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The classic monograph work of Tarski Mostowski and Robinson [8] isolated 

two weak formal theories of arithmetic, R and Q, as minimal "basis theories" 

for metamathematical arguments of foundational significance involving 

formalizing computation, incompleteness, undecidability, etc.  The two 

theories were singled out as essentially undecidable, in that neither can 

consistently be extended to a decidable theory.  The work introduced a 

powerful method for establishing incompleteness and undecidability of a wide 

range of mathematical theories built around the notion of relative 

interpretability of one theory in another.  Roughly, a formula with a single free 

variable is chosen in the language of the second theory – the interpreting 

theory -- to define the “universe of the interpretation”, and suitable definitions 

for the non-logical vocabulary of the first theory – the interpreted theory -- 

are given in the language of the interpreting theory.  Formulae of the 

interpreted theory are then translated into formulae of the interpreting 

theory based on those definitions, in such a way that the logical operations are 

preserved under the translation and, crucially, all occurrences of quantifiers 

become relativized to the universe of the interpretation.  Consequently,  

deductive relations between  formulae are preserved: in particular, theorems 

of the interpreted theory are translated into theorems of the interpreting 

theory. In this specific sense reasoning in one theory is formally simulated in 
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another theory, establishing relative consistency of the former in the latter. 

Once it is shown that  R or Q is interpretable in some given theory, it follows 

from Tarski’s methods that the latter is also essentially undecidable. 

 

It was only within the last two decades that some light has been shed on what 

makes R and Q special, a result of work of many researchers, including  

(earlier work by) Collins and Halpern, Wilkie,  Grzegorczyk, Zdanowski, 

Švejdar, Ganea, and, especially, Visser.  One approach was to characterize 

them as mutually interpretable with concatenation theories (theories of 

strings) or weak subsystems of set theory, each naturally motivated and of 

independent interest in their own right  (see [1] for further 

references).  Another is to produce a “coordinate-free” characterization 

independent of a particular axiomatic presentation in some formal language, 

as, e.g., in the remarkable theorem of Visser [10]: a recursively axiomatizable 

theory is interpretable in R if and only if it is locally finitely satisfiable, that is, 

each finite subset of its non-logical axioms has a finite model.  

 

An important new angle on these issues was recently introduced in the work 

of Kristiansen and Murwanashyaka [6].  They  consider two elementary 
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axiomatizations, WT and T, whose intended models are simple inductively 

generated structures like trees or terms, and rigorously develop a direct and 

novel approach to formalization of computation by ultra-elementary means.   

T is formulated in the language ℒT = {0, (  ), ⊑} with a single individual 

constant 0, a binary operation symbol ( , )  and a 2-place relational symbol ⊑  

with the following axioms: 

 

   (T1)      ∀x,y ¬(x,y)=0, 

 

   (T2)      ∀x,y,z,w [(x,y)=(z,w) → x=z & y=w] 

 

   (T3)      ∀x [x⊑0 ↔ x=0] 

 

   (T4)       ∀x,y,z [x⊑(y,z) ↔ x=(y,z) v x⊑y v x⊑z]  

 

On the other hand, the theory WT is formulated in the same vocabulary, but 

has infinitely many axioms given by the two schemas 

 

   (WT1)     ¬(s=t)                     for any distinct variable-free terms s, t of  ℒT, 
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   (WT2)     ∀x (x⊑t  ↔  ⋁s ∊ S (t) x=s)        for each variable-free term t of  ℒT, 

where  S (t) is the set of all subterms of t.  

 

The theory WT, which turns out to be contained in T, is proved to be mutually 

interpretable with R.  The stronger theory T, which can be thought of as the 

basic theory of full binary trees, even though lacking induction is shown to be 

sufficiently strong to allow for a formal interpretation of basic arithmetical 

operations validating the axioms of Q.  Kristiansen and Murwanashyaka 

further conjectured that, conversely, T is also formally interpretable in Q.  

 

In this paper we prove that T is indeed interpretable in Q, by formally 

interpreting T in a theory of concatenation, QT+, previously investigated in [1] 

and established to be mutually interpretable with Q along with a host of other 

theories whose intended interpretations are natural numbers, strings or sets.  

Hence T and Q are mutually interpretable.  Further we formulate a weak 

theory of concatenation, WQT*, and a “pseudo-concatenation” theory WQT, 

and establish their mutual interpretability with Robinson’s R.  (While R is 

deductively contained, hence also interpretable, in Q, the latter, being finitely 

axiomatized but having no finite model, by Visser’s Theorem is not 

interpretable in R.)   
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Several distinct formulations of concatenation theory which have been put 

forward as standard axiomatizations and as such extensively studied are not 

deductively co-extensive.  Some, like Grzegorczyk’s theory TC, are centered 

around what came to be known as Tarski’s Law (or Editor Axiom), and some 

of the variants include the empty string as a unit element.  Others, such as the 

theory QT+ used in [1] and here, and a closely related theory F originally 

introduced by Tarski in [8],  are on their face more explicitly theories of semi-

groups with two generators. Nonetheless, all these theories turn out to be 

mutually interpretable on account of their mutual interpretability with Q.  Our 

choice of QT+ is motivated by the “ground-up” approach exemplified in the 

formula-selection method expounded below in §3.   

 

In §§1-2 we give a preview of our interpretation of T in concatenation theory.  

In §3 we introduce the concatenation theory QT+, explain the main 

methodological tool used throughout the paper, the formula selection method 

applied to tractable strings and string forms, and develop elements of formal 

concatenation theory QT+ related to tallies, adding of tallies and parts of 

strings.  §4 we describe the essentials of the coding methods subsequently  

used in formalization of definitions by string recursion in §5.  The resulting 



7 
 

formal schema of definition is applied to obtain definitions of counting 

functions α and β which we rely on to construct the formal interpretation 

introduced in §§1-2.  In §6 the interpretation is formally defined, and 

translations of the axioms of T formally verified.  There we state the main 

result of the paper, the First Mutual Interpretability Theorem of Weak 

Essentially Undecidable Theories,  relating T and QT+ to a number of well-

known theories of numbers, strings and sets.  Finally, in §7 we introduce 

concatenation variants WQT and WQT*  of Robinson’s theory R and establish 

the corresponding Second Mutual Interpretability Theorem with the weak 

theory of trees WT.    

 

Many of our arguments involve construction of specific formulas and tedious 

verifications of their specific properties.  Most of these details can be found in 

the Appendix.  The entire formal construction ultimately rests on coding of 

sets of strings by strings within QT+,  which is given in complete detail in [2].  

We provide specific references as needed.             
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                                                  1. Trees as Strings 

The intended domain of interpretation of the theory T is the set of variable-

free  ℒT-terms 

 (*)        0, (00), (0(00)), ((00)0), ((00)(00)),… 

Alternatively, we may think of the domain as consisting of finite full binary 

trees – also called 2-trees --  trees in which every node other than the 

endnodes has two immediate descendants.  In order to interpret T in 

concatenation theory, we need some way of representing these objects – 

terms or trees – by binary strings.  We would like to do this directly, without 

having to rely on a coding of sets or sequences.  

 

    For this purpose we will use a variant of Polish notation to read binary 

strings as codes for inductively generated objects having the structure 

characteristic of terms or trees. Thus, e.g., the terms in (*) will be coded, 

respectively, by  

 (**)       a, baa, babaa, bbaaa, bbaabaa, … 
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To obtain the string code from a given variable-free  ℒT-term we proceed from 

left to right by replacing the left parentheses by b’s and  0’s by a’s, ignoring the 

right parentheses.    

 

   Looking at the strings that are examples of term codes in (**),  we note that 

they all share the following features: 

  (c1)  the total number of a’s in the string exceeds the total number of b’s 

exactly by 1, 

  (c2)  each proper initial segment of the string has at least as many b’s as a’s. 

In other words, each of these strings is its own smallest initial segment in 

which the number of a ’s strictly exceeds the number of b ’s.  We will take this 

to be the defining property of binary term/tree codes.  We offer the following 

as informal justification.  Each b indicates a branching vertex, incurring a 

“debt” of two “open places”, which need to filled by completing the 

branchings.  That can be done either immediately by simply writing a, an end 

node, or by opening another branching, temporarily increasing the “debt of 

open places”.  Each successive a reduces the “debt” of places  to be filled by 

one, until all open branchings are completed and the last two remaining 
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“places” filled with a ’s, resulting in a full binary tree.   Ultimately, b ’s in the 

binary code track the number of branchings, i.e. non-terminal nodes, and a ‘s 

the number of terminal nodes in the tree.       

 

    To define the domain of the formal interpretation of T in concatenation 

theory  we will need to be able to single out by means of a formula of 

concatenation theory those among arbitrary strings that are term codes.  Key 

role in this connection will be played by functions  α  and  β  that count the 

number of occurrences of the letters a, b, resp., in a given binary string.  They 

are defined as follows:  

      α(a) = 1                                                              β(a) = 0 

      α(b) = 0                                                               β(b) = 1 

   α(x*a) = α(x)+1                                               β(x*a) = β(x) 

   α(x*b) = α(x)                                                     β(x*b) = β(x)+1 

 

Call a string  x  is almost even, writing Æ(x),  if  (c1)   α(x) = β(x)+1,  and   

(c2)  for each  proper initial segment u of x,   α(u) ≤ β(u). 
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Within concatenation theory the values of  α, β  will be expressed by b-tallies, 

i.e., strings of consecutive b ’s.  The functions  α  and  β  are additive in that  

                       α(x*y) = α(x)+α(y)     and       β(x*y) = β(x)+β(y). 

To express and verify these properties in concatenation theory we will need 

to introduce  a suitable operation  Addtally having the requisite properties of 

addition on non-negative integers.   But the main problem to be solved is 

showing that  α  and  β,  which are defined by  recursion on strings, can 

actually be defined in concatenation theory.   

 

                                  2. Outline of the Interpretation 

 

    The language  ℒC = { a, b, *} of concatenation theory has two individual  

constants a, b,  and a single binary operation symbol  *.  Its intended  

interpretation 𝛴* has as its domain the set of all non-empty finite strings of a ’s 

and b ’s, the constants ‘a’, ‘b’, resp.,  stand for the digits a, b (or 0, 1, resp.), and, 

for given strings x, y from the domain of  𝛴*,  we take  x*y  to be the string 

obtained by concatenation (i.e., juxtaposition) of the successive digits of y to 

the right of the end digit of x.  Simply put,  for variable-free terms s, t of ℒC,  an 
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atomic formula  ‘s=t’ is true in 𝛴*  just in case s and t denote the very same 

binary string.  For the purpose of informal exposition of the basic idea behind 

the interpretation we will avail ourselves,  “as a first approximation”, of 

formulations couched in  the first-order theory  Th(𝛴*) consisting of all true 

sentences of  ℒC  in 𝛴*.  Specifically, at this point we will simply assume that the 

graphs of the functions  α, β,  are expressible by some formulas  A#(x,y), 

B#(x,y), resp., of ℒC  along with the graph of Addtally, and carry on reasoning 

informally within Th(𝛴*) .  In subsequent sections we turn to the detailed 

technical work of actually proving these assumptions by formalizing string 

recursion in concatenation theory and verifying the corresponding 

translations into ℒC of the axioms of T, all of which has to be formally carried 

out within an extremely weak subtheory QT+ of  Th(𝛴*).    

 

First, some abbreviations.   Let  xBy  ≡  ∃z x*z=y    and     xEy  ≡  ∃z z*x=y.    

Then let             x⊆py ≡ x=y v xBy v xEy v ∃y1∃y2 y=y1*(x*y2). 

 

(Often, we shall write  xy  for x*y.)    

2.1(a)   𝛴* ⊧ Æ(x)  →  x=a v (bBx & aaEx).  

(b)  𝛴* ⊧ Æ(x) & x2Ex  →  α(x2) ≥ β(x2)+1. 
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(c)   𝛴* ⊧ Æ(x) & Æ(u) & xy=uv  →  x=u & u=v.    

Proof:  (a) Clearly,  𝛴* ⊧ Æ(a).  Assume  𝛴* ⊧ Æ(x) & x≠a.  Then 𝛴* ⊧ ¬aBx, by 

(c2).  So 𝛴* ⊧  bBx.   Note that  𝛴* ⊧ ¬Æ(aa) & ¬Æ(ab) & ¬Æ(ba) & ¬Æ(bb). 

Hence any x such that 𝛴* ⊧ Æ(x)  must have a (proper) endsegment of length 

2.   Suppose   𝛴* ⊧ x=x1ab  v  x=x1ba  v  x=x1bb,   that is,   abEx  v  baEx  v  bbEx.    

By (c1) and (c2),  𝛴* ⊧  α(x) = β(x)+1,  and  𝛴* ⊧  α(x1) ≤ β(x1).   If  𝛴* ⊧  abEx  

or 𝛴* ⊧ baEx,  then  𝛴* ⊧ α(x) = α(x1)+1  and  𝛴* ⊧ β(x) = β(x1)+1.   But then  

 𝛴* ⊧ α(x) = β(x)+1 = (β(x1)+1)+1 = β(x1)+2 ≥ α(x1)+2 > α(x1)+1 = α(x), 

a contradiction.  On the other hand,  if  𝛴* ⊧  bbEx,  then  𝛴* ⊧ α(x) = α(x1)  and  

𝛴* ⊧  β(x) = β(x1)+2.  But then  

    𝛴* ⊧  α(x) = β(x)+1 = (β(x1)+2)+1 = β(x1)+3 ≥ α(x1)+3 = α(x)+3 > α(x), 

a contradiction again.  Hence 𝛴* ⊧ ¬abEx  &  ¬baEx  &  ¬bbEx.   But then we 

must have  𝛴* ⊧ aaEx.  

(b)  Assume  𝛴* ⊧ Æ(x) & x2Ex.  Then  𝛴* ⊧ ∃x1 x=x1x2,   hence   

𝛴* ⊧  α(x1) ≤ β(x1).   But  𝛴* ⊧ α(x) = β(x) +1  and    

                   𝛴* ⊧ α(x) = α(x1x2) = α(x1)+α( x2),   
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whereas  𝛴* ⊧ β(x) = β(x1x2) = β(x1)+β( x2).   Then   

                     𝛴* ⊧ α(x1)+α( x2) = β(x1)+β( x2)+1,   

whence  from  𝛴* ⊧  α(x1) ≤ β(x1)  we have  α(x2) ≥ β(x2)+1, as claimed. 

(c)  Assume  𝛴* ⊧ Æ(x) & Æ(u) & xy=uv.  We have that   

                         𝛴* ⊧  (x=u & y=v) v xBu v uBx. 

Suppose  𝛴* ⊧ xBu.  From 𝛴* ⊧  Æ(u),  𝛴* ⊧ α(x) ≤ β(x),  and  from 𝛴* ⊧ Æ(x),                  

𝛴* ⊧  α(x) = β(x)+1. But then  𝛴* ⊧ β(x)+1 ≤ β(x),  a contradiction. 

Likewise if  𝛴* ⊧ uBx.  Hence  𝛴* ⊧ x=u  &  y=v.∎ 

 

2.2     𝛴* ⊧ Æ(x)  ↔  x=a v ∃!y,z (x=b(yz) & Æ(y) & Æ(z)). 

Proof:  (⇐)  Assume   𝛴* ⊧ Æ(y) & Æ(z) & x=byz.  Then  

                             𝛴* ⊧ α(y) = β(y)+1 &  α(z) = β(z)+1. 

Now,    𝛴* ⊧ α(x) = α(byz) = α(yz) = α(y)+α(z)  

and      𝛴* ⊧ β(x) = β(byz) = β(b)+β(yz) = β(y)+β(z)+1.    Then   

𝛴* ⊧  α(x) = α(y)+α(z) = (β(y)+1)+(β(z)+1) = (β(y)+β(z)+1)+1 = β(x)+1 
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which verifies (c1).  For (c2),  assume  𝛴* ⊧ uBx,  i.e.,  𝛴* ⊧ uBbyz.  

Then           𝛴* ⊧ u=b  v  uBby  v u=by  v ∃z1(z1Bz  & u=byz1). 

To illustrate the proof, we consider the case  𝛴* ⊧ ∃z1(z1By  & u=byz1).     

Then  from 𝛴* ⊧ Æ(z),  𝛴* ⊧ α(z1) ≤ β(z1),   and from 𝛴* ⊧ Æ(y),   

𝛴* ⊧ α(y) = β(y)+1.  Then  𝛴* ⊧ α(u) = α(byz1) = α(yz1) = α(y)+α(z1)   and  

𝛴* ⊧   β(u) = β(byz1) = β(b)+β(yz1) = β(y)+β(z1)+1.    Hence    

𝛴* ⊧ α(u) = α(y)+α(z1) = (β(y)+1)+α(z1) ≤  

                                                                 ≤ (β(y)+1)+β(z1) = β(y)+β(z1)+1 = β(u).  

