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Abstract

We study the complexity of the classification problem of conjugacy on dynamical
systems on some compact metrizable spaces. Especially we prove that the conjugacy
equivalence relation of interval dynamical systems is Borel bireducible to isomorphism
equivalence relation of countable graphs. This solves a special case of the Hjorth’s
conjecture which states that every orbit equivalence relation induced by a continuous
action of the group of all homeomorphisms of the closed unit interval is classifiable
by countable structures. We also prove that conjugacy equivalence relation of Hilbert
cube homeomorphisms is Borel bireducible to the universal orbit equivalence relation.
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1 Introduction

Measuring the complexity of relations on structures is a very general task. In this paper
we use the notion of Borel reducibility (see Definition 1) and the results of invariant
descriptive set theory to compare the complexities of classification problems. For more
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details on invariant descriptive set theory we refer to the book by Gao [Gao09]. For
a short and nice introduction to the theory of Borel reductions we refer to a paper by
Foreman [For18].

Several equivalence relations became milestones in this theory. Let us mention four of
those, which describe an increasing chain of complexities:

• the equality on an uncountable Polish space,
• the equality of countable sets of real numbers,
• the S∞-universal orbit equivalence relation (S∞ is the group of permutations on N),
• the universal orbit equivalence relation.

Let us give several examples to make the reader more familiar with the above relations.
A classical example is a result of Gromov (see e.g. [Gao09, Theorem 14.2.1]) who proved
that the isometry equivalence relation of compact metric spaces is a smooth equivalence
relation, which means that it is Borel reducible to the equality of real numbers (or equiv-
alently of an uncountable Polish space). The isomorphism relation of countable graphs
or the isomorphism relation of countable linear orders are Borel bireducible to the S∞-
universal orbit equivalence. The homeomorphism equivalence relation of compact metriz-
able spaces and the isometry relation of separable complete metric spaces were proved by
Zielinski in [Zie16] and by Melleray in [Mel07], respectively, to be Borel bireducible to the
universal orbit equivalence relation (see the survey paper by Motto Ros [MR17]).

In order to capture all the structures in one space we need some sort of coding. This
can be done by considering some universal space (e.g. the Hilbert cube or the Urysohn
space) and all its subspaces with some natural Polish topology or Borel structure (e.g the
hyperspace topology or the Effros Borel structure). Sometimes there are other natural
ways to encode a given structure. For example the class of separable complete metric
spaces can be coded by the set of all metrics on N where two metrics are defined to
be equivalent if the completions of the respective spaces are isometric. Fortunately in
this case, by [Gao09, Theorem 14.1.3] it does not matter which of the two coding we
choose. It is generally believed that this independence on a natural coding is common to
other structures and thus the statements are usually formulated for all structures without
mentioning the current coding. Nevertheless, for the formal treatment some coding is
always necessary.

The aim of this paper is to determine the complexity of some classification problems
of dynamical systems up to conjugacy. Dynamical systems of a fixed compact metrizable
space X can be naturally coded as a space of continuous mappings of X into itself, with
the uniform topology. This one as well as the subspace of all self-homeomorphisms is well
known to be a Polish space.

Let us mention several results which are dealing with the complexity of conjugacy
equivalence relation. It was proved by Hjorth that conjugacy equivalence relation of home-
omorphisms of [0,1] is classifiable by countable structures [Hjo00, Section 4.2] (in fact Borel
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bireducible to the universal S∞-orbit equivalence relation) but conjugacy of homeomor-
phisms of [0, 1]2 is not [Hjo00, Section 4.3]. By a result of Camerlo and Gao, conjugacy
equivalence relation of both selfmaps and homeomorphisms of the Cantor set are Borel
bireducible to the S∞-universal orbit equivalence relation [CG01, Theorem 5]. Kaya proved
that conjugacy of pointed minimal Cantor dynamical systems is Borel bireducible to the
equality of countable subsets of reals [Kay17b]. Conjugacy of odometers is smooth due to
Buescu and Stewart [BS95]. The complexity of conjugacy of Toepliz subshifts was treated
several times – by Thomas, Sabok and Tsankov, and by Kaya [Tho13, ST17, Kay17a].
Conjugacy of two-sided subshifts is Borel bireducible to the universal countable Borel
equivalence relation due to Clemens [Cle09]. There is an extensive exposition of results
on the complexity of conjugacy equivalence relation on subshifts of 2G for a countable
group G in the book by Gao, Jackson and Seward [GJS16, Chapter 9]. Recently, during
the 8th Visegrad Conference on Dynamical Systems in 2019 it was announced by Dominik
Kwietniak that conjugacy of shifts with specification is Borel bireducible to the universal
countable Borel equivalence relation.

In this paper, we deal with some of the missing parts. By mainly elementary and
standard tools (excluding the complexity level of countable structures), we prove:

Theorem A (see Theorem 17). The conjugacy equivalence relation of interval maps is
Borel bireducible to the S∞-universal orbit equivalence relation.

Also, we prove:

Theorem B (see Theorem 27). The conjugacy equivalence relation of homeomorphisms
as well as conjugacy of selfmaps of the Hilbert cube is Borel bireducible to the universal
orbit equivalence relation.

To this end we use some tools of infinite dimensional topology and a result of Zielinski
on the complexity of homeomorphism equivalence relation of metrizable compacta [Zie16]
combining with some ideas of P. Krupski and the second author [KV20]. Finally we make
a small overview on the complexity of conjugacy equivalence relation of dynamical systems
on the Cantor set, on the interval, on the circle and on the Hilbert cube.

