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Abstract

Social network analysis is the study of how links between a set of actors are formed. Typically,

it is believed that links are formed in a structured manner, which may be due to, for example,

political or material incentives, and which often may not be directly observable. The stochastic

blockmodel represents this structure using latent groups which exhibit different connective properties,

so that conditional on the group membership of two actors, the probability of a link being formed

between them is represented by a connectivity matrix. The mixed membership stochastic blockmodel

(MMSBM) extends this model to allow actors membership to different groups, depending on the

interaction in question, providing further flexibility.

Attribute information can also play an important role in explaining network formation. Network

models which do not explicitly incorporate covariate information require the analyst to compare fitted

network models to additional attributes in a post-hoc manner. We introduce the mixed membership

of experts stochastic blockmodel, an extension to the MMSBM which incorporates covariate actor

information into the existing model. The method is illustrated with application to the Lazega Lawyers

dataset. Model and variable selection methods are also discussed.

1 Introduction

Social network analysis (SNA) (Wasserman & Faust, 1994; Airoldi et al., 2007; Salter-Townshend et al.,

2012) is the study of how links between a set of actors are formed. Typically, it is believed that links

are formed in a structured manner, so that the Erdős-Rényi model (Erdős & Rényi, 1959), whereby links

occur independently with a constant probability throughout the network, fails to capture many aspects

of real-world datasets. Reasons for this structure may be due to, for example, political or material

incentives, and often may not be directly observed.
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Several classes of statistical methods have been proposed to examine this structure. Exponential

family random graph models (Holland & Leinhardt, 1981; Snijders, 2002; Robins et al., 2006) examine

whether subgraph summary statistics occur significantly more frequently than by random chance in an

unstructured network. If this is the case, then this is treated as evidence of a particular underlying

mechanism in the network structure. For example, a larger number of triangles than could reasonably be

expected by chance occurring in a network is evidence of transitivity, whereby a mutually shared link to

an actor increases the probability of a link between two actors.

Two other approaches represent network structure using latent variables. The stochastic blockmodel

(SBM) (Holland et al., 1983; Snijders & Nowicki, 1997; Daudin et al., 2008) introduces G latent groups

underlying the network, so that conditional on the group membership of two actors, the probability of a

link being formed between them is represented by a G×G connectivity matrix. The latent space network

model (Hoff et al., 2002) maps actors onto a d-dimensional space so that the probability of a link being

formed between two actors becomes a function of their distance from each other. The latent position

cluster model (Handcock et al., 2007) then extends this model so that the positions of actors in this space

are determined by a mixture of spherical multivariate normal distributions. Both the SBM and latent

position cluster models can be thought of as types of mixture model applied to network data.

A key difference between the models is that the latent space model is constrained to cluster together

actors with strong connections with each other but weak connections to other actors in the network,

a behaviour known as affiliation. Conversely, the SBM has no such constraints and can represent this

behaviour, as well as disassociative mixing, whereby disparate actors connect strongly to a distinct set

of actors but only weakly with each other (Latouche et al., 2011). Airoldi et al. (2008) and Latouche

et al. (2011) develop extensions to the SBM, introducing mixed-membership (MMSBM) and overlapping

SBMs respectively. These models allow actors membership of different groups, depending on the actors

with which they are interacting, further extending the flexibility of the SBM.

Attribute information can also play an important role in helping to explain how a particular network

structure has occurred. For example, high school students might be more likely to form friendships

with others in the same class as them, while gender plays an important role in the formation of sexual

networks. This belief, referred to as “homophilly by attributes” is reflected by Breiger (1974), who notes

the “metaphor which has often appeared in sociological literature,” that “groups . . . are collectivities

based on the shared interests, personal affinities, or ascribed status of members who participate regularly

in collective activities.”

Network models which do not incorporate covariate information require the analyst to compare fitted

network model clusterings to additional attributes in a post-hoc manner (Handcock et al., 2007; Airoldi

et al., 2008). Mariadassou et al. (2010) and Gormley & Murphy (2010) respectively extend the SBM

and latent space models to incorporate covariates, at link and actor-specific levels. Examples of actor-



specific covariates include gender and age, while link-specific covariates relate additional information

about the relationship between actors, such as the physical distance between actor locations. Mariadassou

et al. (2010) also introduce specifications for SBMs fitting for types of interaction beyond binary link

types. These models can explicitly investigate the impact which concomitant covariate information has

on network structure.

In this paper we present a method which incorporates actor attribute information into the MMSBM,

the mixed-membership of experts stochastic blockmodel (MMESBM). This method makes use of the

mixture of experts terminology framework introduced by Jacobs et al. (1991) to allow model parameters

to depend on covariate information; we adapt the terminology since the covariates are incorporating into

a mixed-membership rather than mixture model framework. This model may be thought of as a type of

social selection model (e.g., Fellows & Handcock, 2012), in that it is assumed that actor characteristics

influence network formation, while the attribute information itself is assumed fixed and known. Models

where the converse applies, so that social ties are seen as influencing actor characteristics, are referred to

as social influence models.

The rest of the paper is structured as follows: both the SBM and MMSBM are briefly reviewed,

before the MMESBM is introduced in Section 2. A variational Bayes method for inference similar to that

proposed by Airoldi et al. (2008) is then described in Section 3. Model selection and validation methods

are also discussed in this section. The model is applied to the Lazega Lawyers dataset in Section 4. The

results are interpreted and some goodness fit diagnostics are also performed. Possible further extensions

to the model are then discussed in Section 5. Some additional details on model inference are provided in

Appendix A.

2 Model Specification

Relational data consists of a set of actors a1, . . . , aN , and the links which they share with each other.

In this paper we assume that the links are binary valued, i.e., that they are present or absent. Let

the adjacency matrix Y represent the interaction between pairs of actors in a network. An interaction

between any pair of actors ai and aj can then be represented as

Yij =

{
1 if a link exists between actors ai and aj ;

0 otherwise.