Thus  𝛴* ⊧  α(u) ≤ β(u).  This completes the proof of (c2).  So 𝛴* ⊧ Æ(x). 

(⇒)  Assume  𝛴* ⊧ Æ(x) & x≠a.  Then, by 2.1(a),  𝛴* ⊧ bBx & aaEx,  that is,  

                 𝛴* ⊧ ∃x1 x=bx1 & ∃x2 x=x2 aa.   

So  𝛴* ⊧ bx1=x2aa.   We may assume that 𝛴* ⊧ bBx2, for if 𝛴* ⊧ x2=b,  then  

𝛴* ⊧  x=b(aa) and we may  take  y=a  and  z=a.   So  𝛴* ⊧ ∃x3 x2=bx3,  and  

𝛴* ⊧ x=bx1=x2(aa)=bx3(aa),  whence    𝛴* ⊧ x1=x3(aa).   Let  yj be a proper 

 initial segment of x1, and  zj  the corresponding endsegment of x1  such that   

𝛴* ⊧  yjzj=x1.  At least one yj  has the property  

   (*)                  𝛴* ⊧ α(yj) = β(yj)+1. 

Consider, e.g., x3a.   From hypothesis  𝛴* ⊧ Æ(x)  we have  𝛴* ⊧ α(x) = β(x)+1. 
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But   𝛴* ⊧ α(x) = α(b((x3a)a)) = α(b)+α(x3a)+α(a) = α(x3a)+1  and    

𝛴* ⊧  β(x) = β(b((x3a)a)) = β(b)+β(x3a)+β(a) = 1+β(x3a). 

Then   𝛴* ⊧ α(x3a) = α(x)–1 = β(x) = β(x3a)+1. 

Let  yi  be the shortest initial segment of  x1  with the property (*).  Then  

                        𝛴* ⊧ x1 = yizi  & α(yi) = β(yi)+1. 

We claim that  (i)  𝛴* ⊧ α(zi) = β(zi)+1,  (ii)  𝛴* ⊧  ∀u (uByi  →  α(u)≤β(u)),  

and  (iii) 𝛴* ⊧ ∀v (vBzi  →  α(v)≤β(v)). 

For (i)  we have  𝛴* ⊧  α(x) = α(bx1) = α(x1) = α(yizi) = α(yi)+α(zi)   

and   𝛴* ⊧ β(x) = β(bx1) = 1+β(x1) = 1+β(yizi) = 1+ β(yi)+β(zi). 

Then   𝛴* ⊧ α(yi)+α(zi) = (1+ β(yi)+β(zi))+1,  and from  𝛴* ⊧ α(yi) = β(yi)+1  

we obtain  𝛴* ⊧ α(zi) = β(zi)+1. 

For (ii), suppose 𝛴* ⊧ uByi.  Since  𝛴* ⊧ x1 = yizi, we then have 𝛴* ⊧ uBx1.  But 

then, by the choice of  yi, 𝛴* ⊧ α(u)≤β(u).   For (iii),  suppose 𝛴* ⊧ vBzi.  Then  

𝛴* ⊧ ∃w zi = vw,  whence  𝛴* ⊧ wEx.  From 𝛴* ⊧ Æ(x), by 2.1(b),                                   

𝛴* ⊧ α(w) ≥ β(w)+1.   But  𝛴* ⊧  α(zi) = α(v)+α(w)  and                                                  

𝛴* ⊧  β(zi) = β(v)+β(w).   By (i),    𝛴* ⊧ α(v)+α(w) = β(v)+β(w)+1.   

Then from 𝛴* ⊧ α(w) ≥ β(w)+1,  we have 𝛴* ⊧ α(v)≤β(v).  
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From (i)-(iii) we have that  𝛴* ⊧ Æ(yi) & Æ(zi).  The uniqueness of  y, z  follows 

from  2.1(c).∎ 

The proof of 2.2  yields an algorithm for extracting the description of a tree 

from a given Æ string x: (i) Drop the initial b.  (ii) If the next digit is a, that is 

the left node Æ string; the rest of the string is the right node Æ string. (iii)  If 

the next digit is b, take the shortest initial segment y of the remainder of the 

original string such that α(y)=β(y)+2; then the string by  is the left node Æ 

string, and the endsegment of the remainder corresponding to by is the right 

node Æ string. Repeat steps (i)-(iii) until no b’s are left.                            

 

2.3  𝛴* ⊧ Æ(x) & Æ(y) & Æ(z)  →  (x⊆pbyz  →  x=byz  v  x⊆py  v  x⊆pz).        

Proof:  Assume   𝛴* ⊧ x⊆pbyz   where  𝛴* ⊧ Æ(x) & Æ(y) & Æ(z).  Now, we have  

that              𝛴* ⊧  x=byz  v  x=b  v  x⊆pyz  v  ∃u(uByz & x=bu). 

Suppose that  𝛴* ⊧ ∃u(uByz & x=bu).   From  𝛴* ⊧ Æ(y) & Æ(z),  by 2.2,                       

𝛴* ⊧ Æ(byz).  From  𝛴* ⊧ uByz,  we have  𝛴* ⊧ ∃v uv=yz,  whence   

𝛴* ⊧ buBb(yz).  Thus  𝛴* ⊧ xBb(yz).  But from 𝛴* ⊧ Æ(byz),   𝛴* ⊧ α(x) ≤ β(x),    

which contradicts  𝛴* ⊧ Æ(x).   So  𝛴* ⊧ ∃u(uByz & x=bu)  is ruled out. 

By 2.1(a),  so is 𝛴* ⊧  x=b.  So we are left with  𝛴* ⊧  x⊆pbyz  →  x=byz  v  x⊆pyz. 

Supposing  𝛴* ⊧ x⊆pyz,  we have that  
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  𝛴* ⊧ x=yz  v  x⊆py  v  x⊆pz  v ∃y1(y1Ey & x=y1z)  v  

                                                v ∃z1 (z1Bz & x=yz1) v ∃y1,z1 (y1Ey & z1Bz & x=y1z1). 

Assume  𝛴* ⊧ x=yz.  Then from 𝛴* ⊧ Æ(y) & Æ(z), we have                    

𝛴* ⊧ α(y) = β(y)+1  and  α(z) = β(z)+1.  But  𝛴* ⊧  α(yz) = α(y)+α(z),  so  

                𝛴* ⊧ α(yz) = (β(y)+1)+(β(z)+1) = β(y)+β(z)+2.    

On the other hand,  𝛴* ⊧  β(yz) = β(y)+β(z).  Thus  𝛴* ⊧ α(yz) = β(yz)+2,  

whence  from  𝛴* ⊧  x=yz,  we derive  𝛴* ⊧ α(x) = β(x)+2,   contradicting   

𝛴* ⊧ Æ(x).    So 𝛴* ⊧  x=yz  is ruled out.   

Suppose now that   𝛴* ⊧ ∃y1(y1Ey & x=y1z),  so  𝛴* ⊧ y1Bx.  From  𝛴* ⊧Æ(x),  

𝛴* ⊧ α(y1) ≤ β(y1).  But  from 𝛴* ⊧ Æ(y) & y1Ey,  we obtain, by 2.1(b),                             

𝛴* ⊧  α(y1) ≥ β(y1)+1,   a contradiction. 

Suppose that  𝛴* ⊧ ∃z1 (z1Bz & x=yz1), so  𝛴* ⊧  yBx.  But then from  𝛴* ⊧ Æ(x), 

we have  𝛴* ⊧ α(y) ≤ β(y),  and from  𝛴* ⊧ Æ(y),   𝛴* ⊧ α(y) = β(y)+1,   again a 

contradiction.  If  𝛴* ⊧ ∃y1,z1 (y1Ey & z1Bz & x=y1z1),  we derive a contradiction 

by reasoning as in either of the two preceding cases. 

The other cases having been ruled out, we conclude under the principal 

hypothesis that   𝛴* ⊧  x⊆pyz  →  x⊆py  v  x⊆pz,  and further that   

                            𝛴 * ⊧    x⊆pbyz  →  x=byz  v  x⊆py  v  x⊆pz, 

as required.∎ 

 

If we take the domain to consists of Æ strings,  2.1(c),  2.2 and 2.3 suffice to 

give the “first approximation” of our interpretation of T in concatenation 
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theory: translations of (T1)-(T4) will be validated in 𝛴 * if we model the 

term/tree-building operation x, y ↦ (xy)  by bxy, the subterm/subtree 

relation  ⊑  by the substring relation ⊆p  between Æ strings, and the digit a  is 

taken to stand for the simple term 0.  The entire project, however, hinges on 

definability of the counting functions  α and β  in concatenation theory.  

Showing that the latter contains resources needed to formally justify 

definitions by elementary recursion on strings requires, first, that we 

precisely formulate concatenation theory as a formal theory, and second, that 

we introduce codings for ordered pairs of strings, sequences of such, etc., and 

verify their properties relevant to the argument in that formal theory.  We 

now turn to that task.  In the process we shall make crucial use of the method 

of formula selection explained in [1]. 

  

                                         3. Formal Concatenation Theory 

 

   We shall work within a first-order theory formulated in ℒC = { a, b, *}, with 

the universal closures of the following conditions as axioms: 

 (QT1)        x*(y*z)=(x*y)*z 
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 (QT2)    ¬(x*y=a)  & ¬(x*y=b)                                             

 (QT3)    (x*a=y*a → x=y) & (x*b=y*b → x=y)  & 

                                 &  (a*x=a*y → x=y)  & (b*x=b*y → x=y) 

 (QT4)     ¬(a*x=b*y)  &  ¬(x*a=y*b)                                  

 (QT5)    x=a v x=b v (∃y(a*y=x  v  b*y=x) & ∃z(z*a=x  v  z*b=x))    

On account of (QT1), we sometimes omit parentheses and * when writing  

(x*y). 

It is convenient to have a function symbol for a successor operation on strings:   

(QT6)              Sx=y  ⟷ ((x=a & y=b) v (¬x=a & x*b=y)). 

Since (QT6) is basically a definition, adding it to the rest results  

in an inessential  (i.e.  conservative) extension.   We call this theory  QT+.   

 

Let               xRy   ≡  (x=a & ¬y=a)  v  xBy.     

Provably in QT+,  xRy v x=y  is a discrete preordering of strings (see [1]).                  

 

We shall call a formula I(x) in the language of QT+ a string form if   

QT+ ⊢ I(a),   QT+ ⊢ I(b),    QT+ ⊢ I(x) → I(x*a)     and     QT+ ⊢ I(x) →  I(x*b). 

(Note: in [1] and [2] such formulae were called string concepts.)   String forms 

will allow us to restrict our attention, systematically step-by-step, to strings 
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that satisfy conditions expressible by specifically selected formulas provided 

the latter can be proved in QT+ to apply to “sufficiently many” strings.  We say 

that a string form J is stronger than I if  QT+ ⊢ ∀x (J(x) → I(x)) and write J⊆I.   

Let    I0(x)  ≡  ∀y (yRx v y=x  →  ¬yRy).  We call  I0 strings tractable.   

 

3.1(a)  I0(x)  is a string form.    

(b)  For any string form  I⊆I0 there is a string form   J⊆I such that     

                     QT+ ⊢ ∀x ∀y (J(x) & J(y) → J(x*y)). 

(c)  For any string form  I⊆I0 there is a string form  J≤⊆I such that     

                                QT+ ⊢ ∀x (J≤(x) & y≤x → J≤(y)).   

(d)  For any string form I⊆I0 there is a string form  J⊆I such that               

                       QT+ ⊢ ∀x ∊ J ∀y (y⊆px  → J(y)). 

(e)  For any string form I⊆I0 there is a string form  J≡ILC ⊆I such that     

                      QT+ ⊢ ∀z ∊ J ∀x,y (z*x=z*y → x=y). 

(f)  For any string form I⊆I0 there is a string form  J⊆I  such that  

                      QT+ ⊢ ∀z∊J ∀x,y (x*z=y*z → x=y). 

For proofs, see [1], and [2], (3.2), (3.3), (3.13), (3.7) and (3.6).∎  
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Parts (b)-(c) tell us that when establishing that a given string form  I may be 

strengthened to a string form J with another property, we can always 

strengthen the string form J to one that is also closed with respect to * or 

downward closed with respect to ≤ or ⊆p .   

We define       Tallya(x) ≡  ∀y⊆px (Digit(y) → y=a) 

and    Tallyb(x) ≡  ∀y⊆px (Digit(y) → y=b)  where     Digit(x)  ≡  x=a v x=b. 

 

Write  x<y  for  I0(x) & I0(y) & xRy.  As usual,  x≤y  stands for  x<y v x=y. 

 

The following properties of tallies are easily established: 

 

3.2   (a)   QT+ ⊢ Tallyb(y)  →  Tallyb(Sy). 

(b)        QT+ ⊢ Tallyb(y)  ⟷  y=b v ∃y1 (Tallyb(y1) & y=Sy1). 

(c)         QT+ ⊢ ∀v,u (Tallyb(v) & u<v  →  Su≤v).  

(d)         QT+ ⊢ Tallyb(y) → (x<y ⟷ Sx<Sy). 

 

For some further properties we have to resort to string forms: 

 

3.3(a)  For any string form I⊆I0 there is a string form  J≡ICTC⊆I such that             

         QT+ ⊢ ∀z ∊ J ∀y (Tallyb(y) & Tallyb(z)  →  Tallyb(y*z)). 

(b)  For any string form  I⊆I0 there is a string form  J⊆I such that             
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         QT+ ⊢ ∀z ∊ J ∀x (Tallyb(x) & Tallyb(z)  →  x≤z  v  z≤x). 

(c)   For any string form I⊆I0 there is a string form  J≡I3.3(c) ⊆I such that             

                            QT+ ⊢ ∀u ∊ J (Tallyb(u) →  u*b=b*u). 

(d)  For any string form I⊆I0 there is a string form  J⊆I such that  

             QT+ ⊢ ∀y ∊ J ∀x (Tallyb(x) & Tallyb(y)  →  Sx*y=x*Sy=S(x*y)). 

(e)  For any string form I⊆I3.3(c) there is a string form  J≡ICOMM⊆I such that             

         QT+ ⊢ ∀u,v ∊ J (Tallyb(u) & Tallyb(v)  →  u*v=v*u). 

 

For proofs, see [2], (4.5), (4.6), (4.8) and (4.10).∎  

 

Let  Addtally(x,y,z)  abbreviate the formula  

(Tallyb(x) & Tallyb(y) & ((x=b & z=y) v (y=b & z=x) v    

                     v ∃x1,y1(Tallyb(x1) & x=Sx1 & Tallyb(y1)& y=Sy1 & z=x*y1)) v     

                                                                          v ((¬Tallyb(x) v ¬Tallyb(y)) & z=b) 

 

We want to show that, provably in QT+,  Addtally(x,y,z) behaves like the 

graph of addition function on natural numbers.  The following are immediate 

consequences of definitions: 

 

3.4(a)   QT+ ⊢ Addtally(x,y,v) & Addtally(x,y,w) → v=w. 

(b)   QT+ ⊢ Tallyb(x) →  Addtally(x,b,x).                              (“x+0 = x”) 

(c)    QT+ ⊢ Tallyb(y) →  Addtally(b,y,y).                              (“0+y = y”)  
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(d)    QT+ ⊢ Tallyb(x) →  Addtally(x,bb,Sx).                         (“x+1 = Sx”) 

(e)  QT+ ⊢ Tallyb(x) & Tallyb(y)  →  (Addtally(x,y,z) → Addtally(x,yb,zb)). 

                                                                                                         (“x+Sy = S(x+y)”) 

 

We also have: 

3.5(a)    For any string form  I⊆I0 there is a string form  J≡IAdd ⊆I such that             

         QT+ ⊢ ∀x,y ∊ J ∃!z ∊ J (Tallyb(z) & Addtally(x,y,z)). 

(b)   QT+ ⊢ ∀z ∊ I0 (Tallyb(u) & Tallyb(v) &  

                                       & Addtally(x,u,y) & Addtally(x,v,z) & u≤v  →  y≤z). 