2 Definitions and notations

Let us define some standard notions from descriptive set theory (see e.g. [Kec95]). A Polish
space is a separable completely metrizable topological space. Recall that a standard Borel
space is a measurable space (X,S) such that there is a Polish topology τ on X for which
the family of Borel subsets of (X, τ) is equal to S. In order to compare the complexities
of equivalence relations we use the notion of Borel reducibility.
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Definition 1. Suppose that X and Y are sets and let E, F be equivalence relations on
X and Y respectively. We say that E is reducible to F , and we denote this by E ≤ F , if
there exists a mapping f : X → Y such that

xEx′ ⇐⇒ f(x)Ff(x′),

for every x, x′ ∈ X. The mapping f is called a reduction of E into F . If the sets X and Y
are endowed with Polish topologies (or standard Borel structures), we say that E is Borel
reducible to F , and we write E ≤B F , if there is a reduction f : X → Y of E into F which
is Borel measurable. We say that E is Borel bireducible to F , and we write E ∼B F , if E
is Borel reducible to F and F is Borel reducible to E.

In a similar fashion we define being continuously reducible if in addition X and Y are
Polish spaces and f is continuous.

In the whole paper we set N for all positive integers, I = [0, 1] and we denote the closure
operator by Cl. For a separable metric space X we denote by K(X) the hyperspace of all
compacta in X with the Hausdorff distance dH and the corresponding Vietoris topology.
If X is a Polish space K(X) is known to be Polish. For compact metric spaces X,Y we
consider the space C(X,Y ) of all continuous mappings of X into Y with the supremum
metric. In this way we get a Polish space. Especially the collection of all continuous
selfmaps of X is denoted shortly by C(X). We also denote by Inj(X,Y ) the collection
of all embeddings of X into Y and by H(X) the collection of all homeomorphisms of X.
These are again known to be Polish spaces.

The equality equivalence relation of real numbers is denoted as E=. We denote by
E=+ the equivalence relation on RN defined by (an)E=+(bn) if and only if {an : n ∈ N} =
{bn : n ∈ N}. The last equivalence relation is called the equality of countable sets.

We say that an equivalence relation E defined on a standard Borel space X is clas-
sifiable by countable structures if there is a countable relational language L such that E
is Borel reducible to the isomorphism relation of L-structures whose underlying set is N.
An equivalence relation E on a standard Borel space X is said to be an orbit equivalence
relation if there is a Borel action of a Polish group G on X such that xEx′ if and only if
there is some g ∈ G for which gx = x′.

Let C be a class of equivalence relations on standard Borel spaces. An element E ∈ C
is called universal for C if F ≤B E for every F ∈ C. It is known that for every Polish
group G there is an equivalence relation (denoted by EG) on a standard Borel space
that is universal for all orbit equivalence relations given by continuous G-actions. We
are particularly interested in the universal S∞-equivalence relation ES∞

, where S∞ is the
group of all permutations of N. It is known that an equivalence relation is classifiable by
countable structures if and only if it is Borel reducible to ES∞

. Moreover ES∞
is known to

be Borel bireducible to isomorphism equivalence relation of countable graphs. Also there
exists a universal orbit equivalence relation which is denoted by EG∞

. We should also
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note that all the mentioned equivalence relations are analytic sets, i.e. images of standard
Borel spaces with respect to a Borel measurable map. We have a chain of complexities

E= ≤B E=+ ≤B ES∞
≤B EG∞

and it is known that none of these Borel reductions can be reversed.

3 Interval dynamical systems

In this section we prove that conjugacy of interval dynamical systems is classifiable by
countable structures. The strategy of our proof is as follows. In the first part we describe
a natural reduction of interval dynamical systems to some kind of countable structures.
We assign to every f ∈ C(I) a countable invariant set Cf ⊆ I of some dynamically
exceptional points for f . Since the set Cf does not need to be dense in I we do not
have enough information to capture the dynamics of f by restricting to Cf . On the other
hand the dynamics on the maximal open intervals of I \ Cf is quite simple. Hence it
will be enough to define an invariant countable dense subset Df in I \ Cl(Cf ) arbitrarily.
Consequently, we get that for f conjugate to g there exists a conjugacy of f to g which
sends the set Cf ∪Df onto Cg ∪Dg. Finally it is enough to assign to every f ∈ C(I) a
countable structure Ψ(f) whose underlying set is Cf ∪Df and which is equipped with one
binary relation ≤↾Cf∪Df

and one mapping f ↾Cf∪Df
(which can be as usual considered

as a binary relation). We will prove then that if two such structures Ψ(f) and Ψ(g) are
isomorphic then f and g are conjugate.

In the second part we prove that this reduction can be modified using some sort of
coding so that the assigned countable structures share the same support and so that
the new reduction is Borel. To this end we use Lusin-Novikov selection theorem [Kec95,
Theorem 18.10] several times.

For g ∈ C(I) we denote by Fix(g) the set of fixed points of g, i.e. those points for
which g(x) = x. We omit the proof of the following “folklore” lemma. The key idea of the
proof is the back and forth argument.

Lemma 2. Let f, g ∈ C(I) be increasing homeomorphisms such that Fix(f) = Fix(g) =
{0, 1} and let A,B ⊆ (0, 1) be countable dense sets that are invariant in both directions
for f and g respectively. Then there is a conjugacy h of f and g satisfying h(A) = B.

Definition 3. For f ∈ C(I) let us say that a point z ∈ I is a left sharp local maximum
of f if there is some δ > 0 such that f(x) < f(z) for x ∈ (z − δ, z) and f(x) ≤ f(z) for
x ∈ (z, z + δ). In a similar fashion we define left sharp local minimum, right sharp local
minimum and right sharp local maximum.

Notation 4. Let Mf be the union of {0, 1} and the set of all left and right sharp local
maxima and minima. It is easily shown that the set Mf is countable. For a closed set
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F ⊆ I denote by Acc(F ) the set of all accessible points of F in R, i.e. those points x ∈ F
for which there exists an open interval (a, b) ⊆ R \ F for which x = a or x = b.

For every f ∈ C(I) let us denote by Cf the smallest set such that

a) Mf ⊆ Cf ,

b) if f−1(y) contains an interval then y ∈ Cf ,

c) if n ∈ N then Acc(Fix(fn)) ⊆ Cf ,

d) f(Cf ) ⊆ Cf ,

e) if y ∈ Cf then Acc(f−1(y)) ⊆ Cf .

