p.e. interpretations). The result follows from Theorem 3.13 and
Proposition 3.33. �

4. The DPRM property for listable structures

4.1. The DPRM property. Let M be a listable L -structure. Recall that a set X ⊆ M r is
totally listable if for every listable presentation ρ : N →M we have that X is ρ-listable.

In the special case that M is uniquely listable, the class of totally listable sets over M is the same
as the class of ρ-listable sets for any chosen listable presentation ρ : N →M (cf. Lemma 3.18). So,
if M is uniquely listable, there is a well-defined notion of listable sets over M.

By Corollary 3.9, if X ⊆M r is p.e. L -definable, then it is totally listable. We are interested in
listable structures M for which the converse holds.

We say that a listable L -structure M has the DPRM property if for each r ≥ 1, every totally
listable set X ⊆ M r is p.e. L -definable. Thus, a listable structure M has the DPRM property if
and only if the class of totally listable sets over M is the same as p.e. L -definable sets over M.

Of course, N as an La-structure has the DPRM property precisely by the DPRM theorem. It
easily follows that Z as an La-structure also has the DPRM property (see Lemma 4.11 for details).

A basic feature of listable structures having the DPRM property is the following:

Lemma 4.1. If M is a listable L -structure with the DPRM property, then all finite sets in M r

are p.e. L -definable. In particular, each element of M is p.e. L -definable.

Proof. By Corollary 3.5. �

In particular, the DPRM property has a simple characterization for finite structures.

Corollary 4.2. Let M be an L -structure with finite domain. Then M has the DPRM property
if and only if each element of M is p.e. L -definable. In this case, every subset of M r is p.e.
L -definable.
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4.2. Known results. Other authors have considered a slightly different variant of the DPRM
property where only recursive presentations are allowed. That is, surjective maps ρ : N →M such
that for every s ∈ L we have that ρ∗(sM) is decidable. Let us momentarily call this variant the
recursive DPRM property. Note that if a set X ⊆ M r is ρ-listable for every listable presentation
ρ, then the same holds for every recursive presentation. Therefore, the recursive DPRM property
implies the DPRM property, and all available results in the literature establishing the recursive
DPRM property for a certain structure are still valid if the DPRM property is considered.

Let us briefly survey the known cases of the DPRM property beyond N and Z. Denef [17] proved
the DPRM property for Z[t]. Zahidi [51] extended Denef’s result to the polynomial ring OK [t]
when K is a totally real number field and OK is its ring of integers. Demeyer proved several other
cases: k[t] for k a finite field or a recursive infinite algebraic extension of a finite field [14], and A[t]
where A is a recursive subring of a number field [16]. Degroote and Demeyer [13] proved the case of
L[t] where L is an automorphism-recursive algebraic extension of Q having an embedding into R or
into a finite extension of Qp for some prime p (see [13] for the definition of automorphism-recursive
extensions).

Other than this, if B is a uniquely listable ring and A ⊆ B is a uniquely listable subring such that
A has the DPRM property and A is Diophantine in B (that is, p.e. La-definable with parameters),
then there are a number of cases where the DPRM property can be transferred from A to B by
applying some version of Theorem 4.8 below, especially in the context of finite algebraic extensions
of fields or Dedekind domains. See for instance Proposition 4.13 below.

4.3. The number of existential quantifiers. Let M be an L -structure. Given r ≥ 1, a p.e.
r-catalogue for M is a p.e. L -formula Υr[x0, x1, ..., xr] with the following property: For every p.e.
L -definable set X ⊆M r there is an element mX ∈M such that X = {a ∈M r : M |= Υr[mX ,a]}.
(One may argue that “universal p.e. formula” would be a better terminology, but such an oxymoron
might lead to confusion.) We record the following remark.

Lemma 4.3. Let M be an L -structure. If M has a p.e. r-catalogue for certain r ≥ 1, then it has
a p.e. n-catalogue for every 1 ≤ n ≤ r.

Conversely, one has:

Lemma 4.4. Let M be an L -structure with domain M . If M has a p.e. 1-catalogue and there is
a p.e. L -definable injective function M2 →M , then M has a p.e. r-catalogue for every r ≥ 1.

For an L -structure M and subset X ⊆M r which is p.e. L -definable with parameters from M,
we define the p.e. rank of X over M as the minimal number of existential quantifiers required by
a p.e. L -formula to define X with parameters from M. The p.e. rank of X over M is denoted by
rankp.e.M (X). We allow p.e. definitions with parameters because the p.e. rank is intended to be a
rough measure of the complexity of a p.e. definable set, and it is desirable that all p.e. definable
finite sets have the lowest possible complexity in this sense —namely, 0.

The following observation follows from the definition of p.e. r-catalogues.

Lemma 4.5 (Boundedness of the p.e. rank). Let M be an L -structure with domain M and let
r ≥ 1. If M has a p.e. r-catalogue, then there is a bound BM(r) depending only on M and r, such
that for every n ≤ r and every p.e. L -definable X ⊆Mn we have rankp.e.M (X) ≤ BM(r).

Theorem 4.6 (Existence of p.e. catalogues). Let M be an L -structure with infinite domain M .
Suppose that M is uniquely listable, that it has the DPRM property, and that the binary relation 6=
is p.e. L -definable over M. Then M has a p.e. r-catalogue Υr[x0, x1, ..., xr ] for every r ≥ 1.

In particular, for every r ≥ 1 there is a bound BM(r) (depending only on M and r) such that
for every p.e. L -definable set X ⊆M r we have rankp.e.M (X) ≤ BM(r).
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Proof. Take any listable presentation ρ : N → M . Since M is infinite and 6= is p.e. L -definable,
Corollary 3.20 yields a bijective listable presentation γ : N →M . Lemma 3.7 then gives a γ-listable
set Ur(γ) ⊆M r+1 such that for every γ-listable set X ⊆M r there is mX ∈M such that

X = {a ∈M r : (mX ,a) ∈ Ur(γ)}.
Since M has the DPRM property and it is uniquely listable, Ur(γ) is p.e. L -definable. We can
take Υr[x0, x1, ..., xr ] to be any p.e. L -formula defining Ur(γ). �

4.4. Transference of the DPRM property. Our next goal is to characterize when it is possible
to transfer the DPRM property from one structure to another by means of a p.e. interpretation.
For simplicity, we will work with uniquely listable structures. First we need

Lemma 4.7. Let M be a uniquely listable L -structure with domain M and suppose that it has the
DPRM property. Then for every p.e. self-interpretation λ : M 99K M we have that

Γ(λ) = {(x0, x1, ..., xr) ∈M r+1 : (x1, ..., xr) ∈ dom(λ) and x0 = λ(x1, ..., xr)}
is p.e. L -definable.