                                                                                              (“u ≤ v  →  x+u ≤ x+v”) 

(c)   For any string form  I⊆I0 there is a string form  J⊆I such that             

         QT+ ⊢ ∀y ∊ J (Tallyb(y) →  Addtally(bb,y,Sy).                           (“1+y = Sy”) 

(d)   For any string form  I⊆I0 there is a string form  J⊆I such that             

QT+ ⊢ ∀y ∊ J ∀x,z (Tallyb(x) & Tallyb(y) & Addtally(x,y,z)  → Addtally(xb,y,zb))   

                                                                                                                  (“Sx+y = S(x+y”) 

(e)      For any string form  I⊆I0 there is a string form  J⊆I such that             

  QT+ ⊢ ∀x ∊ J ∀y,z,v (Tallyb(x) & Tallyb(y) & Tallyb(z)  →  

                                                           →  (Addtally(x,y,v) & Addtally(x,z,v) → y=z)).   

                                                                                                             (“x+y=x+z → y=z”)                                

(f)       For any string form  I⊆I0 there is a string form  J⊆I such that             

  QT+ ⊢ ∀y ∊ J ∀x (Tallyb(x) & Tallyb(y)  →  

                                                         →  (x≤y  ⟷  ∃z(Tallyb(z) & Addtally(z,x,y)))).   
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                                                                                                          (“x≤y  ⟷  ∃z z+x=y”) 

 

(g)  For any string form  I⊆I0 there is a string form  J⊆I such that             

          QT+ ⊢ ∀x,y ∊ J (Addtally(x,y,z) → Addtally(y,x,z)).          (“x+y=y+x”)  

(h) For any string form  I⊆I0 there is a string form  J⊆I such that             

   QT+ ⊢ ∀x,y,z ∊ J (Addtally(x,y,u) & Addtally(u,z,v1) & Addtally(y,z,w) & 

                                                                                           & Addtally(x,w,v2) → v1=v2) 

                                                                                                       (“(x+y)+z=x+(y+z)”) 

(i)   For any string form  I⊆I0 there is a string form  J⊆I such that             

  QT+ ⊢ ∀x2,y1,y2 ∊ J ∀x1,z1,z2 (Tallyb(x2) & Tallyb(y1) & Tallyb(y2) & 

            &  Addtally(x1,x2,z1)  &  Addtally(y1,y2,z2)  &  x1≤y1  &  z1=Sz2  → 

                                                                                                                    →  Sy2≤x2 ).        

                                                        (“x1+x2 = (y1+y2)+1  &  x1 ≤ y1  →  y2 +1 ≤ x2”)        

Proof:  For (a), let J ≡ ICTC from 3.3(a).  For (c) and (d), let J be as in 3.3(c).  For 

(e), let J ≡ ILC from 3.1(d).  For (f) and (g), let J ≡ ICOMM from 3.3(e).  For (h),   

let J ≡ J1 & J2  where  J1 is ICTC and J2 as in 3.3(c).  Finally, for (i), let   

J ≡ ILC & ICTC & I3.3(c) & ICOMM   and see Appendix.∎   

 

We now turn to the part-of relation ⊆p between strings.  To prevent 

unpleasant surprises, we want to make sure that this relation has natural 

properties we would normally expect it to have.    
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3.6(a)                              QT+ ⊢ x⊆py & y⊆pz → x⊆pz. 

(b)  For any string form I⊆I0 there is a string form  J⊆I such that          

                                        QT+ ⊢ ∀x∊J ¬xEx. 

(c)  For any string form I⊆I0 there is a string form  J⊆I such that 

                                  QT+  ⊢ ∀x∊J ¬∃x1,x2 (x1xx2=x). 

(d)  For any string form I⊆I0 there is a string form  J⊆I such that   

                           QT+ ⊢ ∀x ∊ J ∀y (x⊆py & y⊆px  →  x=y). 

(e)  For any string form I⊆I0 there is a string form J⊆I such that                       

                                 QT+  ⊢ ∀x ∊ J ∀y (¬xy⊆px & ¬yx⊆px). 

Proof:  For (b) and (c), see [2], (3.4) and (3.5).  For (d) and (e), see [2], (3.11) 

and (3.12).∎ 

We now specifically consider proper initial segments and endsegments.  The 

initial segments of arbitrary strings can be totally ordered by the initial-

segment-of relation B, rendering the partial ordering  < in which a is the least 

element tree-like: 

3.7(a)  For any string form I⊆I0 there is a string form  JLOIS⊆I such that                         

                      QT+ ⊢ ∀x ∊ J ∀u,v (uBx & vBx  →  u=v  v  uBv  v  vBu). 

(b)   For any string form  I⊆I0 there is a string form  J⊆I such that             
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                 QT+ ⊢ ∀y,z ∊ J ∀x (xByz  ↔  xBy v x=y v ∃w(wBz & yw=x)). 

(c) For any string form  I⊆I0 there is a string form  J⊆I such that             

 QT+ ⊢ ∀x,y ∊ J ∀u (uBb(xy)  →  u=b  v  uBbx  v u=bx  v ∃y1(y1By  & u=bxy1)). 

(d)  For any string form I⊆I0 there is a string form  J⊆I such that  

                  QT+ ⊢ ∀x ∊ J ∀u,v (uEx & vEx  →  u=v  v  uEv  v  vEu). 

(e)       For any string form  I⊆I0 there is a string form  J⊆I such that             

          QT+ ⊢ ∀y,z ∊ J ∀x (xEyz  ↔  xEz v x=z v ∃w(wEy & wz=x)). 

(f)      For any string form  I⊆I0 there is a string form  J⊆I such that             

      QT+ ⊢ ∀y,z ∊ J ∀x,x1,x2 (x1xx2=yz  →   

                                                     → x⊆py  v  x⊆pz  v  ∃y1,z1 (y1Ey & z1Bz & x=y1z1)). 

(g)  For any string concept  I⊆I0 there is a string concept  J⊆I such that             

      QT+ ⊢ ∀y,z ∊ J ∀x (x⊆pyz  → x=yz  v  x⊆py  v  x⊆pz  v ∃y1(y1Ey & x=y1z)  v  

                                                v ∃z1 (z1Bz & x=yz1) v ∃y1,z1 (y1Ey & z1Bz & x=y1z1)).    

(h)  For any string form  I⊆I0 there is a string form  J⊆I such that             

 QT+ ⊢ ∀y,z ∊ J ∀x (x⊆pb(yz)  →   

                                              →  x=byz  v  x=b  v  x⊆pyz  v  ∃u2(u2Byz & x=bu2)).   

Proof:   For (a), see [2], (3.8).  For (b) and (c), let  J ≡ ILC & ILOIS.  For (d), see 

[2], (3.10), and then (e) is proved analogously to (b).  For (f) take J s in (b), 

and (g) follows from (b)-(f).  Then (h) is obtained as a special case of (g).∎ 
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                                 4. Coding sequences and pairs of strings by strings 

 

    Formalizing recursion requires coding of sequences, and since the kind of 

recursion used to define the counting functions α and β proceeds on strings, to 

carry out the formalization of such definitions in concatenation theory we will 

need to be able to code sequences of strings by strings.  The general idea 

behind the coding goes back to Quine [7], and more recently to Visser [9], but 

the key for our purposes is to show that the relevant properties of the coding 

are provable in QT+.   We make use of the coding scheme described in [2], 

pp.86-88 and summarized in [1], §§7-8.  (Predicates ‘Pref(x,t)’, 

‘Firstf(x,t1,y,t2)’, ‘Env(t,x)’, ‘Set(x)’ and  ‘y ε x’  are defined there; the formal 

machinery needed to demonstrate that, modulo the methodology of formula 

selection, all of the necessary reasoning can indeed be carried out in QT+ is 

presented in detail in [2], pp.89-263.)   In particular, we can establish:  

4.1(a)  SINGLETON LEMMA.   For any string form  I⊆I0  there is a string  form  

ISNGL ⊆I such that     

 QT+ ⊦ ∀x∊ ISNGL ∀u,t1,t2 (Set(x) & Firstf(x,t1,aua,t2) & x=t1auat2  →  

                                                                                                     →  ∀w (w ε x ↔ w=u)). 
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(b)  APPENDING LEMMA.   For any string form  I⊆I0  there is a string form  

  IAPP ⊆I  such that 

   QT+ ⊦ ∀x,y∊IAPP ∀t,t2,t3(Env(t2,x) & Env(t,y) & (t3a)By & Tallyb(t3) & t2<t3 &                  

           & ¬∃u(u ε x  &  u ε y)  → ∃z∊IAPP (Env(t,z) & ∀u(u ε z  ↔  u ε x  v  u ε y)).         

(c) DOUBLETON LEMMA.  For any string form  I⊆I0  there is a string form                   

IDBL ⊆I such that 

   QT+ ⊦ ∀x∊ IDBL ∀t1,t2,t3,u,v(Pref(aua,t1) & Pref(ava,t2) & t1<t2 & t2=t3 & u≠v & 

                                       & x=t1auat2avat3  →  Set(x) & ∀w(w ε x ↔ (w=u v w=v)). 

 

Proof:  See [2], (5.21), (5.46) and (5.58).∎ 

 

To use the coding of sets to code sequences of strings, we need to populate the 

coded sets with ordered pairs of arbitrary strings.  

Let                     Pair[x,y,z] ≡  ∃t⊆pz (z=taxatayat & MinMax+Tb(t,xay)). 

(The predicate  ‘MinMax+Tb(t,u)’  expressing ‘t is a shortest non-occurrent  

b-tally in string u’ is defined in [1], §10.)   We then have: 

 

4.2 PAIRING LEMMA.  (a)  For any string form I⊆I0 there is a string form J⊆I 

 such that  

      QT+ ⊢ ∀x,y∊J ∃z∊J (Pair[x,y,z] & ∀z’(Pair[x,y,z’] → z’=z)). 

(b)  For any string form I⊆I0 there is a string form J⊆I such that  

      QT+ ⊢ ∀z∊J ∀x1,x2,y1,y2 (Pair[x1,y1,z] & Pair[x2,y2,z] → x1=x2 & y1=y2). 
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In (a), choose J as in [2], (6.8).  For (b), referring to [2],  let   

J ≡ I3.6 & I4.20 &  I4.23b.∎ 

 

                                                5. String recursion 

 

Let  p, q be strings, and f1, f2  be functions on strings.  Informally, we say that  h 

is defined by string recursion from  f1, f2  if  

                           h(a) = p                                          h(b) = q 

                        h(y*a) = f1(y,h(y))                         h(y*b) = f2(y,h(y)). 

We want to justify definitions of this sort in QT+. 

Let  I◊ be the string form that is the conjunction of the string forms used to 

obtain the SINGLETON LEMMA, the APPENDING LEMMA, the DOUBLETON  

LEMMA and the PAIRING LEMMA.  The theorem below asserts that, given 

strings p, q and operations  F1, F2  given by formulae satisfying the principal 

hypothesis, any string form  I stronger than I◊  can in turn be strengthened to a 

string form J containing arbitrarily long length indices for computations of 

uniquely determined values for successive arguments from J obtained by 

string recursion from  p, q, F1, F2.     
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STRING RECURSION THEOREM.  Let F1(y,z,u) and F2(y,z,u) be ℒC  formulae,  

and let I⊆I◊ closed under  * and downward closed under ⊆p.  Suppose that  

            QT+ ⊢ I(p) & I(q), 

    QT+ ⊢ ∀y,z∊I ∃!u∊I F1(y,z,u),   and     QT+ ⊢ ∀y,z∊I ∃!u∊I F2(y,z,u). 

Then there is an ℒC formula H(y,z) and a string form J⊆ I such that   

          (i)     QT+ ⊢ ∀y∊J ∃!z∊I H(y,z), 

          (iia)  QT+ ⊢ ∀y∊I (H(a,y) ⟷ y=p), 

          (iib)  QT+ ⊢ ∀y∊I (H(b,y) ⟷ y=q), 

          (iiia) QT+ ⊢ ∀y∊J ∀u,z∊I (H(y,u) → (H(y*a,z) ⟷ F1(y,u,z))), 

and   (iiib) QT+ ⊢ ∀y∊J ∀u,z∊I (H(y,u) → (H(y*b,z) ⟷ F2(y,u,z))). 

 

(We read “∃!x∊J (…)”  as “∃x (J(x) & (…) & ∀y(J(y) & (…) → y=x))”). 

 

Proof:  Let  Comp(u,m)  abbreviate  

Set(u) & (a≤m → ∃v⊆pu (Pair[a,p,v] & v ε u)) & 

            & (b≤m → ∃v⊆pu (Pair[b,q,v] & v ε u)) & 
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   & ∀z<m ∀u1,u2,v1 (Pair[z,u1,v1] & v1 ε u & F1(z,u1,u2) → 

                                                               → ∃v2⊆pu (Pair[z*a,u2,v2] & v2 ε u)) & 

   & ∀z<m ∀u1,u2,v1 (Pair[z,u1,v1] & v1 ε u & F2(z,u1,u2) → 

                                                               → ∃v2⊆pu (Pair[z*b,u2,v2] & v2 ε u)) & 

&  ∀z,u1,u2,v1,v2 (Pair[z,u1,v1] & Pair[z,u2,v2] & v1 ε u & v2 ε u →  

                                                                                                          → u1=u2 & v1=v2). 

Comp(u,m) means, roughly, that u is a set code for a computation determined 

by p, q, F1,F2, in at least m steps where the length indices m are strings 

ordered by the tree-like ordering ≤.   

Let   MinComp(u,m)  abbreviate  

   Comp(u,m) & ∀u’ (Comp(u’,m)  → ∀y (y ε u  →  y ε u’))  & 

              &  ∀z,v,w (Pair[z,v,w] & w ε u  →  (m=a & z=a) v (m=b & z=b) v  

                                                                                            v ∃n<m (z≤na v z≤nb)).   

Let  J(m)  abbreviate  

  I(m) & ∃!y∊I ∃u∊I ∃w⊆pu (MinComp(u,m) & Pair[m,y,w] & w ε u).                                                                                    

Finally, let  H(m,y)  abbreviate   

              ∃u,w (MinComp(u,m) & Pair[m,y,w] & w ε u). 

For detailed verification that J and H have the desired properties see 

Appendix.■ 
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 We are now in the position to define the counting functions α and β. 

Let  p = bb,   q = b,    F1(y,z,u) ≡ y=y & z=Su  and   F2(y,u,z) ≡ y=y & z=u. 

Then the principal hypothesis of the String Recursion Theorem holds trivially. 

Applying the Theorem we obtain a formula  A#(y,z)  and a string form  Iα⊆I 

such that   

     (iα)              QT+ ⊢ ∀y ∊ Iα ∃!z ∊ I  A#(y,z), 

  (iiaα)              QT+ ⊢ ∀z ∊ I (A#(a,z) ⟷ z=bb), 

  (iibα)              QT+ ⊢ ∀z ∊ I (A#(b,z) ⟷ z=b), 

 (iiiaα)              QT+ ⊢ ∀y ∊Iα ∀u,z ∊ I (A#(y,u)  →  (A#(y*a,z) → z=u*b)), 

 (iiibα)              QT+ ⊢ ∀y ∊Iα ∀u,z ∊ I (A#(y,u)  →  (A#(y*b,z) → z=u)). 

 

Informally speaking,   A#(y,z) defines the graph of the function α.  

Exactly analogously, by letting p and q,  and F1, F2, respectively, exchange 

places,  we apply the Theorem to obtain a formula  B#(y,z) defining the graph 

of the function β and a string form  Iβ⊆I   such that 

     (iβ)              QT+ ⊢ ∀y ∊ Iβ ∃!z ∊ I  B#(y,z), 

  (iiaβ)              QT+ ⊢ ∀z ∊ I (B#(a,z) ⟷ z=b), 

  (iibβ)              QT+ ⊢ ∀z ∊ I (B#(b,z) ⟷ z=bb), 

 (iiiaβ)              QT+ ⊢ ∀y ∊ Iβ ∀u,z ∊ I (B#(y,u)  →  (B#(y*a,z) → z=u)), 

 (iiibβ)              QT+ ⊢ ∀y ∊ Iβ ∀u,z ∊ I (B#(y,u)  →  (B#(y*b,z) → z=u*b)). 
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We can then prove that  α  and  β  correctly count b’s in b-tallies: 

5.1(a)   For any string form I⊆I0 there is a string form J⊆I such that  

                   QT+ ⊢ A#(a,Sb) & ∀x ∊ J ∀y ∊ I (Tallyb(x) & A#(x,y)  → y=b)    and  

                   QT+ ⊢ ∀x ∊ J ∀y ∊ I (Tallya(x) & B#(x,y)  → y=b).      

(I.e., ‘α(a)=1’ and  ‘Tallyb(x) → α(x)=0’,   and  ‘Tallya(x) → β(x)=0’.) 