If the link type is thought of as being shared, or symmetric, then the network is said to be undirected,

with Yij = Yji. Otherwise, it is said to be directed. In some settings, such as protein-protein interactions,

self-interaction is possible, i.e., Yii can take values. This property is referred to as reflexivity. In other

cases, such as when friendship between high school students is being considered, such an interaction



is not considered meaningful, making the network irreflexive, and as such the diagonal entries of Y are

considered undefined. For the purposes of this paper, we consider only the case when a network is directed

and irreflexive.

2.1 Stochastic Blockmodel

The SBM assumes that G latent groups underly the data. Conditional on their memberships to groups g

and h respectively, the interaction between two actors ai and aj is then modelled by a G×G interaction

matrix Θ, such that P(Yij = 1) = Θgh. Let τ denote the mixing proportions of the groups, so that

P(Group g) = τg. Each actor ai is assigned a group membership indicator Zi, such that

Zig =

{
1 if actor ai belongs to Group g;

0 otherwise.

Each Zi then follows a multinomial distribution, with one trial and probability vector τ . The choice of

conjugate priors ensures that Θ and τ follow beta and Dirichlet distributions respectively (Snijders &

Nowicki, 1997), or inference can be performed in a frequentist framework (Daudin et al., 2008). Inference

for the SBM is possible using a variational approximation (Daudin et al., 2008) or a collapsed Gibbs

sampler (McDaid et al., 2012). Gibbs sampling on the fully parameterised SBM is also possible (Nowicki

& Snijders, 2001), although at substantial additional computational cost.

2.2 Mixed-Membership Stochastic Blockmodel

The MMSBM (Airoldi et al., 2008) extends the SBM to allow actors membership to multiple groups

depending on the actor with which they interact. Within this framework, each actor ai is assigned an

individual mixing parameter τ i, denoting their propensity for group membership. Indicator vectors Z1
ij

and Z2
ij (note the superscript indices) denote the group membership of actors ai (sender) and aj (receiver)

during an interaction Yij . Conditional on this additional model complexity, actor interaction is again

modelled by a matrix Θ in a similar manner to the SBM.1 Choosing a Dirichlet prior distribution with

hyperparameter δ ensures that each mixing parameter τ i also follows the same distribution. A beta

distribution can also be specified for Θ with the choice of a conjugate prior, otherwise it may be treated

as a nuisance parameter (Airoldi et al., 2008).

1Airoldi et al. (2008) also introduce an additional sparsity parameter in order to distinguish between the case where

interactions in the network are in general quite rare, and when non-interaction is due to particularly low-level connection

between groups. We exclude this parameter from our analysis.



• for i ∈ 1, . . . , N :

τ i ∼ Dirichlet(exp(W>
i β)).

• for g and h ∈ 1, . . . , G:

Θgh ∼ Beta(αgh, βgh).

• for i and j ∈ 1, . . . , N :

Z1
ij ∼ Multinomial (1, τ i),

Z2
ij ∼ Multinomial (1, τ j),

Yij ∼ Bernoulli(Z1
ijΘZ2>

ij ).

Figure 1: Data generative process for the MMESBM.

2.3 Mixed-Membership of Experts Stochastic Blockmodel

The MMSBM can be further extended by allowing the parameters of the model to be functions of

concomitant covariate data. The terminology used in the mixture of experts literature refer to functions

of covariates and mixing parameters as “gating networks”2 and functions of covariates and conditionally

distributive parameters as “experts” (Gormley & Murphy, 2010). In this paper we restrict our analysis

to actor-specific attributes Wi = Wi1, . . . ,WiP , which are incorporated into the prior distribution of

the individual-level mixing parameters τ . The hyper-parameter δi is treated as a function of W and

parameter βg = βg1, . . . , βgP , g = 1, . . . , G such that δig(Wi) = exp(
∑P
p=1Wipβgp). Note that inference

when including link-specific attributes in a mixed-membership setting may be treated in a similar fashion

to the mixture framework described in Mariadassou et al. (2010). The data generative process for the

MMESBM is outlined in Figure 1.

The model posterior can be decomposed thus:

p(Y,Z1,Z2, τ ,Θ|α1,α2,β,W) =

N∏
i=1

N∏
j=1,j 6=i

p(Yij |Z1
ij ,Z

2
ij ,Θ)p(Z1

ij |τi)p(Z2
ij |τj)

N∏
n=1

p(τn|β,W)p(Θ|α1,α2),

(1)

where

2Note that in this terminology, the network in question refers to the graphical model specification, and is not to be

confused with the network data under investigation.



p(Yij |Z1
ij ,Z

2
ij ,Θ) =

G∏
g=1

G∏
h=1

{
Θgh

Yij (1−Θgh)1−Yij
}Z1

ijgZ
2
ijh

p(Z1
ij |τ i) =

G∏
g=1

τ
Z1

ijg

ig

p(Z2
ij |τ j) =

G∏
g=1

τ
Z2

ijg

jg

p(τn|β,W) =
Γ
(∑G

h=1 exp
(∑P

p=1Wnpβph

))
∏G
h=1 Γ

(
exp

(∑P
p=1Wnpβph

)) G∏
g=1

τ
exp(

∑P
p=1Wnpβpg)−1

ng

p(Θ|α1,α2) =

G∏
g=1

G∏
h=1

Γ(α1
gh + α2

gh)

Γ(α1
gh)Γ(α2

gh)
Θ
α1

gh−1
gh (1−Θgh)α

2
gh−1.

Note that we again use superscript indices for the hyperparameters α1 and α2. In what follows in

Section 4 we set α1
gh = α2

gh = 1 for g, h = 1, . . . , G. Graphical model representations of the SBM,

MMSBM and MMESBM are provided in Figures 2a–2c.