Proof. Since dom(λ) is p.e. L -definable, it is totally listable (cf. Corollary 3.9). Let ρ be a listable
presentation for M and let f = (f1, ..., fr) : N → Nr be a total recursive function with image
ρ∗(dom(λ)). The map γ = λ ◦ ρ(r) ◦ f : N → M is a listable presentation for M, by Proposition
3.11. Since M is uniquely listable, γ ≈ λ and there is a total recursive function φ : N → N with
γ = ρ ◦ φ. Note that ρ(r) ◦ f : N → M r maps onto dom(λ), so, Γ(λ) consists precisely of elements
of the form

(γ(n), ρ(r)(f(n))) = (ρ(φ(n)), ρ(r)(f(n))) = ρ(r+1) ◦ (φ, f1, ..., fr)(n)
for some n ∈ N. We conclude by Lemma 3.4 (iii) and the DPRM property. �

Theorem 4.8 (Transference of DPRM). For i = 1, 2 let Li be a language and let Mi be a uniquely
listable Li-structure with domain Mi. Suppose that M2 has the DPRM property and that there
are p.e. interpretations θ1 : M1 99K M2 and θ2 : M2 99K M1 of ranks r1, r2 respectively. Let
ζ = θ2 • θ1 : M1 99K M1 and let r = r1r2. Then the following are equivalent:

(i) The pair (θ1, θ2) defines a p.e. bi-interpretation between M1 and M2.
(ii) Γ(ζ) ⊆M r+1

1 is p.e. L1-definable over M1.
(iii) M1 has the DPRM property.

Proof. (i) implies (ii) by definition of p.e. bi-interpretation.
Let us show that (ii) implies (iii). Let ρ be a listable presentation for M2. By Proposition 3.11

applied to θ2 : M2 99K M1, there is a listable presentation γ for M1 such that for any S ⊆ Mk
1 we

have that S is γ-listable if and only if θ∗2(S) is ρ-listable.
Let S ⊆Mk

1 be a γ-listable set. Then θ∗2(S) is ρ-listable. Since M2 is uniquely listable and it has
the DPRM property, θ∗2(S) is p.e. L2-definable over M2. Hence, the set ζ∗(S) = θ∗1(θ

∗
2(S)) ⊆M rk

1

is p.e. L1-definable over M1. Since ζ : dom(ζ) →M1 is surjective, we have S = ζ(k)(ζ∗(S)) ⊆Mk
1 .

By (ii), the function ζ(k) : dom(ζ)k →Mk
1 is p.e. L1-definable. Therefore, the set

S = {y ∈Mk
1 : ∃x ∈ ζ∗(S) such that ζ(k)(x) = y}

is p.e. L1-definable over M1. This proves (iii). Finally, (iii) implies (i) by Lemma 4.7. �

Corollary 4.9. Let M be a uniquely listable L -structure with domain M and let ρ be a listable
presentation for it. Suppose that we have an interpretation θ : M 99K N with N is regarded as an
La-structure. The following are equivalent:

(i) M is p.e. bi-interpretable with the La-structure N.
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(ii) The function ρ ◦ θ : dom(θ) →M is p.e. L -definable.
(iii) M has the DPRM property.

Proof. Recall that the La-structure N is uniquely listable (cf. Proposition 3.28) and it has the
DPRM property. Theorem 4.8 shows that (i) for any bi-interpretation implies (iii).

By Lemma 3.12, ρ defines a p.e. interpretation of M in the La-structure N. Applying Theorem
4.8 with L1 = L , L2 = La, M1 = M, M2 = N, θ1 = θ, and θ2 = ρ, we see that (ii) is equivalent
to (iii) and they imply (i). �

The equivalence between (ii) and (iii) in Corollary 4.9 has been previously used in the literature
to transfer the DPRM property from the semi-ring N to recursive rings and fields; see for instance
[17, 51] and, more generally, the references in Section 4.2. We also refer the reader to Demeyer’s
thesis [15] where the equivalence between (ii) and (iii) in Corollary 4.9 is discussed in the context
of recursively presented rings.

In this special form, the strategy originated in Denef’s work [17] where he transferred the DPRM
property from N to Z[T ] by implicitly using the fact that (ii) implies (iii) in Corollary 4.9. A
recursive presentation for a ring satisfying (ii) of Corollary 4.9 is often referred to as a Diophantine
enumeration, but they are difficult to obtain in general. We will use the more flexible criterion
given by Theorem 4.8 in the examples of Section 4.5. Nevertheless, Corollary 4.9 allows us to give a
characterization of uniquely listable structures with infinite domain that have the DPRM property,
under the mild assumption that 6= is totally listable.

Theorem 4.10 (Characterization of the DPRM property for infinite uniquely listable structures).
Let M be a uniquely listable L -structure with infinite domain, and with the property that 6= is
totally listable over M (this is the case, for instance, if 6= is p.e. L -definable over M). Then M

has the DPRM property if and only if it is p.e. bi-interpretable with the La-structure N.

Proof. If there is a p.e. bi-interpretation, then in particular there is a p.e. interpretation θ : M 99K N

and we can apply Corollary 4.9 to conclude that M has the DPRM property.
Conversely, assume that M has the DPRM property. By Corollary 4.9, it suffices to construct

a p.e. interpretation θ : M 99K N with N seen as an La-structure. Since M has infinite domain
M and 6= is totally listable, Corollary 3.20 implies that there is a bijective listable presentation
ρ : N →M . Let θ = ρ−1 :M → N. For s ∈ La we have that sN is listable, hence θ∗(sN) is ρ-listable
because ρ∗(θ∗(sN)) = sN. By the DPRM property on M we get that θ∗(sN) is p.e. L -definable
over M, which implies that θ : M 99K N is the required p.e. interpretation. �

We remark that Theorem 4.10 applies in the setting of Theorem 4.6.

4.5. Examples. All the structures considered in this section are uniquely listable, thanks to the
results in Section 3.6. If M is an L -structure with domain M and S ⊆ M , we let L ∪ S be the
language obtained by expanding L with constant symbols corresponding to the elements of S and
interpreted in M accordingly. As a warm-up, we have:

Lemma 4.11. The La-structure Z has the DPRM property.

Proof. By Lemma 2.13 and the equivalence of (i) and (iii) in Corollary 4.9. �

The next three examples are considered folklore results (except for the assertions about p.e.
bi-interpretability), although the author is not aware of any reference for their proofs. Let us recall
that for a ring A, a subset S ⊆ Ar is Diophantine if it is p.e. La-definable over A with parameters.

Proposition 4.12. The following are equivalent:

(i) Z is Diophantine in Q.
(ii) The La-structure Q has the DPRM property.
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(iii) The La-structure Q is p.e. bi-interpretable with the La-structure N.

Proof. Let us consider Q as an L -structure. It is infinite and it is uniquely listable by Corollary
3.32. The relation 6= is p.e. La-definable over Q, hence, totally listable (cf. Corollary 3.9). Thus,
(ii) and (iii) are equivalent by Theorem 4.10.