Lemma 5. The set Cf is countable for every f ∈ C(I).

Proof. Let S1 be the union of Mf , all the values of f at locally constant points and all
the sets Acc(Fix(fn)) for n ∈ N. Clearly S1 is countable. Let Si+1 = Si ∪ f(Si) ∪
⋃{Acc(f−1(y)) : y ∈ Si}. Clearly Cf =

⋃{Si : i ∈ N} and thus it is countable.

Note that Cf depends only on the topological properties of I and the dynamics of f .
That is if f and g are conjugate by some homeomorphism h, then h(Cf ) = Cg. This
is clear because h maps Mf onto Mg, locally constant intervals of f to locally constant
intervals of g and periodic points of f to periodic points of g.

Let us denote by Jf be the collection of all maximal open subintervals of I \ Cf .

Lemma 6. Let J ∈ Jf . Then either f ↾J is constant or f ↾J is one to one and in this
case f(J) ∈ Jf . Also f−1(J) is the finite union (possibly the empty union) of elements of
Jf .

Proof. Let us prove first that f ↾J is either constant or one-to-one. Suppose that the
contrary holds. Then there are points x, y, z ∈ J such that f(x) = f(y) 6= f(z) and
x 6= y. Let us suppose that x < y < z and f(x) < f(z) (the other possibilities are just
easy modifications). Let u = min f ↾[x,z] and let v = max(f−1(u) ∩ [x, z]). It follows that
v ∈ (x, z) is a right sharp local minimum. By Notation 4 a) it follows that v ∈ Cf which
is a contradiction since J is disjoint from Cf .

Suppose now that f ↾J is one-to-one and let us prove that f(J) ∈ Jf . Observe first
that f(J) is disjoint from Cf , otherwise there would be a point y ∈ f(J) ∩ Cf and since
f−1(y) is a closed set not containing the whole set J there will be a point in Accf−1(y)∩J
which is a contradiction with Notation 4 e). We need to prove that f(J) is a maximal
interval disjoint from Cf . Suppose that J = (a, b). Then there are an, bn ∈ Cf such that
an → a, bn → b. By continuity of f it follows that f(an) → f(a) and f(bn) → f(b). Also
f(an), f(bn) ∈ Cf by Notation 4 d). Thus the maximality follows.
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Observe first that f−1(J) is a countable union of disjoint collection of open intervals
and if we prove that each of the intervals is mapped by f onto J it will follow by continuity
that such a collection is in fact finite. Denote (a, b) = J and let (c, d) be a maximal interval
in f−1(J). Clearly (c, d) ∩ Cf = ∅ by Notation 4 d), so it is enough to prove that it is
maximal with this property. Note that f(c), f(d) ∈ {a, b} otherwise we get a contradiction
with (c, d) being maximal interval in f−1(J). Also it can not happen that f(c) = f(d)
otherwise there will be a point of left local maximum or minimum in (c, d) which would
produce a point in Mf ∩ (c, d), which in turn would give a point in Cf ∩ J , by Notation 4
a), d). Hence f((c, d)) = J . Moreover, by the first part of this proof we get that f ↾(c,d) is
one-to-one and thus it is either increasing or decreasing. Without loss of generality suppose
the first case. Let us distinguish several possibilities. If f ≥ f(c) on a left neighborhood
of c then c is a point of right sharp local minimum and thus c ∈ Cf . Otherwise choose a
sequence an ∈ Cf such that an → a. We define points cn = max([0, c] ∩ f−1(an)). These
are eventually well defined, cn → c and cn ∈ Accf−1(an). Hence by Notation 4 e) cn ∈ Cf .
We can proceed in a similar way with the point d and thus the interval (c, d) is maximal
subinterval of I \ Cf .

Example 7. For the tent map f(x) = min{2x, 2(1−x)}, the set Cf contains all the dyadic
numbers in I, thus Cf is a dense subset of I and hence Jf = ∅. For the map g = 1

4f we
have

Cg = {2−n, 1− 2−n : n ∈ N} ∪ {0, 1},
Jg = {(2−n−1, 2−n), (1 − 2−n, 1− 2−n−1) : n ∈ N}.

Notation 8. Let Gf be a directed graph on Jf where (J,K) forms an oriented edge if
and only if f(J) = K. Note that for every K ∈ Jf there are only finitely many J ∈ Jf for
which f(J) = K. Hence every vertex of the graph Gf admits only finitely many arrows
to enter. Let Ef = Q ∩ I \ Cl(Cf ) and let

Df =
⋃

n∈Z

fn(Ef ).

Note that the union is taken over all integers. In spite of that it follows by Lemma 6 that
Df is countable. Let us define

Ψ(f) = (Cf ∪Df ,≤↾Cf∪Df
, f ↾Cf∪Df

).

Theorem 9. The mapping Ψ is a reduction of orientation preserving conjugacy of interval
dynamical systems to the isomorphism relation of countable structures.

Proof. Suppose first that f is conjugate to g via some increasing homeomorphism h, that
is f = h−1gh. We want to find an isomorphism ϕ : Ψ(f) → Ψ(g). Since h does not need
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to map Df to Dg, we need to do some more work. In fact we find a conjugacy h̄ of f
and g such that h̄(Cf ∪ Df ) = Cg ∪ Dg. Then it will be enough to define a mapping
ϕ : Cf ∪Df → Cg ∪Dg as the restriction of h̄. We will define h̄ by parts. First of all we
define h̄ on the set Cl(Cf ) in the same way as h.

Clearly h induces an isomorphism of the graphs (Jf , Gf ) and (Jg, Gg). We will consider
the components of the symmetrized graphs Gf and Gg. Note that J,K ∈ Jf are in the
same component of Gf if there are m,n ≥ 0 such that fm(J) = fn(K).