3 Model Inference

In a similar fashion to Airoldi et al. (2008), we estimate model parameters by employing a variational

Bayes approximation. These have previously proved useful in both network (Daudin et al., 2008; Salter-

Townshend & Murphy, 2013) and mixed-membership settings (Blei et al., 2003; Rogers et al., 2005;

Erosheva et al., 2007). See Beal (2003), Bishop (Chapter 10, 2006) and Ormerod & Wand (2010) for

overviews of the method at differing levels of intensity. The main idea is to approximate the posterior

p(Z1,Z2, τ ,Θ) with a set of distributions q(Z1,Z2, τ ,Θ) which have a nice form. Then the marginal log

posterior can be re-written as:

log p(Y|β,W) = log

ˆ
θ

ˆ
τ

∑
Z1

∑
Z2

p(Y,Z1,Z2, τ ,Θ|α,β, δ)
q(Z1,Z2, τ ,Θ)

q(Z1,Z2, τ ,Θ)
dτdθ

≥
ˆ
θ

ˆ
τ

∑
Z1

∑
Z2

q(Z1,Z2, τ ,Θ) log
p(Y,Z1,Z2, τ ,Θ|α,β, δ)

q(Z1,Z2, τ ,Θ)
dτdθ,

= EZ1,Z2,τ ,Θ

[
log p(Y,Z1,Z2, τ ,Θ|α,β, δ)

]
− EZ1,Z2,τ ,Θ

[
log q(Z1,Z2, τ ,Θ)

]
,

= L.

Here the concavity of the logarithmic function has been exploited to ensure that L is a lower bound

to log p(Y|β,W), with the discrepancy in the inequality being equal to the Kullback-Liebler divergence



Yij

ZjZi

δ

τ α

θ

(a) Stochastic blockmodel

Yij

Zji
2Zij

1

δ

τi τjα

θ

(b) Mixed-membership stochastic blockmodel

Yij

Zji
2Zij

1

βWi Wj

τi τjα

θ

(c) Mixed-membership of experts stochastic blockmodel

Figure 2: Graphical model representations of the SBM (a), MMSBM (b) and MMESBM (b). Note the

different position of Θ in (a), chosen for graphical simplicity.



(Kullback & Leibler, 1951) KL(q||p) between the true and approximate distributions p and q.

If we then restrict the set of distributions q such that they can be factorized independently, then the

optimal (i.e. the Kullback-Liebler divergence minimising) form of each distribution will be the same as

the conditional distribution of its respective parameter:

q(Z1,Z2, τ ,Θ) = q(Θ|ζ1, ζ2)

N∏
i=1

q(τ i|γi)
N∏
j=1

q(Z1
ij |φ

1)q(Z2
ij |φ

2),

where q(Z1
ij |φ

1)and q(Z2
ij |φ

2) are multinomial distributions, q(τ i|γi) is a Dirichlet distribution, q(Θ|ζ1, ζ2)

is a beta distribution, and we have introduced the variational parameters φ1,φ2, ζ1, ζ2 and γ.

Much like for an expectation-maximisation algorithm (Dempster et al., 1977), these parameters can

be updated in a stepwise manner which iteratively optimises L, and by extension log p(Y|β,W,α1,α2).

Updates are as follows:

ζ1gh =

N∑
i=1

N∑
j=1

φ1ijgφ
2
ijhYij + αgh,

ζ2gh =

N∑
i=1

N∑
j=1

φ1ijgφ
2
ijh(1− Yij) + βgh,

γig = exp(

P∑
p=1

βgpWip) +

N∑
j=1

(φ1ijg + φ2jig),

φ1ijg ∝ exp

(
Ψ(γig)−Ψ(

G∑
k=1

γik)

)

× exp

{
G∑
h=1

φ2ijh
[
Yij
(
Ψ(ζ1gh)−Ψ(ζ1gh + ζ2gh

)
) + (1− Yij)

(
Ψ(ζ2gh)−Ψ(ζ1gh + ζ2gh)

)]}
,

φ2ijg ∝ exp

(
Ψ(γjg)−Ψ(

G∑
k=1

γjk)

)

× exp

{
G∑
h=1

φ1ijh
[
Yij
(
Ψ(ζ1hg)−Ψ(ζ1hg + ζ2hg

)
) + (1− Yij)

(
Ψ(ζ2hg)−Ψ(ζ1hg + ζ2hg)

)]}

for i, j = 1, . . . , N and g, h = 1, . . . , G, and where Ψ denotes the digamma function (Abramowitz &

Stegun, 1965).

3.1 Estimating β̂

It remains to estimate β̂. Inference via a closed form solution is not possible (Blei et al., 2003). Instead

we make use of a Newton-Raphson algorithm to maximise L, by updating β(t+1) = β(t) −H−1∇ until



the algorithm has deemed to converge. The gradient and Hessian take the following values:

∂L

∂βiq
=

N∑
n=1

Wnq exp(

P∑
p=1

Wnpβip)

×

{
Ψ

[
G∑
h=1

exp(

P∑
p=1

Wnpβhp)

]
−Ψ

[
exp(

P∑
p=1

Wnpβip)

]
+ Ψ(γng)−Ψ(

G∑
h=1

γnh)

}
,

∂2L

∂βiq∂βjr
=

N∑
n=1

WnqWnr exp(

P∑
p=1

Wnp(βip + βjp))

{
Ψ

′

[
G∑
h=1

exp(

P∑
p=1

Wnpβhp)

]
− Ii=jΨ

′

[
exp(

P∑
p=1

Wnpβip)

]}

+ Ii=j

(
WnqWnr exp(

P∑
p=1

Wnpβip)

×

{
Ψ

[
G∑
h=1

exp(

P∑
p=1

Wnpβhp)

]
−Ψ

[
exp(

P∑
p=1

Wnpβip)

]
+ Ψ(γni)−Ψ(

G∑
h=1

γnh)

})
.