Assume (i). Then the identity map θ1 : Z → Z defines a p.e. interpretation θ1 : Q 99K Z

as La-structures. We take θ2 : Z × (Z − {0}) → Q given by (a, b) 7→ a/b, which defines a p.e.
interpretation θ2 : Z 99K Q; in fact, this is the p.e. interpretation κ : Z 99K Q from Lemma 2.14.
For ζ = θ2 • θ1 : Q 99K Q we have dom(ζ) = Z× (Z− {0}) ⊆ Q2 and

Γ(ζ) = {(x0, x1, x2) ∈ Q3 : x1 ∈ Z, x2 ∈ Z− {0}, x0x2 = x1} ⊆ Q3

which is p.e. La-definable over Q by (i). Hence, by Theorem 4.8 and Lemma 4.11 we get (ii).
Finally, assume (ii). To obtain (i) it suffices to show that Z ⊆ Q is γ-listable for some listable

presentation γ of Q, because Q is uniquely listable. Directly doing this in detail without invoking
Church’s thesis can be rather messy if the listable presentation is not chosen carefully, but choosing
the listable presentation τ : N → Q provided by Proposition 3.31 one can check that τ−1(Z) =
{2n : n ≥ 0} ∪ {2n − 1 : n ≥ 0}, which is listable in N.

Alternatively, consider again the p.e. interpretation κ : Z 99K Q from Lemma 2.14. Then
κ∗(Z) = {(a, b) ∈ Z2 : b 6= 0 and b|a} is p.e. La-definable over Z, hence totally listable (cf.
Corollary 3.9). Then Z is γ-listable in Q for some listable presentation γ by Proposition 3.11. �

We stress the fact that, although N and Q are known to be bi-interpretable as La-structures
thanks to results of J. Robinson [41], it is not known whether they are p.e. bi-interpretable.

Proposition 4.13. Let K be a number field, let OK be its ring of integers, and let G ⊆ OK be a
finite set of ring generators for OK . Let us consider OK as a structure over L = La ∪ G . Then
OK is uniquely listable and the following are equivalent:

(i) Z is Diophantine in OK .
(ii) The L -structure OK has the DPRM property.
(iii) The L -structure OK is p.e. bi-interpretable with the La-structure N.

Proof. We consider Z as an La-structure and OK as an L -structure.
The ring OK is infinite and it is uniquely listable by Corollary 3.34. The relation 6= is p.e.

L -definable in OK —this is elementary; see for instance paragraph 1.2.1 in [32]. Hence, (ii) and
(iii) are equivalent by Theorem 4.10.

Let r = [K : Q] and let β1, ..., βr be an integral basis for OK with β1 = 1. The elements βj
are p.e. L -definable since G is a set of ring generators for OK . Let κ : Zr → OK be the map
κ(x1, ..., xr) = x1β1 + ...+ xrβr. Thus, κ defines a p.e. interpretation κ : Z 99K OK .

Assume (i). Then the identity map θ1 : Z → Z defines a p.e. interpretation θ1 : OK 99K Z.
Let us take θ2 = κ : Z 99K OK . The composed interpretation ζ = θ2 • θ1 : OK 99K OK has
dom(ζ) = Zr ⊆ OK and Γ(ζ) = {(x0, x1, ..., xr) ∈ Or+1

K : x1, ..., xr ∈ Z and x0 = x1β1 + ... + xrβr}
which is p.e. L -definable by (i). We obtain (ii) by Theorem 4.8 and Lemma 4.11.

Finally, let us assume (ii). To get (i) it suffices to show that Z ⊆ OK is listable for some
listable presentation γ of OK (since OK is uniquely listable). The p.e. interpretation κ : Z 99K OK

constructed above satisfies κ−1(Z) = {(n, 0, ..., 0) : n ∈ Z} ⊆ Zr because β1 = 1 and the βj form an
integral basis. Thus, κ−1(Z) is totally listable over Z (it is p.e. La-definable) hence Z is γ-listable
over OK for some listable presentation γ afforded by Proposition 3.11. �

At this point we recall that it is a conjecture of Denef and Lipshitz [19] that Z is Diophantine in
OK for every number field. The general case remains open, although it is known that this would
follow from standard conjectures on elliptic curves [29, 33]. The available unconditional results are
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proved in [19, 18, 37, 46, 49, 45] and most recently in [30] and [23]. All recent progress on this
problem was possible thanks to the elliptic curve criteria from [39, 9, 48].

Regarding function fields, we have:

Proposition 4.14. Let k be a finite field, let t be a transcendental element, and let G be a (finite)
set of ring generators for k. Let us consider k[t] and k(t) as L -structures, where L = La∪G ∪{t}.
The following are equivalent:

(i) k[t] is Diophantine in k(t).
(ii) The L -structure k(t) has the DPRM property.
(iii) The L -structures k[t] and k(t) are p.e. bi-interpretable.
(iv) The L -structure k(t) is p.e. bi-interpretable with the La-structure N.

Proof. The ring k[t] is infinite, uniquely listable by Corollary 3.34, and the inequality 6= is p.e.
L -definable (standard fact using two primes of k[t]; see Lemme 3.2 in [32] for a generalization).
Furthermore, k[t] has the DPRM property by a result of Demeyer [14]. Thus k[t] is p.e. bi-
interpretable with the La-structure N by Theorem 4.10. It follows that (iii) and (iv) are equivalent
by Lemma 2.12.

The field k(t) is infinite, uniquely listable by Corollary 3.34, and the relation 6= is p.e. L -definable
in k(t). Hence, (ii) and (iv) are equivalent by Theorem 4.10.

The equivalence of (i) and (ii) is shown as in the case of Z and Q (cf. Proposition 4.12) using
the p.e. interpretation κ : k[t] 99K k(t) given by κ : k[t] × (k[t] − {0}) → k(t) with (f, g) 7→ f/g.
Namely, assuming (i), the identity map θ1 : k[t] → k[t] defines a p.e. interpretation θ1 : k(t) 99K k[t]
and we can take θ2 = κ in order to apply Theorem 4.8 together with Demeyer’s theorem [14]. This
allows us to transfer the DPRM property from k[t] to k(t), obtaining (ii).

Conversely, assume (ii). Then κ∗(k[t]) = {(f, g) ∈ k[t]2 : g 6= 0 and g|f} is p.e. L -definable
over k[t], hence totally listable. Proposition 3.11 implies that k[t] is γ-listable in k(t) for some
listable presentation γ, hence k[t] is a totally listable subset of k(t) because k(t) is uniquely listable.
Therefore, (ii) implies (i). �

Similarly, these results can be extended to the case of S-integers and global fields, not just Q

and k(t). We leave the details to the reader.
In a similar fashion, other transference results can be obtained. For instance, Demeyer [16]

proved that Q[t] has the DPRM property, seen as a structure over Lt = La ∪ {t}. Using this and
the same methods as in the previous three results, one can show

Proposition 4.15. Consider Q[t] and Q(t) as structures over Lt. The following are equivalent:

(i) Q[t] is Diophantine in Q(t).
(ii) The L -structure Q(t) has the DPRM property.
(iii) The L -structures Q[t] and Q(t) are p.e. bi-interpretable.
(iv) The L -structure Q(t) is p.e. bi-interpretable with the La-structure N.

5. Diophantine sets of global fields and related problems

5.1. Varieties and Diophantine sets. In this article, a variety over a field k is a reduced sepa-
rated scheme of finite type over k. In particular, we do not require irreducibility.

