
1

MUTUAL INTERPRETABILITY OF WEAK ESSENTIALLY UNDECIDABLE

 THEORIES

 Zlatan Damnjanovic

[Abstract: Kristiansen and Murwanashyaka recently proved that Robinson

arithmetic, Q, is interpretable in an elementary theory of full binary trees,T.

We prove that, conversely, T is interpretable in Q by producing a formal

interpretation of T in an elementary concatenation theory QT+, thereby also

establishing mutual interpretability of T with several well-known weak

essentially undecidable theories of numbers, strings and sets. We also

introduce a “hybrid” elementary theory of strings and trees, WQT*, and

establish its mutual interpretability with Robinson’s weak arithmetic R, the

weak theory of trees WT of Kristiansen and Murwanashyaka and the weak

concatenation theory WTC- ε of Higuchi and Horihata.]

Key words: interpretability, full binary trees, Robinson arithmetic,

concatenation theory, strings, essential undecidability

2010 Mathematics Subject Classification code: 03 Mathematical logic and

foundations

2

The classic monograph work of Tarski Mostowski and Robinson [8] isolated

two weak formal theories of arithmetic, R and Q, as minimal "basis theories"

for metamathematical arguments of foundational significance involving

formalizing computation, incompleteness, undecidability, etc. The two

theories were singled out as essentially undecidable, in that neither can

consistently be extended to a decidable theory. The work introduced a

powerful method for establishing incompleteness and undecidability of a wide

range of mathematical theories built around the notion of relative

interpretability of one theory in another. Roughly, a formula with a single free

variable is chosen in the language of the second theory – the interpreting

theory -- to define the “universe of the interpretation”, and suitable definitions

for the non-logical vocabulary of the first theory – the interpreted theory --

are given in the language of the interpreting theory. Formulae of the

interpreted theory are then translated into formulae of the interpreting

theory based on those definitions, in such a way that the logical operations are

preserved under the translation and, crucially, all occurrences of quantifiers

become relativized to the universe of the interpretation. Consequently,

deductive relations between formulae are preserved: in particular, theorems

of the interpreted theory are translated into theorems of the interpreting

theory. In this specific sense reasoning in one theory is formally simulated in

3

another theory, establishing relative consistency of the former in the latter.

Once it is shown that R or Q is interpretable in some given theory, it follows

from Tarski’s methods that the latter is also essentially undecidable.

It was only within the last two decades that some light has been shed on what

makes R and Q special, a result of work of many researchers, including

(earlier work by) Collins and Halpern, Wilkie, Grzegorczyk, Zdanowski,

Švejdar, Ganea, and, especially, Visser. One approach was to characterize

them as mutually interpretable with concatenation theories (theories of

strings) or weak subsystems of set theory, each naturally motivated and of

independent interest in their own right (see [1] for further

references). Another is to produce a “coordinate-free” characterization

independent of a particular axiomatic presentation in some formal language,

as, e.g., in the remarkable theorem of Visser [10]: a recursively axiomatizable

theory is interpretable in R if and only if it is locally finitely satisfiable, that is,

each finite subset of its non-logical axioms has a finite model.

An important new angle on these issues was recently introduced in the work

of Kristiansen and Murwanashyaka [6]. They consider two elementary

4

axiomatizations, WT and T, whose intended models are simple inductively

generated structures like trees or terms, and rigorously develop a direct and

novel approach to formalization of computation by ultra-elementary means.

T is formulated in the language ℒT = {0, (), ⊑} with a single individual

constant 0, a binary operation symbol (,) and a 2-place relational symbol ⊑

with the following axioms:

 (T1) ∀x,y ¬(x,y)=0,

 (T2) ∀x,y,z,w [(x,y)=(z,w) → x=z & y=w]

 (T3) ∀x [x⊑0 ↔ x=0]

 (T4) ∀x,y,z [x⊑(y,z) ↔ x=(y,z) v x⊑y v x⊑z]

On the other hand, the theory WT is formulated in the same vocabulary, but

has infinitely many axioms given by the two schemas

 (WT1) ¬(s=t) for any distinct variable-free terms s, t of ℒT,

5

 (WT2) ∀x (x⊑t ↔ ⋁s ∊ S (t) x=s) for each variable-free term t of ℒT,

where S (t) is the set of all subterms of t.

The theory WT, which turns out to be contained in T, is proved to be mutually

interpretable with R. The stronger theory T, which can be thought of as the

basic theory of full binary trees, even though lacking induction is shown to be

sufficiently strong to allow for a formal interpretation of basic arithmetical

operations validating the axioms of Q. Kristiansen and Murwanashyaka

further conjectured that, conversely, T is also formally interpretable in Q.

In this paper we prove that T is indeed interpretable in Q, by formally

interpreting T in a theory of concatenation, QT+, previously investigated in [1]

and established to be mutually interpretable with Q along with a host of other

theories whose intended interpretations are natural numbers, strings or sets.

Hence T and Q are mutually interpretable. Further we formulate a weak

theory of concatenation, WQT*, and a “pseudo-concatenation” theory WQT,

and establish their mutual interpretability with Robinson’s R. (While R is

deductively contained, hence also interpretable, in Q, the latter, being finitely

axiomatized but having no finite model, by Visser’s Theorem is not

interpretable in R.)

6

Several distinct formulations of concatenation theory which have been put

forward as standard axiomatizations and as such extensively studied are not

deductively co-extensive. Some, like Grzegorczyk’s theory TC, are centered

around what came to be known as Tarski’s Law (or Editor Axiom), and some

of the variants include the empty string as a unit element. Others, such as the

theory QT+ used in [1] and here, and a closely related theory F originally

introduced by Tarski in [8], are on their face more explicitly theories of semi-

groups with two generators. Nonetheless, all these theories turn out to be

mutually interpretable on account of their mutual interpretability with Q. Our

choice of QT+ is motivated by the “ground-up” approach exemplified in the

formula-selection method expounded below in §3.

In §§1-2 we give a preview of our interpretation of T in concatenation theory.

In §3 we introduce the concatenation theory QT+, explain the main

methodological tool used throughout the paper, the formula selection method

applied to tractable strings and string forms, and develop elements of formal

concatenation theory QT+ related to tallies, adding of tallies and parts of

strings. §4 we describe the essentials of the coding methods subsequently

used in formalization of definitions by string recursion in §5. The resulting

7

formal schema of definition is applied to obtain definitions of counting

functions α and β which we rely on to construct the formal interpretation

introduced in §§1-2. In §6 the interpretation is formally defined, and

translations of the axioms of T formally verified. There we state the main

result of the paper, the First Mutual Interpretability Theorem of Weak

Essentially Undecidable Theories, relating T and QT+ to a number of well-

known theories of numbers, strings and sets. Finally, in §7 we introduce

concatenation variants WQT and WQT* of Robinson’s theory R and establish

the corresponding Second Mutual Interpretability Theorem with the weak

theory of trees WT.

Many of our arguments involve construction of specific formulas and tedious

verifications of their specific properties. Most of these details can be found in

the Appendix. The entire formal construction ultimately rests on coding of

sets of strings by strings within QT+, which is given in complete detail in [2].

We provide specific references as needed.

8

 1. Trees as Strings

The intended domain of interpretation of the theory T is the set of variable-

free ℒT-terms

 (*) 0, (00), (0(00)), ((00)0), ((00)(00)),…

Alternatively, we may think of the domain as consisting of finite full binary

trees – also called 2-trees -- trees in which every node other than the

endnodes has two immediate descendants. In order to interpret T in

concatenation theory, we need some way of representing these objects –

terms or trees – by binary strings. We would like to do this directly, without

having to rely on a coding of sets or sequences.

 For this purpose we will use a variant of Polish notation to read binary

strings as codes for inductively generated objects having the structure

characteristic of terms or trees. Thus, e.g., the terms in (*) will be coded,

respectively, by

 (**) a, baa, babaa, bbaaa, bbaabaa, …

9

To obtain the string code from a given variable-free ℒT-term we proceed from

left to right by replacing the left parentheses by b’s and 0’s by a’s, ignoring the

right parentheses.

 Looking at the strings that are examples of term codes in (**), we note that

they all share the following features:

 (c1) the total number of a’s in the string exceeds the total number of b’s

exactly by 1,

 (c2) each proper initial segment of the string has at least as many b’s as a’s.

In other words, each of these strings is its own smallest initial segment in

which the number of a ’s strictly exceeds the number of b ’s. We will take this

to be the defining property of binary term/tree codes. We offer the following

as informal justification. Each b indicates a branching vertex, incurring a

“debt” of two “open places”, which need to filled by completing the

branchings. That can be done either immediately by simply writing a, an end

node, or by opening another branching, temporarily increasing the “debt of

open places”. Each successive a reduces the “debt” of places to be filled by

one, until all open branchings are completed and the last two remaining

10

“places” filled with a ’s, resulting in a full binary tree. Ultimately, b ’s in the

binary code track the number of branchings, i.e. non-terminal nodes, and a ‘s

the number of terminal nodes in the tree.

 To define the domain of the formal interpretation of T in concatenation

theory we will need to be able to single out by means of a formula of

concatenation theory those among arbitrary strings that are term codes. Key

role in this connection will be played by functions α and β that count the

number of occurrences of the letters a, b, resp., in a given binary string. They

are defined as follows:

 α(a) = 1 β(a) = 0

 α(b) = 0 β(b) = 1

 α(x*a) = α(x)+1 β(x*a) = β(x)

 α(x*b) = α(x) β(x*b) = β(x)+1

Call a string x is almost even, writing Æ(x), if (c1) α(x) = β(x)+1, and

(c2) for each proper initial segment u of x, α(u) ≤ β(u).

11

Within concatenation theory the values of α, β will be expressed by b-tallies,

i.e., strings of consecutive b ’s. The functions α and β are additive in that

 α(x*y) = α(x)+α(y) and β(x*y) = β(x)+β(y).

To express and verify these properties in concatenation theory we will need

to introduce a suitable operation Addtally having the requisite properties of

addition on non-negative integers. But the main problem to be solved is

showing that α and β, which are defined by recursion on strings, can

actually be defined in concatenation theory.

 2. Outline of the Interpretation

 The language ℒC = { a, b, *} of concatenation theory has two individual

constants a, b, and a single binary operation symbol *. Its intended

interpretation 𝛴* has as its domain the set of all non-empty finite strings of a ’s

and b ’s, the constants ‘a’, ‘b’, resp., stand for the digits a, b (or 0, 1, resp.), and,

for given strings x, y from the domain of 𝛴*, we take x*y to be the string

obtained by concatenation (i.e., juxtaposition) of the successive digits of y to

the right of the end digit of x. Simply put, for variable-free terms s, t of ℒC, an

12

atomic formula ‘s=t’ is true in 𝛴* just in case s and t denote the very same

binary string. For the purpose of informal exposition of the basic idea behind

the interpretation we will avail ourselves, “as a first approximation”, of

formulations couched in the first-order theory Th(𝛴*) consisting of all true

sentences of ℒC in 𝛴*. Specifically, at this point we will simply assume that the

graphs of the functions α, β, are expressible by some formulas A#(x,y),

B#(x,y), resp., of ℒC along with the graph of Addtally, and carry on reasoning

informally within Th(𝛴*) . In subsequent sections we turn to the detailed

technical work of actually proving these assumptions by formalizing string

recursion in concatenation theory and verifying the corresponding

translations into ℒC of the axioms of T, all of which has to be formally carried

out within an extremely weak subtheory QT+ of Th(𝛴*).

First, some abbreviations. Let xBy ≡ ∃z x*z=y and xEy ≡ ∃z z*x=y.

Then let x⊆py ≡ x=y v xBy v xEy v ∃y1∃y2 y=y1*(x*y2).

(Often, we shall write xy for x*y.)

2.1(a) 𝛴* ⊧ Æ(x) → x=a v (bBx & aaEx).

(b) 𝛴* ⊧ Æ(x) & x2Ex → α(x2) ≥ β(x2)+1.

13

(c) 𝛴* ⊧ Æ(x) & Æ(u) & xy=uv → x=u & u=v.

Proof: (a) Clearly, 𝛴* ⊧ Æ(a). Assume 𝛴* ⊧ Æ(x) & x≠a. Then 𝛴* ⊧ ¬aBx, by

(c2). So 𝛴* ⊧ bBx. Note that 𝛴* ⊧ ¬Æ(aa) & ¬Æ(ab) & ¬Æ(ba) & ¬Æ(bb).

Hence any x such that 𝛴* ⊧ Æ(x) must have a (proper) endsegment of length

2. Suppose 𝛴* ⊧ x=x1ab v x=x1ba v x=x1bb, that is, abEx v baEx v bbEx.

By (c1) and (c2), 𝛴* ⊧ α(x) = β(x)+1, and 𝛴* ⊧ α(x1) ≤ β(x1). If 𝛴* ⊧ abEx

or 𝛴* ⊧ baEx, then 𝛴* ⊧ α(x) = α(x1)+1 and 𝛴* ⊧ β(x) = β(x1)+1. But then

 𝛴* ⊧ α(x) = β(x)+1 = (β(x1)+1)+1 = β(x1)+2 ≥ α(x1)+2 > α(x1)+1 = α(x),

a contradiction. On the other hand, if 𝛴* ⊧ bbEx, then 𝛴* ⊧ α(x) = α(x1) and

𝛴* ⊧ β(x) = β(x1)+2. But then

 𝛴* ⊧ α(x) = β(x)+1 = (β(x1)+2)+1 = β(x1)+3 ≥ α(x1)+3 = α(x)+3 > α(x),

a contradiction again. Hence 𝛴* ⊧ ¬abEx & ¬baEx & ¬bbEx. But then we

must have 𝛴* ⊧ aaEx.

(b) Assume 𝛴* ⊧ Æ(x) & x2Ex. Then 𝛴* ⊧ ∃x1 x=x1x2, hence

𝛴* ⊧ α(x1) ≤ β(x1). But 𝛴* ⊧ α(x) = β(x) +1 and

 𝛴* ⊧ α(x) = α(x1x2) = α(x1)+α(x2),

14

whereas 𝛴* ⊧ β(x) = β(x1x2) = β(x1)+β(x2). Then

 𝛴* ⊧ α(x1)+α(x2) = β(x1)+β(x2)+1,

whence from 𝛴* ⊧ α(x1) ≤ β(x1) we have α(x2) ≥ β(x2)+1, as claimed.

(c) Assume 𝛴* ⊧ Æ(x) & Æ(u) & xy=uv. We have that

 𝛴* ⊧ (x=u & y=v) v xBu v uBx.

Suppose 𝛴* ⊧ xBu. From 𝛴* ⊧ Æ(u), 𝛴* ⊧ α(x) ≤ β(x), and from 𝛴* ⊧ Æ(x),

𝛴* ⊧ α(x) = β(x)+1. But then 𝛴* ⊧ β(x)+1 ≤ β(x), a contradiction.

Likewise if 𝛴* ⊧ uBx. Hence 𝛴* ⊧ x=u & y=v.∎

2.2 𝛴* ⊧ Æ(x) ↔ x=a v ∃!y,z (x=b(yz) & Æ(y) & Æ(z)).

Proof: (⇐) Assume 𝛴* ⊧ Æ(y) & Æ(z) & x=byz. Then

 𝛴* ⊧ α(y) = β(y)+1 & α(z) = β(z)+1.

Now, 𝛴* ⊧ α(x) = α(byz) = α(yz) = α(y)+α(z)

and 𝛴* ⊧ β(x) = β(byz) = β(b)+β(yz) = β(y)+β(z)+1. Then

𝛴* ⊧ α(x) = α(y)+α(z) = (β(y)+1)+(β(z)+1) = (β(y)+β(z)+1)+1 = β(x)+1

15

which verifies (c1). For (c2), assume 𝛴* ⊧ uBx, i.e., 𝛴* ⊧ uBbyz.