(b)   For any string form I⊆I0 there is a string form J⊆I such that  

                   QT+ ⊢ ∀x ∊ J ∀y ∊ I (Tallyb(x) & B#(x,y)  → y=x*b). 

Informally,   Tallyb(x) → β(x)=length(x). 

 

We now verify that the functions  α and β  are indeed additive.   Let IAdd be as 

in 3.5(a).     

 

5.2(a)  For any string form  I⊆Iα and I⊆IAdd  there is a string form J ≡ IAddα ⊆I 

 such that  

  QT+ ⊢ ∀x,y ∊ J ∀u,v,w (A#(x,u) & A#(y,v) & AddTally(u,v,w) → A#(x*y,w)). 

                                                                                                 (“α(x*y) = α(x) + α(y)”) 

(b)  For any string form  I⊆Iβ  and  I⊆IAdd  there is a string form J ≡ IAddβ⊆I  

such that  

  QT+ ⊢ ∀x,y ∊ J ∀u,v,w (B#(x,u) & B#(y,v) & AddTally(u,v,w) → B#(x*y,w)). 

                                                                                                    (“β(x*y) = β(x) + β(y)”) 

 

Proof: See Appendix.∎ 
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                              6. Formal Construction of the Interpretation   

 

Let  IAddα be the string form obtained from  I0  by the series of modifications 

described in  §§3-5 up to and including 5.2(a).  Analogously for and IAddβ   and 

5.2(b).   

Let        J* ≡ IAddα & IAddβ. 

Then   J* ⊆ IAddα  and  J* ⊆ IAddβ  and  J* ⊆ IAdd  as well as J* ⊆ I◊ .  We may also 

assume that  J*  is closed under *,  and downward closed under ≤ and  ⊆p. 

Hence it may be assumed that the string form  J*  is also closed under  Addtally 

and the functions  α  and  β. 

We then formally define  Æ(x) as  

∃y,z (A#(x,y) & B#(x,z)  &  y=Sz)  & 

                                                 &  ∀u,v,w (uBx & A#(u,v) & B#(u,w)  →  v≤w). 

(These are conditions (c1)-(c2) from §1.) 

We set                        I*(x)  ≡  Æ(x) & J*(x). 

The formula  I*(x)  will formally define in QT+ the domain of interpretation of  

theory T.  We now proceed to formally verify the translations of the axioms of  

T by derivations in QT+. 

 

6.1(a)   QT+ ⊢ I*(x) & x2Ex  →  ∀u,v (A#(x2,u) & B#(x2,v)  →  Sv≤u). 

(b)       QT+ ⊢ I*(x) & I*(y) & z=bxy  →  I*(z). 
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(c)        QT+ ⊢ I*(x) & I*(u) & bxy=buv  →  x=u & y=v. 

(d)         QT+ ⊢ I*(x)  → (x⊆pa ⟷ x=a). 

(e)         QT+ ⊢ I*(x) & I*(y) & I*(z)  →  (x⊆pbyz  ↔ x=byz  v  x⊆py  v  x⊆pz). 

Proof:  See Appendix.   We give the details of the proof of (e) to illustrate the 

flavor of the type of formal argument used.   

Assume  M ⊧ x⊆pbyz    where  M ⊧ I*(x) & I*(y) & I*(z). 

Then M ⊧ J*(x) & J*(y) & J*(z)  and also  M ⊧ Æ(x) & Æ(y) & Æ(z).  

By (iα) and (iβ),   M ⊧ ∃!x1 ∊ J* A#(x,x1) & ∃!x2 ∊ J* B#(x,x2). 

From   M ⊧ x⊆pbyz   by 3.7(h)  we have that    

                 M ⊧ x=byz  v  x=b  v  x⊆pyz  v  ∃u(uByz & x=bu). 

We distinguish the cases: 

(1)  M ⊧ ∃u(uByz & x=bu). 

Then by (QT2),  M ⊧ x≠a.  From  M ⊧ I*(y) & I*(z),  by 6.1(b),   M ⊧ I*(byz). 

From  M ⊧ uByz,   M ⊧ ∃v uv=yz, hence  M ⊧ b(uv)=b(yz), also  

M ⊧ (bu)v=b(yz).  Thus   M ⊧ buBb(yz),  hence  M ⊧ xBb(yz).   

From  M ⊧ I*(byz),  M ⊧ Æ(byz), whence  M ⊧ x1≤x2.  But from  M ⊧ Æ(x),   

M ⊧ x1=Sx2,  and we have  M ⊧ x1≤x2<Sx2=x1,   contradicting   M ⊧ I0(x1). 

Hence (1) is ruled out.  

(2)  M ⊧ x=b. 

Then by (QT2),  M ⊧ x≠a, and from M ⊧ Æ(x), we have  M ⊧ bBx.  But then   

M ⊧ bBb,  contradicting (QT2).  Hence (2) is also ruled out.  

(3)  M ⊧ x⊆pyz. 
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By 3.7(g),     M ⊧ x=yz  v  x⊆py  v  x⊆pz  v  ∃y1(y1Ey & x=y1z)  v  

                                     v  ∃z1(z1Bz & x=yz1)  v  ∃y1,z1(y1Ey & z1Bz & x=y1z1). 

   (3i)  M ⊧ x=yz.  

By (iα) and (iβ),   M ⊧ ∃!y1 ∊ J* A#(y,y1) & ∃!y2 ∊ J* B#(y,y2),   

and further   M ⊧ ∃!z1 ∊ J* A#(z,z1) & ∃!z2 ∊ J* B#(z,z2).    

From  M ⊧ Æ(y),   M ⊧ y1=Sy2, and from  M ⊧ Æ(z),   M ⊧ z1=Sz2. 

By 3.5(a),     M ⊧ ∃!p1 ∊ J*(Tallyb(p1) & Addtally(y1,z1,p1))  

and            M ⊧ ∃!p2 ∊ J*(Tallyb(p2) & Addtally(y2,z2,p2)). 

Then from  M ⊧ A#(y,y1) & A#(z,z1),  by 5.2(a),   M ⊧ A#(y*z,p1),  and  

from  M ⊧ B#(y,y2) & B#(z,z2),  by 5.2(b),   M ⊧ B#(y*z,p2), 

⇒ from  M ⊧ y1=Sy2 & z1=Sz2,  M ⊧ Addtally(Sy2,Sz2,p1). 

On the other hand, from  M ⊧ Addtally(y2,z2,p2),  by 3.4(e),   

M ⊧ Addtally(y2,Sz2,Sp2),  whence by 3.5(d),   M ⊧ Addtally(Sy2,Sz2,SSp2).   

By single-valuedness of  Addtally, we then have    M ⊧ p1=SSp2. 

From hypothesis  M ⊧ x=yz & A#(y*z,p1) & B#(y*z,p2),  

                                     M ⊧ A#(x,p1) & B#(x,p2).    

Hence from  M ⊧ A#(x,x1) & B#(x,x2),  by single-valuedness of  A# and  B#,  

                                M ⊧ p1=x1 & p2=x2. 

Thus from  M ⊧ p1=SSp2, we have  M ⊧ x1=SSx2.  But from  M ⊧ Æ(x)  we have  

M ⊧ x1=Sx2,  whence  M ⊧ x1=Sx1.  But then from  M ⊧ x1<Sx1,  we obtain  

M ⊧ x1<x1,   contradicting  M ⊧ I0(x1).  Hence (3i) is ruled out.   

   (3ii)  M ⊧ ∃y1(y1Ey & x=y1z).    
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Then M ⊧ y1Bx.  

By (iα) and (iβ),   M ⊧ ∃!u1 ∊ J* A#(y1,u1) & ∃!u2 ∊ J* B#(y2,u2).   

From  M ⊧ Æ(x) & y1Bx,      M ⊧ u1≤u2,  whereas  from  M ⊧ I*(y) & y1Ey,  by 

6.1(a),     M ⊧ Su2≤u1.   But then  M ⊧ u2<Su2≤u2,   contradicting  M ⊧ I0(u2). 

This rules out (3ii).   

   (3iii)  M ⊧ ∃z1(z1Bz & x=yz1).    

Then  M ⊧ yBx.    By (iα) and (iβ),   M ⊧ ∃!y1 ∊ J* A#(y,y1) & ∃!y2 ∊ J* B#(y,y2).   

From  M ⊧ Æ(x) & yBx,  M ⊧ y1≤y2.  But from   M ⊧ Æ(y), M ⊧ y1=Sy2, and we  

obtain M ⊧ y1≤y2<Sy2=y1,   contradicting  M ⊧ I0(y1).  Hence  (3iii) is ruled 

 out.    

   (3iv)  M ⊧ ∃y1,z1(y1Ey & z1Bz & x=y1z1). 

This is ruled out by reasoning as in either (3ii) or (3iii).   

We then conclude under the principal hypothesis that  

                  M ⊧ x⊆pyz  → x⊆py  v  x⊆pz   

and further that        M ⊧ x⊆pbyz  → x=byz  v  x⊆py  v  x⊆pz. 

The converse is immediate from the definition of ⊆pz.■     

 

Taking the formula Æ(x) from §6 to define the domain, and interpreting the 

non-logical vocabulary  ℒT = {0, ( ), ⊑} of T by  a, bxy and  ⊆p, resp., as 

explained in §2, we have that 6.1(b)-(e), along with the fact that                             

QT+ ⊢ bxy≠a, suffice to establish formal interpretability of T in QT+.  On the 
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other hand, from [1], building on previous work of Halpern and Collins, 

Wilkie, Visser, Grzegorczyk and  Ganea, we have that  

                            TC ≡I QT+≡I AST ≡I AST+EXT ≡I Q ≡I  

Since, by [6],  Q ≤I T,  this suffices to establish  

WEAK ESSENTIALLY UNDECIDABLE THEORIES: FIRST MUTUAL 

INTERPRETABILITY THEOREM.     

                       T ≡I QT+≡I QT0 ≡I TC ≡I Q ≡I AST. 

In addition, each of the theories above is mutually interpretable with 

AST+EXT,  and Buss’s theory S2
1   (see Ferreira and Ferreira [4]).   

 

                                             §7.  R and its variants  

 

We now consider the expanded vocabulary ℒ C,⊑* = {a, b, *, ⊑*}  with two 

individual constants – the digits a, b – a single binary operation symbol * and a 

2-place relational symbol  ⊑*.   Each variable-free term of  ℒ C,⊑*  represents a 

finite string of a ’s and/or b ’s, and each such string may have multiple 

variable-free terms as its representations, differing in the arrangement of 
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parentheses indicating the order of applications of the term operation *.  

Recalling the theory WT described in the introduction formulated in                  

ℒT = {0, ( ), ⊑},  we are going to single out  ℒ C,⊑* terms that represent tree-like 

strings obtained from variable-free terms of  ℒT as described in §1.  With each 

variable-free term v of  ℒT we associate a unique ℒ C,⊑* term  vτ as follows:  

                          0τ  ≡ a                                   (u,v)τ ≡ b*(uτ * vτ). 

The ℒ QT,⊑* term vτ  is an Æ string that codes v. 

If  S (v)  is the set of all (variable-free) subterms of v, let  

           Ʃ(t) = { uτ  | for some ℒT-term v,   u ∊ S (v) and t=vτ}.  

We then let   Ʃτ = ⋃v ∊ S Ʃ (vτ),  where S  is the set all variable-free terms of ℒT.  

A straightforward induction on the complexity of ℒT terms establishes that    

the mapping  τ  is 1-1.  

 

Let WQT be the first-order theory formulated in  ℒ C,⊑* with the following 

axioms: 

   (WQT1)     ¬(s=t)                               for any distinct terms  s, t ∊ Ʃτ, 

   (WQT2)     ∀z (z⊑*b*(s*t)  ↔  z=b*(s*t)  v  z⊑*s  v  z⊑*t)    
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                                                                                             for all terms s, t ∊ Ʃτ, 

   (WQT3)     ∀z (z⊑*a  ↔  z=a). 

Here, (WQT1) and (WQT2) are axiom schemas with infinitely many instances. 

 

We now define a formal interpretation  (τ)  of WT in WQT.  Let the formula 

                              T*(x)  ≡  x=a v ∃y,z x=b*(y*z) 

define the domain.  Interpret  0  by  a, the binary term building operation  ( , )  

of ℒT by b *(x*y), and  ⊑  by  ⊑*.   We then have immediately: 

          WQT ⊢ T*(0τ), 

          WQT ⊢ T*(y) & T*(z)  →  T*(b*(y*z)). 

A trivial induction on the complexity of ℒT terms verifies that each v ∊ S  is 

interpreted by  vτ  ∊ Ʃτ   in WQT.  Since the map τ is 1-1, we have that  

                              WQT ⊢ (¬(u=v))(τ), 

¬(uτ =vτ)  being the translations (¬(u=v))(τ)  of the instances of axiom 

schema (WT1) of WT, for distinct  u, v ∊ S .   

Consider now an instance of the schema (WT2), for some v ∊ S :   
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                                            ∀x (x⊑v  ↔  ⋁u ∊ S (v) x=u). 

If  v  is the atomic term 0, we have that  S (v) = {0}.  Hence the formula in 

question is                ∀x (x⊑0  ↔ x=0). 

But, by (WQT3),      WQT ⊢ ∀x (x⊑*a  ↔  x=a). 

Hence, a fortiori,     WQT ⊢ ∀x (T*(x) → (x⊑*a ↔ x=a)),    which is the  

(τ)-translation of the above instance of (WT2).   

Consider now t ∊ S  of the form (u,v).  Note that  

                         S (t) = S (u) ∪ S (v) ∪ {t}. 

Hence            Ʃ(tτ) = Ʃ(uτ) ∪ Ʃ(vτ) ∪ {tτ}.                         (†). 

Assume now that               

WQT ⊢ [∀z (z⊑u  ↔  ⋁s ∊ S (u) z=s)](τ)  and  WQT ⊢ [∀z (z⊑v  ↔  ⋁s ∊ S (v) z=s)](τ). 

Then                      WQT ⊢ ∀z (T*(z) → (z⊑*uτ  ↔  ⋁sτ ∊ Ʃ (uτ ) z=sτ)) 

and                         WQT ⊢ ∀z (T*(z) → (z⊑*vτ  ↔  ⋁sτ ∊ Ʃ (vτ ) z=sτ)). 

Let  M  be a model of WQT.  Assume  M ⊧ T*(x)  and consider  M⊧ x⊑*t.   

We have that  tτ   is in fact  b*(uτ * vτ).  Hence  
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 ⇔   M⊧ x⊑*b*(uτ * vτ)  ⇔   by (WQT2),  M ⊧  x=b*(uτ * vτ)  v  x⊑*uτ  v  x⊑*vτ   ⇔       

 ⇔   M ⊧  x=b*(uτ * vτ)  v  ⋁sτ ∊ Ʃ (uτ ) x=sτ  v  ⋁sτ ∊ Ʃ (vτ ) x=sτ   ⇔   

 ⇔   M ⊧  ⋁sτ ∊ Ʃ (tτ ) x=sτ   

using  (†).   Therefore, 

                      WQT ⊢ ∀x (T*(x) → (x⊑*tτ  ↔  ⋁sτ ∊ Ʃ (tτ ) x=sτ)), 

that is,                WQT ⊢ [∀x (x⊑t  ↔  ⋁s ∊ S (t) x=s)](τ).   

Hence the  (τ)-translation of each instance of (WT2) is also provable in WQT. 