Recall that a set S ⊆ kn is Diophantine over k if it is p.e. La-definable over k with parameters
from k. It easily follows from the definitions that S is Diophantine over k if and only if there is an
affine variety X over k and a morphism f : X → An

k defined over k such that f(X(k)) = S.

5.2. Mazur’s conjecture. For later reference, let us recall some conjectures on the topology of
rational points formulated by Mazur [27, 28], as well as a variation proposed by Colliot-Thélène,
Skorobogatov, and Swinnerton-Dyer [7].
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The following intriguing conjecture is due to Mazur [27, 28].

Conjecture 5.1 (Mazur’s conjecture). Let X be a variety over Q. The topological closure of X(Q)
in X(R) has finitely many connected components.

This conjecture was initially stated for smooth varieties, but the previous version is easily reduced
to the smooth case by taking X1 as the smooth locus of X, and then X2 as the smooth locus of
X −X1, etc. which is a finite process because X is of finite type over Q.

As remarked by Mazur, this conjecture implies at once that Z is not Diophantine in Q. By
Proposition 4.12, it would also follow that Q does not have the DPRM property and that Q and N

are not p.e. bi-interpretable as La-structures.
Actually, a first version of Mazur’s conjecture proposed in [27] asserted that the topological

closure of X(Q) in X(R) precisely consisted of some of the connected components of X(R), but
this was disproved in [7]. Nevertheless, the following version of Mazur’s conjecture proposed as
Conjecture 4 in [7] still seems plausible.

Conjecture 5.2 (Strong version of Mazur’s conjecture). Let X be a smooth irreducible variety
over Q and let U be a connected component of X(R). Let W be the topological closure of X(Q)∩U
in U . Then there is a Zariski closed set Y ⊆ X defined over Q such that W is a finite union of
connected components of Y (R).

The following observation is implicit in [7] and in fact it motivates the previous conjecture.

Lemma 5.3. The strong version of Mazur’s conjecture (Conjecture 5.2) implies Mazur’s conjecture
(Conjecture 5.1).

Proof. The set of real points of an affine variety defined over Q forms a semi-algebraic set, and it
is a standard result that semi-algebraic sets over R have finitely many connected components. �

Let L be a real-closed field and let F ⊆ L be an ordered field. A semi-algebraic set U ⊆ Ln

is said to be defined over F if there is a first order formula Φ[x1, ..., xn] over the language L≤ =
{0, 1,+, ·,≤,=} with parameters from F such that U is the interpretation of Φ over L.

With this terminology, here is yet another variant of Mazur’s conjecture which is implicitly
suggested in [7], and explicitly formulated at the end of Section 2 in [10]. Here, for a variety X
over R, a semi-algebraic set of X(R) is defined as a set which is semi-algebraic on each affine chart
of an affine open cover of X.

Conjecture 5.4 (Semi-algebraic version of Mazur’s conjecture). Let X be a variety over Q. The
topological closure of X(Q) in X(R) is a semi-algebraic set defined over Q.

It turns out that this last conjecture follows from Conjecture 5.2 by the same argument as in
Lemma 5.3, just keeping track of the field of definition.

Lemma 5.5. The strong version of Mazur’s conjecture (Conjecture 5.2) implies the semi-algebraic
version of Mazur’s conjecture (Conjecture 5.4).

Proof. Let Y be an affine algebraic variety defined over Q in the affine space An
Q. Let C be a

connected component of Y (R). It is a standard result that C is semi-algebraic over R (cf. Theorem
5.22 in [4]). We claim that the semi-algebraic set C is defined over Q (this is well-known but we
were not able to find an explicit reference for this particular fact).

Let F ⊆ R be the field of real algebraic numbers. Then F is real-closed, and by Proposition 5.24
in p.170 of [4] there is a semi-algebraic connected component C ′ of Y (F ) defined over F such that
for any L≤-formula Φ[x1, ..., xn] with parameters form F which defines C ′ over F , the interpretation
of Φ over R is C. Since F is the real closure of Q, Proposition 2.82 in p.71 of [4] shows that there
is an L≤-formula Ψ with parameters from Q (thus, Ψ can be taken without parameters) such that
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the interpretation of Ψ over F is C ′. Hence, the interpretation of Ψ over R is C. This proves that
the connected components of Y (R) are semi-algebraic sets defined over Q.

Let X be a smooth affine algebraic variety over Q in affine space An
Q; this case of Conjecture 5.4

implies the general case by taking a suitable stratification of the variety under consideration (cf.
the discussion after Conjecture 5.1) and then taking affine coverings. Assuming Conjecture 5.2 we
get that the topological closure of X(Q) in X(R) ⊆ Rn is the union of finitely many connected
components of real algebraic sets Y (R) for certain varieties Y defined over Q. Thus, by the previous
claim, the closure of X(Q) in X(R) is semi-algebraic defined over Q. �

Let us observe the following:

Proposition 5.6. If the semi-algebraic version of Mazur’s conjecture (Conjecture 5.4) holds, then
for every Diophantine set S ⊆ Q, we have that the topological closure of S in R is a finite union
of closed intervals whose endpoints are real algebraic or infinite. (Here, the singleton {x} ⊆ R is
taken as the closed interval [x, x].)

Proof. This is by the Tarski-Seidenberg theorem with coefficients in Q. See Theorem 2.77 in p.69
of [4] for a general version with coefficients in an ordered field contained in a real closed field. �

One may ask about extensions of Mazur’s conjecture to other global fields and other places,
not just the archimedean. In the case of number fields, Mazur (cf. Question I in [28]) asked the
following (see also [40]):

Question 5.7 (Mazur). Let K be a number field and let v be a place of K. Let X be an irreducible
projective variety over K. For each local point x ∈ X(Kv), let Zx ⊆ X be the intersection of all
Zariski closed sets Y ⊆ X that contain some X(K) ∩ U , as U ranges over all v-neighborhoods of
x. Is the collection {Zx : x ∈ X(Kv)} finite?

Let us remark the following:

Lemma 5.8. Let K be a number field, let v be a place of K, and let S ⊆ K be Diophantine over
K. Assume either of the following:

(i) K = Q, v = ∞ is the archimedean place, and Mazur’s Conjecture 5.1 holds; or
(ii) Mazur’s Question 5.7 has a positive answer for the number field K and the place v.

Then S can have at most finitely many v-adically isolated points.

Proof. Suppose that S has infinitely many v-adically isolated points. Let X be an affine variety
defined over K and let f : X → A1

K be a morphism defined over K such that S = f(X(K)). Passing
to a Diophantine subset of S with infinitely many v-adically isolated points, we may assume that X
is irreducible. Let z1, z2, ... be an infinite sequence of points in S that are v-adically isolated. Then
the fibres Yj = f−1(zj) are infinitely many pairwise disjoint Zariski-closed subsets of X defined
over K with Yj(K) non-empty.