Then 𝛴* ⊧ u=b v uBby v u=by v ∃z1(z1Bz & u=byz1).

To illustrate the proof, we consider the case 𝛴* ⊧ ∃z1(z1By & u=byz1).

Then from 𝛴* ⊧ Æ(z), 𝛴* ⊧ α(z1) ≤ β(z1), and from 𝛴* ⊧ Æ(y),

𝛴* ⊧ α(y) = β(y)+1. Then 𝛴* ⊧ α(u) = α(byz1) = α(yz1) = α(y)+α(z1) and

𝛴* ⊧ β(u) = β(byz1) = β(b)+β(yz1) = β(y)+β(z1)+1. Hence

𝛴* ⊧ α(u) = α(y)+α(z1) = (β(y)+1)+α(z1) ≤

 ≤ (β(y)+1)+β(z1) = β(y)+β(z1)+1 = β(u).

Thus 𝛴* ⊧ α(u) ≤ β(u). This completes the proof of (c2). So 𝛴* ⊧ Æ(x).

(⇒) Assume 𝛴* ⊧ Æ(x) & x≠a. Then, by 2.1(a), 𝛴* ⊧ bBx & aaEx, that is,

 𝛴* ⊧ ∃x1 x=bx1 & ∃x2 x=x2 aa.

So 𝛴* ⊧ bx1=x2aa. We may assume that 𝛴* ⊧ bBx2, for if 𝛴* ⊧ x2=b, then

𝛴* ⊧ x=b(aa) and we may take y=a and z=a. So 𝛴* ⊧ ∃x3 x2=bx3, and

𝛴* ⊧ x=bx1=x2(aa)=bx3(aa), whence 𝛴* ⊧ x1=x3(aa). Let yj be a proper

 initial segment of x1, and zj the corresponding endsegment of x1 such that

𝛴* ⊧ yjzj=x1. At least one yj has the property

 (*) 𝛴* ⊧ α(yj) = β(yj)+1.

Consider, e.g., x3a. From hypothesis 𝛴* ⊧ Æ(x) we have 𝛴* ⊧ α(x) = β(x)+1.

16

But 𝛴* ⊧ α(x) = α(b((x3a)a)) = α(b)+α(x3a)+α(a) = α(x3a)+1 and

𝛴* ⊧ β(x) = β(b((x3a)a)) = β(b)+β(x3a)+β(a) = 1+β(x3a).

Then 𝛴* ⊧ α(x3a) = α(x)–1 = β(x) = β(x3a)+1.

Let yi be the shortest initial segment of x1 with the property (*). Then

 𝛴* ⊧ x1 = yizi & α(yi) = β(yi)+1.

We claim that (i) 𝛴* ⊧ α(zi) = β(zi)+1, (ii) 𝛴* ⊧ ∀u (uByi → α(u)≤β(u)),

and (iii) 𝛴* ⊧ ∀v (vBzi → α(v)≤β(v)).

For (i) we have 𝛴* ⊧ α(x) = α(bx1) = α(x1) = α(yizi) = α(yi)+α(zi)

and 𝛴* ⊧ β(x) = β(bx1) = 1+β(x1) = 1+β(yizi) = 1+ β(yi)+β(zi).

Then 𝛴* ⊧ α(yi)+α(zi) = (1+ β(yi)+β(zi))+1, and from 𝛴* ⊧ α(yi) = β(yi)+1

we obtain 𝛴* ⊧ α(zi) = β(zi)+1.

For (ii), suppose 𝛴* ⊧ uByi. Since 𝛴* ⊧ x1 = yizi, we then have 𝛴* ⊧ uBx1. But

then, by the choice of yi, 𝛴* ⊧ α(u)≤β(u). For (iii), suppose 𝛴* ⊧ vBzi. Then

𝛴* ⊧ ∃w zi = vw, whence 𝛴* ⊧ wEx. From 𝛴* ⊧ Æ(x), by 2.1(b),

𝛴* ⊧ α(w) ≥ β(w)+1. But 𝛴* ⊧ α(zi) = α(v)+α(w) and

𝛴* ⊧ β(zi) = β(v)+β(w). By (i), 𝛴* ⊧ α(v)+α(w) = β(v)+β(w)+1.

Then from 𝛴* ⊧ α(w) ≥ β(w)+1, we have 𝛴* ⊧ α(v)≤β(v).

17

From (i)-(iii) we have that 𝛴* ⊧ Æ(yi) & Æ(zi). The uniqueness of y, z follows

from 2.1(c).∎

The proof of 2.2 yields an algorithm for extracting the description of a tree

from a given Æ string x: (i) Drop the initial b. (ii) If the next digit is a, that is

the left node Æ string; the rest of the string is the right node Æ string. (iii) If

the next digit is b, take the shortest initial segment y of the remainder of the

original string such that α(y)=β(y)+2; then the string by is the left node Æ

string, and the endsegment of the remainder corresponding to by is the right

node Æ string. Repeat steps (i)-(iii) until no b’s are left.

2.3 𝛴* ⊧ Æ(x) & Æ(y) & Æ(z) → (x⊆pbyz → x=byz v x⊆py v x⊆pz).

Proof: Assume 𝛴* ⊧ x⊆pbyz where 𝛴* ⊧ Æ(x) & Æ(y) & Æ(z). Now, we have

that 𝛴* ⊧ x=byz v x=b v x⊆pyz v ∃u(uByz & x=bu).

Suppose that 𝛴* ⊧ ∃u(uByz & x=bu). From 𝛴* ⊧ Æ(y) & Æ(z), by 2.2,

𝛴* ⊧ Æ(byz). From 𝛴* ⊧ uByz, we have 𝛴* ⊧ ∃v uv=yz, whence

𝛴* ⊧ buBb(yz). Thus 𝛴* ⊧ xBb(yz). But from 𝛴* ⊧ Æ(byz), 𝛴* ⊧ α(x) ≤ β(x),

which contradicts 𝛴* ⊧ Æ(x). So 𝛴* ⊧ ∃u(uByz & x=bu) is ruled out.

By 2.1(a), so is 𝛴* ⊧ x=b. So we are left with 𝛴* ⊧ x⊆pbyz → x=byz v x⊆pyz.

Supposing 𝛴* ⊧ x⊆pyz, we have that

18

 𝛴* ⊧ x=yz v x⊆py v x⊆pz v ∃y1(y1Ey & x=y1z) v

 v ∃z1 (z1Bz & x=yz1) v ∃y1,z1 (y1Ey & z1Bz & x=y1z1).

Assume 𝛴* ⊧ x=yz. Then from 𝛴* ⊧ Æ(y) & Æ(z), we have

𝛴* ⊧ α(y) = β(y)+1 and α(z) = β(z)+1. But 𝛴* ⊧ α(yz) = α(y)+α(z), so

 𝛴* ⊧ α(yz) = (β(y)+1)+(β(z)+1) = β(y)+β(z)+2.

On the other hand, 𝛴* ⊧ β(yz) = β(y)+β(z). Thus 𝛴* ⊧ α(yz) = β(yz)+2,

whence from 𝛴* ⊧ x=yz, we derive 𝛴* ⊧ α(x) = β(x)+2, contradicting

𝛴* ⊧ Æ(x). So 𝛴* ⊧ x=yz is ruled out.

Suppose now that 𝛴* ⊧ ∃y1(y1Ey & x=y1z), so 𝛴* ⊧ y1Bx. From 𝛴* ⊧Æ(x),

𝛴* ⊧ α(y1) ≤ β(y1). But from 𝛴* ⊧ Æ(y) & y1Ey, we obtain, by 2.1(b),

𝛴* ⊧ α(y1) ≥ β(y1)+1, a contradiction.

Suppose that 𝛴* ⊧ ∃z1 (z1Bz & x=yz1), so 𝛴* ⊧ yBx. But then from 𝛴* ⊧ Æ(x),

we have 𝛴* ⊧ α(y) ≤ β(y), and from 𝛴* ⊧ Æ(y), 𝛴* ⊧ α(y) = β(y)+1, again a

contradiction. If 𝛴* ⊧ ∃y1,z1 (y1Ey & z1Bz & x=y1z1), we derive a contradiction

by reasoning as in either of the two preceding cases.

The other cases having been ruled out, we conclude under the principal

hypothesis that 𝛴* ⊧ x⊆pyz → x⊆py v x⊆pz, and further that

 𝛴 * ⊧ x⊆pbyz → x=byz v x⊆py v x⊆pz,

as required.∎

If we take the domain to consists of Æ strings, 2.1(c), 2.2 and 2.3 suffice to

give the “first approximation” of our interpretation of T in concatenation

19

theory: translations of (T1)-(T4) will be validated in 𝛴 * if we model the

term/tree-building operation x, y ↦ (xy) by bxy, the subterm/subtree

relation ⊑ by the substring relation ⊆p between Æ strings, and the digit a is

taken to stand for the simple term 0. The entire project, however, hinges on

definability of the counting functions α and β in concatenation theory.

Showing that the latter contains resources needed to formally justify

definitions by elementary recursion on strings requires, first, that we

precisely formulate concatenation theory as a formal theory, and second, that

we introduce codings for ordered pairs of strings, sequences of such, etc., and

verify their properties relevant to the argument in that formal theory. We

now turn to that task. In the process we shall make crucial use of the method

of formula selection explained in [1].

 3. Formal Concatenation Theory

 We shall work within a first-order theory formulated in ℒC = { a, b, *}, with

the universal closures of the following conditions as axioms:

 (QT1) x*(y*z)=(x*y)*z

20

 (QT2) ¬(x*y=a) & ¬(x*y=b)

 (QT3) (x*a=y*a → x=y) & (x*b=y*b → x=y) &

 & (a*x=a*y → x=y) & (b*x=b*y → x=y)

 (QT4) ¬(a*x=b*y) & ¬(x*a=y*b)

 (QT5) x=a v x=b v (∃y(a*y=x v b*y=x) & ∃z(z*a=x v z*b=x))

On account of (QT1), we sometimes omit parentheses and * when writing

(x*y).

It is convenient to have a function symbol for a successor operation on strings:

(QT6) Sx=y ⟷ ((x=a & y=b) v (¬x=a & x*b=y)).

Since (QT6) is basically a definition, adding it to the rest results

in an inessential (i.e. conservative) extension. We call this theory QT+.

Let xRy ≡ (x=a & ¬y=a) v xBy.

Provably in QT+, xRy v x=y is a discrete preordering of strings (see [1]).

We shall call a formula I(x) in the language of QT+ a string form if

QT+ ⊢ I(a), QT+ ⊢ I(b), QT+ ⊢ I(x) → I(x*a) and QT+ ⊢ I(x) → I(x*b).

(Note: in [1] and [2] such formulae were called string concepts.) String forms

will allow us to restrict our attention, systematically step-by-step, to strings

21

that satisfy conditions expressible by specifically selected formulas provided

the latter can be proved in QT+ to apply to “sufficiently many” strings. We say

that a string form J is stronger than I if QT+ ⊢ ∀x (J(x) → I(x)) and write J⊆I.

Let I0(x) ≡ ∀y (yRx v y=x → ¬yRy). We call I0 strings tractable.

3.1(a) I0(x) is a string form.

(b) For any string form I⊆I0 there is a string form J⊆I such that

 QT+ ⊢ ∀x ∀y (J(x) & J(y) → J(x*y)).

(c) For any string form I⊆I0 there is a string form J≤⊆I such that

 QT+ ⊢ ∀x (J≤(x) & y≤x → J≤(y)).

(d) For any string form I⊆I0 there is a string form J⊆I such that

 QT+ ⊢ ∀x ∊ J ∀y (y⊆px → J(y)).

(e) For any string form I⊆I0 there is a string form J≡ILC ⊆I such that

 QT+ ⊢ ∀z ∊ J ∀x,y (z*x=z*y → x=y).

(f) For any string form I⊆I0 there is a string form J⊆I such that

 QT+ ⊢ ∀z∊J ∀x,y (x*z=y*z → x=y).

For proofs, see [1], and [2], (3.2), (3.3), (3.13), (3.7) and (3.6).∎

22

Parts (b)-(c) tell us that when establishing that a given string form I may be

strengthened to a string form J with another property, we can always

strengthen the string form J to one that is also closed with respect to * or

downward closed with respect to ≤ or ⊆p .

We define Tallya(x) ≡ ∀y⊆px (Digit(y) → y=a)

and Tallyb(x) ≡ ∀y⊆px (Digit(y) → y=b) where Digit(x) ≡ x=a v x=b.

Write x<y for I0(x) & I0(y) & xRy. As usual, x≤y stands for x<y v x=y.

The following properties of tallies are easily established:

3.2 (a) QT+ ⊢ Tallyb(y) → Tallyb(Sy).

(b) QT+ ⊢ Tallyb(y) ⟷ y=b v ∃y1 (Tallyb(y1) & y=Sy1).

(c) QT+ ⊢ ∀v,u (Tallyb(v) & u<v → Su≤v).

(d) QT+ ⊢ Tallyb(y) → (x<y ⟷ Sx<Sy).

For some further properties we have to resort to string forms:

3.3(a) For any string form I⊆I0 there is a string form J≡ICTC⊆I such that

 QT+ ⊢ ∀z ∊ J ∀y (Tallyb(y) & Tallyb(z) → Tallyb(y*z)).

(b) For any string form I⊆I0 there is a string form J⊆I such that

23

 QT+ ⊢ ∀z ∊ J ∀x (Tallyb(x) & Tallyb(z) → x≤z v z≤x).

(c) For any string form I⊆I0 there is a string form J≡I3.3(c) ⊆I such that

 QT+ ⊢ ∀u ∊ J (Tallyb(u) → u*b=b*u).

(d) For any string form I⊆I0 there is a string form J⊆I such that

 QT+ ⊢ ∀y ∊ J ∀x (Tallyb(x) & Tallyb(y) → Sx*y=x*Sy=S(x*y)).

(e) For any string form I⊆I3.3(c) there is a string form J≡ICOMM⊆I such that

 QT+ ⊢ ∀u,v ∊ J (Tallyb(u) & Tallyb(v) → u*v=v*u).

For proofs, see [2], (4.5), (4.6), (4.8) and (4.10).∎

Let Addtally(x,y,z) abbreviate the formula

(Tallyb(x) & Tallyb(y) & ((x=b & z=y) v (y=b & z=x) v

 v ∃x1,y1(Tallyb(x1) & x=Sx1 & Tallyb(y1)& y=Sy1 & z=x*y1)) v

 v ((¬Tallyb(x) v ¬Tallyb(y)) & z=b)

We want to show that, provably in QT+, Addtally(x,y,z) behaves like the

graph of addition function on natural numbers. The following are immediate

consequences of definitions:

3.4(a) QT+ ⊢ Addtally(x,y,v) & Addtally(x,y,w) → v=w.

(b) QT+ ⊢ Tallyb(x) → Addtally(x,b,x). (“x+0 = x”)

(c) QT+ ⊢ Tallyb(y) → Addtally(b,y,y). (“0+y = y”)

24

(d) QT+ ⊢ Tallyb(x) → Addtally(x,bb,Sx). (“x+1 = Sx”)

(e) QT+ ⊢ Tallyb(x) & Tallyb(y) → (Addtally(x,y,z) → Addtally(x,yb,zb)).

 (“x+Sy = S(x+y)”)

We also have:

3.5(a) For any string form I⊆I0 there is a string form J≡IAdd ⊆I such that

 QT+ ⊢ ∀x,y ∊ J ∃!z ∊ J (Tallyb(z) & Addtally(x,y,z)).