Let us distinguish two cases for the components of Gf . If a component of Gf contains
an oriented cycle, choose an element J in there (note that the cycle is unique). Hence
there is n ∈ N such that fn(J) = J . By using Notation 4 c) it follows that either all the
points of J are fixed points for fn or there are no fixed points of fn in J and the same has
to be true for gn on h(J). In the first case we just let h̄ ↾ J to be any homeomorphism of
Cl(J) and Cl(h(J)), in the second case we obtain by Lemma 2 that there is a conjugacy
h̄ ↾Cl(J) of f

n ↾Cl(J) and g
n ↾Cl(h(J)) sending Df ∩ J onto Dg ∩ h(J). In components which

do not contain an oriented cycle we choose J arbitrarily, and let h̄ ↾J be an arbitrary
increasing homeomorphism J → h(J) which maps J ∩Df onto h(J) ∩Dg.

For any K that is in the same component as J find m,n ≥ 0 such that fm(J) =
fn(K) ∈ Jf and define h̄ on K using the definition of h̄ on J as

(g−n ↾h(K))g
mh̄(f−m ↾J)f

n.

On the other hand suppose that ϕ is an isomorphism of the countable structure Ψ(f)
to Ψ(g). Hence ϕ : Cf ∪Df → Cg ∪Dg is a bijection preserving the order. Thus it can be
extended to an increasing homeomorphism ϕ̃ : I → I. We claim that ϕ̃ conjugates f and
g. Consider any point x ∈ Cf ∪Df and compute

g(ϕ̃(x)) = g(ϕ(x)) = ϕ(f(x)) = ϕ̃(f(x)),

where the middle equality follows form ϕ being an isomorphism of Ψ(f) and Ψ(g). Since
the set Cf ∪Df is dense it follows by continuity that g(ϕ̃(x)) = ϕ̃(f(x)) for every x ∈ I.
Hence f and g are conjugate.

3.1 Borel coding

We need to verify that the mapping Ψ that was proved in Theorem 9 to be a reduction
can be coded in a Borel way. We use standard notation for the Borel hierarchy, especially
Σ0
1 is used for the collection of all open sets, Σ0

2 is used for the collection of countable
unions of closed sets etc. For a set B ⊆ X × Y and x ∈ X let us denote by Bx the set
{y ∈ Y : (x, y) ∈ B} and call it vertical section of B.

The following seems to be folklore in descriptive set theory, but for the sake of com-
pleteness we include a proof.
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Proposition 10. Let X,Y be Polish spaces and B ⊆ X ×Y be a Borel set with countable
vertical sections. Then the set

⋃

x∈X{x} × Cl(Bx) is Borel as well.

Proof. Let B be a countable base for the topology of Y . By the Lusin-Novikov selection
theorem, we can assume that B =

⋃

fn for some Borel maps fn : X → Y . It follows that

(X × Y ) \
(

⋃

x∈X

{x} × Cl(Bx)

)

=
⋃

U∈B

⋂

n∈N

((X \ f−1n (U))× U).

Hence the set under discussion is Borel.

Let us denote Γ = {(K,a) ∈ K(I) × I : a ∈ Acc(K)}.

Lemma 11. The set Γ is a Σ0
2-set.

Proof. The sets

Ln = {(K,a) ∈ K(I) × I : a ∈ K,K ∩ (a− 2−n, a) = ∅},

Rn = {(K,a) ∈ K(I) × I : a ∈ K,K ∩ (a, a + 2−n) = ∅}
are closed for every n ∈ N. Hence the set

⋃

(Ln ∪Rn) is a Σ0
2-set.

Notation 12. For a set B ⊆ C(I)× I let us define

B→ = {(f, f(x)) : (f, x) ∈ B},
B← = {(f, x) : (f, f(x)) ∈ B},
B⇐ = {(f, x) : x ∈ Acc(f−1(y)), (f, y) ∈ B}.

Lemma 13. Let B ⊆ C(I) × I be a Borel set with countable vertical sections. Then the
sets B→, B← and B⇐ are Borel as well.

Proof. The evaluation mapping e : C(I)× I → I, e(f, x) = f(x) is continuous. Hence the
mapping Φ: (f, x) 7→ (f, e(f, x)) is continuous as well. Especially, the restriction of Φ to B
is Borel and also countable-to-1. Since by [Kec95, 18.14] countable-to-1 image of a Borel
set is Borel we conclude that Φ(B) = B→ is Borel.

By the Lusin-Novikov selection theorem we can write B =
⋃

Fn for some Borel maps
Fn. It follows then that

B← =
⋃

n∈N

{(f, x) : e(f, x) = Fn(f)}

and thus it is a Borel set.

9



The mapping p : C(I)×I → K(I), p(f, y) = f−1(y) is upper semicontinuous and hence
it is Borel by [Kec95, 25.14]. The set Γ is Borel by Lemma 11 and it has nonempty and
countable vertical sections. Hence Γ =

⋃

bn for some Borel mappings bn : K(I) → I,
by the Lusin-Novikov selection theorem. The mapping Ψn : (f, y) 7→ (f, bn(f

−1(y))) =
(f, bn(p(f, y))) is a Borel mapping and its restriction to B is countable-to-1. Hence by
[Kec95, 18.14] the set

⋃

Ψn(B) = B⇐ is Borel.

Lemma 14. Let X,Y,Z be standard Borel spaces, f : X → Y a Borel mapping and
R ⊆ Y ×Z a Borel binary relation. Then the set R ◦ f = {(x, z) : (f(x), z) ∈ R} is Borel.

Proof. Define F : X × Z → Y × Z by F (x, z) = (f(x), z). Clealy F is a Borel mapping
and R = F−1(R) which is consequently a Borel set.

Lemma 15. The set

A = {(f, x) ∈ C(I)× I : x ∈ Cf ∪Df}

is a Borel subset of C(I)× I.