If K = Q and v = ∞, then the sets Yj(R) for j = 1, 2, ... contain infinitely many connected
components of the real closure ofX(Q) inX(R) because f maps them to isolated points of f(X(Q)).
Hence (i) cannot hold. In the general case, choose xj ∈ Yj(K), let Vj be a v-adic neighborhood of
zj in Kv that separates zj from S − {zj}, and let Uj = f−1(Vj) which is a v-adic neighborhood of
xj. Then Yj contains X(K)∩Uj , so Zxj

is contained in Yj in the notation of Question 5.7. As the
varieties Yj are disjoint, (ii) cannot hold. �

Question 5.7 is specific for number fields, and the analogue for global function fields is known
to be false. Namely, the following result essentially due to Pheidas [38] produces v-adically dis-
crete infinite sets that are Diophantine in the function field setting (the connection with Mazur’s
conjecture was pointed out by Cornelissen and Zahidi [10]).
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Theorem 5.9. Let p > 2 be a prime. The sets S1 = {tpn : n ≥ 0} and

S2 = {b+ t+ tp + tp
2

+ ...+ tp
n

: n ≥ 0 and b ∈ Fp}
are Diophantine in K = Fp(t). More precisely, let U ⊆ A3

K be the curve defined over Fp(t) by
{

x− t = yp − y

x−1 − t−1 = zp − z.

Projecting U(K) onto the x-coordinate gives S1, and projecting onto the y-coordinate gives S2.

Proof. This is mostly contained in the proof of Lemma 1 of [38]. The only missing point is that
from loc. cit. one only gets S2 ⊆ π(U(K)) rather than equality, where π : U → A1

K is the projection
onto the y-coordinate.

Let A : Fp(t) → Fp(t) be the map A(f) = fp − f . Then A is an additive group morphism with
kernel Fp. Let (u, v, w) ∈ U(K) and note that u = tp

n

for some n ≥ 0 (cf. [38]). Then A(v) = tp
n−t

and we easily check that f = t+ tp + tp
2

+ ...+ tp
n−1

satisfies

A(f) = fp − f = tp
n − t.

Hence, all the possibilities for v are A−1(tp
n − t) = {b+ f : b ∈ Fp}. �

5.3. Left-Diophantine numbers. For a real number α ∈ R, let L(α) = {q ∈ Q : q < α}. We say
that α ∈ R is left-Diophantine if L(α) is a Diophantine subset of Q. (Naturally, there is a notion
of right-Diophantine number but that leads to a similar analysis.)

By Lagrange’s 4-squares theorem, we have the elementary fact that the relation ≤ is Diophantine
over Q. This will be frequently used in the discussion below. For instance, we deduce:

Lemma 5.10. α ∈ R is left-Diophantine if and only if there is a Diophantine subset S ⊆ Q such
that α = supS.

Proof. If L(α) is Diophantine, then note that α = supS with S = L(α). For the converse, if S
is Diophantine and α = supS, we observe that L(α) = {q ∈ Q : ∃a ∈ S, q < a}, so L(α) is
Diophantine. �

Let D ⊆ R be the collection of all left-Diophantine numbers and let A ⊆ R be the set of real
algebraic numbers. We have the following lower bound for D .

Lemma 5.11. A ⊆ D .

Proof. Let α ∈ R be algebraic with minimal polynomial p(x) ∈ Q[x]. The roots of p(x) are simple,
so the function p : R → R changes sign at α. Up to multiplying p(x) by −1, we may assume that
there are q1, q2 ∈ Q such that q1 < α < q2 and for all q1 ≤ u ≤ q2 we have p(u) > 0 if u < α and
p(u) < 0 if u > α. Then the set

X = {u ∈ Q : p(u) > 0 and u < q2}
is Diophantine over Q and α = supX. We conclude by Lemma 5.10. �

Recall from Corollary 3.32 that the La-structure Q is uniquely listable. Thus, there is a well-
defined notion of listable subsets of Qr for every r ≥ 1.

A real number α ∈ R is called left-listable if L(α) ⊆ Q is listable. This notion is standard and
it appears under various names in the literature, such as left-r.e., and left-c.e. (see for instance
Chapter 5 in [20]), although the discussion on unique listability is omitted and replaced by the
assumption that a recursive presentation or “effective coding” for Q is fixed (see for instance
Assumption 5.1.2 in [20]). The class Λ of left-listable numbers is vast; for instance, Λ contains all
computable real numbers (those for which a Turing machine outputs the decimal expansion to any
required precision) as well as more exotic real numbers such as Chaitin’s constant.
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From Corollary 3.9 applied to the sets L(α) ⊆ Q we deduce

Lemma 5.12. D ⊆ Λ.

Thus, we know that A ⊆ D ⊆ Λ. The set Λ is much larger than A and one can ask for a better
description of D . We expect the following:

Conjecture 5.13 (Algebraicity). All left-Diophantine numbers are algebraic. Thus, D = A .

In particular, this would imply

Conjecture 5.14. D is a field.

In the direction of Conjecture 5.13, we have:

Proposition 5.15. The algebraicity conjecture (Conjecture 5.13) follows from the semi-algebraic
version of Mazur’s conjecture (Conjecture 5.4). In particular, it follows from the strong version of
Mazur’s conjecture (Conjecture 5.2).

Proof. This is by Proposition 5.6. �

In any case, the following much weaker conjecture seems plausible.

Conjecture 5.16. Not every left-listable number is left-Diophantine. That is, D 6= Λ.

The previous conjecture follows from the algebraicity conjecture (Conjecture 5.13). Furthermore:

Proposition 5.17. Conjecture 5.14 implies Conjecture 5.16. That is, if D is a field, then D 6= Λ.

Proof. This is because Λ is not even a ring; see [2] or Section 5.5 in [20]. �

It turns out that Conjecture 5.16 would be enough to show that Z is not Diophantine in Q.

Proposition 5.18. If D 6= Λ, then we have the following:

(i) Z is not Diophantine in Q.
(ii) The field Q does not have the DPRM property.
(iii) Q and N are not p.e. bi-interpretable as La-structures.

Proof. If D 6= Λ then there is some α ∈ R such that L(α) ⊆ Q is listable but it is not Diophantine,
which implies that Q does not have the DPRM property. We conclude by Proposition 4.12. �

5.4. Unboundedness of the positive existential rank. Let M be an L -structure with domain
M . We say that M has bounded p.e. rank if there is a constant B depending only on M such that
for every p.e. L -definable set S ⊆ M we have rankp.e.M (S) ≤ B. Otherwise, we say that M has
unbounded p.e. rank. (One can extend this notion to subsets of M r, but the case r = 1 is enough
for our purposes.) For instance, Lemma 4.5 shows that if M has a p.e. r-catalogue for some r ≥ 1,
then M has bounded p.e. rank. A well-known example:

Lemma 5.19. N as an La-structure has bounded p.e. rank. In fact, it has p.e. r-catalogues for
every r ≥ 1. The same holds for the La-structure Z.