(b) QT+ ⊢ ∀z ∊ I0 (Tallyb(u) & Tallyb(v) &

 & Addtally(x,u,y) & Addtally(x,v,z) & u≤v → y≤z).

 (“u ≤ v → x+u ≤ x+v”)

(c) For any string form I⊆I0 there is a string form J⊆I such that

 QT+ ⊢ ∀y ∊ J (Tallyb(y) → Addtally(bb,y,Sy). (“1+y = Sy”)

(d) For any string form I⊆I0 there is a string form J⊆I such that

QT+ ⊢ ∀y ∊ J ∀x,z (Tallyb(x) & Tallyb(y) & Addtally(x,y,z) → Addtally(xb,y,zb))

 (“Sx+y = S(x+y”)

(e) For any string form I⊆I0 there is a string form J⊆I such that

 QT+ ⊢ ∀x ∊ J ∀y,z,v (Tallyb(x) & Tallyb(y) & Tallyb(z) →

 → (Addtally(x,y,v) & Addtally(x,z,v) → y=z)).

 (“x+y=x+z → y=z”)

(f) For any string form I⊆I0 there is a string form J⊆I such that

 QT+ ⊢ ∀y ∊ J ∀x (Tallyb(x) & Tallyb(y) →

 → (x≤y ⟷ ∃z(Tallyb(z) & Addtally(z,x,y)))).

25

 (“x≤y ⟷ ∃z z+x=y”)

(g) For any string form I⊆I0 there is a string form J⊆I such that

 QT+ ⊢ ∀x,y ∊ J (Addtally(x,y,z) → Addtally(y,x,z)). (“x+y=y+x”)

(h) For any string form I⊆I0 there is a string form J⊆I such that

 QT+ ⊢ ∀x,y,z ∊ J (Addtally(x,y,u) & Addtally(u,z,v1) & Addtally(y,z,w) &

 & Addtally(x,w,v2) → v1=v2)

 (“(x+y)+z=x+(y+z)”)

(i) For any string form I⊆I0 there is a string form J⊆I such that

 QT+ ⊢ ∀x2,y1,y2 ∊ J ∀x1,z1,z2 (Tallyb(x2) & Tallyb(y1) & Tallyb(y2) &

 & Addtally(x1,x2,z1) & Addtally(y1,y2,z2) & x1≤y1 & z1=Sz2 →

 → Sy2≤x2).

 (“x1+x2 = (y1+y2)+1 & x1 ≤ y1 → y2 +1 ≤ x2”)

Proof: For (a), let J ≡ ICTC from 3.3(a). For (c) and (d), let J be as in 3.3(c). For

(e), let J ≡ ILC from 3.1(d). For (f) and (g), let J ≡ ICOMM from 3.3(e). For (h),

let J ≡ J1 & J2 where J1 is ICTC and J2 as in 3.3(c). Finally, for (i), let

J ≡ ILC & ICTC & I3.3(c) & ICOMM and see Appendix.∎

We now turn to the part-of relation ⊆p between strings. To prevent

unpleasant surprises, we want to make sure that this relation has natural

properties we would normally expect it to have.

26

3.6(a) QT+ ⊢ x⊆py & y⊆pz → x⊆pz.

(b) For any string form I⊆I0 there is a string form J⊆I such that

 QT+ ⊢ ∀x∊J ¬xEx.

(c) For any string form I⊆I0 there is a string form J⊆I such that

 QT+ ⊢ ∀x∊J ¬∃x1,x2 (x1xx2=x).

(d) For any string form I⊆I0 there is a string form J⊆I such that

 QT+ ⊢ ∀x ∊ J ∀y (x⊆py & y⊆px → x=y).

(e) For any string form I⊆I0 there is a string form J⊆I such that

 QT+ ⊢ ∀x ∊ J ∀y (¬xy⊆px & ¬yx⊆px).

Proof: For (b) and (c), see [2], (3.4) and (3.5). For (d) and (e), see [2], (3.11)

and (3.12).∎

We now specifically consider proper initial segments and endsegments. The

initial segments of arbitrary strings can be totally ordered by the initial-

segment-of relation B, rendering the partial ordering < in which a is the least

element tree-like:

3.7(a) For any string form I⊆I0 there is a string form JLOIS⊆I such that

 QT+ ⊢ ∀x ∊ J ∀u,v (uBx & vBx → u=v v uBv v vBu).

(b) For any string form I⊆I0 there is a string form J⊆I such that

27

 QT+ ⊢ ∀y,z ∊ J ∀x (xByz ↔ xBy v x=y v ∃w(wBz & yw=x)).

(c) For any string form I⊆I0 there is a string form J⊆I such that

 QT+ ⊢ ∀x,y ∊ J ∀u (uBb(xy) → u=b v uBbx v u=bx v ∃y1(y1By & u=bxy1)).

(d) For any string form I⊆I0 there is a string form J⊆I such that

 QT+ ⊢ ∀x ∊ J ∀u,v (uEx & vEx → u=v v uEv v vEu).

(e) For any string form I⊆I0 there is a string form J⊆I such that

 QT+ ⊢ ∀y,z ∊ J ∀x (xEyz ↔ xEz v x=z v ∃w(wEy & wz=x)).

(f) For any string form I⊆I0 there is a string form J⊆I such that

 QT+ ⊢ ∀y,z ∊ J ∀x,x1,x2 (x1xx2=yz →

 → x⊆py v x⊆pz v ∃y1,z1 (y1Ey & z1Bz & x=y1z1)).

(g) For any string concept I⊆I0 there is a string concept J⊆I such that

 QT+ ⊢ ∀y,z ∊ J ∀x (x⊆pyz → x=yz v x⊆py v x⊆pz v ∃y1(y1Ey & x=y1z) v

 v ∃z1 (z1Bz & x=yz1) v ∃y1,z1 (y1Ey & z1Bz & x=y1z1)).

(h) For any string form I⊆I0 there is a string form J⊆I such that

 QT+ ⊢ ∀y,z ∊ J ∀x (x⊆pb(yz) →

 → x=byz v x=b v x⊆pyz v ∃u2(u2Byz & x=bu2)).

Proof: For (a), see [2], (3.8). For (b) and (c), let J ≡ ILC & ILOIS. For (d), see

[2], (3.10), and then (e) is proved analogously to (b). For (f) take J s in (b),

and (g) follows from (b)-(f). Then (h) is obtained as a special case of (g).∎

28

 4. Coding sequences and pairs of strings by strings

 Formalizing recursion requires coding of sequences, and since the kind of

recursion used to define the counting functions α and β proceeds on strings, to

carry out the formalization of such definitions in concatenation theory we will

need to be able to code sequences of strings by strings. The general idea

behind the coding goes back to Quine [7], and more recently to Visser [9], but

the key for our purposes is to show that the relevant properties of the coding

are provable in QT+. We make use of the coding scheme described in [2],

pp.86-88 and summarized in [1], §§7-8. (Predicates ‘Pref(x,t)’,

‘Firstf(x,t1,y,t2)’, ‘Env(t,x)’, ‘Set(x)’ and ‘y ε x’ are defined there; the formal

machinery needed to demonstrate that, modulo the methodology of formula

selection, all of the necessary reasoning can indeed be carried out in QT+ is

presented in detail in [2], pp.89-263.) In particular, we can establish:

4.1(a) SINGLETON LEMMA. For any string form I⊆I0 there is a string form

ISNGL ⊆I such that

 QT+ ⊦ ∀x∊ ISNGL ∀u,t1,t2 (Set(x) & Firstf(x,t1,aua,t2) & x=t1auat2 →

 → ∀w (w ε x ↔ w=u)).

29

(b) APPENDING LEMMA. For any string form I⊆I0 there is a string form

 IAPP ⊆I such that

 QT+ ⊦ ∀x,y∊IAPP ∀t,t2,t3(Env(t2,x) & Env(t,y) & (t3a)By & Tallyb(t3) & t2<t3 &

 & ¬∃u(u ε x & u ε y) → ∃z∊IAPP (Env(t,z) & ∀u(u ε z ↔ u ε x v u ε y)).

(c) DOUBLETON LEMMA. For any string form I⊆I0 there is a string form

IDBL ⊆I such that

 QT+ ⊦ ∀x∊ IDBL ∀t1,t2,t3,u,v(Pref(aua,t1) & Pref(ava,t2) & t1<t2 & t2=t3 & u≠v &

 & x=t1auat2avat3 → Set(x) & ∀w(w ε x ↔ (w=u v w=v)).

Proof: See [2], (5.21), (5.46) and (5.58).∎

To use the coding of sets to code sequences of strings, we need to populate the

coded sets with ordered pairs of arbitrary strings.

Let Pair[x,y,z] ≡ ∃t⊆pz (z=taxatayat & MinMax+Tb(t,xay)).

(The predicate ‘MinMax+Tb(t,u)’ expressing ‘t is a shortest non-occurrent

b-tally in string u’ is defined in [1], §10.) We then have:

4.2 PAIRING LEMMA. (a) For any string form I⊆I0 there is a string form J⊆I

 such that

 QT+ ⊢ ∀x,y∊J ∃z∊J (Pair[x,y,z] & ∀z’(Pair[x,y,z’] → z’=z)).

(b) For any string form I⊆I0 there is a string form J⊆I such that

 QT+ ⊢ ∀z∊J ∀x1,x2,y1,y2 (Pair[x1,y1,z] & Pair[x2,y2,z] → x1=x2 & y1=y2).

30

In (a), choose J as in [2], (6.8). For (b), referring to [2], let

J ≡ I3.6 & I4.20 & I4.23b.∎

 5. String recursion

Let p, q be strings, and f1, f2 be functions on strings. Informally, we say that h

is defined by string recursion from f1, f2 if

 h(a) = p h(b) = q

 h(y*a) = f1(y,h(y)) h(y*b) = f2(y,h(y)).

We want to justify definitions of this sort in QT+.

Let I◊ be the string form that is the conjunction of the string forms used to

obtain the SINGLETON LEMMA, the APPENDING LEMMA, the DOUBLETON

LEMMA and the PAIRING LEMMA. The theorem below asserts that, given

strings p, q and operations F1, F2 given by formulae satisfying the principal

hypothesis, any string form I stronger than I◊ can in turn be strengthened to a

string form J containing arbitrarily long length indices for computations of

uniquely determined values for successive arguments from J obtained by

string recursion from p, q, F1, F2.

31

STRING RECURSION THEOREM. Let F1(y,z,u) and F2(y,z,u) be ℒC formulae,

and let I⊆I◊ closed under * and downward closed under ⊆p. Suppose that

 QT+ ⊢ I(p) & I(q),

 QT+ ⊢ ∀y,z∊I ∃!u∊I F1(y,z,u), and QT+ ⊢ ∀y,z∊I ∃!u∊I F2(y,z,u).

Then there is an ℒC formula H(y,z) and a string form J⊆ I such that

 (i) QT+ ⊢ ∀y∊J ∃!z∊I H(y,z),

 (iia) QT+ ⊢ ∀y∊I (H(a,y) ⟷ y=p),

 (iib) QT+ ⊢ ∀y∊I (H(b,y) ⟷ y=q),

 (iiia) QT+ ⊢ ∀y∊J ∀u,z∊I (H(y,u) → (H(y*a,z) ⟷ F1(y,u,z))),

and (iiib) QT+ ⊢ ∀y∊J ∀u,z∊I (H(y,u) → (H(y*b,z) ⟷ F2(y,u,z))).

(We read “∃!x∊J (…)” as “∃x (J(x) & (…) & ∀y(J(y) & (…) → y=x))”).

Proof: Let Comp(u,m) abbreviate

Set(u) & (a≤m → ∃v⊆pu (Pair[a,p,v] & v ε u)) &

 & (b≤m → ∃v⊆pu (Pair[b,q,v] & v ε u)) &

32

 & ∀z<m ∀u1,u2,v1 (Pair[z,u1,v1] & v1 ε u & F1(z,u1,u2) →

 → ∃v2⊆pu (Pair[z*a,u2,v2] & v2 ε u)) &

 & ∀z<m ∀u1,u2,v1 (Pair[z,u1,v1] & v1 ε u & F2(z,u1,u2) →

 → ∃v2⊆pu (Pair[z*b,u2,v2] & v2 ε u)) &

& ∀z,u1,u2,v1,v2 (Pair[z,u1,v1] & Pair[z,u2,v2] & v1 ε u & v2 ε u →

 → u1=u2 & v1=v2).

Comp(u,m) means, roughly, that u is a set code for a computation determined

by p, q, F1,F2, in at least m steps where the length indices m are strings

ordered by the tree-like ordering ≤.

Let MinComp(u,m) abbreviate

 Comp(u,m) & ∀u’ (Comp(u’,m) → ∀y (y ε u → y ε u’)) &

 & ∀z,v,w (Pair[z,v,w] & w ε u → (m=a & z=a) v (m=b & z=b) v

 v ∃n<m (z≤na v z≤nb)).

Let J(m) abbreviate

 I(m) & ∃!y∊I ∃u∊I ∃w⊆pu (MinComp(u,m) & Pair[m,y,w] & w ε u).

Finally, let H(m,y) abbreviate

 ∃u,w (MinComp(u,m) & Pair[m,y,w] & w ε u).

For detailed verification that J and H have the desired properties see

Appendix.■

33

 We are now in the position to define the counting functions α and β.

Let p = bb, q = b, F1(y,z,u) ≡ y=y & z=Su and F2(y,u,z) ≡ y=y & z=u.

Then the principal hypothesis of the String Recursion Theorem holds trivially.

Applying the Theorem we obtain a formula A#(y,z) and a string form Iα⊆I

such that

 (iα) QT+ ⊢ ∀y ∊ Iα ∃!z ∊ I A#(y,z),

 (iiaα) QT+ ⊢ ∀z ∊ I (A#(a,z) ⟷ z=bb),

 (iibα) QT+ ⊢ ∀z ∊ I (A#(b,z) ⟷ z=b),

 (iiiaα) QT+ ⊢ ∀y ∊Iα ∀u,z ∊ I (A#(y,u) → (A#(y*a,z) → z=u*b)),

 (iiibα) QT+ ⊢ ∀y ∊Iα ∀u,z ∊ I (A#(y,u) → (A#(y*b,z) → z=u)).

Informally speaking, A#(y,z) defines the graph of the function α.

Exactly analogously, by letting p and q, and F1, F2, respectively, exchange

places, we apply the Theorem to obtain a formula B#(y,z) defining the graph

of the function β and a string form Iβ⊆I such that

 (iβ) QT+ ⊢ ∀y ∊ Iβ ∃!z ∊ I B#(y,z),

 (iiaβ) QT+ ⊢ ∀z ∊ I (B#(a,z) ⟷ z=b),

 (iibβ) QT+ ⊢ ∀z ∊ I (B#(b,z) ⟷ z=bb),

 (iiiaβ) QT+ ⊢ ∀y ∊ Iβ ∀u,z ∊ I (B#(y,u) → (B#(y*a,z) → z=u)),

 (iiibβ) QT+ ⊢ ∀y ∊ Iβ ∀u,z ∊ I (B#(y,u) → (B#(y*b,z) → z=u*b)).

34

We can then prove that α and β correctly count b’s in b-tallies:

5.1(a) For any string form I⊆I0 there is a string form J⊆I such that

 QT+ ⊢ A#(a,Sb) & ∀x ∊ J ∀y ∊ I (Tallyb(x) & A#(x,y) → y=b) and

 QT+ ⊢ ∀x ∊ J ∀y ∊ I (Tallya(x) & B#(x,y) → y=b).