Proof. Let us prove first that the set Ba := {(f, x) : x ∈ Mf} is Borel. As the set
{(f, x) : x is a left sharp local maximum} can be written in the form

⋃

ε>0

⋂

η>0

⋃

δ>0

{(f, x) : ∀z ∈ [x− ε, x− η] : f(z) ≤ f(x)− δ & ∀z ∈ [x, x+ ε] : f(z) ≤ f(x)}

it follows that it is a Σ0
3 set. By symmetry it follows that Ba is the union of four Σ0

3-sets and
thus it is Borel. The set Bb := {(f, y) : f−1(y) contains an interval} is a Σ0

2-set. Let Bc :=
{(f, x) ∈ C(I) × I : x ∈ Acc(Fix(fn)), n ∈ N}. The mapping Fn : C(I) → K(I), Fn(f) =
Fix(fn) is upper semicontinuous (since if fi converge uniformly to f and xi converge to x
with fni (xi) = xi then f

n(x) = limi f
n
i (limj xj) = limj limi f

n
i (xj) = limj f

n(xj) = fn(x)
by the Moore-Osgood theorem) and thus it is Borel. Since Γ is a Borel set by Lemma 11 we
conclude that the composition Γ ◦ Fn is Borel because the composition of a Borel binary
relation and a Borel mapping (in that order) is a Borel relation by Lemma 14. Hence
Bc =

⋃

n∈N Γ ◦ Fn is Borel. Hence the set B = Ba ∪ Bb ∪ Bc is Borel. Define recursively
B1 = B, Bn+1 = Bn ∪ B→n ∪ B⇐n for n ∈ N. All these sets are Borel by Lemma 13. It
follows that A1 =

⋃

Bn = {(f, x) : x ∈ Cf} is Borel.
Since A1 has countable vertical sections and it is Borel we conclude using Proposition 10

that A2 =
⋃

f∈C(I)({f}×Cl(A1,f )) is Borel as well. Consequently A3 = {(f, x) : x ∈ Ef} =
(C(I)×Q)\A2 is Borel. By Lemma 13 we conclude that all the sets An+1 = An∪A→n ∪A←n ,
n ≥ 3 are Borel. Finally A = A1 ∪

⋃

n≥3An is a Borel set.

Theorem 16. The orientation preserving conjugacy of interval dynamical systems is Borel
bireducible to the S∞-universal orbit equivalence relation.
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Proof. By the result of [Hjo00, Section 4.2] orientation preserving conjugacy of increasing
interval homeomorphisms is Borel bireducible to the S∞-universal orbit equivalence re-
lation. Hence especially the S∞-universal orbit equivalence relation is Borel reducible to
increasing conjugacy of orientation preserving interval dynamical systems.

Let us argue for the converse. The set A from Lemma 15 is Borel and it has nonempty
and countable vertical sections. Hence by the Lusin-Novikov selection theorem we can
find Borel mappings Fn : C(I) → I such that

⋃

Fn = A. Since all the vertical sections
are infinite we can additionally suppose that for every pair (f, x) ∈ A there is exactly one
n ∈ N satisfying Fn(f) = x. Let

Φ(f) = (N, R,m),

where R is a binary relation andm is a unary function such that aRb iff Fa(f) ≤ Fb(f) and
m(a) = b iff f(Fa(f)) = Fb(f) for a, b ∈ N. There is a natural isomorphism Φ(f) → Ψ(f),
a 7→ Fa(f). Hence clearly Φ is a reduction. It is routine to verify that Φ is Borel by the
fact that the mappings Fn are Borel.

Let us note that the same conclusion as in the previous theorem can be proved without
assuming orientation preserving conjugacy but with just conjugacy. The reason is that in
the proofs of Theorem 16 and Theorem 9 we can simply consider a ternary betweenness
relation T instead of the binary relation of linear order ≤, i.e. (x, y, z) ∈ T if and only
if y is an element of the smallest interval containing x and z. This ternary relation is
clearly forgetting the order of I. Also by [Hjo00, Exercise 4.14] ES∞

is Borel reducible to
conjugacy of interval homeomorphisms. Thus we get the following result.

Theorem 17. The conjugacy of interval dynamical systems is Borel bireducible to the
S∞-universal orbit equivalence relation.

We note that Theorem 17 is a special case of Hjorth’s conjecture [Hjo00, Conjecture
10.6] stating that every equivalence relation induced by a continuous action of the group
H(I) of all interval homeomorphisms on a Polish space is classifiable by countable struc-
tures. In this case the homeomorphism group acts on the space of continuous selfmaps
by conjugacy. Similarly one can prove that the orbit equivalence relations induced by
natural left or right composition actions of the homeomorphism group on the space of
continuous selfmaps is Borel reducible to the S∞-universal equivalence relation. Also it
is known that the orbit equivalence induced by the homeomorphism group action H(I)
on the hyperspace K(I) is Borel bireducible to the S∞-universal orbit equivalence relation
(see [Hjo00, Exercise 4.13] or [CG19] for a proof). All these are special cases of Hjorth’s
conjecture.
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4 Hilbert cube dynamical systems

Since the homeomorphism equivalence relation of metrizable compacta is known to be
Borel bireducible to the universal orbit equivalence relation, it is not surprising that con-
jugacy of dynamical systems on the Hilbert cube is of the same complexity, which is the
main result of this section. In a dynamical system (X, f), a point x is called a locally
attracting fixed point if f(x) = x and there is a neighborhood U of x such that for every
z ∈ U the trajectory (fn(z))n∈N converges to x. The notion of a Z-set in the Hilbert cube
Q plays an important role and it describes a kind of relative homotopical smallness.

Definition 18. A closed subset of a (separable metric) space X is called a Z-set in X if
for every open cover U of X and every continuous function f of the Hilbert cube Q into
X there is a continuous function g : Q → X such that f and g are U -close (i.e. for every
x ∈ X there is U ∈ U such that f(x), g(x) ∈ U) and g(Q) ∩A = ∅.