Experimental results found that the estimates obtained by the Newton-Raphson algorithm can vary

wildly depending on the initial parameter settings. One strategy is to initialise the parameters using a

method of moments approach proposed by Minka (2012) when estimating the parameters of a Dirichlet

distribution. Our goal is slightly different, in that we wish to estimate the parameters β̂ with respect

to the expected log of the probabilities E[log τ ] rather than the usual observed log of the probabilities.

Nevertheless, the initialisation method still proves to be effective. In short, we initially assume that the

covariates provide no additional information about the prior probability of group membership, before

then setting β
(1)
1g = log

(
E[δg]

∑G
h=1 δh

)
, where

∑G
h=1 δh = (E[δ1] − E[δ1]2)/(E[δ21 ] − E[δ1]2). Intuitively,

we can think of this initialisation as starting from a position of skepticism; that is, we assign weights to

the covariate parameters only if it increases the lower bound. The method of moments approach serve

as a reasonable initial estimate which the Newton-Raphson algorithm can then improve on.

Another difficulty which was encountered when using the estimator experimentally was that the esti-

mated values of coefficients for covariates with only a small number of observations tended to infinity. This

may have be related to an issue known as separability in logistic regression models (Albert & Anderson,

1984), which typically occurs for smaller datasets, whereby for certain patterns of data points maximum

likelihood estimates do not exist. While methods have been suggested to remedy this problem for logistic

regression models (Heinze & Schemper, 2002), as we have noted, this model is not as straightforward as

other regression models, and it is not clear whether a similar approach will prove fruitful. With regards

to our application in Section 4, this meant that including interaction terms proved difficult, and we were

forced to omit one covariate, office location, entirely, since only five actors in the dataset practiced in one

of the three locations.



3.2 Model Selection

While model assumptions require the number of profiles G to be fixed and known, in reality this is not

the case. We therefore run the model over a range of values of G′ = 1, . . . , Gmax, and compare the

models post-hoc. The variational approximation to Equation (1) provides only a lower bound to the

model posterior, making the use of criteria such as the Bayesian information criterion(Kass & Raftery,

1995) difficult to obtain. Other difficulties, such as determining the effective sample size of the data, also

occur in this setting (Hunter et al., 2008).

Alternatively, cross-validation methods can prove useful when performing model selection in a model

based setting (Smyth, 2000; Hoff, 2008; Airoldi et al., 2008). In this instance the method takes the

following steps:

1. Divide the network edges Y into k folds of roughly equal size.

2. Drop a single fold and fit the MMESBM to the remaining data - it is straightforward to calculate

Θ, τ and δ. The values of Z1 and Z2 for missing edges can simply be ignored during the estimation

procedure.

3. Compare the fitted parameters against the out-of-sample data. Conditional on the fitted parameter

estimates, the hold-out likelihood for an out of sample data point Yij takes the form

p(Yij |Θ̂, τ̂ i, τ̂ j) =

G∑
h=1

G∑
g=1

τ̂ig τ̂jhΘ̂
Yij

gh (1− Θ̂gh)1−Yij .

4. Repeat for each fold in turn. Once this has been completed, the model with highest average hold

out log-likelihood, taking into account the uncertainty in the estimation, is deemed to be most

suitable. In this way we can also assess goodness of fit for the model, by e.g., checking the total

predicted data against the total observed data; this is described in further detail in Section 4.

4 Lazega Lawyers Application

We apply our method to the Lazega Lawyers dataset3, obtained from a network study of corporate law

partnership carried out in a Northeastern US law firm. Several features make the data of interest, the

most notable being that the lack of a strong formal working structure, coupled with large incentives

to behave opportunistically create an interesting environment for the formation of network structure.

Three types of network link are available from the study: strong co-worker, basic advice and friendship

3The dataset is available to download at http://www.stats.ox.ac.uk/~snijders/siena/Lazega_lawyers_data.htm

http://www.stats.ox.ac.uk/ ~ snijders/siena/Lazega_lawyers_data.htm


(a) Lazega Lawyers

Status
Partner
Associate

(b) Status

Gender
Male
Female

(c) Gender

Figure 3: Lazega Lawyers friendship network represented using a Fruchtermann-Reingold algorithm.

Node size is used to give an indication of the number of links sent and received by each actor. Figures

(b) and (c) colour nodes with respect to gender and status respectively.



Table 1: Actor attribute information for Lazega Lawyers.

Attribute Description (where necessary)

Seniority Rank in firm, where 1 is the highest, 71 the lowest.

Status Indicates partner or associate in firm, with 0 = partner and 1 =associate.

Gender 0 = man; 1 = woman.

Years with firm

Age In years.

Practice 0 = litigation; 1 = corporate.

Law school Yale or Harvard = 0; University of Connecticut = 1; or Other=2.

Office Excluded from analysis.

networks. In this paper we focus on the friendship network. Actor attribute information is also available,

and described in Table 1. These attributes have previously been incorporated into studies conducted by

Gormley & Murphy (2010) and Snijders et al. (2006); the former found that office location and years with

the firm had a significant impact on a latent position cluster model when included as covariates for group

membership, while Snijders et al. (2006) found evidence that seniority, practice and location affected the

36-actor network of partners beyond other structural effects in the data using an ERGM based approach.

The network is visualised in Figure 3a using a Fruchterman-Reingold algorithm. Two actors, who are

not connected to any others in the network, are not plotted. (They are still included in the analysis.)

The size of each node in the graph is representative of the overall number of links each actor has formed

in the network. Note that several of the covariates are correlated. This is partly visualised in Figures

3b and 3c. These figures compare gender and status; from these figures it is clear that there are more

men (53) than women (18) in the firm, and that women are more likely to be associates than partners

(there are only 3 female partners in the dataset). Seniority is also highly (negatively) correlated with

both age and years with the firm. In what follows the continuous attributes have been standardised to

have mean= 0 and standard deviation= 1, to facilitate interpretation of the covariate parameters β̂.