(I.e., ‘α(a)=1’ and ‘Tallyb(x) → α(x)=0’, and ‘Tallya(x) → β(x)=0’.)

(b) For any string form I⊆I0 there is a string form J⊆I such that

 QT+ ⊢ ∀x ∊ J ∀y ∊ I (Tallyb(x) & B#(x,y) → y=x*b).

Informally, Tallyb(x) → β(x)=length(x).

We now verify that the functions α and β are indeed additive. Let IAdd be as

in 3.5(a).

5.2(a) For any string form I⊆Iα and I⊆IAdd there is a string form J ≡ IAddα ⊆I

 such that

 QT+ ⊢ ∀x,y ∊ J ∀u,v,w (A#(x,u) & A#(y,v) & AddTally(u,v,w) → A#(x*y,w)).

 (“α(x*y) = α(x) + α(y)”)

(b) For any string form I⊆Iβ and I⊆IAdd there is a string form J ≡ IAddβ⊆I

such that

 QT+ ⊢ ∀x,y ∊ J ∀u,v,w (B#(x,u) & B#(y,v) & AddTally(u,v,w) → B#(x*y,w)).

 (“β(x*y) = β(x) + β(y)”)

Proof: See Appendix.∎

35

 6. Formal Construction of the Interpretation

Let IAddα be the string form obtained from I0 by the series of modifications

described in §§3-5 up to and including 5.2(a). Analogously for and IAddβ and

5.2(b).

Let J* ≡ IAddα & IAddβ.

Then J* ⊆ IAddα and J* ⊆ IAddβ and J* ⊆ IAdd as well as J* ⊆ I◊ . We may also

assume that J* is closed under *, and downward closed under ≤ and ⊆p.

Hence it may be assumed that the string form J* is also closed under Addtally

and the functions α and β.

We then formally define Æ(x) as

∃y,z (A#(x,y) & B#(x,z) & y=Sz) &

 & ∀u,v,w (uBx & A#(u,v) & B#(u,w) → v≤w).

(These are conditions (c1)-(c2) from §1.)

We set I*(x) ≡ Æ(x) & J*(x).

The formula I*(x) will formally define in QT+ the domain of interpretation of

theory T. We now proceed to formally verify the translations of the axioms of

T by derivations in QT+.

6.1(a) QT+ ⊢ I*(x) & x2Ex → ∀u,v (A#(x2,u) & B#(x2,v) → Sv≤u).

(b) QT+ ⊢ I*(x) & I*(y) & z=bxy → I*(z).

36

(c) QT+ ⊢ I*(x) & I*(u) & bxy=buv → x=u & y=v.

(d) QT+ ⊢ I*(x) → (x⊆pa ⟷ x=a).

(e) QT+ ⊢ I*(x) & I*(y) & I*(z) → (x⊆pbyz ↔ x=byz v x⊆py v x⊆pz).

Proof: See Appendix. We give the details of the proof of (e) to illustrate the

flavor of the type of formal argument used.

Assume M ⊧ x⊆pbyz where M ⊧ I*(x) & I*(y) & I*(z).

Then M ⊧ J*(x) & J*(y) & J*(z) and also M ⊧ Æ(x) & Æ(y) & Æ(z).

By (iα) and (iβ), M ⊧ ∃!x1 ∊ J* A#(x,x1) & ∃!x2 ∊ J* B#(x,x2).

From M ⊧ x⊆pbyz by 3.7(h) we have that

 M ⊧ x=byz v x=b v x⊆pyz v ∃u(uByz & x=bu).

We distinguish the cases:

(1) M ⊧ ∃u(uByz & x=bu).

Then by (QT2), M ⊧ x≠a. From M ⊧ I*(y) & I*(z), by 6.1(b), M ⊧ I*(byz).

From M ⊧ uByz, M ⊧ ∃v uv=yz, hence M ⊧ b(uv)=b(yz), also

M ⊧ (bu)v=b(yz). Thus M ⊧ buBb(yz), hence M ⊧ xBb(yz).

From M ⊧ I*(byz), M ⊧ Æ(byz), whence M ⊧ x1≤x2. But from M ⊧ Æ(x),

M ⊧ x1=Sx2, and we have M ⊧ x1≤x2<Sx2=x1, contradicting M ⊧ I0(x1).

Hence (1) is ruled out.

(2) M ⊧ x=b.

Then by (QT2), M ⊧ x≠a, and from M ⊧ Æ(x), we have M ⊧ bBx. But then

M ⊧ bBb, contradicting (QT2). Hence (2) is also ruled out.

(3) M ⊧ x⊆pyz.

37

By 3.7(g), M ⊧ x=yz v x⊆py v x⊆pz v ∃y1(y1Ey & x=y1z) v

 v ∃z1(z1Bz & x=yz1) v ∃y1,z1(y1Ey & z1Bz & x=y1z1).

 (3i) M ⊧ x=yz.

By (iα) and (iβ), M ⊧ ∃!y1 ∊ J* A#(y,y1) & ∃!y2 ∊ J* B#(y,y2),

and further M ⊧ ∃!z1 ∊ J* A#(z,z1) & ∃!z2 ∊ J* B#(z,z2).

From M ⊧ Æ(y), M ⊧ y1=Sy2, and from M ⊧ Æ(z), M ⊧ z1=Sz2.

By 3.5(a), M ⊧ ∃!p1 ∊ J*(Tallyb(p1) & Addtally(y1,z1,p1))

and M ⊧ ∃!p2 ∊ J*(Tallyb(p2) & Addtally(y2,z2,p2)).

Then from M ⊧ A#(y,y1) & A#(z,z1), by 5.2(a), M ⊧ A#(y*z,p1), and

from M ⊧ B#(y,y2) & B#(z,z2), by 5.2(b), M ⊧ B#(y*z,p2),

⇒ from M ⊧ y1=Sy2 & z1=Sz2, M ⊧ Addtally(Sy2,Sz2,p1).

On the other hand, from M ⊧ Addtally(y2,z2,p2), by 3.4(e),

M ⊧ Addtally(y2,Sz2,Sp2), whence by 3.5(d), M ⊧ Addtally(Sy2,Sz2,SSp2).

By single-valuedness of Addtally, we then have M ⊧ p1=SSp2.

From hypothesis M ⊧ x=yz & A#(y*z,p1) & B#(y*z,p2),

 M ⊧ A#(x,p1) & B#(x,p2).

Hence from M ⊧ A#(x,x1) & B#(x,x2), by single-valuedness of A# and B#,

 M ⊧ p1=x1 & p2=x2.

Thus from M ⊧ p1=SSp2, we have M ⊧ x1=SSx2. But from M ⊧ Æ(x) we have

M ⊧ x1=Sx2, whence M ⊧ x1=Sx1. But then from M ⊧ x1<Sx1, we obtain

M ⊧ x1<x1, contradicting M ⊧ I0(x1). Hence (3i) is ruled out.

 (3ii) M ⊧ ∃y1(y1Ey & x=y1z).

38

Then M ⊧ y1Bx.

By (iα) and (iβ), M ⊧ ∃!u1 ∊ J* A#(y1,u1) & ∃!u2 ∊ J* B#(y2,u2).

From M ⊧ Æ(x) & y1Bx, M ⊧ u1≤u2, whereas from M ⊧ I*(y) & y1Ey, by

6.1(a), M ⊧ Su2≤u1. But then M ⊧ u2<Su2≤u2, contradicting M ⊧ I0(u2).

This rules out (3ii).

 (3iii) M ⊧ ∃z1(z1Bz & x=yz1).

Then M ⊧ yBx. By (iα) and (iβ), M ⊧ ∃!y1 ∊ J* A#(y,y1) & ∃!y2 ∊ J* B#(y,y2).

From M ⊧ Æ(x) & yBx, M ⊧ y1≤y2. But from M ⊧ Æ(y), M ⊧ y1=Sy2, and we

obtain M ⊧ y1≤y2<Sy2=y1, contradicting M ⊧ I0(y1). Hence (3iii) is ruled

 out.

 (3iv) M ⊧ ∃y1,z1(y1Ey & z1Bz & x=y1z1).

This is ruled out by reasoning as in either (3ii) or (3iii).

We then conclude under the principal hypothesis that

 M ⊧ x⊆pyz → x⊆py v x⊆pz

and further that M ⊧ x⊆pbyz → x=byz v x⊆py v x⊆pz.

The converse is immediate from the definition of ⊆pz.■

Taking the formula Æ(x) from §6 to define the domain, and interpreting the

non-logical vocabulary ℒT = {0, (), ⊑} of T by a, bxy and ⊆p, resp., as

explained in §2, we have that 6.1(b)-(e), along with the fact that

QT+ ⊢ bxy≠a, suffice to establish formal interpretability of T in QT+. On the

39

other hand, from [1], building on previous work of Halpern and Collins,

Wilkie, Visser, Grzegorczyk and Ganea, we have that

 TC ≡I QT+≡I AST ≡I AST+EXT ≡I Q ≡I

Since, by [6], Q ≤I T, this suffices to establish

WEAK ESSENTIALLY UNDECIDABLE THEORIES: FIRST MUTUAL

INTERPRETABILITY THEOREM.

 T ≡I QT+≡I QT0 ≡I TC ≡I Q ≡I AST.

In addition, each of the theories above is mutually interpretable with

AST+EXT, and Buss’s theory S2
1 (see Ferreira and Ferreira [4]).

 §7. R and its variants

We now consider the expanded vocabulary ℒ C,⊑* = {a, b, *, ⊑*} with two

individual constants – the digits a, b – a single binary operation symbol * and a

2-place relational symbol ⊑*. Each variable-free term of ℒ C,⊑* represents a

finite string of a ’s and/or b ’s, and each such string may have multiple

variable-free terms as its representations, differing in the arrangement of

40

parentheses indicating the order of applications of the term operation *.

Recalling the theory WT described in the introduction formulated in

ℒT = {0, (), ⊑}, we are going to single out ℒ C,⊑* terms that represent tree-like

strings obtained from variable-free terms of ℒT as described in §1. With each

variable-free term v of ℒT we associate a unique ℒ C,⊑* term vτ as follows:

 0τ ≡ a (u,v)τ ≡ b*(uτ * vτ).

The ℒ QT,⊑* term vτ is an Æ string that codes v.

If S (v) is the set of all (variable-free) subterms of v, let

 Ʃ(t) = { uτ | for some ℒT-term v, u ∊ S (v) and t=vτ}.

We then let Ʃτ = ⋃v ∊ S Ʃ (vτ), where S is the set all variable-free terms of ℒT.

A straightforward induction on the complexity of ℒT terms establishes that

the mapping τ is 1-1.

Let WQT be the first-order theory formulated in ℒ C,⊑* with the following

axioms:

 (WQT1) ¬(s=t) for any distinct terms s, t ∊ Ʃτ,

 (WQT2) ∀z (z⊑*b*(s*t) ↔ z=b*(s*t) v z⊑*s v z⊑*t)

41

 for all terms s, t ∊ Ʃτ,

 (WQT3) ∀z (z⊑*a ↔ z=a).

Here, (WQT1) and (WQT2) are axiom schemas with infinitely many instances.

We now define a formal interpretation (τ) of WT in WQT. Let the formula

 T*(x) ≡ x=a v ∃y,z x=b*(y*z)

define the domain. Interpret 0 by a, the binary term building operation (,)

of ℒT by b *(x*y), and ⊑ by ⊑*. We then have immediately:

 WQT ⊢ T*(0τ),

 WQT ⊢ T*(y) & T*(z) → T*(b*(y*z)).

A trivial induction on the complexity of ℒT terms verifies that each v ∊ S is

interpreted by vτ ∊ Ʃτ in WQT. Since the map τ is 1-1, we have that

 WQT ⊢ (¬(u=v))(τ),

¬(uτ =vτ) being the translations (¬(u=v))(τ) of the instances of axiom

schema (WT1) of WT, for distinct u, v ∊ S .

Consider now an instance of the schema (WT2), for some v ∊ S :

42

 ∀x (x⊑v ↔ ⋁u ∊ S (v) x=u).

If v is the atomic term 0, we have that S (v) = {0}. Hence the formula in

question is ∀x (x⊑0 ↔ x=0).

But, by (WQT3), WQT ⊢ ∀x (x⊑*a ↔ x=a).

Hence, a fortiori, WQT ⊢ ∀x (T*(x) → (x⊑*a ↔ x=a)), which is the

(τ)-translation of the above instance of (WT2).

Consider now t ∊ S of the form (u,v). Note that

 S (t) = S (u) ∪ S (v) ∪ {t}.

Hence Ʃ(tτ) = Ʃ(uτ) ∪ Ʃ(vτ) ∪ {tτ}. (†).

Assume now that

WQT ⊢ [∀z (z⊑u ↔ ⋁s ∊ S (u) z=s)](τ) and WQT ⊢ [∀z (z⊑v ↔ ⋁s ∊ S (v) z=s)](τ).

Then WQT ⊢ ∀z (T*(z) → (z⊑*uτ ↔ ⋁sτ ∊ Ʃ (uτ) z=sτ))

and WQT ⊢ ∀z (T*(z) → (z⊑*vτ ↔ ⋁sτ ∊ Ʃ (vτ) z=sτ)).

Let M be a model of WQT. Assume M ⊧ T*(x) and consider M⊧ x⊑*t.

We have that tτ is in fact b*(uτ * vτ). Hence

43

 ⇔ M⊧ x⊑*b*(uτ * vτ) ⇔ by (WQT2), M ⊧ x=b*(uτ * vτ) v x⊑*uτ v x⊑*vτ ⇔

 ⇔ M ⊧ x=b*(uτ * vτ) v ⋁sτ ∊ Ʃ (uτ) x=sτ v ⋁sτ ∊ Ʃ (vτ) x=sτ ⇔

 ⇔ M ⊧ ⋁sτ ∊ Ʃ (tτ) x=sτ

using (†). Therefore,

 WQT ⊢ ∀x (T*(x) → (x⊑*tτ ↔ ⋁sτ ∊ Ʃ (tτ) x=sτ)),

that is, WQT ⊢ [∀x (x⊑t ↔ ⋁s ∊ S (t) x=s)](τ).

Hence the (τ)-translation of each instance of (WT2) is also provable in WQT.

We conclude that

7.1. WT ≤I WQT.

The theory WQT is not recognizably a concatenation theory: the axioms make

no substantive assumptions about the binary operation *, not even

associativity. On that account, it might be considered at best as a “pseudo-

concatenation” notational variant of WT. We now consider another first-

order theory, WQT*, formulated in the same vocabulary ℒ C,⊑* = {a, b, *, ⊑*} as

WQT, with the following axioms: for each variable-free term t of ℒ C,⊑*,

 (WQT*1) ∀x,y,z (x*(y*z)⊑pt v (x*y)*z⊑pt → x*(y*z)=(x*y)*z)

44

 (WQT*2) ∀x,y (x*y⊑pt → ¬(x*y=a) & ¬(x*y=b))

 (WQT*3) ∀x,y ((a*x ⊑pt & a*y ⊑pt → (a*x=a*y → x=y)) &

 & (b*x ⊑pt & b*y ⊑pt → (b*x=b*y → x=y)) &

 & (x*a ⊑pt & y*a ⊑pt → (x*a=y*a → x=y))

 & (x*b ⊑pt & x*y ⊑pt → (x*b=y*b → x=y)))

 (WQT*4) ∀x,y ((a*x ⊑pt & b*y ⊑pt → ¬(a*x=b*y)) &

 & (x*a ⊑pt & y*b ⊑pt → ¬(x*a=y*b)))

 (WQT*5) ∀x ⊑pt (x=a v x=b v ((aBx v bBx) & (aEx v bEx)))

 (WQT*6) ∀y,z (b*(y*z)⊑*t →

 → ∀x (x⊑*b*(y*z) ↔ x=b*(y*z) v x⊑*y v x⊑*z))

 (WQT*7) ∀z (z⊑*a ↔ z=a)

 (WQT*8) ∀x,y (x⊑*y & y⊑*x → x=y)

 (WQT*9) ∀x,y (x⊑*y & y⊑*z → y⊑*z)

Here we use the following abbreviations:

 xBy ≡ ∃z y=x*z xEy ≡ ∃z y=z*x,

45

and x⊑py ≡ x=y v xBy v xEy v ∃z1,z2 y=z1*(x*z2) v ∃z1,z2 y=(z1*x)z2.