We conclude that    

7.1.      WT ≤I WQT. 

The theory WQT is not recognizably a concatenation theory: the axioms make 

no substantive assumptions about the binary operation *, not even 

associativity.  On that account, it might be considered at best as a “pseudo-

concatenation” notational variant of WT.   We now consider another first-

order theory, WQT*, formulated in the same vocabulary   ℒ C,⊑* = {a, b, *, ⊑*}  as 

WQT, with the following axioms: for each variable-free term t of ℒ C,⊑*, 

   (WQT*1)     ∀x,y,z (x*(y*z)⊑pt  v  (x*y)*z⊑pt  →   x*(y*z)=(x*y)*z) 
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   (WQT*2)     ∀x,y (x*y⊑pt  → ¬(x*y=a)  &  ¬(x*y=b))   

   (WQT*3)     ∀x,y ((a*x ⊑pt & a*y ⊑pt → (a*x=a*y → x=y)) &  

                                   & (b*x ⊑pt & b*y ⊑pt → (b*x=b*y → x=y)) &  

                                    &  (x*a ⊑pt & y*a ⊑pt → (x*a=y*a → x=y)) 

                                    & (x*b ⊑pt & x*y ⊑pt → (x*b=y*b → x=y))) 

   (WQT*4)     ∀x,y ((a*x ⊑pt & b*y ⊑pt  →  ¬(a*x=b*y))  &  

                                                       & (x*a ⊑pt & y*b ⊑pt  →  ¬(x*a=y*b)))   

   (WQT*5)     ∀x ⊑pt (x=a  v  x=b  v  ((aBx v bBx) & (aEx v bEx)))  

   (WQT*6)     ∀y,z (b*(y*z)⊑*t  →   

                                             →  ∀x (x⊑*b*(y*z)  ↔  x=b*(y*z)  v  x⊑*y  v  x⊑*z)) 

   (WQT*7)     ∀z (z⊑*a  ↔ z=a)   

   (WQT*8)     ∀x,y (x⊑*y & y⊑*x  →  x=y)   

   (WQT*9)     ∀x,y (x⊑*y & y⊑*z →  y⊑*z)   

Here we use the following abbreviations:    

                   xBy ≡ ∃z y=x*z                        xEy ≡ ∃z y=z*x,    



45 
 

and  x⊑py   ≡  x=y  v  xBy  v xEy  v  ∃z1,z2  y=z1*(x*z2)  v  ∃z1,z2  y=(z1*x)z2.    

Then   ∀x ⊑pu φ  ≡  ∀x (x⊑pu  →  φ),  where x does not occur in the term u.   

Also,   ∀x ⊑*u φ  ≡  ∀x (x⊑*u  →  φ).   

 

(WQT*1)-(WQT*6) are axiom schemas with infinitely many instances, one for 

each variable-free term t.  The schemas (WQT*1)-(WQT*5) are “bounded” 

versions of the axioms (QT1)-(QT5) of QT+.   Schema (WQT*6) is a “bounded” 

generalization of schema (WQT2) of WQT.   In light of that, WQT* may be 

naturally interpreted as a hybrid basic theory of finite strings and trees: the 

intended domain are the finite strings of a ’s and/or b ’s, * is interpreted as the 

concatenation operation, and ⊑* as the substring relation between Æ strings.   

 

WQT* is an extension of WQT.   First, we note the following: 

7.2.  For any distinct terms  s, t ∊ Ʃτ,      WQT* ⊢ ¬(s=t). 

Proof: We argue by (meta-theoretic) induction on the number of digits in s, t.  

If either one of s or t is the single digit a, this is immediate by (WQT*2).   If 

neither  s  nor  t  are single digits, let  s1…sm  and  t1…tn  be their successive 
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digits (ignoring parentheses), and let  si≠ti  be the leftmost digit where  s  and  

t  differ.  Then    s = s1…si-1si s-  and    t = t1…ti-1ti t -  where   s- = si+1…sm  and   

t - = ti+1…tn.  By (WQT*4),    WQT* ⊢ ¬(si s- = ti t -).  By repeatedly applying   

(WQT*1) and  (WQT*3)  we obtain  WQT* ⊢ ¬(s1…si-1si s- =t1…ti-1ti t -),  that is,    

WQT* ⊢ ¬(s=t),  as required.∎ 

 

Hence in particular all instances of schema (WQT1) are provable in WQT*.  

Consider an instance of (WQT2)  for terms  s, t ∊ Ʃτ,   

               ∀z (z⊑*b*(s*t)  ↔  z=b*(s*t)  v  z⊑*s  v  z⊑*t)    

Now,  WQT* ⊢ b*(s*t)=b*(s*t),  so  WQT* ⊢ b*(s*t)⊑pb*(s*t).  From  (WQT*6),    

                WQT* ⊢ ∀x (x⊑*b*(s*t)  ↔  x=b*(s*t)  v  x⊑*s  v  x⊑*t).     

Hence each instance of  (WQT2) is provable in WQT*.   Given that (WQT3) is  

(WQT*7), this is enough to establish that  WQT* is an extension of WQT.  

 

On the other hand, we also have: 

7.3.      WQT*  is locally finitely satisfiable. 
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That is, each finite subset of its non-logical axioms has a finite model.   

Proof:  See Appendix.∎ 

By Visser’s Theorem,  it follows that  WQT* is interpretable in R.   

Since by [6],   R ≤I WT,  we then have  

 

WEAK ESSENTIALLY UNDECIDABLE THEORIES: SECOND MUTUAL 

INTERPRETABILITY THEOREM.        R ≡I  WTC – ε ≡I  WT ≡I WQT ≡I WQT*. 

For definition of the theory WTC – ε see [5].  
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                                       A P P E N D I X 

 

2.2     𝛴* ⊧ Æ(x)  ↔  x=a v ∃!y,z (x=b(yz) & Æ(y) & Æ(z)). 

Proof:  (⇐)  Assume   𝛴* ⊧ Æ(y) & Æ(z) & x=byz.  Then  

                             𝛴* ⊧ α(y) = β(y)+1 &  α(z) = β(z)+1. 

Now,    𝛴* ⊧ α(x) = α(byz) = α(yz) = α(y)+α(z)  

and      𝛴* ⊧ β(x) = β(byz) = β(b)+β(yz) = β(y)+β(z)+1.    Then   

𝛴* ⊧  α(x) = α(y)+α(z) = (β(y)+1)+(β(z)+1) = (β(y)+β(z)+1)+1 = β(x)+1 

which verifies (c1).  For (c2),  assume  𝛴* ⊧ uBx,  i.e.,  𝛴* ⊧ uBbyz.  

Then           𝛴* ⊧ u=b  v  uBby  v u=by  v ∃z1(z1Bz  & u=byz1). 

If  (a)  𝛴* ⊧ u=b,  then  𝛴* ⊧ α(u) = α(b) = 0 < 1 = β(b) = β(u). 

If  (b) 𝛴* ⊧ uBby,  then  𝛴* ⊧ ∃y1(y1By  & u=by1).  Then from 𝛴* ⊧ Æ(y),   

𝛴* ⊧ α(y1) ≤ β(y1),  whence  𝛴* ⊧ α(u) = α(by1) = α(y1)  and    

𝛴* ⊧ β(u) = β(by1) = β(b)+β(y1) = β(y1)+1.    

Hence  𝛴* ⊧ α(u) = α(y1) ≤ β(y1) < β(y1)+1 = β(u). 
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Suppose  (c)  𝛴* ⊧ u=by.   Then  from  𝛴* ⊧ Æ(y),  𝛴* ⊧ α(y) = β(y)+1,  and we 

have  𝛴* ⊧ α(u) = α(by) = α(y)  and    

𝛴* ⊧ β(u) = β(by) = β(b)+β(y) = β(y1)+1. 

Hence  𝛴* ⊧ α(u) = α(y) = β(y)+1 = β(u),  so  𝛴* ⊧ α(u) ≤ β(u). 

Finally, suppose  (d)  𝛴* ⊧ ∃z1(z1By  & u=byz1).    Then  from 𝛴* ⊧ Æ(z),   

𝛴* ⊧ α(z1) ≤ β(z1),   and from 𝛴* ⊧ Æ(y),  𝛴* ⊧ α(y) = β(y)+1.  Then  

𝛴* ⊧ α(u) = α(byz1) = α(yz1) = α(y)+α(z1)   and  

𝛴* ⊧   β(u) = β(byz1) = β(b)+β(yz1) = β(y)+β(z1)+1.    Hence    

𝛴* ⊧ α(u) = α(y)+α(z1) = (β(y)+1)+α(z1) ≤  

                                                                 ≤ (β(y)+1)+β(z1) = β(y)+β(z1)+1 = β(u).  

Thus  𝛴* ⊧  α(u) ≤ β(u).  This completes the proof of (c2).  So 𝛴* ⊧ Æ(x).∎ 

 

3.5(i)      For any string form  I⊆I0 there is a string form  J⊆I such that             

  QT+ ⊢ ∀x2,y1,y2 ∊ J ∀x1,z1,z2 (Tallyb(x2) & Tallyb(y1) & Tallyb(y2) & 

            &  Addtally(x1,x2,z1)  &  Addtally(y1,y2,z2)  &  x1≤y1  &  z1=Sz2  → 

                                                                                                                    →  Sy2≤x2 ).        
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Let   J(y) ≡ ILC & ICTC & I6.2(a) & ICOMM.    

Assume   M ⊧ Addtally(x1,x2,z1)  &  Addtally(y1,y2,z2)   

where  M ⊧ x1≤y1  &  z1=Sz2  and  M ⊧ Tallyb(x2) & Tallyb(y1) & Tallyb(y2)  and  

M ⊧ J(y1).   

From  M ⊧ Tallyb(y1) & x1≤y1,    M ⊧ Tallyb(x1).   

By (f),  M ⊧ ∃u1(Tallyb(u1) & Addtally(u1,x1,y1)), whereas by 3.5(a),     

M ⊧ ∃!p1∊ J Addtally(u1,x1,p1).    

Then, by single-valuedness of  Addtally,   M ⊧ y1=p1,  whence  from hypothesis 

M ⊧ Addtally(y1,y2,z2),    M ⊧ Addtally(p1,y2,z2). 

On the other hand,   M ⊧ ∃!p2∊ J Addtally(x1,u1,p2),  whence by (g), 

M ⊧ Addtally(u1,x1,p2).   

But then from   M ⊧ Addtally(u1,x1,p1),  by single-valuedness of  Addtally,         

                          M ⊧ p1=p2. 

Hence  M ⊧ Addtally(p2,y2,z2),  and from 3.4(e)  we obtain  

                                M ⊧ Addtally(p2,y2*b,z2*b). 

From  M ⊧ Addtally(y1,y2,z2),  by 3.5(a),   M ⊧ Tallyb(z2). 

So  from  M ⊧ Tallyb(y2) & Tallyb(z2),        M ⊧ Addtally(p2,Sy2,Sz2). 

Again by 3.5(a),    

         M ⊧ ∃!v1∊ J Addtally(u1,Sy2,v1)  and   M ⊧ ∃!w1∊ J Addtally(x1,v1,w1). 

From  M ⊧ Addtally(x1,u1,p2)  by (h),              M ⊧ Sz2=w1. 

From hypothesis  M ⊧ z1=Sz2,   M ⊧ z1=w1,  so  M ⊧ Addtally(x1,v1,z1). 

On the other hand, from hypothesis  M ⊧ Addtally(x1,x2,z1),  by (e),        
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                                           M ⊧ x2=v1, 

Hence  from  M ⊧ Addtally(u1,Sy2,v1),    M ⊧ Addtally(u1,Sy2,x2).       

But then from  M ⊧ Tallyb(u1),  by (h),    M ⊧ Sy2≤x2,   as required.■ 

 

 

Let                  MaxTb(t,w)  ≡  Tallyb(t) & ∀t’(Tallyb(t’) & t’⊆pw → t’⊆pt). 

Let us say, further, when a b-tally t is longer than any b-tally in x:     

                        Max+Tb(t,x)  ≡ MaxTb(t,x) & ¬t⊆px. 

We then define when a string  u is a preframe indexed by t: 

                     Pref(u,t)  ≡  ∃y⊆pu (aya=u & Max+Tb(t,u)); 

when  t1ut2 is (the) first frame in the string x,   Firstf(x,t1,u,t2):                                  

Pref(u,t1)  &  Tallyb(t2)  &  ((t1=t2 & t1ut2=x) v  (t1<t2 & (t1ut2a)Bx));                 

when  t1ut2 is (the) last frame in x,  Lastf(x,t1,u,t2):                                                 

Pref(u,t1) & t1=t2 & (t1ut2=x  v ∃w (wat1ut2=x & Max+Tb(t1,w))); 

and when  t1ut2 is an intermediate frame in x immediately following 

an initial segment w of x,  Intf(x,w,t1,u,t2):  

   Pref(u,t1)  &  Tallyb(t2)  &  t1<t2 & ∃w1(wat1ut2aw1=x)  &  Max+Tb(t1,w). 

 

Then we define when a string  u  is t1,t2-framed in x:    
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        Fr(x,t1,u,t2) ≡  Firstf(x,t1,u,t2)  v  ∃w Intf(x,w,t1,u,t2)  v  Lastf(x,t1,u,t2), 

We say that t1 is the initial, and t2 terminal tally marker in the frame.    

 

Next we define “t envelops x”,  Env(t,x), to be the conjunction of the following  

five conditions: 

 (a)  MaxTb(t,x)                                                  “t is a longest b-tally in x”, 

 (b)  ∃u⊆px ∃t1,t2 Firstf(x,t1,u,t2)                  “x has a first frame”,    

 (c)   ∃u⊆px Lastf(x,t,u,t)                                 “x has a last frame with t as its initial                  

                                                                                  and terminal marker”   

 (d)  ∀u⊆px ∀t1,t2,t3,t4 (Fr(x,t1,u,t2) & Fr(x,t3,u,t4)  →  t1=t3) 

               “different initial tally markers frame distinct strings”, 

 (e)   ∀u1,u2⊆px ∀t’,t1,t2 (Fr(x,t’,u1,t1) & Fr(x,t’,u2,t2)  →  u1=u2) 

               “distinct strings are framed by different initial tally markers” 

 

Now we say   x is a set code  if x is aa or else x is enveloped by some b-tally: 

                              Set(x)  ≡   x=aa  v  ∃t⊆px Env(t,x).   

 

Finally, we say that a string y is a member of the set coded by string x if x is 

enveloped by some b-tally t and the juxtaposition of the string y with single 

tokens of digit a is framed in x: 

        y ε x   ≡   ∃t⊆px (Env(t,x) & ∃u⊆px ∃t1,t2(Fr(x,t1,u,t2) & u=aya)). 
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We can then establish: 

 

SINGLETON LEMMA.   For any string form  I⊆I0  there is a string  form  J⊆I 

such that 

      QT+ ⊦ ∀x∊J ∀u,t1,t2 (Set(x) & Firstf(x,t1,aua,t2) & x=t1auat2  →  

                                                                                                     →  ∀w (w ε x ↔ w=u)). 

 

(See [2], (5.21).) 

APPENDING LEMMA.   For any string form  I⊆I0  there is a string form J⊆I such 

that 

   QT+ ⊦ ∀x,y∊J ∀t,t2,t3(Env(t2,x) & Env(t,y) & (t3a)By & Tallyb(t3) & t2<t3 &                  

             & ¬∃u(u ε x  &  u ε y)  → ∃z∊J (Env(t,z) & ∀u(u ε z  ↔  u ε x  v  u ε y)).         

 

(See [2], (5.46).) 

We then derive: 

 

DOUBLETON LEMMA.  For any string form  I⊆I0  there is a string form  J⊆I 

such that 

   QT+ ⊦ ∀x∊J ∀t1,t2,t3,u,v(Pref(aua,t1) & Pref(ava,t2) & t1<t2 & t2=t3 & u≠v & 

                                       & x=t1auat2avat3  →  Set(x) & ∀w(w ε x ↔ (w=u v w=v)). 

 

(See [2], (5.58).) 
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Let           MinMax+Tb(t,u)  ≡  Max+Tb(t,u) & ∀t’(Max+Tb(t’,u) → t≤t’). 

In that case we say that t is a shortest non-occurrent b-tally in string u.  

 

We then have: 

 

 

 

SHORTEST NON-OCCURRENT TALLY LEMMA.  For any string form  I⊆I0  there 

 is a string  form  J⊆I such that 

                 QT+ ⊦ ∀x∊J ∃!t∊J MinMax+Tb(t,x). 

 

 

 

STRING RECURSION THEOREM.  Let F1(y,z,u) and F2(y,z,u) be formulae,  and 

let I⊆I◊ closed under  * and downward closed under ⊆p.  Suppose that  

            QT+ ⊢ I(p) & I(q), 

            QT+ ⊢ ∀y,z∊I ∃!u∊I F1(y,z,u), 

and     QT+ ⊢ ∀y,z∊I ∃!u∊I F2(y,z,u). 

Then there is a formula H(y,z) and a string form J⊆ I such that   
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          (i)     QT+ ⊢ ∀y∊J ∃!z∊I H(y,z), 

          (iia)  QT+ ⊢ ∀y∊I (H(a,y) ⟷ y=p), 

          (iib)  QT+ ⊢ ∀y∊I (H(b,y) ⟷ y=q), 

          (iiia) QT+ ⊢ ∀y∊J ∀u,z∊I (H(y,u) → (H(y*a,z) ⟷ F1(y,u,z))), 

and   (iiib) QT+ ⊢ ∀y∊J ∀u,z∊I (H(y,u) → (H(y*b,z) ⟷ F2(y,u,z))). 