4.1 Fitting the Model

MMESBM models were fitted to the Lazega Lawyers data over a range of values, from G = 1, . . . , 9. While

the 10-fold cross-validated log-likelihood shown in Figure 4a is maximised for an 8 group model, the error

bars for models with 4 or more groups models all overlap, suggesting a somewhat limited improvement

in performance from the inclusion of additional groups. After considering the competing models, the 4

group model was deemed a satisfactory fit to the data.

The 4 group MMESBM is represented in Figure 4b. Each node in the diagram represents a group and
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Figure 4: Figure 4a shows the Hold-out log-likelihood for the Lazega Lawyers Friendship data. Figure

4b is a visualization of the blocks behaviour. Figure 4c is a histogram of EoM for actors in the network.

Over half the actors display mixed membership between two groups.

is labelled accordingly. Node size reflects the overall (weighted) membership of the group, while arrow

sizes loosely correspond to interaction levels, with larger arrows indicating higher levels of interaction.

Selected interaction probabilities are also included in the figure. The within group interaction terms are

printed in large font size beside the relevant group, while the larger of the two interaction probabilities

between each pair of groups is included in smaller font size. Each between group probability is printed

roughly half way between the relevant groups.

Inspecting the figure, Groups 1, 3 and 4 can be characterised as exhibiting community-like behaviour.

In each case, the probability of within group interaction occurring is far higher than would be expected in

the network under the null Erdős-Rényi model, whereby links between actors occur independently with

probability 11.5% in this case. Group 2 is a highly antisocial group, with no interaction probabilities

exceeding 1%. The fitted values for Θ̂ are provided in Table 2. Between group interaction occurs with

low probability (less than 10%) in all cases.

One way to check an actor’s propensity for mixed membership is to inspect their extent of profile

membership (EoM) score (Hill, 1973; White et al., 2012):

EoMi = exp(−
G∑
g=1

τ̂ig log τ̂ig).

A histogram of each actor’s EoM score is shown in Figure 4c. Over half (42) of the actors EoM scores

are over 1.5, suggestive of at least some amount of mixed membership. Of the 20 actors with the lowest

EoM score, six belong to Group 1, five to Group 3, and seven to Group 4. These actors can be viewed



as being most highly involved in their respective groups and exhibit almost no mixed membership. The

three actors who belong most strongly to Group 2 possess a single (received) link in the network between

them. Thirteen of the fourteen actors with the highest EoM scores exhibit activity across three groups;

one actor has a small amount of membership to all four groups. With one exception these actors all have

some membership of Group 2, indicating that they are not full participants in the other groups that they

have membership of; only one actor appears to be highly social with Groups 1,3 and 4.

Figure 5a visualises the model using the same network layout as Figures 3a–3c, with each of the

plotted nodes assigned a pie chart representing their mixed membership to different groups. The colours

in each pie chart are consistent with those in Figure 4b. Inspecting this plot, it’s clear that a large

amount of mixed membership is exhibited by actors in this model, corroborating the EoM statistics

reported in Figure 4c. Recall that the size of each node in the graph is related to the popularity of the

actor in question. The smaller nodes in the graph contain prominent green sections, representing Group

2, while the largest nodes display membership to the community-like Groups 1, 3 and 4, coloured red,

dark blue and light blue respectively. In particular, two types of mixed membership are occurring: actors

moving between the Groups 1, 3 and 4, and actors whose membership is split between Group 2, and

another group, indicating diminished involvement. Note that the pie charts in the figure don’t represent

the uncertainty classification of each actor, which has been the purpose of similar plots produced by

Handcock et al. (2007).

Table 2: Estimates for blockmodel interaction Θ̂.

Group 1 Group 2 Group 3 Group 4

Group 1 0.71 0.00 0.01 0.01

Group 2 0.00 0.00 0.01 0.01

Group 3 0.03 0.01 0.81 0.04

Group 4 0.08 0.01 0.01 0.73

4.2 Covariate Parameters

We now investigate impact of covariates in the model. Recall that the continuous attributes have been

standardised to facilitate interpretation of the covariate parameters. While the Newton-Raphson step

described in Section 3.1 obtains the optimal parameter values β̂, it is necessary to obtain some estimate

of the uncertainty of these parameter values before the impact of the covariates may be assessed. One

approach is to consider the diagonal entries of the inverse Hessian H−1 specified in Section 3.1 in order

to approximate the observed information matrix. The diagonal entries of this matrix should somewhat

approximate the standard errors of β̂. However, this approach is limited by two facts: firstly, that
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Figure 5: Visualisation of the 4 group MMESBM fitted to the Lazega Lawyers friendship dataset.

we differentiate L and not the true log-posterior, and secondly, that we do not obtain the full Hessian

matrix whereby L is twice differentiated with respect to all parameters, the dimension of which creates



computational difficulties. Nevertheless, some information about the curvature of the parameters is

obtained using this method.

A second approach is to exploit the generative properties of the MMESBM to estimate the behaviour

of β using a parametric bootstrapping method. Each bootstrap replication is obtained by first generating

a network from the fitted model parameters using the process previously specified in Figure 1. The model

is then refitted to the simulated data and the results recorded. While this approach may be more reliable

than the first outlined, it is worth noting that the typical under-estimation of parameter uncertainty in

variational Bayes methods will be reflected in the bootstrapped values for β. It therefore follows that

while this method allows us to dismiss unimportant covariates with a high degree of certainty, care must

be taken when interpreting and selecting which attributes which appear to have a meaningful impact on

the network.