Then ∀x ⊑pu φ ≡ ∀x (x⊑pu → φ), where x does not occur in the term u.

Also, ∀x ⊑*u φ ≡ ∀x (x⊑*u → φ).

(WQT*1)-(WQT*6) are axiom schemas with infinitely many instances, one for

each variable-free term t. The schemas (WQT*1)-(WQT*5) are “bounded”

versions of the axioms (QT1)-(QT5) of QT+. Schema (WQT*6) is a “bounded”

generalization of schema (WQT2) of WQT. In light of that, WQT* may be

naturally interpreted as a hybrid basic theory of finite strings and trees: the

intended domain are the finite strings of a ’s and/or b ’s, * is interpreted as the

concatenation operation, and ⊑* as the substring relation between Æ strings.

WQT* is an extension of WQT. First, we note the following:

7.2. For any distinct terms s, t ∊ Ʃτ, WQT* ⊢ ¬(s=t).

Proof: We argue by (meta-theoretic) induction on the number of digits in s, t.

If either one of s or t is the single digit a, this is immediate by (WQT*2). If

neither s nor t are single digits, let s1…sm and t1…tn be their successive

46

digits (ignoring parentheses), and let si≠ti be the leftmost digit where s and

t differ. Then s = s1…si-1si s- and t = t1…ti-1ti t - where s- = si+1…sm and

t - = ti+1…tn. By (WQT*4), WQT* ⊢ ¬(si s- = ti t -). By repeatedly applying

(WQT*1) and (WQT*3) we obtain WQT* ⊢ ¬(s1…si-1si s- =t1…ti-1ti t -), that is,

WQT* ⊢ ¬(s=t), as required.∎

Hence in particular all instances of schema (WQT1) are provable in WQT*.

Consider an instance of (WQT2) for terms s, t ∊ Ʃτ,

 ∀z (z⊑*b*(s*t) ↔ z=b*(s*t) v z⊑*s v z⊑*t)

Now, WQT* ⊢ b*(s*t)=b*(s*t), so WQT* ⊢ b*(s*t)⊑pb*(s*t). From (WQT*6),

 WQT* ⊢ ∀x (x⊑*b*(s*t) ↔ x=b*(s*t) v x⊑*s v x⊑*t).

Hence each instance of (WQT2) is provable in WQT*. Given that (WQT3) is

(WQT*7), this is enough to establish that WQT* is an extension of WQT.

On the other hand, we also have:

7.3. WQT* is locally finitely satisfiable.

47

That is, each finite subset of its non-logical axioms has a finite model.

Proof: See Appendix.∎

By Visser’s Theorem, it follows that WQT* is interpretable in R.

Since by [6], R ≤I WT, we then have

WEAK ESSENTIALLY UNDECIDABLE THEORIES: SECOND MUTUAL

INTERPRETABILITY THEOREM. R ≡I WTC – ε ≡I WT ≡I WQT ≡I WQT*.

For definition of the theory WTC – ε see [5].

48

 R E F E R E N C E S

[1] Damnjanovic, Z.: “Mutual interpretability of Robinson arithmetic and

adjunctive set theory”, Bulletin of Symbolic Logic 23, pp.381-404 (2017)

[2] Damnjanovic, Z., From Strings to Sets: A Technical Report, University of

Southern California, 2016, arXiv: 1701.07548.

[4] Ferreira, F. and Ferreira, G.: “Interpretability in Robinson's Q”, Bulletin of

Symbolic Logic, vol. 19 (2013), pp. 289-317.

[5] Higuchi, K. and Horihata, Y.: ”Weak theories of concatenation and minimal

essentially undecidable theories”, Archive for Mathematical Logic 53, pp.

835–853 (2014).

 [6] Kristiansen, L. and Murwanashyaka, J.: “On interpretability between

some weak essentially undecidable theories”, in Beyond the Horizon of

Computability, M. Anselmo et al. (eds.), LNCS vol. 12098, pp.63-74, Springer,

2020.

49

[7] Quine, W. V. O.: “Concatenation as a Basis for Arithmetic”, Journal of

Symbolic Logic, vol. 11 (1946), pp. 105-114.

[8] Tarski, A., Mostowski, A. and Robinson, R. M.: Undecidable Theories,

Amsterdam, North-Holland, 1953.

[9] Visser, A.: “Growing commas: a study of sequentiality and concatenation”,

Notre Dame Journal of Formal Logic, vol. 50 (2009), pp.61-85.

[10] Visser, A.: “Why the theory R is special”, in N. Tennant (ed.),

Foundational Adventures: Essays in Honour of Harvey Friedman, pp. 7-23,

London, College Publications, 2014.

50

 A P P E N D I X

2.2 𝛴* ⊧ Æ(x) ↔ x=a v ∃!y,z (x=b(yz) & Æ(y) & Æ(z)).

Proof: (⇐) Assume 𝛴* ⊧ Æ(y) & Æ(z) & x=byz. Then

 𝛴* ⊧ α(y) = β(y)+1 & α(z) = β(z)+1.

Now, 𝛴* ⊧ α(x) = α(byz) = α(yz) = α(y)+α(z)

and 𝛴* ⊧ β(x) = β(byz) = β(b)+β(yz) = β(y)+β(z)+1. Then

𝛴* ⊧ α(x) = α(y)+α(z) = (β(y)+1)+(β(z)+1) = (β(y)+β(z)+1)+1 = β(x)+1

which verifies (c1). For (c2), assume 𝛴* ⊧ uBx, i.e., 𝛴* ⊧ uBbyz.

Then 𝛴* ⊧ u=b v uBby v u=by v ∃z1(z1Bz & u=byz1).

If (a) 𝛴* ⊧ u=b, then 𝛴* ⊧ α(u) = α(b) = 0 < 1 = β(b) = β(u).

If (b) 𝛴* ⊧ uBby, then 𝛴* ⊧ ∃y1(y1By & u=by1). Then from 𝛴* ⊧ Æ(y),

𝛴* ⊧ α(y1) ≤ β(y1), whence 𝛴* ⊧ α(u) = α(by1) = α(y1) and

𝛴* ⊧ β(u) = β(by1) = β(b)+β(y1) = β(y1)+1.

Hence 𝛴* ⊧ α(u) = α(y1) ≤ β(y1) < β(y1)+1 = β(u).

51

Suppose (c) 𝛴* ⊧ u=by. Then from 𝛴* ⊧ Æ(y), 𝛴* ⊧ α(y) = β(y)+1, and we

have 𝛴* ⊧ α(u) = α(by) = α(y) and

𝛴* ⊧ β(u) = β(by) = β(b)+β(y) = β(y1)+1.

Hence 𝛴* ⊧ α(u) = α(y) = β(y)+1 = β(u), so 𝛴* ⊧ α(u) ≤ β(u).

Finally, suppose (d) 𝛴* ⊧ ∃z1(z1By & u=byz1). Then from 𝛴* ⊧ Æ(z),

𝛴* ⊧ α(z1) ≤ β(z1), and from 𝛴* ⊧ Æ(y), 𝛴* ⊧ α(y) = β(y)+1. Then

𝛴* ⊧ α(u) = α(byz1) = α(yz1) = α(y)+α(z1) and

𝛴* ⊧ β(u) = β(byz1) = β(b)+β(yz1) = β(y)+β(z1)+1. Hence

𝛴* ⊧ α(u) = α(y)+α(z1) = (β(y)+1)+α(z1) ≤

 ≤ (β(y)+1)+β(z1) = β(y)+β(z1)+1 = β(u).

Thus 𝛴* ⊧ α(u) ≤ β(u). This completes the proof of (c2). So 𝛴* ⊧ Æ(x).∎

3.5(i) For any string form I⊆I0 there is a string form J⊆I such that

 QT+ ⊢ ∀x2,y1,y2 ∊ J ∀x1,z1,z2 (Tallyb(x2) & Tallyb(y1) & Tallyb(y2) &

 & Addtally(x1,x2,z1) & Addtally(y1,y2,z2) & x1≤y1 & z1=Sz2 →

 → Sy2≤x2).

52

Let J(y) ≡ ILC & ICTC & I6.2(a) & ICOMM.

Assume M ⊧ Addtally(x1,x2,z1) & Addtally(y1,y2,z2)

where M ⊧ x1≤y1 & z1=Sz2 and M ⊧ Tallyb(x2) & Tallyb(y1) & Tallyb(y2) and

M ⊧ J(y1).

From M ⊧ Tallyb(y1) & x1≤y1, M ⊧ Tallyb(x1).

By (f), M ⊧ ∃u1(Tallyb(u1) & Addtally(u1,x1,y1)), whereas by 3.5(a),

M ⊧ ∃!p1∊ J Addtally(u1,x1,p1).

Then, by single-valuedness of Addtally, M ⊧ y1=p1, whence from hypothesis

M ⊧ Addtally(y1,y2,z2), M ⊧ Addtally(p1,y2,z2).

On the other hand, M ⊧ ∃!p2∊ J Addtally(x1,u1,p2), whence by (g),

M ⊧ Addtally(u1,x1,p2).

But then from M ⊧ Addtally(u1,x1,p1), by single-valuedness of Addtally,

 M ⊧ p1=p2.

Hence M ⊧ Addtally(p2,y2,z2), and from 3.4(e) we obtain

 M ⊧ Addtally(p2,y2*b,z2*b).

From M ⊧ Addtally(y1,y2,z2), by 3.5(a), M ⊧ Tallyb(z2).

So from M ⊧ Tallyb(y2) & Tallyb(z2), M ⊧ Addtally(p2,Sy2,Sz2).

Again by 3.5(a),

 M ⊧ ∃!v1∊ J Addtally(u1,Sy2,v1) and M ⊧ ∃!w1∊ J Addtally(x1,v1,w1).

From M ⊧ Addtally(x1,u1,p2) by (h), M ⊧ Sz2=w1.

From hypothesis M ⊧ z1=Sz2, M ⊧ z1=w1, so M ⊧ Addtally(x1,v1,z1).

On the other hand, from hypothesis M ⊧ Addtally(x1,x2,z1), by (e),

53

 M ⊧ x2=v1,

Hence from M ⊧ Addtally(u1,Sy2,v1), M ⊧ Addtally(u1,Sy2,x2).

But then from M ⊧ Tallyb(u1), by (h), M ⊧ Sy2≤x2, as required.■

Let MaxTb(t,w) ≡ Tallyb(t) & ∀t’(Tallyb(t’) & t’⊆pw → t’⊆pt).

Let us say, further, when a b-tally t is longer than any b-tally in x:

 Max+Tb(t,x) ≡ MaxTb(t,x) & ¬t⊆px.

We then define when a string u is a preframe indexed by t:

 Pref(u,t) ≡ ∃y⊆pu (aya=u & Max+Tb(t,u));

when t1ut2 is (the) first frame in the string x, Firstf(x,t1,u,t2):

Pref(u,t1) & Tallyb(t2) & ((t1=t2 & t1ut2=x) v (t1<t2 & (t1ut2a)Bx));

when t1ut2 is (the) last frame in x, Lastf(x,t1,u,t2):

Pref(u,t1) & t1=t2 & (t1ut2=x v ∃w (wat1ut2=x & Max+Tb(t1,w)));

and when t1ut2 is an intermediate frame in x immediately following

an initial segment w of x, Intf(x,w,t1,u,t2):

 Pref(u,t1) & Tallyb(t2) & t1<t2 & ∃w1(wat1ut2aw1=x) & Max+Tb(t1,w).

Then we define when a string u is t1,t2-framed in x:

54

 Fr(x,t1,u,t2) ≡ Firstf(x,t1,u,t2) v ∃w Intf(x,w,t1,u,t2) v Lastf(x,t1,u,t2),

We say that t1 is the initial, and t2 terminal tally marker in the frame.

Next we define “t envelops x”, Env(t,x), to be the conjunction of the following

five conditions:

 (a) MaxTb(t,x) “t is a longest b-tally in x”,

 (b) ∃u⊆px ∃t1,t2 Firstf(x,t1,u,t2) “x has a first frame”,

 (c) ∃u⊆px Lastf(x,t,u,t) “x has a last frame with t as its initial

 and terminal marker”

 (d) ∀u⊆px ∀t1,t2,t3,t4 (Fr(x,t1,u,t2) & Fr(x,t3,u,t4) → t1=t3)

 “different initial tally markers frame distinct strings”,

 (e) ∀u1,u2⊆px ∀t’,t1,t2 (Fr(x,t’,u1,t1) & Fr(x,t’,u2,t2) → u1=u2)

 “distinct strings are framed by different initial tally markers”

Now we say x is a set code if x is aa or else x is enveloped by some b-tally:

 Set(x) ≡ x=aa v ∃t⊆px Env(t,x).

Finally, we say that a string y is a member of the set coded by string x if x is

enveloped by some b-tally t and the juxtaposition of the string y with single

tokens of digit a is framed in x:

 y ε x ≡ ∃t⊆px (Env(t,x) & ∃u⊆px ∃t1,t2(Fr(x,t1,u,t2) & u=aya)).

55

We can then establish:

SINGLETON LEMMA. For any string form I⊆I0 there is a string form J⊆I

such that

 QT+ ⊦ ∀x∊J ∀u,t1,t2 (Set(x) & Firstf(x,t1,aua,t2) & x=t1auat2 →

 → ∀w (w ε x ↔ w=u)).

(See [2], (5.21).)

APPENDING LEMMA. For any string form I⊆I0 there is a string form J⊆I such

that

 QT+ ⊦ ∀x,y∊J ∀t,t2,t3(Env(t2,x) & Env(t,y) & (t3a)By & Tallyb(t3) & t2<t3 &

 & ¬∃u(u ε x & u ε y) → ∃z∊J (Env(t,z) & ∀u(u ε z ↔ u ε x v u ε y)).

(See [2], (5.46).)

We then derive:

DOUBLETON LEMMA. For any string form I⊆I0 there is a string form J⊆I

such that

 QT+ ⊦ ∀x∊J ∀t1,t2,t3,u,v(Pref(aua,t1) & Pref(ava,t2) & t1<t2 & t2=t3 & u≠v &

 & x=t1auat2avat3 → Set(x) & ∀w(w ε x ↔ (w=u v w=v)).

(See [2], (5.58).)

56

Let MinMax+Tb(t,u) ≡ Max+Tb(t,u) & ∀t’(Max+Tb(t’,u) → t≤t’).

In that case we say that t is a shortest non-occurrent b-tally in string u.

We then have:

SHORTEST NON-OCCURRENT TALLY LEMMA. For any string form I⊆I0 there

 is a string form J⊆I such that

 QT+ ⊦ ∀x∊J ∃!t∊J MinMax+Tb(t,x).

STRING RECURSION THEOREM. Let F1(y,z,u) and F2(y,z,u) be formulae, and

let I⊆I◊ closed under * and downward closed under ⊆p. Suppose that

 QT+ ⊢ I(p) & I(q),

 QT+ ⊢ ∀y,z∊I ∃!u∊I F1(y,z,u),

and QT+ ⊢ ∀y,z∊I ∃!u∊I F2(y,z,u).