Proof:  Let  Comp(u,m)  abbreviate  

Set(u) & (a≤m → ∃v⊆pu (Pair[a,p,v] & v ε u)) & 

            & (b≤m → ∃v⊆pu (Pair[b,q,v] & v ε u)) & 

   & ∀z<m ∀u1,u2,v1 (Pair[z,u1,v1] & v1 ε u & F1(z,u1,u2) → 

                                                               → ∃v2⊆pu (Pair[z*a,u2,v2] & v2 ε u)) & 

   & ∀z<m ∀u1,u2,v1 (Pair[z,u1,v1] & v1 ε u & F2(z,u1,u2) → 

                                                               → ∃v2⊆pu (Pair[z*b,u2,v2] & v2 ε u)) & 

&  ∀z,u1,u2,v1,v2 (Pair[z,u1,v1] & Pair[z,u2,v2] & v1 ε u & v2 ε u →  

                                                                                                          → u1=u2 & v1=v2). 

 

Let (C1)-(C6) be the successive conjuncts that make up Comp(u,m,x).  Then 

(C4) and (C5) express the usual conditions that a sequence code u should 

satisfy to represent the course of a recursion.  The last clause, (C6), is a 

uniqueness condition.  Then Comp(u,m) means, roughly, that u is a set code 
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for a computation determined by p, q, F1,F2, in at least m steps where the 

length indices m are strings ordered by the tree-like ordering ≤.   

Let   MinComp(u,m)  abbreviate  

   Comp(u,m) & ∀u’ (Comp(u’,m)  → ∀y (y ε u  →  y ε u’))  & 

              &  ∀z,v,w (Pair[z,v,w] & w ε u  →  (m=a & z=a) v (m=b & z=b) v  

                                                                                            v ∃n<m (z≤na v z≤nb)).   

 

Let  J(m)  abbreviate  

  I(m) & ∃!y∊I ∃u∊I ∃w⊆pu (MinComp(u,m) & Pair[m,y,w] & w ε u). 

                                                                                                                  

Finally, let  H(m,y)  abbreviate   

              ∃u,w (MinComp(u,m) & Pair[m,y,w] & w ε u). 

 

Let (C1)-(C6) be the successive conjuncts that make up Comp(u,m).  Then 

(C4) and (C5) express the usual conditions that a sequence code u should 

satisfy to represent the course of a recursion.  The last clause, (C6), is a 

uniqueness condition.   
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The proof consists of ten claims.  

Claim 1:  QT+ ⊢ J(a). 

By the principal hypothesis,    QT+ ⊢ I(p).    

By the Pairing Lemma,       QT+ ⊢ ∃!w∊I Pair[a,p,w]. 

By the Shortest Non-Occurrent Tally Lemma,  M ⊧ ∃!t∊I MinMax+Tb(t,awa). 

⇒ M ⊧ Max+Tb(t,awa). 

Let  u=tawat.   

Then M ⊧ I(u). 

⇒ M ⊧ Firstf(u,t,awa,t) & Lastf(u,t,awa,t), 

⇒ by the Singleton Lemma,  M ⊧ Set(u) & ∀z (z ε u ⟷ z=w), 

⇒ M ⊧ Set(u) & Pair[a,p,w] & w ε u, 

which suffices to establish parts (C1) and (C2) of M ⊧ Comp(u,a). 

Since  QT+ ⊢ ¬(b≤a) and  QT+ ⊢ ∀z ¬(z<a), parts (C3)-(C5) hold 

trivially. 

For (C6), assume that      

        M ⊧ Pair[z,u1,v1] & Pair[z,u2,v2] & v1 ε u & v2 ε u. 

⇒ by choice of u,  M ⊧ v1=v2, 

⇒ since  M ⊧ v1⊆pu & I(u),  M ⊧ I(v1), 

⇒ M ⊧ Pair[z,u1,v1] & Pair[z,u2,v1], 

⇒ by the Pairing Lemma, M ⊧ u1=u2, 

⇒ M ⊧ u1=u2 & v1=v2,  as required. 
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This completes the argument that M ⊧ Comp(u,a).  We now move on to show 

that  M ⊧ MinComp(u,a).          

Assume now that  M ⊧ Comp(v,a). 

Then  M ⊧ ∃w1⊆pv (Pair[a,p,w1] & w1 ε v) . 

⇒ M ⊧ Pair[a,p,w] & Pair[a,p,w1], 

⇒ by the Pairing Lemma,  M ⊧ w=w1, 

⇒ M ⊧ w ε v. 

Assume now that   M ⊧ y ε u. 

⇒ from  M ⊧ ∀z (z ε u ⟷ z=w),   M ⊧ y=w, 

⇒ M ⊧ y ε v. 

Thus we proved that   M ⊧ Comp(v,a) → ∀y(y ε u → y ε v).   

To complete the argument that   M ⊧ MinComp(u,a),  assume that  

                           M ⊧ Pair[z1,v1,w1] & w1 ε u.   

⇒ from  M ⊧ ∀z (z ε u ⟷ z=w),   M ⊧ w1=w, 

⇒ M ⊧ Pair[a,p,w] & Pair[z1,v1,w], 

⇒ by the Pairing Lemma, M ⊧ z1=a & v1=p. 

Therefore we also have    

 M ⊧ ∀z1,v1,w1 (Pair[z1,v1,w1] & w1 ε u  → (a=a & z1=a) v (a=b & z1=b) v  

                                                                                               v ∃n<a ((z1≤na v z1≤nb))).  

So we finally have that  M ⊧ MinComp(u,a).   

In fact, we obtained   

M ⊧ ∃!y∊I ∃u∊I ∃w⊆pu (MinComp(u,a) & Pair[a,y,w] & w ε u).  
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So   M ⊧ J(a).  

 

Claim 2:   QT+ ⊢ J(b). 

From the proof of QT+ ⊢ J(a)  we have that  

                 M ⊧ ∃!w1∊I (Pair[a,p,w1] & ∃!t1∊I MinMax+Tb(t1,aw1a)). 

Arguing exactly analogously, we obtain that  

            M ⊧ ∃!w2∊I (Pair[b,q,w2] & ∃!t2∊I MinMax+Tb(t2,aw2a)). 

⇒ since  QT+ ⊢ a≠b,   from M ⊧ Pair[a,p,w1] & Pair[b,q,w2], by the Pairing 

Lemma,                          M ⊧ w1≠w2. 

Let  u’=t1aw1a(t1t2)aw2a(t1t2).    Then   M ⊧ I(u’). 

⇒ by the proof of Doubleton Lemma,   

                  M ⊧ Env(t1t2,u’) & ∀w (w ε u’ ⟷ w=w1 v w=w2).      

On the other hand, by the principal hypothesis,    

                    M ⊧ ∃!u3∊I F1(a,u1,u3)  and  M ⊧ ∃!u4∊I F2(a,u1,u4).   

Just as above, we then obtain  

                 M ⊧ ∃!w3∊I (Pair[aa,u3,w3] & ∃!t3∊I MinMax+Tb(t3,aw3a)) 

and         M ⊧ ∃!w4∊I (Pair[ab,u4,w4] & ∃!t4∊I MinMax+Tb(t4,aw4a)). 

Then, just as above, we again have that  M ⊧ w3≠w4,  and, further, that  

         M ⊧ w1≠w3 & w1≠w4 & w2≠w3 & w2≠w4. 

Letting   u”=(t1t2t3)aw3a(t1t2t3t4)aw4a(t1t2t3t4),  we likewise have that   

M ⊧ I(u”)  and  M ⊧ Env(t1t2t3t4,u”) & ∀w (w ε u” ⟷ w=w3 v w=w4).      

Since  
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  M ⊧ Env(t1t2,u’) & Env(t1t2t3t4,u”) & (t1t2t3a)Bu” &  

                                                               & Tallyb(t1t2t3) & ¬∃w(w ε u’ & w ε u”), 

it follows by the proof of Appending Lemma, that for  

                     u=t1aw1a(t1t2)aw2a(t1t2t3)aw3a(t1t2t3t4)aw4a(t1t2t3t4),    

we have   M ⊧ Env(t1t2t3t4,u) & ∀w (w ε u ⟷ w ε u’ v w ε u”). 

Hence  

               M ⊧ Set(u) & ∀w (w ε u ⟷ w=w1 v w=w2 v w=w3 v w=w4). 

So (C1) holds.  

Now, we have that  

               M ⊧ ∃w1⊆pu (Pair[a,p,w1] & w1 ε u) 

and        M ⊧ ∃w2⊆pu (Pair[b,q,w2] & w2 ε u). 

Since  QT+ ⊢ a≤b,  this suffices to establish (C2) and (C3) of  M ⊧ Comp(u,b).  

Since  QT+ ⊢ ∀z(z<b → z=a),   and  M ⊧ w3 ε u & w4 ε u,  we have from the 

choices of w3 and w4, that  (C4) and (C5) of  M ⊧ Comp(u,b) also hold. 

For (C6), assume that  

                           M ⊧ Pair[z,s1,v1] & Pair[z,s2,v2] & v1 ε u & v2 ε u. 

 

⇒  M ⊧ (v1=w1 v v1=w2 v v1=w3 v v1=w4) &  

                                                                           & (v2=w1 v v2=w2 v v2=w3 v v2=w4). 

Suppose, for a reductio that  M ⊧ v1≠v2,  say  M ⊧ v1=w1 & v2=w2. 

⇒  M ⊧ Pair[z,s1,w1] & Pair[z,s2,w2]. 

But we have that   M ⊧ Pair[a,p,w1] & Pair[b,q,w2]. 
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⇒ by the Pairing Lemma,  M ⊧ z=a & z=b,  a contradiction.  

Similarly for the other choice of for  v1  and v2 from u. 

Therefore   M ⊧ v1=v2,   and (C6) of  M ⊧ Comp(u,b) also holds. 

Assume now that  M ⊧ Comp(v,b). 

Then   

            M ⊧ ∃p1⊆pv (Pair[a,p,p1] & p1 ε v),   and  

            M ⊧ ∃p2⊆pv (Pair[b,q,p2] & p2 ε v),   and  

            M ⊧ ∃v3,p3⊆pv ( F1(a,v1,v3) & I(v3) & Pair[aa,v3,p3] & p3 ε v),   and  

            M ⊧ ∃v4,p4⊆pv ( F2(a,v1,v4) & I(v4) & Pair[ab,v4,p4] & p4 ε v).  

From the principal hypothesis, it follows that  

                             M ⊧ v3=u3 & v4=u4. 

⇒ M ⊧ Pair[a,p,w1] & Pair[a,p,p1]  and  M ⊧ Pair[b,q,w2] & Pair[b,q,p2] 

and  M ⊧ Pair[aa,u3,w3] & Pair[aa,u3,p3] and M ⊧ Pair[ab,u4,w4] & Pair[ab,u4,p4], 

⇒ by the Pairing Lemma,   M ⊧ w1=p1 & w2=p2 & w3=p3 & w4=p4, 

⇒ from  M ⊧  w1 ε u & w2 ε u & w3 ε u & w4 ε u,   

                       M ⊧  w1 ε v & w2 ε v & w3 ε v & w4 ε v. 

Assume now that   M ⊧  y ε u. 

⇒ M ⊧ y=w1 v y=w2 v y=w3 v y=w4, 

⇒ M ⊧  y ε v. 

Thus   M ⊧ Comp(v,b) → ∀y(y ε u → y ε v).   

Finally, assume that  

                           M ⊧ Pair[z,s,w] & w ε u.   
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⇒ M ⊧ w=w1 v w=w2 v w=w3 v w=w4, 

⇒ M ⊧ Pair[z,s,w1] v Pair[z,s,w2] v Pair[z,s,w3] v Pair[z,s,w4]. 

But  we have   

       M ⊧ Pair[a,p,w1] & Pair[b,q,w2] & Pair[aa,u3,w3] & Pair[ab,u4,w4]. 

⇒ by the Pairing Lemma,   M ⊧ z=a v z=b v z=aa v z=ab. 

We have that   M ⊧ a<b. 

Hence, from  M ⊧ m=b,  since  M ⊧ a≤ab & aa≤aa & ab≤ab,  it follows that  

                      M ⊧ (m=b & z=b) v ∃n<b (z≤na v z≤nb) 

whence   M ⊧ (m=a & z=a) & (m=b & z=b) v ∃n<b (z≤na v z≤nb),    

as required.  

This completes the argument that   M ⊧ MinComp(u,b).  

 

Claim 3:   QT+ ⊢ ∀x (J(x) → J(Sx)). 

Assume that M ⊧ J(m). 

⇒  M ⊧ I(m), 

⇒  since I is a string form,  M ⊧ I(Sm). 

We need to show that   

             M ⊧ ∃!y∊I ∃u∊I ∃w⊆pu (MinComp(u,Sm) & Pair[Sm,y,w] & w ε u).  

If  M ⊧ Sm=b,  what we need was proved in Claim 2.  

So we may assume  M ⊧ ¬Sm=b.   Then  M ⊧ ¬m=a. 

From the hypothesis M ⊧ J(m) we have that   

      M ⊧ ∃!y∊I ∃u∊I ∃w⊆pu (MinComp(u,m) & Pair[m,y,w] & w ε u). 
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Let  u0 be a u in M such that  M ⊧ I(u) & Set(u) & MinComp(u,m,x).   

Let  y0 be the unique y in M such that   

                        M ⊧ ∃w⊆pu0 (Pair[m,y,w] & w ε u0). 

⇒ since  M ⊧ I(m) & I(y0),  by the Pairing Lemma,    M ⊧ ∃!w⊆pu0 Pair[m,y,w]. 

Let  w0 be the unique such w in M. 

From   M ⊧ MinComp(u0,m),    M ⊧ Comp(u0,m). 

⇒  M ⊧ Set(u0), 

⇒ since  M ⊧ w0 ε u0,   M ⊧ ∃t⊆pu0 Env(t,u0). 

Here  t  uniquely depends on u0.  (See [2], (4.24b).)  Since the string form I 

is downward closed w.r. to ⊆p,  from  M ⊧ I(u0)  we have that  M ⊧ I(t).   

From the principal hypothesis of the Theorem we have that  

(†)         M ⊧ ∃!v1∊I F1(m,y0,v1)   and  M ⊧ ∃!v2∊I F2(m,y0,v2). 

⇒ by the Pairing Lemma,  

                M ⊧ ∃!w1∊I (Pair[ma,v1,w1] & ∃!t1∊I MinMax+Tb(t1,aw1a))  and  

                    M ⊧ ∃!w2∊I (Pair[mb,v2,w2] & ∃!t2∊I MinMax+Tb(t2,aw2a)). 

Then, analogously to the proof of   QT+ ⊢ J(b) above, we obtain, for  

                             u’ = tt1aw1a(tt1t2)aw2a(tt1t2), 

that              M ⊧ I(u’) & Env(tt1t2,u’) & ∀w(w ε u’ ↔ w=w1 v w=w2). 

From  M ⊧ MinComp(u0,m),  we readily verify that    

                                    M ⊧ ¬(w1 ε u0) & ¬(w2 ε u0). 

Then, since  

 M ⊧ Env(t,u0) & Env(tt1t2,u’) & (tt1t2a)Bu’ & Tallyb(tt1t2) &  
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                                                                                                & ¬∃w(w ε u0 & w ε u’), 

by the proof of Appending Lemma,  for  

                     u=u0t1aw1a(tt1t2)aw2a(tt1t2t3),    

we have   M ⊧ Env(tt1t2) & ∀w (w ε u ⟷ w ε u0 v w ε u’). 

Hence  

               M ⊧ Set(u) & ∀w (w ε u ⟷ (w ε u0 v w=w1 v w=w2)). 

So (C1) holds.  

Note that, since the string form I is closed under *, from  

          M ⊧ I(u0) & I(t1) & I(w1) & I(t) & I(t2) & I(w2) 

we have   M ⊧ I(u). 

We now proceed to argue that  M ⊧ Comp(u,Sm). 

It is straightforward to verify from   M ⊧ Comp(u0,m)  and the choice of u that  

   M ⊧ ∃q1⊆pu (Pair[a,p,q1] & q1 ε u)   and    M ⊧ ∃q2⊆pu (Pair[b,q,q2] & q2 ε u) 

so that (C2) and (C3) of   M ⊧ Comp(u,Sm)  both hold.   

For (C4), let  M ⊧ z<Sm & Pair[z,u1,v3] & v3 ε u & F1(z,u1,u2)   where   

M ⊧ u1,u2,v3⊆pu.   

We need to show that   M ⊧ ∃v⊆pu (Pair[z*a,u2,v] & v ε u). 

From  M ⊧ z<Sm,                 M ⊧ z<m v z=m. 