An introduction to this notion can be found in [vM01, Chapter 5]. Mostly, we will
need the following properties on Z-sets in the Hilbert cube. First, every homeomorphism
of Z-sets can be extended to a homeomorphism of the Hilbert cube [vM01, Theorem
5.3.7]. Second, the Hilbert cube Q × I contains a topological copy of itself Q × {0} as
a Z-set [vM01, Lemma 5.1.3] and similarly the base in the cone of the Hilbert cube is a
Z-set. Third, every closed subset of a Z-set in Q is a Z-set in Q [vM01, Lemma 5.1.2].
If follows from the first and second property that there is topologically just one way, how
to embed the Hilbert cube into itself as a Z-set (namely Q× {0} included in Q× I). For
the purpose of this paper, an absolute retract is just a space homeomorphic to a retract of
the Hilbert cube (which is equivalent to being a retract of every separable metric space,
in which it is embedded). A space X is said to have the disjoint cell property if for every
ε > 0, n ∈ N and continuous mappings f, g : In → X there are continuous mappings
f ′, g′ : In → X with disjoint images such that f and f ′ as well as g and g′ are ε-close. The
last two notions give a topological characterization of the Hilbert cube.

Theorem 19 (Toruńczyk, see e.g. [vM01, Theorem 4.2.25]). A space X is homeomorphic
to the Hilbert cube if and only if it is an absolute retract with the disjoint cell property.

The following proposition is a special case of [Zie16, Proposition 1] and it can be easily
proved using the back and forth argument. Another reference for the proof is [Lor81,
Proposition 9]. Our formulation is using a slightly different language.

Proposition 20. Let K ⊆ A,L ⊆ B be four nonempty compact metrizable spaces such
that A\K and B \L are dense sets of isolated points in A and B respectively. Then every
homeomorphism of K onto L can be extended to a homeomorphism of A onto B.

The following will be useful in the proof of Theorem 27.
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Proposition 21 ( [GvM93, Theorem 2.6] or [vM01, Corollary 4.2.24]). If X is a non-
degenerate Peano continuum then there exists a homotopy H : K(X) × I → K(X) for
which

• H(A, 0) = A for every A ∈ 2X ,
• H(A, t) is finite for every t > 0 and A ∈ 2X .

Recall that if Y ⊆ X and ε > 0 we say that X is ε-deformable into Y if there exists a
continuous mapping ϕ : X×I → X such that ϕ(x, 0) = x, ϕ(x, 1) ∈ Y and the diameter of
ϕ({x}×I) is at most ε for every x ∈ X. The following proposition was proved in [Kra76, 1.1
and 1.3].

Proposition 22. Let X be a compact space such that for every ε > 0 there exists an
absolute retract Y ⊆ X for which X is ε-deformable into Y . Then X is an absolute
retract.

By a result of [And67] the union of two Hilbert cubes, whose intersection is a Z-set in
each of the cubes and which is homeomorphic to the Hilbert cube, is the Hilbert cube again.
By the result of [Han78], even a weaker condition is enough to get the same conclusion:

Proposition 23. Let X be a space which is the union of two Hilbert cubes Q1 and Q2.
Suppose that Q1 ∩Q2 is a Hilbert cube which is a Z-set in Q1. Then X is a Hilbert cube.

It should be noted here that a space which is the union of two Hilbert cubes intersecting
in a Hilbert cube may not be a Hilbert cube [She77].

Lemma 24. Let X be a compact metric space which is the union of Hilbert cubes Q, Q1,
Q2, . . . such that Qi∩Qj = ∅ and Q∩Qi is a Z-set in Qi for every i, j ∈ N, i 6= j. Suppose
moreover that the diameter of Qi tends to zero. Then X is homeomorphic to the Hilbert
cube as well.

Proof. Let us denote Xi = Q ∪Q1 ∪ · · · ∪Qi and observe that it is homeomorphic to the
Hilbert cube for every i ∈ N by an inductive usage of Proposition 23. To make the same
conclusion for X we use the Toruńczyk’s theorem.

There is topological just one way, how to embed the Hilbert cube into itself as a Z-set.
Hence every pair (Qi, Qi ∩Q) is equivalent to (Q× I,Q× {0}) because Qi ∩Q is a Z-set
in Qi and it is homeomorphic to the Hilbert cube. Thus simply there is a homotopy
hi : Qi × I → Qi such that hi(x, t) = x for t = 0 or x ∈ Qi ∩Q and hi(x, 1) ∈ Q ∩Qi. Let
us denote

si(x, t) =

{

x, x ∈ Xi,

hj(x, t), x ∈ Qj, j > i.

Since the diameter of Qi tends to zero, the diameters of si({x} × I) are sufficiently small
for large i. Hence for every ε > 0 it follows that X is ε-deformable into Xi for some i ∈ N.
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Moreover, for every i ∈ N, Xi is an absolute retract. Hence X is an absolute retract by
Proposition 22.

Let us argue that X has the disjoint cell property (see [vM01, p. 294]). Denote
ri(x) = si(x, 1). Then ri : X → Xi is a retraction. Suppose that f, g : In → X are
continuous mappings and ε > 0. Then for sufficiently large i ∈ N diameters of Qj are
smaller than ε for j ≥ i. Hence ri is ε-close to identity on X. Since Xi is homeomorphic to
the Hilbert cube it has the disjoint cell property and thus there are continuous mappings
f ′, g′ : In → Xi with disjoint images such that ri ◦ f and f ′ as well as ri ◦ g and g′ are
ε-close. It follows that by the triangle inequality that f and f ′ as well as g and g′ are
2ε-close. Thus X has the disjoint cell property. As mentioned at the beginning of the
proof, by Toruńczyk’s theorem it follows that X is homeomorphic to the Hilbert cube.

An equivalence relation E on a Borel subset Y of a Polish spaceX is said to be countably
separated if there is a sequence (Zn)

∞
n=1 of E-invariant Borel subsets of Y such that for all

x, y ∈ Y , the points x and y are E-equivalent if and only if the sets {n ∈ N ; x ∈ Zn} and
{n ∈ N ; y ∈ Zn} are equal. A transversal for an equivalence relation E ⊆ X ×X is a set
T ⊆ X whose intersection with every E-equivalence class is a one point set.