Proof. In the case of N this follows from the DPRM theorem, Theorem 4.6, and Lemma 4.5. For
Z it is the same argument, using Lemma 4.11. �

For global fields, the author expects the following:

Conjecture 5.20. Let K be a global field and let G be a finite set of field generators. Consider K
as a structure over L = La ∪G . Then K has unbounded p.e. rank. In particular, it does not have
p.e. r-catalogues for any r ≥ 1.
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In support of this conjecture, we have the following

Theorem 5.21. Let us consider the field of rational functions C(t) as a structure over a language
L expanding La ∪ {t} by some symbols of constant. Then C(t) has unbounded p.e. rank. In
particular, it does not have p.e. r-catalogues for any r ≥ 1.

For the proof, we need a consequence of Kollár’s work [25] (Theorem 5.22 stated below), which
we state only over C(t) for simplicity, although an analogous result holds over function fields of
complex projective curves.

Given n ≥ 0 let Ratn be the set of all rational functions φ ∈ C(t) of (topological) degree n
and note that C(t) = ∪n≥0Ratn. Writing such a φ as a fraction of polynomials and considering
the coefficients of these polynomials (up to scaling, with the necessary non-vanishing conditions to
ensure deg φ = n) we see that each Ratn has a natural structure of quasi-projective variety. In
particular, for a set S ⊆ C(t), it makes sense to consider varieties over C contained in S.

Theorem 5.22 (Kollár). Let K = C(t). Let X be a variety over K and let f be a regular function
on X defined over K. Let S = f(X(K)) ⊆ K. Let d ≥ 0 be an integer such that S contains a
constructible set of dimension d over C. Then at least one of the following holds:

(i) dimK(X) ≥ d
(ii) For all but finitely many α ∈ C, the set S contains rational functions with poles at α.

Proof. This follows from Theorem 4 in [25]. Indeed, (i) is implied by Theorem 4 (1) in [25] because
d is a lower bound for the Diophantine dimension of S over C as defined there (as S contains a
constructible set of dimension d over C, it cannot be contained in a countable union of varieties of
dimension smaller than d). On the other hand, each φ ∈ C(t) of degree n has an (effective) divisor
of poles which in turn gives a point Pole(φ) ∈ SymmnP1

C(C) where SymmnP1
C(C) is the quotient

of P1
C(C)

n by the action of the symmetric group in n letters. Let Polen(S) = {Pole(φ) : φ ∈
S∩Ratn} ⊆ SymmnP1

C(C). Theorem 4 (2) (b) in [25] asserts that for certain n > 0 (in fact, infinitely
many values of n) one has that Polen(S) contains a positive dimensional constructible set (namely,
certain ρm(Dm(C)) in the notation of loc. cit.). Thus, the pre-image of Polen(S) ⊆ SymmnP1

C(C) in
P1
C(C)

n contains a positive dimensional constructible set, and so does some (hence, each) coordinate
projection. The constructible sets of P1

C(C) are either finite or cofinite, hence item (ii) holds. �

With this at hand, we can prove Theorem 5.21.

Proof of Theorem 5.21. This argument builds on the same construction appearing in Example 6
(1) of [25]. Let Sn ⊆ C(t) be the set of polynomials of degree n. Note that C is p.e. L -definable
over C(t) thanks to the Riemann-Hurwitz formula; e.g. using the La-formula ∃y, y2 = x3 + 1.
Hence, Sn = {c0 + c1t + ... + cnt

n : c0, ..., cn ∈ C and cn 6= 0} ⊆ Ratn is p.e. L -definable over

C(t). In particular, taking r(n) = rankp.e.
C(t)(Sn) we see that there is an affine variety Xn ⊆ A

r(n)+1
C(t)

defined over C(t) such that

Sn = {u0 ∈ C(t) : ∃u1...∃ur(n), (u0, u1, ..., ur(n)) ∈ Xn(C(t))}.
Taking f : Xn → A1

C(t) as the projection onto the first coordinate (a morphism defined over C(t))

we see that Sn = f(Xn(C(t))). Note that Sn is isomorphic to Cn×C× as varieties over C, so we can
apply Theorem 5.22 with d = n + 1. As (ii) does not hold, we must have dimC(t)Xn ≥ d = n + 1.

Since Xn ⊆ A
r(n)+1
C(t) , we conclude that rankp.e.

C(t)(Sn) = r(n) ≥ n. �

For our discussion, the relevant consequence of Conjecture 5.20 is the following.

Proposition 5.23. Let K be a global field and let G be a finite set of field generators for it.
Consider K as a structure over L = La ∪ G . If Conjecture 5.20 holds for K, then K does not
have the DPRM property and it is not p.e. bi-interpretable with the La-structure N. Thus:
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(i) In the case K = Q this implies that Z is not Diophantine in Q.
(ii) In the case K = k(t) for a finite field k, this implies that k[t] is not Diophantine in k(t)

and that the field k(t) is not p.e. bi-interpretable with k[t].

Proof. The L -structure K is uniquely listable by Corollary 3.34. Hence, the first part follows from
Theorem 4.6, Lemma 4.5, and Theorem 4.10.

In addition, (i) follows from Proposition 4.12 while (ii) follows from Proposition 4.14. �

We remark that the analogue of items (i) and (ii) in Proposition 5.23 for a number field K is
conditional to Z being Diophantine in OK , which is not known in general. See Proposition 4.13
and the discussion after it.

For more information about the p.e. rank in the case of fields, we refer the reader to [11] by
Daans, Dittmann, and Fehm. In particular, they independently arrived to the observation that if
the p.e. rank of Diophantine subsets of Q is unbounded, then Z is not Diophantine in Q.

5.5. A Diophantine approximation conjecture. Let K be a global field and let v be a place
of K with normalized absolute value | − |v; that is, if v corresponds to a prime ideal p then

|x|v = [OK : p]ordp(x) while if v corresponds to a (possibly real) embedding σ : K → C then
|x|v = |σ(x)| where | − | is the usual absolute value on C. Let Kv be the completion of K at v.
For every projective variety X over K and every Cartier divisor D on X defined over K, there is a
local Weil function λX,D,v : X(Kv)− supp (D) → R, where supp (D) denotes the support of D; see
Section 6.2 in [44] for a precise definition and construction. Roughly speaking, if D is represented
by {(Uj , fj)}j for some finite open cover {Uj}j of X and fj are the corresponding local equations of
D, then λX,D,v(P ) = − log |fD,j(P )|v +αj(P ) for all P ∈ Uj − supp (D), where αj is a certain nice
bounded function. In particular, if D is effective and P1, P2, ... is a sequence in X(Kv)− supp (D),
then λX,D,v(Pj) → ∞ if and only if the sequence Pj approaches supp (D)(Kv) v-adically.

Since we will be concerned with points in the support of divisors, it is worth pointing out the
following clarification. If X is a variety over a field k and D is an effective Cartier divisor on X
defined over k, then D is locally given by equations over k on an open covering of X, and there is
no need for the variety supp (D) to have k-rational points. For instance, if k = Q and X = P1

Q =

ProjQ[x0, x1], we have the open covering defined over Q given by U0 = {[x0 : x1] : x0 6= 0} and
U1 = {[x0 : x1] : 2x

2
0 6= x21}. Let us define the divisor D represented by {(U0, 2x

2
0 − x21), (U1, 1)}.