Estimates of β̂ were obtained from 100 parametric bootstrap replications of the fitted model. These

were in broad agreement with the estimates obtained by taking the approximate Hessian matrix. The

two methods mainly disagreed on the significance of terms related to Group 3, the group with the least

participation, with the Hessian term finding almost all covariate terms for this group important, whereas

only two terms, the intercept, and the status of actors, appear to be meaningful based on the bootstrap

estimates.

Parameter estimates with bootstrap quantiles at the 95% level are provided in Table 3, while box

plots of the parametric bootstrap samples of β̂ are provided in Figures 6a to 6i. While our interest in the

parameters directly related to covariate terms is perhaps more obvious, the behaviour of the intercepts are

also worth considering; namely, intercept terms far from zero would indicate that the group membership in

the network is poorly explained by the available covariate information. Of the four groups, the intercepts

of Groups 3 and 4 are consistently below zero, although with quite high variance. These groups have the

fewest significant covariate terms, which also suggests that their structure is only partly explained by the

covariate information.

At least one covariate appears to play some part in explaining each group’s structure. Gender appears

to have the most sizable effect, in particular on membership to Group 1, where several other covariates are

also influential, including seniority, status, years with the firm and type of law school. It is interesting to

note that despite the fact that the covariates seniority and years with the firm are negatively correlated,

their respective parameters for Group 1 are in agreement. This reflects the difference in distribution

between the covariates. Whereas Seniority is inherently evenly distributed across the data due to its

ranked nature, the Years with Firm covariate is strongly positively skewed, reflecting the firm’s tendency

to recruit many junior staff and retain only the most successful. In terms of Group 1, the group consists

mainly of the more senior and long established actors in the network, yet the very oldest and most

experienced actors in the network are less involved in the network. Thus the parameter penalises the



very oldest actors in the network from strong membership to Group 1, where the standardized value of

Years with the Firm is further from the standardised mean (2.23 standard deviations) than Seniority

(1.69 standard deviations).

A similar effect occurs in Group 2, where Years with the firm and Age disagree despite their positive

correlation in the data. The difference in distribution between these covariates is less pronounced, however

Age is not so strongly positively skewed as Years with the Firm. The values of the parameters mean that

younger actors with relatively little experience are assigned high prior probability to Group 4, while the

older actors with highest experience . In several cases, actors are assigned relatively high prior probability

to both groups.

Group 3 are the group perhaps least well explained by the covariates. Almost all of the continuous

covariates for actors assigned to Group 3 with high prior probability were within one standard deviation

of the mean. Noticeably, however, almost all of these actors have partner status, the one covariate

parameter which appears significant based on the bootstrap estimates.

While the law school parameters appear significant in this analysis, it must be noted that the upper

quantiles for these parameters are close to zero, and that the variance for these parameters is large,

particularly the comparison between actors attending Other law schools and those attending Harvard

or Yale. If the uncertainty surrounding these terms were even slightly underestimated, then it seems

likely that at least two of these terms would no longer seem significant. An exception is the negative

impact which attending the law school at the University of Connecticut has on membership to Group 2

in comparison with the baseline law school of Harvard or Yale,where the impact seems to be quite large.

Finally, we note that the type of practice engaged in by the actors appears to have little impact on whom

they form friendships with in this model setting.

4.3 Goodness of Fit

Properties of the fitted model are now examined so as to determine how well the model fits the data.

Hoff et al. (2002) note that one desirable property of a model is that its predictive probabilities for links

and non-links be well separated. Figure 7a shows boxplots of the predicted probabilities for links and

non-links of the data based on the fitted parameters outlined in Section 4. The two boxplots show a

high degree of separation, with the lower quartile of the observed link probabilities at roughly the same

level as the top whisker of the observed non-links. Another approach is to evaluate how well the data

predicts links in a hold-out modelling approach using a receiver operating characteristic (ROC) curve

(Hoff, 2008). This is shown in Figure 7b. Again, the model appears to perform quite well, with a total

area under the curve (AUC) score of almost 0.86.

Another approach to checking model fit is based on network simulation (Hunter et al., 2008; Krivitsky

& Handcock, 2008; Salter-Townshend & Murphy, 2013). The main idea is to generate networks based
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Figure 6: Boxplots of parametric bootstrap samples of covariate parameter estimates β̂ for the 4 group

MMESBM. The dashed red line occurs at zero.



Table 3: Estimates of the covariate parameters β. 95% boostrap quantile ranges (2.5% and 97.5%) are

included in parentheses. Estimates whose quantile range does not include zero are highlighted in bold.

Group 1 Group 2 Group 3 Group 4

Intercept -1.62 (-3.01, 1.00) -0.42 (-2.19, 1.97) -1.58 (-6.30, -0.42) -2.42 (-7.14, -0.39)

Seniority -2.28 (-3.61, -0.40) 0.16 (-0.50, 2.61) -1.21 (-2.82,0.49) 0.88 (-0.13, 3.71)

Status -0.90 (-6.73, -0.72) 0.02 (-2.78, 0.88) -1.63 (-5.55, -1.13) 0.91 (-2.29, 3.97)

Gender 1.85 (1.48, 7.22) 0.15 (-0.55, 2.07) -1.00 (-1.34, 1.43) -0.23 (-1.14, 1.28)

Years -0.90 (-3.48, -0.27) -1.08 (-3.57, -0.30) -1.76 (-4.00, 0.50) -0.77 (-5.28, -0.48)

Age -0.35 (-0.55, 1.83) 1.22 (0.73 , 3.92) -0.29 (-2.47, 0.90) 0.69 (0.13, 3.68)

Practice 0.21 (-0.80, 0.82) 0.38 (-0.34, 1.20) 0.81 (-0.36, 1.94) -0.66 (-1.27, 0.71)

UConn -1.17 (-3.68, -0.22) -2.26 (-4.54, -0.92) -0.78 (-2.09, 3.68) -0.21 (-3.23, 1.06)

Other -1.15 (-3.49, -0.11) -1.09 (-3.49, -0.02) -1.07 (-2.86, 3.75) -0.52 (-3.56, 0.62)

on the fitted model parameters and then compare properties of these simulated networks to the observed

network. Network properties which are not directly based on model parameters are considered the best

indicators of model fit (Hunter et al., 2008). Here the model performs less well than suggested by the

link prediction measures.