The following proposition by Burgess is a special kind of a selection theorem and it
will serve as a useful tool to complete the Borel coding argument, which is by no means
straightforward.

Proposition 25 ( [Bur79]). Let G be a Polish group, X a Polish space and let α be a
continuous action of G on X. Denote by E the orbit equivalence relation induced by α
and let Y be an E-invariant Borel subset of X. Let EY be the restriction of E to Y and
assume that EY is countably separated. Then there is a Borel transversal for EY .

In the next proposition, we denote by KX(Q) the collection of subspaces of Q which
are homeomorphic to X. It is known for a long time that this is always a Borel set [RN65].

Proposition 26. There is a Borel mapping γ : KQ(Q) → Inj(Q,Q) such that the image
of γ(R) equals to R.

Proof. Let G be the homeomorphism group of Q and let us consider the action α of G
on Inj(Q,Q) given by g · h = h ◦ g. It follows that the corresponding orbit equivalence
relation E induced by α satisfies that fEg if and only if the images of f and g are
equal. Moreover E is countably separated as if we consider a countable base B of Q and
ZB = {f ∈ Inj(Q,Q) : Im(f) ∩ B 6= ∅} for B ∈ B then fEg if and only if {B ∈ B : f ∈
ZB} = {B ∈ B : g ∈ ZB} and also the sets ZB are clearly invariant with respect to E. By
a straightforward application of Proposition 25 we get that there is a Borel transversal T
of E. As the mapping χ : f 7→ Im(f), Inj(Q,Q) → K(Q) is Borel (even continuous), the
graph of χ is a Borel subset of Inj(Q,Q) ×K(Q). As moreover T is a Borel subset of the
domain of χ and χ is one-to-one on T it follows that the mapping γ = (χ|T )−1 has a Borel
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Figure 1: The compactum QK

graph and thus it is a Borel mapping. Clearly for every R ∈ KQ(Q) we get that γ(R) is
an embedding of Q into Q whose image equals R.

Some ideas for the proof of the following comes from the paper [KV20].

Theorem 27. The conjugacy of Hilbert cube homeomorphisms (or selfmaps) is Borel
bireducible to EG∞

.

Proof. For one direction it is enough to prove that the homeomorphism equivalence rela-
tion of metrizable compacta is Borel reducible to conjugacy of Hilbert cube homeomor-
phisms because the first relation is Borel bireducible to EG∞

by the main result of [Zie16].
To this end let

Q = {x ∈ ℓ2 : 0 ≤ xn ≤ 1/n},
Q′ = Q× I × {0},
Q′′ = Q× I × [−1, 1],

Q′− = Q× I × [−1, 0]

and let ‖ · ‖ be the usual norm on ℓ2.
Let us fix a homotopy H : K(Q) × I → K(Q) given by Proposition 21 for the case

X = Q. Let us fix K ∈ K(Q). We want to find a homeomorphism fK of a Hilbert
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cube QK ⊆ Q′′ such that the topological information about K is somehow encoded in the
dynamics of fK . Let DK

n = H(K, 2−n), n ∈ N. Let εn be the minimum of 1/n and the
smallest distance of different points in DK

n . For every d ∈ DK
n fix a set

Bd
n = {(x, 2−n, 0) ∈ Q′′ : ‖d− x‖ ≤ εn/3}.

It follows that Bd
n is always homeomorphic to the Hilbert cube since it is affinely homeo-

morphic to an infinite dimensional compact convex subset of a Hilbert space [Kel31]. Let
Cd
n be the cone in Q′′ with base Bd

n and with the vertex (d, 2−n, 2−n), d ∈ DK
n , n ∈ N, i.e.,

the union of all segments with end points (d, 2−n, 2−n) and p, p ∈ Bd
n. The cone over the

Hilbert cube is homeomorphic to the Hilbert cube [vM01, Theorem 1.7.5], which applies
to Cd

n. Let Qm
K = Q′− ∪⋃{Cd

n : n ∈ N, n ≤ m,d ∈ DK
n } and QK =

⋃{Qm
K : m ∈ N} (see

Figure 1).
Since Q′− ∩Cd

n = Bd
n is homeomorphic to the Hilbert cube, which is a Z-set in Cd

n, we
inductively obtain by Lemma 24 that QK is a Hilbert cube.

Let h(x) =
√
x, x ∈ I or any fixed homeomorphism of I with two fixed points 0, 1; and

1 being a locally attracting fixed point. We define

fK(x) =











x, x ∈ Q′−,

((1− h(t))a + h(t)d, 2−n, 2−nh(t)),
x = ((1− t)a+ td, 2−n, 2−nt) ∈ Cd

n,

d ∈ DK
n , t ∈ I, n ∈ N.

All the points in Q′− are fixed points for fK and these are clearly not attracting.
All the points in

⋃

DK
n are fixed points of fK and these are attracting. There are no

other fixed points of fK . It follows that K is homeomorphic (or even equal) to the set
of fixed points that are limits of attracting points but not attracting by itself (and thus
defined only by dynamical notions). Hence if fK and fL are conjugate then K and L are
homeomorphic, K,L ∈ K(Q).

On the other hand if K,L are homeomorphic compacta in Q then the sets K ∪
⋃

n∈ND
K
n × {2−n} and L ∪ ⋃n∈ND

L
n × {2−n} are homeomorphic by Lemma 20. This

homeomorphism can be simply extended to a homeomorphism

ϕ : (K×{(0, 0)})∪
⋃

{Bd
n(K) : d ∈ DK

n , n ∈ N} → (L×{(0, 0)})∪
⋃

{Bd
n(L) : d ∈ DL

n , n ∈ N}.