Suppose  M ⊧ z<m.  

We have that  M ⊧ v3 ε u. 

Using the Pairing Lemma and the definition of <,  we verify that   

                               M ⊧ v3≠w1  and    M ⊧ v3≠w2. 
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⇒ from  M ⊧ v3 ε u,   M ⊧ v3 ε u0, 

⇒ M ⊧ u1⊆pu0. 

Then, from  M ⊧ Pair[z,u1,v3] & v3 ε u0 & F1(z,u1,u2)   and   M ⊧ Comp(u0,m),  

we have that       M ⊧ ∃v⊆pu0 (Pair[z*a,u2,v] & v ε u0), 

whence          M ⊧ ∃v⊆pu (Pair[z*a,u2,v] & v ε u),  as required. 

Suppose  M ⊧ z=m. 

Again, we are assuming that   M ⊧ Pair[z,u1,v3] & v3 ε u & F1(z,u1,u2)   where   

M ⊧ u1,u2,v3⊆pu.  Hence  M ⊧ I(u2). 

Just as above,   M ⊧ v3 ε u0.  

On the other hand, we also have that   M ⊧ ∃w⊆pu (Pair[m,y0,w] & w ε u0), 

⇒ from  M ⊧ Pair[m,u1,v3] & v3 ε u0   and clause (C6) of  M ⊧ Comp(u0,m),  

                                         M ⊧ y0=u1 & v3=w, 

⇒ from  M ⊧ F1(m,u1,u2) & I(u2)  and  (†),   M ⊧ v1=u2. 

But then, from  M ⊧ Pair[ma,v1,w1],  we have    

                                      M ⊧ Pair[ma,u2,w1] & w1 ε u, 

where   M ⊧ w1⊆pu,  as required.   

Hence (C4) of   M ⊧ Comp(u,Sm)  also holds. 

For (C5), we argue in exactly the same way, except that references to F1, z*a 

and w1 are replaced by F2, z*b and w2. 

Condition (C6) is verified using the corresponding condition from  

M ⊧ Comp(u0,m) and the Pairing Lemma.    

We now proceed to show that in fact  M ⊧ MinComp(u,Sm). 
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Suppose that  M ⊧ Comp(v’,Sm). 

First, we want to show that  M ⊧ ∀y(y ε v’ → y ε u). 

From  M ⊧ Comp(v’,Sm)  we have that  M ⊧ Comp(v’,m). 

From the hypothesis   M ⊧ J(m) we have that   M ⊧ MinComp(u0,m). 

⇒ M ⊧ ∀y(y ε u0 → y ε v’). 

From  M ⊧ J(m) we also have that   M ⊧ Pair[m,y0,w0] & w0 ε u0. 

⇒ M ⊧ w0 ε v’. 

But then, since, by (†),   M ⊧ F1(m,y0,v1) & F2(m,y0,v2),   

we have, from (C4) and (C5) of  M ⊧ Comp(v’,Sm)  that  

                                  M ⊧ w1 ε v’ & w2 ε v’ 

where   M ⊧ Pair[m*a,v1,w1] & Pair[m*b,v2,w2]. 

So we have that   M ⊧ ∀y(y ε u0 → y ε v’) & w1 ε v’ & w2 ε v’. 

But then from, the choice of u, it follows that  

                         M ⊧ ∀y(y ε u → y ε v’), 

as required. 

Suppose now that  M ⊧ Pair[z,v,w] & w ε u. 

⇒ M ⊧ w ε u0 v w=w1 v w=w2. 

If  M ⊧ w ε u0, then from  M ⊧ MinComp(u0,m), we have that  

                  M ⊧ (m=a & z=a) & (m=b & z=b) v ∃n<m (z≤na v z≤nb). 

But then   M ⊧ (m=a & z=a) & (m=b & z=b) v ∃n<Sm (z≤na v z≤nb). 

If  M ⊧ w=w1,  we have that  M ⊧ z=ma,  whence  

                                  M ⊧ ∃n<Sm z≤na. 
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Hence  M ⊧ (m=a & z=a) & (m=b & z=b) v ∃n<Sm (z≤na v z≤nb),  

as required. 

An analogous argument applies if  M ⊧ w=w2. 

This suffices to establish   M ⊧ MinComp(u,Sm). 

Now, we have that  

  M ⊧ ∃!w2∊I (MinComp(u,Sm) & Pair[Sm,v2,w2] & w2 ε u). 

Suppose that   M ⊧ MinComp(u,Sm) & Pair[Sm,y,w2] & w2 ε u  where M ⊧ I(y). 

⇒ from  M ⊧ Pair[Sm,v2,w2] & I(w2),  we have, by the Pairing Lemma, that   

                                                    M ⊧ v2=y. 

So we have actually established that  

    M ⊧ ∃!y∊I ∃u∊I ∃w⊆pu (MinComp(u,Sm) & Pair[Sm,y,w] & w ε u),  

and hence that   M ⊧ J(Sm). 

This completes the proof of Claim 3. 

 

Claim 4:   QT+ ⊢ ∀x (J(x) → J(x*a)). 

Exactly analogous to the proof of Claim 3. 

Claims 1-4 establish that J is a string form.  

 

 Claim 5:  QT+ ⊢ ∀y∊I (H(a,y) ⟷ y=p). 

Let  M ⊧ I(y).   

Assume  M ⊧ y=p. 

As shown in the proof of Claim 1, in M there is a u, namely, u=tawat, such that  
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                        M ⊧ Pair[a,p,w] & w ε u. 

Then, again as shown in the proof of Claim 1, we have that   

          M ⊧ MinComp(u,a) & Pair[a,p,w] & w ε u),   

whence  M ⊧ H(a,p),  so  M ⊧ H(a,y). 

Thus,    M ⊧ y=p → H(x,a,y).      

Conversely, let    M ⊧ H(a,y).   

⇒ by definition of H,    M ⊧ ∃u,w (MinComp(u,a) & Pair[a,y,w] & w ε u),   

⇒ M ⊧ Comp(u,a),  

⇒ from (C2),   M ⊧ ∃v (Pair[a,p,v] & v ε u), 

⇒ from  M ⊧ Pair[a,y,w] & Pair[a,p,v] & w ε u & v ε u,  and clause (C6) of  

M ⊧ Comp(u,a),          M ⊧ y=p. 

Hence also   M ⊧ H(a,y) → y=p). 

This completes the proof of Claim 5.  

 

Claim 6:  QT+ ⊢ ∀y∊I (H(b,y) ⟷ y=q). 

Let  M ⊧ I(y).   

Assume  M ⊧ y=q. 

We follow the proof of Claim 2 to obtain a u in M  such that  

                        M ⊧ Pair[b,u2,w] & w ε u, 

where            M ⊧ MinComp(u,b) & Pair[b,u2,w] & w ε u).   

Then   M ⊧ H(b,y). 
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This shows that     M ⊧ y=q → H(b,y).      

To establish the converse, that  M ⊧ H(b,y) → y=q,  we argue analogously 

to the proof  in Claim 5.  

 

Claim 7:  QT+ ⊢ ∀y∊J ∀v,z∊I (H(y,v)  →  (F1(y,v,z) → H(y*a,z))). 

 

Let  M ⊧ J(y)  and  M ⊧ I(v) & I(z). 

Suppose  M ⊧ H(y,v) & F1(y,v,z). 

⇒ from  M ⊧ J(y),  

              M ⊧ ∃u0∊I ∃w⊆pu (MinComp(u0,y) & Pair[y,v,w] & w ε u0). 

We then obtain, exactly analogously to the proof of Claim 3, a u in M such that  

                 M ⊧ ∃w1 (MinComp(u,y*a) & Pair[y*a,z,w1] & w1 ε u),  

whence  M ⊧ H(y*a,z)  follows.   

This completes the argument for Claim 7.   

 

Claim 8:           QT+ ⊢ ∀y∊J ∀v,z∊I (H(y,v) & H(y*a,z) → F1(y,v,z)). 

 

Assume that   M ⊧ H(y,v) & H(y*a,z)    where M ⊧ J(y) and M ⊧ I(v) & I(z).   

From the hypothesis M ⊧ H(y,v)  we have that   

              M ⊧ ∃u0,w0 (MinComp(u0,y) & Pair[y,v,w0] & w0 ε u0). 

From the principal hypothesis of the Theorem we have  
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                    QT+ ⊢ ∃!z’∊I F1(y,v,z’). 

We then obtain, exactly analogously to the proof of Claim 3, a u in M such that  

                  M ⊧ ∃w1 (MinComp(u,y*a) & Pair[y*a,z’,w1] & w1 ε u). 

On the other hand, from the hypothesis   M ⊧ H(y*a,z), we have that  

                     M ⊧ ∃u’,w’ (MinComp(u’,y*a) & Pair[y*a,z’,w’] & w’ ε u’). 

Now, we have that, in general 

    QT+ ⊢ MinComp(u1,m) & MinComp(u2,m)  →  ∀w (w ε u1  ⟷  w ε u2). 

From   M ⊧ MinComp(u,y*a) & MinComp(u’,y*a) & w’ ε u’    ,   M ⊧ w’ ε u. 

⇒ from  M ⊧ Comp(u,y*a) & Pair[y*a,z,w’] & Pair[y*a,z’,w1] & w1 ε u, 

                                             M ⊧ z=z’,  

⇒  M ⊧ F1(y,v,z), as required.   

This completes the proof of Claim 8.  

 

Claim 9:  QT+ ⊢ ∀y∊J ∀v,z∊I (H(y,v)  →  (F2(y,v,z) → H(y*b,z))). 

 

Claim 10:           QT+ ⊢ ∀y∊J ∀v,z∊I (H(y,v) & H(y*b,z) → F2(y,v,z)). 

 

These two claims are proved exactly analogously to Claims 8 and 9. 

From the definition of the string form J we have  

   M ⊧ ∀m∊J ∃!y∊I ∃u∊I ∃w⊆pu (MinComp(u,m) & Pair[m,y,w] & w ε u). 

So from the definition of H we have  
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 (i)              QT+ ⊢ ∀m∊J ∃!y∊I H(m,y). 

From Claims 5 and 6 we have    

 (iia)           QT+ ⊢ ∀y∊I (H(a,y) ⟷ y=p), 

and  

 (iib)           QT+ ⊢ ∀y∊I (H(b,y) ⟷ y=q). 

From Claim 7 and 8  we have  

 (iiia)    QT+ ⊢ ∀y∊J ∀v,z ∊ I (H(y,v)  →  (H(y*a,z) → F1(y,v,z))), 

and, from Claims 9 and 10,  we obtain   

 (iiib)    QT+ ⊢ ∀y∊J ∀v,z ∊ I (H(y,v)  →  (H(y*b,z) → F2(y,v,z))). 

 

This concludes the proof of the Theorem.■ 

  

                                  

5.2(a)  For any string form  I⊆Iα and I⊆IAdd  there is a string form J ≡ IAddα ⊆I 

 such that  

  QT+ ⊢ ∀x,y ∊ J ∀u,v,w (A#(x,u) & A#(y,v) & AddTally(u,v,w) → A#(x*y,w)). 

 

Proof:  Let  J(y)  abbreviate 

  I(y) & ∀x ∊ I ∀u,v,w (A#(x,u) & A#(y,v) & AddTally(u,v,w) → A#(x*y,w)). 

Since I may be assumed to be closed under  *  and downward closed under ≤,  

we may assume that I is closed under  AddTally,  α  and  β.    

We argue that J is a string form.  
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For y=a, we have that  M ⊧ I(a). 

Assume   M ⊧ A#(x,u) & A#(y,v) & AddTally(u,v,w)     where  M ⊧ I(x). 

Then M ⊧ A#(a,v), whence,  by  (iiaα),  M ⊧ v=bb.   

From   M ⊧ A#(x,u),   M ⊧ Tallyb(u). 

Then  M ⊧ AddTally(u,bb,w),  and by 3.4(d),   M ⊧ AddTally(u,bb,Su). 

By single-valuedness of  AddTally,   M ⊧ w=Su. 

On the other hand, by  (iα),   M ⊧ ∃!w’ ∊ I  A#(x*a,w’). 

From  M ⊧ A#(x,u),  by (iiiaα),  M ⊧ w’=u*b,  and from  M ⊧ Tallyb(u),   

M ⊧ w’=Su.   Hence  M ⊧ A#(x*a,Su).   

Then  from   M ⊧ w=Su,  M ⊧ A#(x*a,w),    as required. 

For  y=b,  again we have  M ⊧ I(b).    

Assume   M ⊧ A#(x,u) & A#(y,v) & AddTally(u,v,w)     where  M ⊧ I(x). 

Then  M ⊧ A#(b,v).   By  (iibα),  M ⊧ v=b,  so  M ⊧ AddTally(u,b,w). 

By definition of AddTally,  M ⊧ w=u. 

By  (iα),   M ⊧ ∃!w’ ∊ I  A#(x*b,w’).   

Hence from  M ⊧ A#(x,u),  by (iiibα),  M ⊧ w’=u.  Thus  M ⊧ A#(x*b,u). 

But then from   M ⊧ w=u,  M ⊧ A#(x*b,w),    as required. 

Suppose now that   M ⊧ J(y). 

Then  M ⊧ I(y),  whence   M ⊧ I(y*a)  because I is a string concept. 

Assume now that   M ⊧ A#(x,u) & A#(y*a,v) & AddTally(u,v,w)     

where  M ⊧ I(x). 

Then M ⊧ Tallyb(u) .  By  (iα),   M ⊧ ∃!v0 ∊ I (Tallyb(v0) & A#(y,v0)).  
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From  M ⊧ A#(y*a,v),  by (iiiaα),  M ⊧ v=v0*b. 

By 3.5(a),   M ⊧ ∃!w0 ∊ I AddTallyb(u,v0,w0).    

Hence from M ⊧ A#(x,u)  and hypothesis   M ⊧ J(y),  M ⊧ A#(x*y,w0).   

From   M ⊧ AddTally(u,v,w),    M ⊧ AddTally(u,v0*b ,w). 

But since  M ⊧ Tallyb(u) & Tallyb(v0),  from   M ⊧ AddTallyb(u,v0,w0),  by 3.4(e),  

                                M ⊧ AddTallyb(u,v0*b,w0*b).   

Then by single-valuedness of  AddTally,   M ⊧ w=w0*b. 

Since  M ⊧ I(y*a),  we have from  M ⊧ I(x),  by  (iα),  that  

                       M ⊧ ∃!w’ ∊ I  A#(x*(y*a),w’). 

But  M ⊧ x*(y*a)=(x*y)*a.  Hence   M ⊧ A#((x*y)*a,w’). 

From  M ⊧ A#(x*y,w0),  by (iiiaα),  M ⊧ w’=w0*b,  and from  M ⊧ w=w0*b=w’,   

                                                    M ⊧ w=w’. 

But then from  M ⊧ A#(x*(y*a),w’),   M ⊧ A#(x*(y*a),w),   as required. 

Therefore,   M ⊧ J(y*a).  

On the other hand, for yb,  we again have, from M ⊧ I(y),  that  M ⊧ I(y*b).   

Assume that   M ⊧ A#(x,u) & A#(y*b,v) & AddTally(u,v,w)    where  M ⊧ I(x). 

By  (iα),   M ⊧ ∃!v0 ∊ I A#(y,v0).    

Then from  M ⊧ A#(y*b,v),  by (iiibα),  M ⊧ v=v0. 

By 3.5(a),   M ⊧ ∃!w0 ∊ I AddTally(u,v0,w0).   So  M ⊧ AddTally(u,v,w0).  

Then from  M ⊧ AddTally(u,v,w),  by single-valuedness of  AddTally,    

                                              M ⊧ w=w0. 

From  hypothesis  M ⊧ J(y),  M ⊧ A#(x*y,w0). 
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Since  M ⊧ I(y*b),  we have from  M ⊧ I(x),  by  (iα),  that  

                       M ⊧ ∃!w’ ∊ I  A#(x*(y*b),w’). 

But  M ⊧ x*(y*b)=(x*y)*b.   So  M ⊧ A#((x*y)*b,w’). 

But since  M ⊧ I(x*y),  from  M ⊧ A#(x*y,w0),  by (iiibα),  M ⊧ w’=w0*. 

So from  M ⊧ w’=w0=w,  M ⊧ w’=w.      

But then from  M ⊧ A#(x*(y*b),w’),     M ⊧ A#(x*(y*b),w),     as required. 

Therefore,   M ⊧ J(y*b),  which completes the argument that J is a string  

form.  Then the claim follows immediately.■ 

 

6.1(a)      QT+ ⊢ I*(x) & x2Ex  →  ∀u,v (A#(x2,u) & B#(x2,v)  →  Sv≤u). 