We compare the simulated networks to the observed network with respect to the following summary

statistics: in degree, out degree and geodesic distance. Plots of these statistics are shown in Figures 8a

to 8c. These show the observed network summary statistics as a red line superimposed over boxplots

of the same statistics obtained from 100 simulations. While the general behaviour of the statistics is

reasonably well accounted for, the upper and lower quartiles of the in and out degree statistics appear

to be too narrow, indicating a lack of variability in the simulated data. The simulated networks also

fail to account for the actors in the network with the highest in and out degree. For minimum geodesic

distance, while the model correctly predicts that the majority of actors are connected by two degrees of

separation, it overestimates this number while underestimating the number of actors connected by three

degrees of separation, again suggesting a lack of variability. This may be caused by the underestimation

of uncertainty in the data generative process caused by the variational Bayes approximation already

discussed in Section 3.

5 Conclusion

The large number of network models which have recently been introduced and extended provide the

analyst with ever more tools with which to analyse relational data. In the future, it may be of interest to
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Figure 7: Boxplot of link probabilities for the data based on fitted parameters. Note the high degree of

separation between the probabilities for present and absent observed links. The plot on the right shows

the ROC for link prediction for each of the held-out data samples during the 10-fold cross validation

process.

combine the MMESBM with other extensions to MMSBM, such as the dynamic MMSBM of Xing et al.

(2010). It is interesting to note the flexibility of the mixed membership approach, beyond allowing actors

to interact in multiple social circles; for example, a majority of actors in the Lazega Lawyers dataset were

assigned partial membership to Group 2, a group characterised by low interaction. This can interpreted

as the model accounting for degree heterogeneity in the dataset, which must be explicitly modelled for

(Krivitsky et al., 2009) when using a latent position model.

In this paper an approach to incorporate actor covariates into the MMSBM has been introduced and

demonstrated on a dataset. While the variational Bayes method is an effective method for inference, at

least from a computational and clustering perspective, in its directly implemented form its computational

cost is still of order O(N2). As currently implemented, the algorithm took several minutes to fit a

single model to the Lazega Lawyers data. Model selection methods such as the outlined cross-validation

approach provided a further computational burden. The case-control approximated likelihood approach

introduced by Raftery et al. (2012) for latent space models, which has been successfully applied in a

variational Bayes setting by Salter-Townshend & Murphy (2013) could prove effective when fitting the

model to larger networks.
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Figure 8: Goodness of fit diagnostics for the 4 group MMESBM.

Model choice remains a challenge for network and mixed membership models, within the model based

clustering literature and beyond. While the hold out likelihood approach which has been used in this

paper gives some idea of which group choices are most suitable for the data, a high level of uncertainty

still surrounds the identification of an optimal model. Similarly, care must be taken when determining

which covariates appear to impact on the data.

The MMESBM as specified here can be seen to treat the covariate parameters as nuisance parameters,

when they are of as much or greater interest as the other parameters in the model. While the introduction

of a hyper prior would allow for inference to be performed in a more principled manner, it would also

make it much more complicated, as the conjugacy between distributions would be lost. Similarly, certain

properties of the Dirichlet distribution may prove too restrictive when modelling the group membership

of actors, especially with the introduction of covariates; the use of other distributions, such as a logistic

normal distribution may prove useful (Aitchison, 1982; Blei & Lafferty, 2007). Again, this would lead to

additional inferential complexity.

While not a particular goal of the paper, it remains unclear how to choose between progressively more

complex classes of model such as the SBM and MMSBM, or whether or not to include covariates, when

analysing a given dataset. Potentially, another class of model, such as the latent space or ERGM may be

more suitable. Hoff (2008) compares fundamentally different methods by assessing their link predictive

properties on hold-out samples of data, and it may be possible to extend the use of the hold-out likelihood

method employed by this paper for model selection, not just for the number of groups but also for the

class of model. This possibility comes with the caveat that link prediction is expressfully the primary

goal of the analyst, when other properties in the network may be viewed as equally or more important.
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We make the following approximation:

p(Z1,Z2, τ ,θ) ≈ q(Z1|φ1)q(Z2|φ2)q(τ |γ)q(θ|ζ1, ζ2),

where we have introduced the variational parameters φ1,φ2, ζ1, ζ2 and γ.

Keeping β fixed, and setting each δig = exp(
∑P
p=1Wipβgp), inference for q(τ |γ) is as follows:

q(τ i|γi) ∝ exp

EZ1,Z2

 N∑
j=1

log p(Z1
ij |τ i) + log p(Z2

ji|τ i) + log p(τ i|δ)


∝

G∏
g=1

τ
δig−1
ig × exp


N∑
j=1

G∑
h=1

(
EZ1

[
Z1
ijh

]
log τig + EZ2

[
Z2
jih

]
log τig

)
=

G∏
g=1

τ
δig−1+

∑N
j=1 EZ1 [Z1

ijg]+EZ2 [Z2
jig]

ig ,

which we can recognise as a Dirichlet distribution. It is also straightforward to see that q(θ|ζ1, ζ2) is a

beta distribution:

q(θgh|ζ1gh, ζ2gh) ∝ exp

EZ1,Z2

 N∑
i=1

N∑
j=1

log p(Yij |Z1
ij , Z

2
ij , θgh) + log p(θ|α1

gh, α
2
gh)


= θ

ζ1gh
gh (1− θgh)ζ

2
gh ,

where

ζ1gh =

N∑
i=1

N∑
j=1

EZ1
ij

[
Z1
ijg

]
EZ2

ij

[
Z2
ijh

]
Yij + α1

gh

ζ2gh =

N∑
i=1

N∑
j=1

EZ1
ij

[
Z1
ijg

]
EZ2

ij

[
Z2
ijh

]
(1− Yij) + α2

gh.