Then there is a formula H(y,z) and a string form J⊆ I such that

57

 (i) QT+ ⊢ ∀y∊J ∃!z∊I H(y,z),

 (iia) QT+ ⊢ ∀y∊I (H(a,y) ⟷ y=p),

 (iib) QT+ ⊢ ∀y∊I (H(b,y) ⟷ y=q),

 (iiia) QT+ ⊢ ∀y∊J ∀u,z∊I (H(y,u) → (H(y*a,z) ⟷ F1(y,u,z))),

and (iiib) QT+ ⊢ ∀y∊J ∀u,z∊I (H(y,u) → (H(y*b,z) ⟷ F2(y,u,z))).

Proof: Let Comp(u,m) abbreviate

Set(u) & (a≤m → ∃v⊆pu (Pair[a,p,v] & v ε u)) &

 & (b≤m → ∃v⊆pu (Pair[b,q,v] & v ε u)) &

 & ∀z<m ∀u1,u2,v1 (Pair[z,u1,v1] & v1 ε u & F1(z,u1,u2) →

 → ∃v2⊆pu (Pair[z*a,u2,v2] & v2 ε u)) &

 & ∀z<m ∀u1,u2,v1 (Pair[z,u1,v1] & v1 ε u & F2(z,u1,u2) →

 → ∃v2⊆pu (Pair[z*b,u2,v2] & v2 ε u)) &

& ∀z,u1,u2,v1,v2 (Pair[z,u1,v1] & Pair[z,u2,v2] & v1 ε u & v2 ε u →

 → u1=u2 & v1=v2).

Let (C1)-(C6) be the successive conjuncts that make up Comp(u,m,x). Then

(C4) and (C5) express the usual conditions that a sequence code u should

satisfy to represent the course of a recursion. The last clause, (C6), is a

uniqueness condition. Then Comp(u,m) means, roughly, that u is a set code

58

for a computation determined by p, q, F1,F2, in at least m steps where the

length indices m are strings ordered by the tree-like ordering ≤.

Let MinComp(u,m) abbreviate

 Comp(u,m) & ∀u’ (Comp(u’,m) → ∀y (y ε u → y ε u’)) &

 & ∀z,v,w (Pair[z,v,w] & w ε u → (m=a & z=a) v (m=b & z=b) v

 v ∃n<m (z≤na v z≤nb)).

Let J(m) abbreviate

 I(m) & ∃!y∊I ∃u∊I ∃w⊆pu (MinComp(u,m) & Pair[m,y,w] & w ε u).

Finally, let H(m,y) abbreviate

 ∃u,w (MinComp(u,m) & Pair[m,y,w] & w ε u).

Let (C1)-(C6) be the successive conjuncts that make up Comp(u,m). Then

(C4) and (C5) express the usual conditions that a sequence code u should

satisfy to represent the course of a recursion. The last clause, (C6), is a

uniqueness condition.

59

The proof consists of ten claims.

Claim 1: QT+ ⊢ J(a).

By the principal hypothesis, QT+ ⊢ I(p).

By the Pairing Lemma, QT+ ⊢ ∃!w∊I Pair[a,p,w].

By the Shortest Non-Occurrent Tally Lemma, M ⊧ ∃!t∊I MinMax+Tb(t,awa).

⇒ M ⊧ Max+Tb(t,awa).

Let u=tawat.

Then M ⊧ I(u).

⇒ M ⊧ Firstf(u,t,awa,t) & Lastf(u,t,awa,t),

⇒ by the Singleton Lemma, M ⊧ Set(u) & ∀z (z ε u ⟷ z=w),

⇒ M ⊧ Set(u) & Pair[a,p,w] & w ε u,

which suffices to establish parts (C1) and (C2) of M ⊧ Comp(u,a).

Since QT+ ⊢ ¬(b≤a) and QT+ ⊢ ∀z ¬(z<a), parts (C3)-(C5) hold

trivially.

For (C6), assume that

 M ⊧ Pair[z,u1,v1] & Pair[z,u2,v2] & v1 ε u & v2 ε u.

⇒ by choice of u, M ⊧ v1=v2,

⇒ since M ⊧ v1⊆pu & I(u), M ⊧ I(v1),

⇒ M ⊧ Pair[z,u1,v1] & Pair[z,u2,v1],

⇒ by the Pairing Lemma, M ⊧ u1=u2,

⇒ M ⊧ u1=u2 & v1=v2, as required.

60

This completes the argument that M ⊧ Comp(u,a). We now move on to show

that M ⊧ MinComp(u,a).

Assume now that M ⊧ Comp(v,a).

Then M ⊧ ∃w1⊆pv (Pair[a,p,w1] & w1 ε v) .

⇒ M ⊧ Pair[a,p,w] & Pair[a,p,w1],

⇒ by the Pairing Lemma, M ⊧ w=w1,

⇒ M ⊧ w ε v.

Assume now that M ⊧ y ε u.

⇒ from M ⊧ ∀z (z ε u ⟷ z=w), M ⊧ y=w,

⇒ M ⊧ y ε v.

Thus we proved that M ⊧ Comp(v,a) → ∀y(y ε u → y ε v).

To complete the argument that M ⊧ MinComp(u,a), assume that

 M ⊧ Pair[z1,v1,w1] & w1 ε u.

⇒ from M ⊧ ∀z (z ε u ⟷ z=w), M ⊧ w1=w,

⇒ M ⊧ Pair[a,p,w] & Pair[z1,v1,w],

⇒ by the Pairing Lemma, M ⊧ z1=a & v1=p.

Therefore we also have

 M ⊧ ∀z1,v1,w1 (Pair[z1,v1,w1] & w1 ε u → (a=a & z1=a) v (a=b & z1=b) v

 v ∃n<a ((z1≤na v z1≤nb))).

So we finally have that M ⊧ MinComp(u,a).

In fact, we obtained

M ⊧ ∃!y∊I ∃u∊I ∃w⊆pu (MinComp(u,a) & Pair[a,y,w] & w ε u).

61

So M ⊧ J(a).

Claim 2: QT+ ⊢ J(b).

From the proof of QT+ ⊢ J(a) we have that

 M ⊧ ∃!w1∊I (Pair[a,p,w1] & ∃!t1∊I MinMax+Tb(t1,aw1a)).

Arguing exactly analogously, we obtain that

 M ⊧ ∃!w2∊I (Pair[b,q,w2] & ∃!t2∊I MinMax+Tb(t2,aw2a)).

⇒ since QT+ ⊢ a≠b, from M ⊧ Pair[a,p,w1] & Pair[b,q,w2], by the Pairing

Lemma, M ⊧ w1≠w2.

Let u’=t1aw1a(t1t2)aw2a(t1t2). Then M ⊧ I(u’).

⇒ by the proof of Doubleton Lemma,

 M ⊧ Env(t1t2,u’) & ∀w (w ε u’ ⟷ w=w1 v w=w2).

On the other hand, by the principal hypothesis,

 M ⊧ ∃!u3∊I F1(a,u1,u3) and M ⊧ ∃!u4∊I F2(a,u1,u4).

Just as above, we then obtain

 M ⊧ ∃!w3∊I (Pair[aa,u3,w3] & ∃!t3∊I MinMax+Tb(t3,aw3a))

and M ⊧ ∃!w4∊I (Pair[ab,u4,w4] & ∃!t4∊I MinMax+Tb(t4,aw4a)).

Then, just as above, we again have that M ⊧ w3≠w4, and, further, that

 M ⊧ w1≠w3 & w1≠w4 & w2≠w3 & w2≠w4.

Letting u”=(t1t2t3)aw3a(t1t2t3t4)aw4a(t1t2t3t4), we likewise have that

M ⊧ I(u”) and M ⊧ Env(t1t2t3t4,u”) & ∀w (w ε u” ⟷ w=w3 v w=w4).

Since

62

 M ⊧ Env(t1t2,u’) & Env(t1t2t3t4,u”) & (t1t2t3a)Bu” &

 & Tallyb(t1t2t3) & ¬∃w(w ε u’ & w ε u”),

it follows by the proof of Appending Lemma, that for

 u=t1aw1a(t1t2)aw2a(t1t2t3)aw3a(t1t2t3t4)aw4a(t1t2t3t4),

we have M ⊧ Env(t1t2t3t4,u) & ∀w (w ε u ⟷ w ε u’ v w ε u”).

Hence

 M ⊧ Set(u) & ∀w (w ε u ⟷ w=w1 v w=w2 v w=w3 v w=w4).

So (C1) holds.

Now, we have that

 M ⊧ ∃w1⊆pu (Pair[a,p,w1] & w1 ε u)

and M ⊧ ∃w2⊆pu (Pair[b,q,w2] & w2 ε u).

Since QT+ ⊢ a≤b, this suffices to establish (C2) and (C3) of M ⊧ Comp(u,b).

Since QT+ ⊢ ∀z(z<b → z=a), and M ⊧ w3 ε u & w4 ε u, we have from the

choices of w3 and w4, that (C4) and (C5) of M ⊧ Comp(u,b) also hold.

For (C6), assume that

 M ⊧ Pair[z,s1,v1] & Pair[z,s2,v2] & v1 ε u & v2 ε u.

⇒ M ⊧ (v1=w1 v v1=w2 v v1=w3 v v1=w4) &

 & (v2=w1 v v2=w2 v v2=w3 v v2=w4).

Suppose, for a reductio that M ⊧ v1≠v2, say M ⊧ v1=w1 & v2=w2.

⇒ M ⊧ Pair[z,s1,w1] & Pair[z,s2,w2].

But we have that M ⊧ Pair[a,p,w1] & Pair[b,q,w2].

63

⇒ by the Pairing Lemma, M ⊧ z=a & z=b, a contradiction.

Similarly for the other choice of for v1 and v2 from u.

Therefore M ⊧ v1=v2, and (C6) of M ⊧ Comp(u,b) also holds.

Assume now that M ⊧ Comp(v,b).

Then

 M ⊧ ∃p1⊆pv (Pair[a,p,p1] & p1 ε v), and

 M ⊧ ∃p2⊆pv (Pair[b,q,p2] & p2 ε v), and

 M ⊧ ∃v3,p3⊆pv (F1(a,v1,v3) & I(v3) & Pair[aa,v3,p3] & p3 ε v), and

 M ⊧ ∃v4,p4⊆pv (F2(a,v1,v4) & I(v4) & Pair[ab,v4,p4] & p4 ε v).

From the principal hypothesis, it follows that

 M ⊧ v3=u3 & v4=u4.

⇒ M ⊧ Pair[a,p,w1] & Pair[a,p,p1] and M ⊧ Pair[b,q,w2] & Pair[b,q,p2]

and M ⊧ Pair[aa,u3,w3] & Pair[aa,u3,p3] and M ⊧ Pair[ab,u4,w4] & Pair[ab,u4,p4],

⇒ by the Pairing Lemma, M ⊧ w1=p1 & w2=p2 & w3=p3 & w4=p4,

⇒ from M ⊧ w1 ε u & w2 ε u & w3 ε u & w4 ε u,

 M ⊧ w1 ε v & w2 ε v & w3 ε v & w4 ε v.

Assume now that M ⊧ y ε u.

⇒ M ⊧ y=w1 v y=w2 v y=w3 v y=w4,

⇒ M ⊧ y ε v.

Thus M ⊧ Comp(v,b) → ∀y(y ε u → y ε v).

Finally, assume that

 M ⊧ Pair[z,s,w] & w ε u.

64

⇒ M ⊧ w=w1 v w=w2 v w=w3 v w=w4,

⇒ M ⊧ Pair[z,s,w1] v Pair[z,s,w2] v Pair[z,s,w3] v Pair[z,s,w4].

But we have

 M ⊧ Pair[a,p,w1] & Pair[b,q,w2] & Pair[aa,u3,w3] & Pair[ab,u4,w4].

⇒ by the Pairing Lemma, M ⊧ z=a v z=b v z=aa v z=ab.

We have that M ⊧ a<b.

Hence, from M ⊧ m=b, since M ⊧ a≤ab & aa≤aa & ab≤ab, it follows that

 M ⊧ (m=b & z=b) v ∃n<b (z≤na v z≤nb)

whence M ⊧ (m=a & z=a) & (m=b & z=b) v ∃n<b (z≤na v z≤nb),

as required.

This completes the argument that M ⊧ MinComp(u,b).

Claim 3: QT+ ⊢ ∀x (J(x) → J(Sx)).

Assume that M ⊧ J(m).

⇒ M ⊧ I(m),

⇒ since I is a string form, M ⊧ I(Sm).

We need to show that

 M ⊧ ∃!y∊I ∃u∊I ∃w⊆pu (MinComp(u,Sm) & Pair[Sm,y,w] & w ε u).

If M ⊧ Sm=b, what we need was proved in Claim 2.

So we may assume M ⊧ ¬Sm=b. Then M ⊧ ¬m=a.

From the hypothesis M ⊧ J(m) we have that

 M ⊧ ∃!y∊I ∃u∊I ∃w⊆pu (MinComp(u,m) & Pair[m,y,w] & w ε u).

65

Let u0 be a u in M such that M ⊧ I(u) & Set(u) & MinComp(u,m,x).

Let y0 be the unique y in M such that

 M ⊧ ∃w⊆pu0 (Pair[m,y,w] & w ε u0).

⇒ since M ⊧ I(m) & I(y0), by the Pairing Lemma, M ⊧ ∃!w⊆pu0 Pair[m,y,w].

Let w0 be the unique such w in M.

From M ⊧ MinComp(u0,m), M ⊧ Comp(u0,m).

⇒ M ⊧ Set(u0),

⇒ since M ⊧ w0 ε u0, M ⊧ ∃t⊆pu0 Env(t,u0).

Here t uniquely depends on u0. (See [2], (4.24b).) Since the string form I

is downward closed w.r. to ⊆p, from M ⊧ I(u0) we have that M ⊧ I(t).

From the principal hypothesis of the Theorem we have that

(†) M ⊧ ∃!v1∊I F1(m,y0,v1) and M ⊧ ∃!v2∊I F2(m,y0,v2).

⇒ by the Pairing Lemma,

 M ⊧ ∃!w1∊I (Pair[ma,v1,w1] & ∃!t1∊I MinMax+Tb(t1,aw1a)) and

 M ⊧ ∃!w2∊I (Pair[mb,v2,w2] & ∃!t2∊I MinMax+Tb(t2,aw2a)).

Then, analogously to the proof of QT+ ⊢ J(b) above, we obtain, for

 u’ = tt1aw1a(tt1t2)aw2a(tt1t2),

that M ⊧ I(u’) & Env(tt1t2,u’) & ∀w(w ε u’ ↔ w=w1 v w=w2).

From M ⊧ MinComp(u0,m), we readily verify that

 M ⊧ ¬(w1 ε u0) & ¬(w2 ε u0).

Then, since

 M ⊧ Env(t,u0) & Env(tt1t2,u’) & (tt1t2a)Bu’ & Tallyb(tt1t2) &

66

 & ¬∃w(w ε u0 & w ε u’),

by the proof of Appending Lemma, for

 u=u0t1aw1a(tt1t2)aw2a(tt1t2t3),

we have M ⊧ Env(tt1t2) & ∀w (w ε u ⟷ w ε u0 v w ε u’).

Hence

 M ⊧ Set(u) & ∀w (w ε u ⟷ (w ε u0 v w=w1 v w=w2)).

So (C1) holds.

Note that, since the string form I is closed under *, from

 M ⊧ I(u0) & I(t1) & I(w1) & I(t) & I(t2) & I(w2)

we have M ⊧ I(u).

We now proceed to argue that M ⊧ Comp(u,Sm).