Both the sets in the domain and range of ϕ are Z-sets in Q′− since these are closed subsets
of the Z-set Q′ × {0} [vM01, Lemma 5.1.2, Lemma 5.1.3]. Hence ϕ can be extended to a
homeomorphism ϕ′ : Q′− → Q′− [vM01, Theorem 5.3.7]. It remains to extend ϕ′ linearly
on the cones to obtain a homeomorphism ϕ′′. It follows that ϕ′′ conjugates fK and fL.
Note that we can identify fK with its graph and thus it can be considered as a closed
subspace of Q′′ × Q′′. To verify that the mapping χ : K(Q) → K(Q′′ × Q′′), K 7→ fK is
Borel is a routine which is usually omitted in this type of proofs.
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However, we are still not done, since fK is defined on the topological copy of the
Hilbert cube QK which differs when changing K. Let us consider the Borel mapping γ
given by Proposition 26. We redefine the mapping fK by conjugating it via γ(QK) in the
following way. The mapping K 7→ γ(QK)−1 ◦ fK ◦ (γ(QK)), K(Q) → H(Q) is the desired
Borel reduction.

To conclude the proof it is enough to Borel reduce conjugacy of Hilbert cube maps to
EG∞

. Consider structures of the form (Q,R) whereR is a closed binary relation onQ. Two
such structures (Q,R) and (Q,S) are said to be isomorphic if there is a homeomorphisms
ψ : Q → Q for which (ψ×ψ)(R) = S. By a fairly more general result [RZ18] it follows that
such isomorphism equivalence relation is Borel reducible to EG∞

. There is a Borel (even
continuous) reduction which takes a continuous map f : Q→ Q and assigns (Q, graph(f))
to it. Combining the two reductions we get the desired one.

5 Concluding remarks and questions

Let us summarize some of the results on the complexity of conjugacy equivalence relation in
Table 1 in which we consider conjugacy equivalence relation of maps, homeomorphisms,
and pointed transitive homeomorphisms of the interval, circle, Cantor set and Hilbert
cube, respectively. Let us recall that a pointed dynamical system is a triple (X, f, x),
where (X, f) is a dynamical system and x ∈ X. We say, that a pointed dynamical system
(X, f, x) is transitive if the forward orbit of x in (X, f) is dense. Two pointed dynamical
systems (X, f, x) and (Y, g, y) are called conjugate if there is a conjugacy of (X, f) and
(Y, g) mapping x to y. We proceed by a series of simple notes as comments on Table 1.

Homeomorphisms/maps Pointed transitive homeomorphisms

Interval ES∞
[Hjo00], Theorem 17 ∅ Note 29

Circle ES∞
Note 30 E= Note 31

Cantor set ES∞
[CG01] E=+ [Kay17b], Note 32

Hilbert cube EG∞
Theorem 27 ? Question 33

Table 1: The complexity of conjugacy equivalence relation.

Note 28. Conjugacy of pointed transitive maps of the interval is smooth; indeed it is
enough to assign to every pointed transitive dynamical system (I, f, x) the N× N matrix
of true and false: (fm(x) < fn(x))m,n∈N which determines f uniquely up to increasing
conjugacy.

Note 29. There are no transitive homeomorphisms on the interval.

Note 30. The complexity result by Hjorth [Hjo00, Section 4.2] that conjugacy of interval
homeomorphisms is Borel bireducible to ES∞

, remains true for circle homeomorphisms
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simply by a modification of the original proof. A modification of the proof of Theorem 17
will give a similar result for circle maps. The same method as for the interval case can be
used just by considering left or right local maxima and minima defined in an obvious way
and then iterating this set forward and backward in a similar manner as in Notation 4.
Thus conjugacy of circle selfmaps is Borel bireducible to the S∞-universal orbit equivalence
relation.

Note 31. Transitive homeomorphisms of the circle are well known to be conjugate to irra-
tional rotations. Hence the rotation number is a complete invariant and hence conjugacy
of (pointed) transitive homeomorphisms of the circle is Borel bireducible to the equality
on irrationals (or on an uncountable Polish space).

Note 32. By a result of Kaya [Kay17b], conjugacy of pointed minimal homeomorphisms
of the Cantor set is Borel bireducible to the equality of countable sets E=+ . Note that his
proof works in the same vein for pointed transitive homeomorphisms of the Cantor set.
Let us recall the main part of his construction in this case. Let X be the Cantor set and
B the collection of all clopen sets in X. To a pointed transitive system (X, f, x) we assign
the collection

Ret(f, x) = {RetB(f, x) : B ∈ B},
where RetB(f, x) = {n ∈ Z : fn(x) ∈ B}. It can be verified that the mapping Φ defined as

Φ(f, x) = (RetB(f, x) : B ∈ B) ∈ P(Z)B

is a reduction of pointed transitive Cantor maps to the equality of countable sets in P(Z)B,
i.e., (f, x) is conjugate to (g, y) if and only if Ret(f, x) = Ret(g, y).

The following question is the missing part to complete Table 1.

Question 33. What is the complexity of conjugacy of transitive pointed Hilbert cube
homeomorphisms (or maps)?

It was explained to us by Burak Kaya, that conjugacy equivalence relation of pointed
transitive Hilbert cube homeomorphisms is a Borel relation [Kay17c]. The main reason
is that every conjugacy of such systems preserves the distinguished point and thus it is
automatically prescribed on a dense subset. Hence there is at most one conjugacy between
such systems. Let us note that neither ES∞

nor EG∞
is Borel and thus these equivalence

relations can not answer Question 33.
Since triangular maps i.e., maps f : I2 → I2 of the form f(x, y) = (g(x), h(x, y))

for continuous maps g : I → I and h : I2 → I, lie in between one-dimensional and two
dimensional and there is a gap in the complexity of the last two mentioned equivalence
relations, the following question is natural.
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Question 34. What is the complexity of conjugacy of triangular maps? Is it Borel
bireducible to ES∞

or to EG∞
?

Positive answer to the next question would provide a strengthening of Theorem 17.

Question 35. Is conjugacy of closed binary relations on the closed interval Borel reducible
to the S∞-universal orbit equivalence relation?

The answer to the preceding question is affirmative if Hjorth’s conjecture is true.
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