Note that the calculation of q(τ i|γi) did not require taking the expectation of the log posterior with

respect to θ, and vice versa. This is because the parameters are conditionally independent of one another

due to the presence of the indicator variable Z. This is perhaps most clearly seen in the diagram in

Figure 2b.

Calculating q(Z1
ij |φ

1
ij) is a little trickier, since we must calculate Eθ [log θgh] and Eτ [log τig]:



q(Z1
ij |φ

1
ij) ∝ exp

{
Eτ ,θ,Z2

[
log p(Yij |Z1

ij ,Z
2
ij ,θ) + log p(Zij |τ i)

]}
= exp

{
G∑
g=1

Z1
ijg

(
G∑
h=1

EZ2
ij

[
Z2
ijh

] (
YijEθgh [log θgh] + (1− Yij)Eθgh [log(1− θgh)]

)
+ Eτ i

[log τig]

)}

=

G∏
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{
G∏
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[
exp(Eθgh [log θgh])Yij exp(Eθgh [log(1− θgh)])1−Yij

]E
Z2
ij

[Z2
ijh] × exp (Eτ i

[log τig])

}Z1
ijg

.

Similarly

q(Z2
ij |φ

2
ij) ∝

G∏
h=1

{
G∏
g=1

[
exp(Eθgh [log θgh])Yij exp(Eθgh [log(1− θgh)])1−Yij

]E
Z1
ij

[Z1
ijg] × exp

(
Eτ j

[log τjh]
)}Z2

ijh

.

We can recognise both q(Z1
ij |φ

1
ij) and q(Z2

ij |φ
2
ij) to be multinomial distributions.

Since the approximate distributions all have tractable form, we can calculate the required expectations,

and give updates in fully parametric form:

EZ1
ij

[
Z1
ijg

]
= φ1ijg

EZ2
ij

[
Z2
ijg

]
= φ2ijg

Eτ i [log τig] = Ψ(γig)−Ψ

(
G∑
k=1

γik

)
Eθgh [log θgh] = Ψ(ζ1gh)−Ψ(ζ1gh + ζ2gh)

Eθgh [log(1− θgh)] = Ψ(ζ2gh)−Ψ(ζ1gh + ζ2gh).

Parameter updates then become:



ζ1gh =

N∑
i=1

N∑
j=1

φ1ijgφ
2
ijhYij + α1

gh,

ζ2gh =

N∑
i=1

N∑
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φ1ijgφ
2
ijh(1− Yij) + α2

gh,

γig = δig +

N∑
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(φ1ijg + φ2jig)

φ1ijg ∝ exp

(
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γik)
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,
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)
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.

A.1 Estimating Covariate Parameters

Recall that the log-posterior is intractable, and that we instead maximise a lower bound L:

L = EZ1,Z2,τ ,θ

[
log p(Y,Z1,Z2, τ ,θ|α1,α2, δ)

]
− EZ1,Z2,τ ,θ

[
log q(Z1,Z2, τ ,θ)

]
,

Where
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[
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]
=
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[
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ij |τ i)
]
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[
log p(Z2

ij |τ j)
]

+

N∑
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Eτ [log p(τn|δ)]

+ Eθ
[
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]
,



and

EZ1,Z2,τ ,θ

[
log q(Z1,Z2, τ ,θ)
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=

N∑
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N∑
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[
log q(Z1
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ij)
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ij)
]

+
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[
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This is straightforward to calculate:
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=
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ijh
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(
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]
=

G∑
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G∑
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log Γ
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gh + α2

gh
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The terms for the second part of the lower bound are given below:

EZ1

[
log q(Z1

ij |φ
1
ij)
]

= EZ1

[
G∑
g=1

Z1
ijg log φ1ijg

]

=

G∑
g=1

φ1ijg log φ1ijg,

EZ2

[
log q(Z2

ij |φ
2
ij)
]

=

G∑
g=1

φ2ijg log φ2ijg,

Eτ [log q(τn|γn)] = Eτ

[
log Γ

(
G∑
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γnh

)
−

G∑
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log Γ(γnk) +

G∑
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(γng − 1) log τng

]

= log Γ

(
G∑
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γnh

)
−

G∑
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log Γ(γnk) +

G∑
g=1

(γng − 1)×

{
Ψ(γng)−Ψ

(
G∑
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γnk

)}
,

Eθ
[
log q(θ|ζ1, ζ2)

]
=

G∑
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G∑
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log Γ
(
ζ1gh + ζ2gh

)
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+
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{
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}

+
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{

Ψ(ζ2gh)−Ψ(ζ1gh + ζ2gh)
}
.

To estimate β̂ we make us of a Newton-Raphson step to iteratively maximise L. It’s simpler to first

calculate the gradient and Hessian functions in terms of δ:

∂L

∂δi
=

∂

∂δi

N∑
n=1

Eτ [log p(τn|δ)]

=
∂

∂δi

N∑
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[
log Γ

(
G∑
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log Γ(δh) +
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= N
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}
.

⇒ ∂2L
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= N

{
Ψ

′

(
G∑
h=1

δh

)
− Ii=jΨ

′
(δi)

}
.

Now, noting that
∂δig
∂βgp

= Wip exp(
∑P
p=1Wipβgp), we can then maximise the lower bound L with

respect to β by making use of the chain rule:



∂L

∂βiq
=
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.

We can then calculate the Hessian matrix, again making use of the product rule:
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Cleaning this up a little gives the result:
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