It is straightforward to verify from M ⊧ Comp(u0,m) and the choice of u that

 M ⊧ ∃q1⊆pu (Pair[a,p,q1] & q1 ε u) and M ⊧ ∃q2⊆pu (Pair[b,q,q2] & q2 ε u)

so that (C2) and (C3) of M ⊧ Comp(u,Sm) both hold.

For (C4), let M ⊧ z<Sm & Pair[z,u1,v3] & v3 ε u & F1(z,u1,u2) where

M ⊧ u1,u2,v3⊆pu.

We need to show that M ⊧ ∃v⊆pu (Pair[z*a,u2,v] & v ε u).

From M ⊧ z<Sm, M ⊧ z<m v z=m.

Suppose M ⊧ z<m.

We have that M ⊧ v3 ε u.

Using the Pairing Lemma and the definition of <, we verify that

 M ⊧ v3≠w1 and M ⊧ v3≠w2.

67

⇒ from M ⊧ v3 ε u, M ⊧ v3 ε u0,

⇒ M ⊧ u1⊆pu0.

Then, from M ⊧ Pair[z,u1,v3] & v3 ε u0 & F1(z,u1,u2) and M ⊧ Comp(u0,m),

we have that M ⊧ ∃v⊆pu0 (Pair[z*a,u2,v] & v ε u0),

whence M ⊧ ∃v⊆pu (Pair[z*a,u2,v] & v ε u), as required.

Suppose M ⊧ z=m.

Again, we are assuming that M ⊧ Pair[z,u1,v3] & v3 ε u & F1(z,u1,u2) where

M ⊧ u1,u2,v3⊆pu. Hence M ⊧ I(u2).

Just as above, M ⊧ v3 ε u0.

On the other hand, we also have that M ⊧ ∃w⊆pu (Pair[m,y0,w] & w ε u0),

⇒ from M ⊧ Pair[m,u1,v3] & v3 ε u0 and clause (C6) of M ⊧ Comp(u0,m),

 M ⊧ y0=u1 & v3=w,

⇒ from M ⊧ F1(m,u1,u2) & I(u2) and (†), M ⊧ v1=u2.

But then, from M ⊧ Pair[ma,v1,w1], we have

 M ⊧ Pair[ma,u2,w1] & w1 ε u,

where M ⊧ w1⊆pu, as required.

Hence (C4) of M ⊧ Comp(u,Sm) also holds.

For (C5), we argue in exactly the same way, except that references to F1, z*a

and w1 are replaced by F2, z*b and w2.

Condition (C6) is verified using the corresponding condition from

M ⊧ Comp(u0,m) and the Pairing Lemma.

We now proceed to show that in fact M ⊧ MinComp(u,Sm).

68

Suppose that M ⊧ Comp(v’,Sm).

First, we want to show that M ⊧ ∀y(y ε v’ → y ε u).

From M ⊧ Comp(v’,Sm) we have that M ⊧ Comp(v’,m).

From the hypothesis M ⊧ J(m) we have that M ⊧ MinComp(u0,m).

⇒ M ⊧ ∀y(y ε u0 → y ε v’).

From M ⊧ J(m) we also have that M ⊧ Pair[m,y0,w0] & w0 ε u0.

⇒ M ⊧ w0 ε v’.

But then, since, by (†), M ⊧ F1(m,y0,v1) & F2(m,y0,v2),

we have, from (C4) and (C5) of M ⊧ Comp(v’,Sm) that

 M ⊧ w1 ε v’ & w2 ε v’

where M ⊧ Pair[m*a,v1,w1] & Pair[m*b,v2,w2].

So we have that M ⊧ ∀y(y ε u0 → y ε v’) & w1 ε v’ & w2 ε v’.

But then from, the choice of u, it follows that

 M ⊧ ∀y(y ε u → y ε v’),

as required.

Suppose now that M ⊧ Pair[z,v,w] & w ε u.

⇒ M ⊧ w ε u0 v w=w1 v w=w2.

If M ⊧ w ε u0, then from M ⊧ MinComp(u0,m), we have that

 M ⊧ (m=a & z=a) & (m=b & z=b) v ∃n<m (z≤na v z≤nb).

But then M ⊧ (m=a & z=a) & (m=b & z=b) v ∃n<Sm (z≤na v z≤nb).

If M ⊧ w=w1, we have that M ⊧ z=ma, whence

 M ⊧ ∃n<Sm z≤na.

69

Hence M ⊧ (m=a & z=a) & (m=b & z=b) v ∃n<Sm (z≤na v z≤nb),

as required.

An analogous argument applies if M ⊧ w=w2.

This suffices to establish M ⊧ MinComp(u,Sm).

Now, we have that

 M ⊧ ∃!w2∊I (MinComp(u,Sm) & Pair[Sm,v2,w2] & w2 ε u).

Suppose that M ⊧ MinComp(u,Sm) & Pair[Sm,y,w2] & w2 ε u where M ⊧ I(y).

⇒ from M ⊧ Pair[Sm,v2,w2] & I(w2), we have, by the Pairing Lemma, that

 M ⊧ v2=y.

So we have actually established that

 M ⊧ ∃!y∊I ∃u∊I ∃w⊆pu (MinComp(u,Sm) & Pair[Sm,y,w] & w ε u),

and hence that M ⊧ J(Sm).

This completes the proof of Claim 3.

Claim 4: QT+ ⊢ ∀x (J(x) → J(x*a)).

Exactly analogous to the proof of Claim 3.

Claims 1-4 establish that J is a string form.

 Claim 5: QT+ ⊢ ∀y∊I (H(a,y) ⟷ y=p).

Let M ⊧ I(y).

Assume M ⊧ y=p.

As shown in the proof of Claim 1, in M there is a u, namely, u=tawat, such that

70

 M ⊧ Pair[a,p,w] & w ε u.

Then, again as shown in the proof of Claim 1, we have that

 M ⊧ MinComp(u,a) & Pair[a,p,w] & w ε u),

whence M ⊧ H(a,p), so M ⊧ H(a,y).

Thus, M ⊧ y=p → H(x,a,y).

Conversely, let M ⊧ H(a,y).

⇒ by definition of H, M ⊧ ∃u,w (MinComp(u,a) & Pair[a,y,w] & w ε u),

⇒ M ⊧ Comp(u,a),

⇒ from (C2), M ⊧ ∃v (Pair[a,p,v] & v ε u),

⇒ from M ⊧ Pair[a,y,w] & Pair[a,p,v] & w ε u & v ε u, and clause (C6) of

M ⊧ Comp(u,a), M ⊧ y=p.

Hence also M ⊧ H(a,y) → y=p).

This completes the proof of Claim 5.

Claim 6: QT+ ⊢ ∀y∊I (H(b,y) ⟷ y=q).

Let M ⊧ I(y).

Assume M ⊧ y=q.

We follow the proof of Claim 2 to obtain a u in M such that

 M ⊧ Pair[b,u2,w] & w ε u,

where M ⊧ MinComp(u,b) & Pair[b,u2,w] & w ε u).

Then M ⊧ H(b,y).

71

This shows that M ⊧ y=q → H(b,y).

To establish the converse, that M ⊧ H(b,y) → y=q, we argue analogously

to the proof in Claim 5.

Claim 7: QT+ ⊢ ∀y∊J ∀v,z∊I (H(y,v) → (F1(y,v,z) → H(y*a,z))).

Let M ⊧ J(y) and M ⊧ I(v) & I(z).

Suppose M ⊧ H(y,v) & F1(y,v,z).

⇒ from M ⊧ J(y),

 M ⊧ ∃u0∊I ∃w⊆pu (MinComp(u0,y) & Pair[y,v,w] & w ε u0).

We then obtain, exactly analogously to the proof of Claim 3, a u in M such that

 M ⊧ ∃w1 (MinComp(u,y*a) & Pair[y*a,z,w1] & w1 ε u),

whence M ⊧ H(y*a,z) follows.

This completes the argument for Claim 7.

Claim 8: QT+ ⊢ ∀y∊J ∀v,z∊I (H(y,v) & H(y*a,z) → F1(y,v,z)).

Assume that M ⊧ H(y,v) & H(y*a,z) where M ⊧ J(y) and M ⊧ I(v) & I(z).

From the hypothesis M ⊧ H(y,v) we have that

 M ⊧ ∃u0,w0 (MinComp(u0,y) & Pair[y,v,w0] & w0 ε u0).

From the principal hypothesis of the Theorem we have

72

 QT+ ⊢ ∃!z’∊I F1(y,v,z’).

We then obtain, exactly analogously to the proof of Claim 3, a u in M such that

 M ⊧ ∃w1 (MinComp(u,y*a) & Pair[y*a,z’,w1] & w1 ε u).

On the other hand, from the hypothesis M ⊧ H(y*a,z), we have that

 M ⊧ ∃u’,w’ (MinComp(u’,y*a) & Pair[y*a,z’,w’] & w’ ε u’).

Now, we have that, in general

 QT+ ⊢ MinComp(u1,m) & MinComp(u2,m) → ∀w (w ε u1 ⟷ w ε u2).

From M ⊧ MinComp(u,y*a) & MinComp(u’,y*a) & w’ ε u’ , M ⊧ w’ ε u.

⇒ from M ⊧ Comp(u,y*a) & Pair[y*a,z,w’] & Pair[y*a,z’,w1] & w1 ε u,

 M ⊧ z=z’,

⇒ M ⊧ F1(y,v,z), as required.

This completes the proof of Claim 8.

Claim 9: QT+ ⊢ ∀y∊J ∀v,z∊I (H(y,v) → (F2(y,v,z) → H(y*b,z))).

Claim 10: QT+ ⊢ ∀y∊J ∀v,z∊I (H(y,v) & H(y*b,z) → F2(y,v,z)).

These two claims are proved exactly analogously to Claims 8 and 9.

From the definition of the string form J we have

 M ⊧ ∀m∊J ∃!y∊I ∃u∊I ∃w⊆pu (MinComp(u,m) & Pair[m,y,w] & w ε u).

So from the definition of H we have

73

 (i) QT+ ⊢ ∀m∊J ∃!y∊I H(m,y).

From Claims 5 and 6 we have

 (iia) QT+ ⊢ ∀y∊I (H(a,y) ⟷ y=p),

and

 (iib) QT+ ⊢ ∀y∊I (H(b,y) ⟷ y=q).

From Claim 7 and 8 we have

 (iiia) QT+ ⊢ ∀y∊J ∀v,z ∊ I (H(y,v) → (H(y*a,z) → F1(y,v,z))),

and, from Claims 9 and 10, we obtain

 (iiib) QT+ ⊢ ∀y∊J ∀v,z ∊ I (H(y,v) → (H(y*b,z) → F2(y,v,z))).

This concludes the proof of the Theorem.■

5.2(a) For any string form I⊆Iα and I⊆IAdd there is a string form J ≡ IAddα ⊆I

 such that

 QT+ ⊢ ∀x,y ∊ J ∀u,v,w (A#(x,u) & A#(y,v) & AddTally(u,v,w) → A#(x*y,w)).

Proof: Let J(y) abbreviate

 I(y) & ∀x ∊ I ∀u,v,w (A#(x,u) & A#(y,v) & AddTally(u,v,w) → A#(x*y,w)).

Since I may be assumed to be closed under * and downward closed under ≤,

we may assume that I is closed under AddTally, α and β.

We argue that J is a string form.

74

For y=a, we have that M ⊧ I(a).

Assume M ⊧ A#(x,u) & A#(y,v) & AddTally(u,v,w) where M ⊧ I(x).

Then M ⊧ A#(a,v), whence, by (iiaα), M ⊧ v=bb.

From M ⊧ A#(x,u), M ⊧ Tallyb(u).

Then M ⊧ AddTally(u,bb,w), and by 3.4(d), M ⊧ AddTally(u,bb,Su).

By single-valuedness of AddTally, M ⊧ w=Su.

On the other hand, by (iα), M ⊧ ∃!w’ ∊ I A#(x*a,w’).

From M ⊧ A#(x,u), by (iiiaα), M ⊧ w’=u*b, and from M ⊧ Tallyb(u),

M ⊧ w’=Su. Hence M ⊧ A#(x*a,Su).

Then from M ⊧ w=Su, M ⊧ A#(x*a,w), as required.

For y=b, again we have M ⊧ I(b).

Assume M ⊧ A#(x,u) & A#(y,v) & AddTally(u,v,w) where M ⊧ I(x).

Then M ⊧ A#(b,v). By (iibα), M ⊧ v=b, so M ⊧ AddTally(u,b,w).

By definition of AddTally, M ⊧ w=u.

By (iα), M ⊧ ∃!w’ ∊ I A#(x*b,w’).

Hence from M ⊧ A#(x,u), by (iiibα), M ⊧ w’=u. Thus M ⊧ A#(x*b,u).

But then from M ⊧ w=u, M ⊧ A#(x*b,w), as required.

Suppose now that M ⊧ J(y).

Then M ⊧ I(y), whence M ⊧ I(y*a) because I is a string concept.

Assume now that M ⊧ A#(x,u) & A#(y*a,v) & AddTally(u,v,w)

where M ⊧ I(x).

Then M ⊧ Tallyb(u) . By (iα), M ⊧ ∃!v0 ∊ I (Tallyb(v0) & A#(y,v0)).

75

From M ⊧ A#(y*a,v), by (iiiaα), M ⊧ v=v0*b.

By 3.5(a), M ⊧ ∃!w0 ∊ I AddTallyb(u,v0,w0).

Hence from M ⊧ A#(x,u) and hypothesis M ⊧ J(y), M ⊧ A#(x*y,w0).

From M ⊧ AddTally(u,v,w), M ⊧ AddTally(u,v0*b ,w).

But since M ⊧ Tallyb(u) & Tallyb(v0), from M ⊧ AddTallyb(u,v0,w0), by 3.4(e),

 M ⊧ AddTallyb(u,v0*b,w0*b).

Then by single-valuedness of AddTally, M ⊧ w=w0*b.

Since M ⊧ I(y*a), we have from M ⊧ I(x), by (iα), that

 M ⊧ ∃!w’ ∊ I A#(x*(y*a),w’).

But M ⊧ x*(y*a)=(x*y)*a. Hence M ⊧ A#((x*y)*a,w’).

From M ⊧ A#(x*y,w0), by (iiiaα), M ⊧ w’=w0*b, and from M ⊧ w=w0*b=w’,

 M ⊧ w=w’.

But then from M ⊧ A#(x*(y*a),w’), M ⊧ A#(x*(y*a),w), as required.

Therefore, M ⊧ J(y*a).

On the other hand, for yb, we again have, from M ⊧ I(y), that M ⊧ I(y*b).

Assume that M ⊧ A#(x,u) & A#(y*b,v) & AddTally(u,v,w) where M ⊧ I(x).

By (iα), M ⊧ ∃!v0 ∊ I A#(y,v0).

Then from M ⊧ A#(y*b,v), by (iiibα), M ⊧ v=v0.

By 3.5(a), M ⊧ ∃!w0 ∊ I AddTally(u,v0,w0). So M ⊧ AddTally(u,v,w0).

Then from M ⊧ AddTally(u,v,w), by single-valuedness of AddTally,

 M ⊧ w=w0.

From hypothesis M ⊧ J(y), M ⊧ A#(x*y,w0).

76

Since M ⊧ I(y*b), we have from M ⊧ I(x), by (iα), that

 M ⊧ ∃!w’ ∊ I A#(x*(y*b),w’).

But M ⊧ x*(y*b)=(x*y)*b. So M ⊧ A#((x*y)*b,w’).

But since M ⊧ I(x*y), from M ⊧ A#(x*y,w0), by (iiibα), M ⊧ w’=w0*.