(b)       QT+ ⊢ I*(x) & I*(y) & z=bxy  →  I*(z). 

(c)        QT+ ⊢ I*(x) & I*(u) & bxy=buv  →  x=u & y=v. 

(d)         QT+ ⊢ I*(x)  → (x⊆pa ⟷ x=a). 

(e)         QT+ ⊢ I*(x) & I*(y) & I*(z)  →  (x⊆pbyz  ↔ x=byz  v  x⊆py  v  x⊆pz). 

 

Proof: (a) Assume  M ⊧ A#(x2,u) & B#(x2,v)   where  M ⊧ x2Ex  and   M ⊧ I*(x). 

Then M ⊧ ∃x1 x=x1x2 & x≠a,  that is,  M ⊧ x1Bx.      

From M ⊧ I*(x),  M ⊧ J*(x) & I*(x1) & Æ(x) ,  and also  M ⊧ J*(x1). 

By (iα) and (iβ),   M ⊧ ∃!v1 ∊ J* A#(x1,v1) & ∃!w1 ∊ J* B#(x1,w1). 

Now,  from  M ⊧ Æ(x),  M ⊧ v1≤w1. 

Also from (iα),  M ⊧ ∃!y ∊ J* A#(x,y),  and from  (iβ),  M ⊧ ∃!z ∊ J* B#(x,z),  

and we have that   M ⊧ A#(x1*x2,y) & B#(x1*x2,z). 
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On the other hand, since also  M ⊧ J*(x2),  again by (iα) and (iβ)  we have   

                           M ⊧ ∃!v2 ∊ J* A#(x2,v2) & ∃!w2 ∊ J* B#(x2,w2). 

By 3.5(a),  M ⊧ ∃!z1 ∊ J*(Tallyb(z1) & AddTally(v1,v2,z1))  

and   M ⊧ ∃!z2 ∊ J*(Tallyb(z2) & AddTally(w1,w2,z2)). 

Now, from   M ⊧ A#(x1,v1) & A#(x2,v2),  by 5.2(a),   

                                       M ⊧ A#(x1*x2,z1), 

and from   M ⊧ B#(x1,w1) & B#(x2,w2),  by 5.2(b),   

                                       M ⊧ B#(x1*x2,z2). 

On the other hand,  from  M ⊧ Æ(x) & A#(x,y) & B#(x,z),   M ⊧ y=Sz. 

So from  M ⊧ x=x1x2,    M ⊧ A#(x,z1) & B#(x,z2). 

Then since  M ⊧ J*(z1) & J*(z2),    M ⊧ z1=y & z2=z,   and  from  M ⊧ y=Sz,   

                                                       M ⊧ z1=Sz2.     

Hence from  M ⊧ AddTally(v1,v2,z1) & AddTally(w1,w2,z2)) & v1≤w1,    

by 3.5(i),                                            M ⊧ Sw2≤v2. 

From the uniqueness of  v2,w2   we have that  M ⊧ Sv≤u,  as required. 

 

(b)  Assume  M ⊧ z=bxy   where  M ⊧ I*(x) & I*(y). 

Then M ⊧ J*(x) & J*(y), and  since J* is a string form closed under *,   

M ⊧ J*(bxy). 

From M ⊧ I*(x) & I*(y),  we have that  M ⊧ Æ(x) & Æ(y).  It suffices to show  

that  M ⊧ Æ(z). 

We proceed to show conditions (c1) and (c2) hold.  
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By (iα) and (iβ),   M ⊧ ∃!v1 ∊ J* A#(x,v1) & ∃!v2 ∊ J* B#(x,v2) 

and                         M ⊧ ∃!w1 ∊ J* A#(y,w1) & ∃!w2 ∊ J* B#(y,w2). 

From  M ⊧ Æ(x) & Æ(y)   we have   M ⊧ v1=Sv2 & w1=Sw2. 

Again by (iα) and (iβ)  we have   

                           M ⊧ ∃!u1 ∊ J* A#(z,u1) & ∃!u2 ∊ J* B#(z,u2). 

Then  M ⊧ A#(b(xy),u1) & B#(b(xy),u2). 

By (iibα) and (iibβ)  we have         M ⊧ A#(b,b) & B#(b,bb). 

Once again by (iα) and (iβ),    

                           M ⊧ ∃!v3 ∊ J* A#(xy,v3) & ∃!v4 ∊ J* B#(xy,v4). 

By 3.5(a),   M ⊧ ∃!p1 ∊ J*(Tallyb(p1) & AddTally(b,v3,p1))  

and            M ⊧ ∃!p2 ∊ J*(Tallyb(p2) & AddTally(bb,v4,p2)). 

Then  from   M ⊧ A#(b,b), by 5.2(a),      M ⊧ A#(b(xy),p1), 

and from   M ⊧ B#(b,bb),  by 5.2(b),      M ⊧ B#(b(xy),p2). 

By 3.4(c),   M ⊧ AddTally(b,v3,v3), whence  from  M ⊧ AddTally(b,v3,p1),  by 

 single-valuedness of Addtally,     

                                 M ⊧ p1=v3. 

By 3.5(c),   M ⊧ AddTally(bb,v4,Sv4), hence from  M ⊧ AddTally(bb,v4,p2),  by  

single-valuedness of Addtally,     

                                 M ⊧ p2=Sv4. 

By 3.5(a),  M ⊧ ∃!q1 ∊ J*(Tallyb(q1) & AddTally(v1,w1,q1))  

and            M ⊧ ∃!q2 ∊ J*(Tallyb(q2) & AddTally(v2,w2,q2)). 

Then from   M ⊧ A#(x,v1) & A#(y,w1), by 5.2(a),       
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                                       M ⊧ A#(xy,q1), 

and from   M ⊧ B#(x,v2) & B#(y,w2),  by 5.2(b),   

                                       M ⊧ B#(xy,p2), 

Hence from  M ⊧ A#(xy,v3) & B#(xy,v4),  by single-valuedness of A# and B#, 

                                  M ⊧ q1=v3 & q2=v4. 

But from   M ⊧ A#(b(xy),u1) & A#(b(xy),p1),  by single-valuedness of A#, 

                                  M ⊧ u1=p1, 

and from   M ⊧ z=b(xy) & u1=p1=v3=q1,                    M ⊧ A#(z,q1). 

Also, from  M ⊧ B#(b(xy),u2) & B#(b(xy),p2),  by single-valuedness of B#, 

                                  M ⊧ u2=p2. 

Then from   M ⊧ z=b(xy) & u2=p2=Sv4=Sq2,                           M ⊧ B#(z,Sq2). 

Now, from  M ⊧ AddTally(v1,w1,q1) & v1=Sv2 & w1=Sw2     we have   

                                      M ⊧ AddTally(Sv2,Sw2,q1). 

On the other hand, from   M ⊧ AddTally(v2,w2,q2),  by 3.5(d),    

                                    M ⊧ AddTally(Sv2,w2,Sq2). 

By 3.4(e),   M ⊧ AddTally(Sv2,Sw2,SSq2). 

But then from  M ⊧ AddTally(Sv2,Sw2,q1)  by single-valuedness of Addtally,     

                                 M ⊧ q1=SSq2. 

Since  M ⊧ A#(z,q1) & B#(z,Sq2),  this suffices to establish (c1). 

 

For (c2),  assume    M ⊧ uBz & A#(u,v1) & B#(u,v2). 

Then M ⊧ uBb(xy),  and  by 3.7(c),    
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                         M ⊧ u=b  v  uBbx  v  u=bx  v  ∃y1(y1Bu & u=bxy1).   

   (1)  M ⊧ u=b.    

By (iibα) and (iibβ),  M ⊧ A#(b,b) & B#(b,bb). 

Then  M ⊧ A#(u,b) & B#(u,bb),  and by single-valuedness of A# and B#, 

                                  M ⊧ v1=b & v2=bb. 

But then  M ⊧ v1≤v2,   as required. 

   (2)  M ⊧ uBbx.    

Then M ⊧ ∃x1(x1Bx & u=bx1). 

By (iα) and (iβ),   M ⊧ ∃!u1 ∊ J* A#(x1,u1) & ∃!u2 ∊ J* B#(x1,u2). 

From  M ⊧ Æ(x),             M ⊧ u1≤u2. 

By (iibα) and (iibβ),        M ⊧ A#(b,b) & B#(b,bb). 

By 3.5(a),     M ⊧ ∃!p1 ∊ J*(Tallyb(p1) & AddTally(b,u1,p1))  

and            M ⊧ ∃!p2 ∊ J*(Tallyb(p2) & AddTally(bb,u2,p2)), 

Then  by 5.2(a),         M ⊧ A#(bx1,p1),  and  by 5.2(b),         M ⊧ B#(bx1,p2). 

By 3.4(c),   M ⊧ AddTally(b,u1,u1), 

By 3.5(c),   M ⊧ AddTally(bb,u2,Su2). 

Hence  from  M ⊧ AddTally(b,u1,p1) & AddTally(bb,u2,p2),   

by single-valuedness of Addtally,           M ⊧ p1=u1 & p2=Su2. 

Now, from  M ⊧ u=bx1 & A#(u,v1) & B#(u,v2),  we have   

                              M ⊧ A#(bx1,v1) & B#(bx1,v2). 

Then from   M ⊧ A#(bx1,p1) & B#(bx1,p2),   by single-valuedness of A# and B#, 

                                  M ⊧ v1=p1 & v2=p2, 
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whence  M ⊧ v1=u1 & v2=Su2. 

But then from   M ⊧ u1≤u2  we have that    M ⊧ v1=u1<Su2=v2. 

By single-valuedness of A# and B#, this suffices to establish (c2) in this case. 

   (3)  M ⊧ u=bx.    

By (iα) and (iβ),   M ⊧ ∃!u1 ∊ J* A#(x,u1) & ∃!u2 ∊ J* B#(x,u2). 

From  M ⊧ Æ(x),             M ⊧ u1=Su2. 

On the other hand, by (iibα) and (iibβ),         

                                  M ⊧ A#(b,b) & B#(b,bb). 

By 3.5(a),     M ⊧ ∃!p1 ∊ J*(Tallyb(p1) & AddTally(b,u1,p1))  

and            M ⊧ ∃!p2 ∊ J*(Tallyb(p2) & AddTally(bb,u2,p2)). 

Reasoning exactly as in (2) with bx in place of bx1 we obtain  

                                   M ⊧ v1=u1=Su2=v2. 

By single-valuedness of A# and B#, this suffices. 

   (4)  M ⊧ ∃y1(y1By & u=bxy1). 

By (iα) and (iβ),   M ⊧ ∃!w1 ∊ J* A#(y1,w1) & ∃!w2 ∊ J* B#(y1,w2). 

From  M ⊧ Æ(y),             M ⊧ w1≤w2. 

Also by (iα) and (iβ),   M ⊧ ∃!u1 ∊ J* A#(x,u1) & ∃!u2 ∊ J* B#(x,u2). 

From  M ⊧ Æ(x),             M ⊧ u1=Su2. 

By 3.5(a),     M ⊧ ∃!q1 ∊ J*(Tallyb(q1) & AddTally(u1,w1,q1))  

and            M ⊧ ∃!q2 ∊ J*(Tallyb(q2) & AddTally(u2,w2,q2)), 

We then reason as in (1) with u in place of z and y1 in place of y that  

                    M ⊧ A#(u,q1) & B#(u,Sq2). 
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From  M ⊧ AddTally(u1,w1,q1) & u1=Su2, 

                                       M ⊧ AddTally(Su2,w1,q1). 

By 3.5(a),     M ⊧ ∃!q3 ∊ J*(Tallyb(q3) & AddTally(Su2,w2,q3)), 

whence from  M ⊧ w1≤w2,   by 3.5(b),   M ⊧ q1≤q3. 

From  M ⊧ AddTally(u2,w2,q2)),  by 3.5(d),   M ⊧ AddTally(Su2,w2,Sq2). 

By single-valuedness of Addtally,       M ⊧ q3=Sq2. 

Hence  M ⊧ q1≤Sq2. 

Since   M ⊧ A#(u,q1) & B#(u,Sq2),  this suffices to establish (c2) given  

single-valuedness of A# and B#.  This completes the argument for  M ⊧ Æ(z).   

(c)   Assume  M ⊧ bxy=buv     where  M ⊧ I*(x) & I*(u). 

Then M ⊧ J*(x) & J*(u) & Æ(x) & Æ(u).   By (QT3),  M ⊧ xy=uv. 

So M ⊧ xB(xy) & uB(xy),  and by 3.7(a),   

                                    M ⊧ (x=u & y=v) v xBu v uBx. 

Suppose that 

   (1)  M ⊧ xBu. 

By (iα) and (iβ),   M ⊧ ∃!x1 ∊ J* A#(x,x1) & ∃!x2 ∊ J* B#(x,x2). 

From  M ⊧ Æ(u),   M ⊧ x1≤x2. 

On the other hand, from  M ⊧ Æ(x),         M ⊧ x1=Sx2. 

But then  M ⊧ x1≤x2<Sx2=x1,   contradicting   M ⊧ I0(x1). 

Hence (1) is ruled out.  

   (2)  M ⊧ uBx. 

Ruled out exactly analogously to (a).  
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Therefore,  M ⊧ x=u & y=v,   as required. 

(d)  is immediate from the definition of  ⊆p by (QT2).∎  

 

7.3.      WQT*  is locally finitely satisfiable. 

Proof:  Let S be a finite set of axioms of WQT*.   

For variable-free terms  s, t of  ℒ QT,⊑*,  let   s∼t  ⇔  val(s)=val(t),   that is, if s, t 

represent the same string.  E.g.,     

    a*(b*(a*b)) ∼ a*((b*a)*b) ∼ (a*b)*(a*b) ∼ ((a*b)*a)*b ∼ (a*(b*a))*b.     

∼ being an equivalence relation between terms, we let [t] = { s | t∼s}.  

Now,  let  D = {a,b,t1,…,tn}, where  t1,…,tn are all variable-free terms occurring 

in S.  We  let   D* = { [t] | t ∊ D}.   Since the equivalence classes of terms with 

respect to ∼ can be identified with strings,  D*  consists of a, b and the strings 

represented by terms occurring in S.  We take D* to be the domain of the 

model, M, and let the letters a, b denote [a] and [b], resp. .    

Let  fM : D* × D* → D*,  where, for any [u], [v] ∊ D*,  

  fM ([u],[v]) = [t]  if for some t ∊ D,  t∼(u*v),  and  fM ([u],[v]) = b   otherwise, 

interpret the binary operation *.   
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Let  RM ⊆ D* × D*,  where, for any [u], [v] ∊ D*, 

      RM ([u],[v])  ⇔  for some  s, t ∊ Ʃτ,  u∼s  and  v∼t   and s is a subterm of t, 

interpret the relational symbol ⊑*.    

Suppose now that  [s1]=[t1]  and  [s2]=[t2],  where   [s1], [s2], [t1], t2] ∊ D*.   

Then  s1∼t1  and  s2∼t2,  whence  (s1*s2)∼(t1* t2).   Suppose further that  for 

some term  s ∊ D,  s∼(s1*s2).  Then     fM ([s1], [s2])=[s].  But   s∼(s1*s2)∼(t1* t2).  

Hence   fM ([t1], [t2])=[s],  and we have   fM ([s1], [s2])=fM ([t1], [t2]).   Suppose, 

on the other hand, that for no term  s ∊ D,  s∼(s1*s2).  Then     fM ([s1], [s2])=[b].  

But   (s1*s2)∼(t1* t2), so for no term  s ∊ D,  s∼(t1*t2).   Hence  fM ([t1], [t2])=[b],  

and again   fM ([s1], [s2])=fM ([t1], [t2]).   Under the same hypothesis  [s1]=[t1]  

and  [s2]=[t2],   we have that    

  RM ([s1], [s2])  ⇔  for some terms  u1, u2 ∊ Ʃτ,  s1∼u1  and  s2∼u2  and   

   u1  is a subterm of  u2  ⇔  for some terms  u1, u2 ∊ Ʃτ,   t1∼u1  and  t2∼u2  and 

   u1  is a subterm of  u2  ⇔    RM ([t1], [t2]).   

Thus the definitions of  fM  and  RM  do not depend on the choice of terms s, t.   
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A straightforward induction on the complexity of  ℒ C,⊑* -terms shows that if  t  

is among the terms in D, then its interpretation  tM  is [t].  It is then immediate 

that the resulting model M  satisfies all of the axioms in the finite set S.∎  

 