Then D is an effective divisor of degree 2 defined over Q with supp (D)(Q) = ∅ and supp (D)(R) =

{[1 : −
√
2], [1 :

√
2]}.

We would like to propose the following:

Conjecture 5.24. Let K be a global field and let v be a place of K. Let X and Y be positive
dimensional irreducible projective varieties over K, let f : X 99K Y be a dominant rational map
defined over K, and let U be a non-empty Zariski open set of X defined over K and contained in the
domain of f . Suppose that X(K) is Zariski dense in X. Then there is an effective Cartier divisor
D on Y defined over K, such that λY,D,v is unbounded on f(U(K))− supp (D). That is, there is a
sequence of K-rational points in U − f−1(supp (D)) whose images under f approach supp (D)(Kv)
v-adically.

Applications of this conjecture in the study of Diophantine subsets of global fields will be dis-
cussed in Section 5.6. A slightly different version of Conjecture 5.24 using morphisms instead of
rational maps was proposed by the author in [35], but the current form of the conjecture is simpler
to use in applications and it gives a wider range of search for potential counterexamples (if any).

Even the simplest case when U = X = Y and f = IdX is open in general. In this case, Conjecture
5.24 says that there is a sequence of K-rational points of X that v-adically accumulates towards
the support of some effective Cartier divisor on X defined over K.

Conjecture 5.24 can be reduced to a special case.
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Proposition 5.25. Let K be a global field and v a place of K. If Conjecture 5.24 holds for K and
v in the special case when Y = P1

K , then it holds in general for this choice of K and v.

Proof. In the setup of Conjecture 5.24, consider a non-constant rational function g : Y 99K P1
K and

let Z ⊆ Y be the locus where g is not defined. Let U ⊆ X be a non-empty Zariski open set defined
over K and contained in dom(f). Let U ′ = U−f−1(Z) and note that U ′ is contained in dom(g ◦f).
Let us apply the conjecture to g ◦ f : X 99K P1

K and U ′. This gives a divisor D on P1
K . Let E be

any effective Cartier divisor on Y defined over K whose support contains g−1(supp (D)) ∪ Z.
Let x1, x2, ... be a sequence in U ′(K) (hence, in U(K)) such that (g(f(xj)))j≥1 v-adically ap-

proaches supp (D)(Kv). Since Y is projective and Kv is locally compact, Y (Kv) is compact and the
sequence (f(xj))j≥1 has a v-adic accumulation point y ∈ Y (Kv). Note that either y ∈ Z(Kv) or g
is defined at y, in which case y ∈ g−1(supp (D))(Kv). In either case, y ∈ supp (E)(Kv). Therefore,
(f(xj))j≥1 has a subsequence that v-adically approaches supp (E)(Kv). �

The case K = Q is particularly relevant for us since, as we will see, Conjecture 5.24 for K = Q

implies that Z is not Diophantine in Q (cf. Proposition 5.30 below). In this case we have

Proposition 5.26. Mazur’s Conjecture 5.1 implies Conjecture 5.24 for K = Q and v = ∞ the
archimedean place. Furthermore, a positive answer to Mazur’s question 5.7 for a given number
field K and a place v of it implies Conjecture 5.24 for this choice of K and v.

Proof. By Proposition 5.25 it suffices to consider the case of an irreducible projective variety X over
K with X(K) Zariski dense and a dominant rational function f : X 99K P1

K defined over K. Let
U ⊆ X be a non-empty Zariski open set defined over K. Shrinking U if necessary we may assume
that U is affine and that f : U → A1

K is a regular function defined over K. Then f(U(K)) ⊆ K
is an infinite Diophantine set and in either case (assuming Conjecture 5.1 or a positive answer
to Question 5.7) Lemma 5.8 would give that S = f(U(K)) has at most finitely many v-adically
isolated points. Let y ∈ S be a point which is not v-adically isolated in S. Then we can take D
as the divisor on P1

K determined by y ∈ f(U(K)), which is as required by Conjecture 5.24 because
there is a sequence in S − {y} that v-adically converges to y. �

In particular, the available evidence for Mazur’s Conjecture 5.1 and for a positive answer to
Question 5.7 provides evidence for Conjecture 5.24 in the number field setting.

Since the analogue of Mazur’s conjecture fails over function fields due to the example provided by
Theorem 5.9 and since the previous result shows a close connection between Mazur’s conjecture and
Conjecture 5.24, one may ask whether Theorem 5.9 can also be used to give a counterexample to
the function field version of Conjecture 5.24. On the contrary, it gives a rather non-trivial example
where Conjecture 5.24 has essentially one chance to work, and it does.

Example 5.27. For p > 2 let K = Fp(t) and let v be the t-adic valuation on K. Let U be the afine
curve in Theorem 5.9 and let f, g : U → A1

K ⊆ P1
K be the projection maps from U onto the x and

y coordinates respectively. Let X be a projective closure of U and extend f, g to rational functions
f, g : X 99K P1

K .
Let T be the affine coordinate on A1

K . For the map f we note that the only t-adic limit point of
f(U(K)) = S1 = {tpn : n ≥ 0} in Kv = Fp((t)) is 0. So, we can take the divisor D = {T = 0}.

On the other hand, the elements of g(U(K)) = S2 t-adically accumulate towards the formal

power series fb = b+ t+ tp + tp
2

+ ... ∈ Fp[[t]] ⊆ Kv for b ∈ Fp, and these are the only limit points.
The power series fb for b ∈ Fp are algebraic over Fp(t) and, in fact, they are the roots of T p−T + t.
We can take the divisor D = {T p − T + t = 0} on A1

K ⊆ P1
K.

In both cases, Conjecture 5.24 holds with the given choices of the effective divisorD on A1
K ⊆ P1

K .
We note that since the Diophantine sets S1 and S2 have only finitely many t-adic limit points, the
choice of D is essentially unique (up to multiplicity and up to adding more components).
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5.6. Consequences of the Diophantine approximation conjecture. Applications of Conjec-
ture 5.24 are simplified by the following observation.

Lemma 5.28. Let K be a global field and let v be a place of K. Let S ⊆ K be an infinite
Diophantine subset which is v-adically bounded in K and has exactly one v-adic limit point α ∈ Kv.
If Conjecture 5.24 holds for K and v, then α is algebraic over K.

Proof. Since S is Diophantine, there is an affine variety U over K and a morphism f : U → A1
K

such that f(U(K)) = S. Possibly passing to a subsequence in S and shrinking U , we may assume
that U is irreducible and that U(K) is Zariski dense in U . Let X be a projective closure of U and
extend f to a rational function f : X 99K P1

K .
Since S is v-adically bounded in K, the point α ∈ Kv ⊆ P1

K(Kv) is the only v-adic limit point
of f(U(K)) = S in P1

K(Kv). If α were transcendental over K, it would not belong to the support
of any Cartier divisor on P1

K defined over K. This would contradict Conjecture 5.24. �

Proposition 5.29. If Conjecture 5.24 holds for a global field K and any place v, then K does not
have the DPRM property over the language L = La ∪G , where G is a finite set of field generators
for K. In particular, K is not p.e. bi-interpretable with the La-structure N.