So from M ⊧ w’=w0=w, M ⊧ w’=w.

But then from M ⊧ A#(x*(y*b),w’), M ⊧ A#(x*(y*b),w), as required.

Therefore, M ⊧ J(y*b), which completes the argument that J is a string

form. Then the claim follows immediately.■

6.1(a) QT+ ⊢ I*(x) & x2Ex → ∀u,v (A#(x2,u) & B#(x2,v) → Sv≤u).

(b) QT+ ⊢ I*(x) & I*(y) & z=bxy → I*(z).

(c) QT+ ⊢ I*(x) & I*(u) & bxy=buv → x=u & y=v.

(d) QT+ ⊢ I*(x) → (x⊆pa ⟷ x=a).

(e) QT+ ⊢ I*(x) & I*(y) & I*(z) → (x⊆pbyz ↔ x=byz v x⊆py v x⊆pz).

Proof: (a) Assume M ⊧ A#(x2,u) & B#(x2,v) where M ⊧ x2Ex and M ⊧ I*(x).

Then M ⊧ ∃x1 x=x1x2 & x≠a, that is, M ⊧ x1Bx.

From M ⊧ I*(x), M ⊧ J*(x) & I*(x1) & Æ(x) , and also M ⊧ J*(x1).

By (iα) and (iβ), M ⊧ ∃!v1 ∊ J* A#(x1,v1) & ∃!w1 ∊ J* B#(x1,w1).

Now, from M ⊧ Æ(x), M ⊧ v1≤w1.

Also from (iα), M ⊧ ∃!y ∊ J* A#(x,y), and from (iβ), M ⊧ ∃!z ∊ J* B#(x,z),

and we have that M ⊧ A#(x1*x2,y) & B#(x1*x2,z).

77

On the other hand, since also M ⊧ J*(x2), again by (iα) and (iβ) we have

 M ⊧ ∃!v2 ∊ J* A#(x2,v2) & ∃!w2 ∊ J* B#(x2,w2).

By 3.5(a), M ⊧ ∃!z1 ∊ J*(Tallyb(z1) & AddTally(v1,v2,z1))

and M ⊧ ∃!z2 ∊ J*(Tallyb(z2) & AddTally(w1,w2,z2)).

Now, from M ⊧ A#(x1,v1) & A#(x2,v2), by 5.2(a),

 M ⊧ A#(x1*x2,z1),

and from M ⊧ B#(x1,w1) & B#(x2,w2), by 5.2(b),

 M ⊧ B#(x1*x2,z2).

On the other hand, from M ⊧ Æ(x) & A#(x,y) & B#(x,z), M ⊧ y=Sz.

So from M ⊧ x=x1x2, M ⊧ A#(x,z1) & B#(x,z2).

Then since M ⊧ J*(z1) & J*(z2), M ⊧ z1=y & z2=z, and from M ⊧ y=Sz,

 M ⊧ z1=Sz2.

Hence from M ⊧ AddTally(v1,v2,z1) & AddTally(w1,w2,z2)) & v1≤w1,

by 3.5(i), M ⊧ Sw2≤v2.

From the uniqueness of v2,w2 we have that M ⊧ Sv≤u, as required.

(b) Assume M ⊧ z=bxy where M ⊧ I*(x) & I*(y).

Then M ⊧ J*(x) & J*(y), and since J* is a string form closed under *,

M ⊧ J*(bxy).

From M ⊧ I*(x) & I*(y), we have that M ⊧ Æ(x) & Æ(y). It suffices to show

that M ⊧ Æ(z).

We proceed to show conditions (c1) and (c2) hold.

78

By (iα) and (iβ), M ⊧ ∃!v1 ∊ J* A#(x,v1) & ∃!v2 ∊ J* B#(x,v2)

and M ⊧ ∃!w1 ∊ J* A#(y,w1) & ∃!w2 ∊ J* B#(y,w2).

From M ⊧ Æ(x) & Æ(y) we have M ⊧ v1=Sv2 & w1=Sw2.

Again by (iα) and (iβ) we have

 M ⊧ ∃!u1 ∊ J* A#(z,u1) & ∃!u2 ∊ J* B#(z,u2).

Then M ⊧ A#(b(xy),u1) & B#(b(xy),u2).

By (iibα) and (iibβ) we have M ⊧ A#(b,b) & B#(b,bb).

Once again by (iα) and (iβ),

 M ⊧ ∃!v3 ∊ J* A#(xy,v3) & ∃!v4 ∊ J* B#(xy,v4).

By 3.5(a), M ⊧ ∃!p1 ∊ J*(Tallyb(p1) & AddTally(b,v3,p1))

and M ⊧ ∃!p2 ∊ J*(Tallyb(p2) & AddTally(bb,v4,p2)).

Then from M ⊧ A#(b,b), by 5.2(a), M ⊧ A#(b(xy),p1),

and from M ⊧ B#(b,bb), by 5.2(b), M ⊧ B#(b(xy),p2).

By 3.4(c), M ⊧ AddTally(b,v3,v3), whence from M ⊧ AddTally(b,v3,p1), by

 single-valuedness of Addtally,

 M ⊧ p1=v3.

By 3.5(c), M ⊧ AddTally(bb,v4,Sv4), hence from M ⊧ AddTally(bb,v4,p2), by

single-valuedness of Addtally,

 M ⊧ p2=Sv4.

By 3.5(a), M ⊧ ∃!q1 ∊ J*(Tallyb(q1) & AddTally(v1,w1,q1))

and M ⊧ ∃!q2 ∊ J*(Tallyb(q2) & AddTally(v2,w2,q2)).

Then from M ⊧ A#(x,v1) & A#(y,w1), by 5.2(a),

79

 M ⊧ A#(xy,q1),

and from M ⊧ B#(x,v2) & B#(y,w2), by 5.2(b),

 M ⊧ B#(xy,p2),

Hence from M ⊧ A#(xy,v3) & B#(xy,v4), by single-valuedness of A# and B#,

 M ⊧ q1=v3 & q2=v4.

But from M ⊧ A#(b(xy),u1) & A#(b(xy),p1), by single-valuedness of A#,

 M ⊧ u1=p1,

and from M ⊧ z=b(xy) & u1=p1=v3=q1, M ⊧ A#(z,q1).

Also, from M ⊧ B#(b(xy),u2) & B#(b(xy),p2), by single-valuedness of B#,

 M ⊧ u2=p2.

Then from M ⊧ z=b(xy) & u2=p2=Sv4=Sq2, M ⊧ B#(z,Sq2).

Now, from M ⊧ AddTally(v1,w1,q1) & v1=Sv2 & w1=Sw2 we have

 M ⊧ AddTally(Sv2,Sw2,q1).

On the other hand, from M ⊧ AddTally(v2,w2,q2), by 3.5(d),

 M ⊧ AddTally(Sv2,w2,Sq2).

By 3.4(e), M ⊧ AddTally(Sv2,Sw2,SSq2).

But then from M ⊧ AddTally(Sv2,Sw2,q1) by single-valuedness of Addtally,

 M ⊧ q1=SSq2.

Since M ⊧ A#(z,q1) & B#(z,Sq2), this suffices to establish (c1).

For (c2), assume M ⊧ uBz & A#(u,v1) & B#(u,v2).

Then M ⊧ uBb(xy), and by 3.7(c),

80

 M ⊧ u=b v uBbx v u=bx v ∃y1(y1Bu & u=bxy1).

 (1) M ⊧ u=b.

By (iibα) and (iibβ), M ⊧ A#(b,b) & B#(b,bb).

Then M ⊧ A#(u,b) & B#(u,bb), and by single-valuedness of A# and B#,

 M ⊧ v1=b & v2=bb.

But then M ⊧ v1≤v2, as required.

 (2) M ⊧ uBbx.

Then M ⊧ ∃x1(x1Bx & u=bx1).

By (iα) and (iβ), M ⊧ ∃!u1 ∊ J* A#(x1,u1) & ∃!u2 ∊ J* B#(x1,u2).

From M ⊧ Æ(x), M ⊧ u1≤u2.

By (iibα) and (iibβ), M ⊧ A#(b,b) & B#(b,bb).

By 3.5(a), M ⊧ ∃!p1 ∊ J*(Tallyb(p1) & AddTally(b,u1,p1))

and M ⊧ ∃!p2 ∊ J*(Tallyb(p2) & AddTally(bb,u2,p2)),

Then by 5.2(a), M ⊧ A#(bx1,p1), and by 5.2(b), M ⊧ B#(bx1,p2).

By 3.4(c), M ⊧ AddTally(b,u1,u1),

By 3.5(c), M ⊧ AddTally(bb,u2,Su2).

Hence from M ⊧ AddTally(b,u1,p1) & AddTally(bb,u2,p2),

by single-valuedness of Addtally, M ⊧ p1=u1 & p2=Su2.

Now, from M ⊧ u=bx1 & A#(u,v1) & B#(u,v2), we have

 M ⊧ A#(bx1,v1) & B#(bx1,v2).

Then from M ⊧ A#(bx1,p1) & B#(bx1,p2), by single-valuedness of A# and B#,

 M ⊧ v1=p1 & v2=p2,

81

whence M ⊧ v1=u1 & v2=Su2.

But then from M ⊧ u1≤u2 we have that M ⊧ v1=u1<Su2=v2.

By single-valuedness of A# and B#, this suffices to establish (c2) in this case.

 (3) M ⊧ u=bx.

By (iα) and (iβ), M ⊧ ∃!u1 ∊ J* A#(x,u1) & ∃!u2 ∊ J* B#(x,u2).

From M ⊧ Æ(x), M ⊧ u1=Su2.

On the other hand, by (iibα) and (iibβ),

 M ⊧ A#(b,b) & B#(b,bb).

By 3.5(a), M ⊧ ∃!p1 ∊ J*(Tallyb(p1) & AddTally(b,u1,p1))

and M ⊧ ∃!p2 ∊ J*(Tallyb(p2) & AddTally(bb,u2,p2)).

Reasoning exactly as in (2) with bx in place of bx1 we obtain

 M ⊧ v1=u1=Su2=v2.

By single-valuedness of A# and B#, this suffices.

 (4) M ⊧ ∃y1(y1By & u=bxy1).

By (iα) and (iβ), M ⊧ ∃!w1 ∊ J* A#(y1,w1) & ∃!w2 ∊ J* B#(y1,w2).

From M ⊧ Æ(y), M ⊧ w1≤w2.

Also by (iα) and (iβ), M ⊧ ∃!u1 ∊ J* A#(x,u1) & ∃!u2 ∊ J* B#(x,u2).

From M ⊧ Æ(x), M ⊧ u1=Su2.

By 3.5(a), M ⊧ ∃!q1 ∊ J*(Tallyb(q1) & AddTally(u1,w1,q1))

and M ⊧ ∃!q2 ∊ J*(Tallyb(q2) & AddTally(u2,w2,q2)),

We then reason as in (1) with u in place of z and y1 in place of y that

 M ⊧ A#(u,q1) & B#(u,Sq2).

82

From M ⊧ AddTally(u1,w1,q1) & u1=Su2,

 M ⊧ AddTally(Su2,w1,q1).

By 3.5(a), M ⊧ ∃!q3 ∊ J*(Tallyb(q3) & AddTally(Su2,w2,q3)),

whence from M ⊧ w1≤w2, by 3.5(b), M ⊧ q1≤q3.

From M ⊧ AddTally(u2,w2,q2)), by 3.5(d), M ⊧ AddTally(Su2,w2,Sq2).

By single-valuedness of Addtally, M ⊧ q3=Sq2.

Hence M ⊧ q1≤Sq2.

Since M ⊧ A#(u,q1) & B#(u,Sq2), this suffices to establish (c2) given

single-valuedness of A# and B#. This completes the argument for M ⊧ Æ(z).

(c) Assume M ⊧ bxy=buv where M ⊧ I*(x) & I*(u).

Then M ⊧ J*(x) & J*(u) & Æ(x) & Æ(u). By (QT3), M ⊧ xy=uv.

So M ⊧ xB(xy) & uB(xy), and by 3.7(a),

 M ⊧ (x=u & y=v) v xBu v uBx.

Suppose that

 (1) M ⊧ xBu.

By (iα) and (iβ), M ⊧ ∃!x1 ∊ J* A#(x,x1) & ∃!x2 ∊ J* B#(x,x2).

From M ⊧ Æ(u), M ⊧ x1≤x2.

On the other hand, from M ⊧ Æ(x), M ⊧ x1=Sx2.

But then M ⊧ x1≤x2<Sx2=x1, contradicting M ⊧ I0(x1).

Hence (1) is ruled out.

 (2) M ⊧ uBx.

Ruled out exactly analogously to (a).

83

Therefore, M ⊧ x=u & y=v, as required.

(d) is immediate from the definition of ⊆p by (QT2).∎

7.3. WQT* is locally finitely satisfiable.

Proof: Let S be a finite set of axioms of WQT*.

For variable-free terms s, t of ℒ QT,⊑*, let s∼t ⇔ val(s)=val(t), that is, if s, t

represent the same string. E.g.,

 a*(b*(a*b)) ∼ a*((b*a)*b) ∼ (a*b)*(a*b) ∼ ((a*b)*a)*b ∼ (a*(b*a))*b.

∼ being an equivalence relation between terms, we let [t] = { s | t∼s}.

Now, let D = {a,b,t1,…,tn}, where t1,…,tn are all variable-free terms occurring

in S. We let D* = { [t] | t ∊ D}. Since the equivalence classes of terms with

respect to ∼ can be identified with strings, D* consists of a, b and the strings

represented by terms occurring in S. We take D* to be the domain of the

model, M, and let the letters a, b denote [a] and [b], resp. .

Let fM : D* × D* → D*, where, for any [u], [v] ∊ D*,

 fM ([u],[v]) = [t] if for some t ∊ D, t∼(u*v), and fM ([u],[v]) = b otherwise,

interpret the binary operation *.

84

Let RM ⊆ D* × D*, where, for any [u], [v] ∊ D*,

 RM ([u],[v]) ⇔ for some s, t ∊ Ʃτ, u∼s and v∼t and s is a subterm of t,

interpret the relational symbol ⊑*.

Suppose now that [s1]=[t1] and [s2]=[t2], where [s1], [s2], [t1], t2] ∊ D*.

Then s1∼t1 and s2∼t2, whence (s1*s2)∼(t1* t2). Suppose further that for

some term s ∊ D, s∼(s1*s2). Then fM ([s1], [s2])=[s]. But s∼(s1*s2)∼(t1* t2).

Hence fM ([t1], [t2])=[s], and we have fM ([s1], [s2])=fM ([t1], [t2]). Suppose,

on the other hand, that for no term s ∊ D, s∼(s1*s2). Then fM ([s1], [s2])=[b].

But (s1*s2)∼(t1* t2), so for no term s ∊ D, s∼(t1*t2). Hence fM ([t1], [t2])=[b],

and again fM ([s1], [s2])=fM ([t1], [t2]). Under the same hypothesis [s1]=[t1]

and [s2]=[t2], we have that

 RM ([s1], [s2]) ⇔ for some terms u1, u2 ∊ Ʃτ, s1∼u1 and s2∼u2 and

 u1 is a subterm of u2 ⇔ for some terms u1, u2 ∊ Ʃτ, t1∼u1 and t2∼u2 and

 u1 is a subterm of u2 ⇔ RM ([t1], [t2]).

Thus the definitions of fM and RM do not depend on the choice of terms s, t.

85

A straightforward induction on the complexity of ℒ C,⊑* -terms shows that if t

is among the terms in D, then its interpretation tM is [t]. It is then immediate

that the resulting model M satisfies all of the axioms in the finite set S.∎