Proof. One can take a listable set S consisting of the terms of a sequence that v-adically converges
to a transcendental α ∈ Kv —such examples are easy to produce using, for instance, the same
idea as in Liouville’s explicit construction of transcendental numbers. The result now follows from
Lemma 5.28. The final part is due to Theorem 4.10. �

From Propositions 4.12 and 4.14 we immediately deduce:

Proposition 5.30. If Conjecture 5.24 holds for Q and any v, then Z is not Diophantine in Q.

Proposition 5.31. Let k be a finite field. If Conjecture 5.24 holds for K = k(t) and any place v,
then k[t] is not Diophantine in k(t).

The non-Diophantineness of Z in Q and of k[t] in k(t) is also implied by different conjectures, as
discussed in previous sections. However, Conjecture 5.24 has other consequences:

Proposition 5.32. Let k be a finite field. If Conjecture 5.24 holds for K = k(t) and the place v
given by the t-adic valuation, then {tn : n ≥ 0} is not Diophantine in k(t).

This should be compared to the following result of Pheidas (see Lemmas 1 and 3 in [38] for
characteristic p ≥ 3, and see [50] for characteristic 2; see also [34] for a generalization to function
fields of bounded genus uniformly on the characteristic):

Theorem 5.33 (Pheidas). Let k be a finite field of characteristic p > 0. The binary relation x ≤p y
on k(t) defined by ∃s ≥ 0, y = xp

s
is Diophantine over k(t). In particular, the set {tpn : n ≥ 0} is

Diophantine in k(t).

Let us recall some preliminaries for the proof of Proposition 5.32.
Let m ≥ 2 be an integer. By m-automaton, we mean a finite deterministic automaton with

input language {0, 1, ...,m − 1} and output states 0 (“reject”) and 1 (“accept”). We say that a set
A ⊆ N is p-recognizable if there is a p-automaton MA that computes the characteristic function of
A. More precisely, for an integer r ∈ N, the m-automaton MA takes as input the string formed by
the base m digits of r (from less to most significant) and it reaches the final state 0 or 1 according
to r 6∈ A or r ∈ A respectively.

For a set A ⊆ N we define the counting function N(A, x) = #{n ∈ A : n ≤ x}. Let us recall the
following classical estimate.
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Lemma 5.34. Let m ≥ 2 and let A ⊆ N be m-recognizable. If A is infinite, then there are constants
x0 ≥ 1 and c > 0 such that for all x ≥ x0 we have N(A, x) > c · log x.
Proof. See Proposition 5 in [31] for the case m = 2; the general case is proved in the same way.
Alternatively, there is the stronger estimate provided by Theorem 12 in [6]. �

Let A ⊆ N and let p be a prime. The generating series of A over Fp is the formal power series
fA =

∑

a∈A t
a ∈ Fp[[t]]. The following result is due to Christol [5]

Theorem 5.35 (Christol). Let A ⊆ N and let p be a prime. The set A is p-recognizable if and only
if fA ∈ Fp[[t]] is algebraic over Fp(t).

For a prime p, the binary relation |p on N is defined as follows: x|py if and only if there is s ≥ 0
with y = xps. The following definability result is due to Pheidas [36].

Theorem 5.36 (Pheidas). The multiplication function · : N × N → N is p.e. definable over the
structure (N; 0, 1,+, |p,=).

With these results at hand, we can prove Proposition 5.32.

Proof of Proposition 5.32. Assume Conjecture 5.24 for k(t) and v the t-adic valuation. Let p be
the characteristic of k. The rule t 7→ t+1 defines a k-linear field automorphism of k(t), so it suffices
to show that P = {(1 + t)n : n ≥ 0} is not Diophantine over k(t).

Let A ⊆ N be the set of integers which can be written as the sum of different integers of the

form pj
j
for j ≥ 1. That is, A consists of all integers whose base p expansion only has digits 0 and

1, and the digit 1 can only occur in front of pn for n = 1, 4, 27, ..., jj , ... Explicitly,

A = {0, p, p4, p+ p4, p27, p + p27, p4 + p27, p + p4 + p27, ...}
We note that for x = pj

j
we have N(A, x) ≤ 2j , as every n ∈ A with n ≤ x is uniquely determined

by some subset of {pii : 1 ≤ i ≤ j} —in fact, N(A, x) = 1 + 2j−1. Thus, for every c > 0 there is

some x0 such that for all x = pj
j
> x0 we have N(A, x) < jj · c log p = c log x. By Lemma 5.34 and

Theorem 5.35, the power series fA ∈ Fp[[t]] ⊆ k[[t]] is transcendental over k(t).

For r ≥ 1 let nr =
∑r

j=1 p
jj and define S = {nr : r ≥ 1} = {p, p+ p4, p+ p4+ p27, ...} ⊆ N. Then

(1 + t)nr =

r
∏

j=1

(1 + t)p
jj

=

r
∏

j=1

(

1 + tp
jj
)

.

From the last product, the sequence of polynomials (1 + t)nr converges t-adically to fA as r → ∞.
For the sake of contradiction, suppose that P = {(1+t)n : n ≥ 0} is Diophantine over k(t). Then,

by Theorem 5.33, the map θ : P → N given by θ((1 + t)n) = n determines a p.e. interpretation
of the structure (N; 0, 1,+, |p,=) in k(t), where k(t) is seen as a structure over L = La ∪ G for a
finite set G of field generators for k(t). By Theorem 5.36, θ also determines a p.e. interpretation
of N seen as an La-structure. Note that the set S = {nr : r ≥ 1} ⊆ N defined above is listable
because it is defined from elementary arithmetic functions. By the DPRM theorem (on N) we get
that S is p.e. La-definable over N. Hence, θ

∗(S) = {(1+ t)nr : r ≥ 0} is p.e. L -definable over k(t)
because θ is a p.e. interpretation. In particular, T := {(1 + t)nr : r ≥ 0} is Diophantine in k(t).

The Diophantine set T is t-adically bounded and we proved that its only t-adic limit point is
fA ∈ k[[t]], which is transcendental over k(t). By Lemma 5.28, this contradicts Conjecture 5.24. �

We remark that, alternatively, the use of Christol’s theorem in the previous argument can be
replaced by an ad hoc transcendence lemma for lacunary power series, after some modification
of the construction. However, we feel that Christol’s theorem might be relevant in approaching
Conjecture 5.24 in the function field setting, which is why we decided to highlight this connection.
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5.7. Final questions.

Question 5.37. Does every finitely generated infinite domain have the DPRM property? In other
words, is every finitely generated infinite domain p.e. bi-interpretable with the semi-ring N?

Question 5.38. Is there some finitely generated field which has the DPRM property? Namely, is
there some finitely generated field which is p.e. bi-interpretable with the semi-ring N?
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