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Clustering a graph, i.e., assigning its nodes to groups) isn@ortant operation whose best known
application is the discovery of communities in social netgo Graph clustering and community

detection have traditionally focused on graphs withouttattes, with the notable exception of edge
weights. However, these models only provide a partial sgrttion of real social systems, that are

Abstract

thus often described using node attributes, represengiayifes of the actors, and edge attributes,

representing different kinds of relationships among theve. refer to these models adtributed

graphs Consequently, existing graph clustering methods hava besently extended to deal with
node and edge attributes. This article is a literature suovethis topic, organizing and presenting
recent research results in a uniform way, characteriziegntain existing clustering methods and
highlighting their conceptual differences. We also cover important topic of clustering evaluation

and identify current open problems.
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1 Introduction

Graphs represent one of the main models to study humaromships. For example, struc-
tural properties of social systems can be measured by eqtieg individuals and their re-
lationships as graphs and computing the centrality or jgesf their nodes (Wasserman & Faust,
1994). Similarly, once a social graph is available, groupsrongly connected individuals
(communities) can be identified using clustering algorighifhe application of graphs
to the study of social systems motivated and is now a part abader discipline called
network sciencefocused on the modeling and analysis of relationships éetvmgeneric
entities. This discipline provides a set of tools (method@s, methods and measures)
to improve our understanding of complex systems, includingial and technological
environments, transport and communication networks aatbdical systems. The wide
applicability of network science largely relies on the atilmpof graph-based models, that
thanks to their generality can be applied to a diverse rahgeamarios.

However, researchers in social network analysis (SNA) aihEsciences have long
been aware of the potential value in representing additioriermation on top of the
social graph, and of the potential loss in accuracy whenlsimpdes and edges are used
to represent complex social interactions. For examplegraling tol Wasserman & Faust
(1994) social networks contain at least three differenteigions: atructuraldimension
corresponding to the social graph, e.g. actors and theitioekhips, a&aompositionadi-
mension describing the actors, e.g. their personal infoomgand araffiliation dimension
indicating group memberships. The existence of multiplati@nship types, e.gworking
together being friendsor exchanging text messagdsas also been studied for a long
time, as recently reported by Borgadtiall (2009). This last aspect has been referred to as
multiplexityin the SNA tradition, and can be related to Goffman’s conogépbntext well
exemplified by the metaphore of individuals acting on midtigtages depending on their
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audiencel(Goffman, 1974). As an example, Figure]1(b) higitdi how arattributedgraph
may lead to a deeper understanding of social interactiaamifpared to the corresponding
graph without attributes in Figufe Ifa).

Age: 32  Age:32 Age: 35
City: Paris City: Paris City: London

‘ friend ; friend j',-' "

(@) (b)
Fig. 1. A graph (3) provides a simplified representation obeiad system which can
be easy to understand but may prevent a deep understandiitg sfructural and
compositional dimensioijs {b)

1.1 Current trends in attributed graph analysis and mining

Attributed graphs have been used for decades to study sssimbnments and it has been
long recognized that the structure of a social network maybeosufficient to identify
its communities.(Freeman, 1996; Hatall, I2014). However, recent years have witnessed
a renewed attention towards these models, partially metivhy the availability of real
data from on-line sources. One interesting aspect of r&#bated graphs is the observed
dependenchetween who the actors are and how they interact, i.e. betéineestructural
and compositional dimensions. For example, La Fond & Nev2010) have observed the
coexistence of social influence and homophily. Social imftgestates that people who are
linked are likely to have similar attributes, thus nodeiltiie values can be interpreted as
a result of interactions with other nodes. At the same tinoendphily implies that people
with similar attributes are likely to build relationshipghese two related phenomena have
been observed in real networks/ by Kossinets & Watts (200@) tlae dependency between
attributes and connectivity has been studied mathemigtigdn & Leskovec, 201P).

With this in mind, researchers have focusedattnibuted graph generatordirtificially
grown graphs are useful to experiment algorithms and runlsitions when real data are
difficult to collect. They are relevant in testivghat if scenarios, providing forecasts on
future evolutions, and can be used to design graph samglijogitams when the size of
original graphs would otherwise make the analysis impecat({lLeskoveet all, [2005).

Prior models, as the well-known preferential attachmerdiraaism by Barabasi & Albert
(1999), have focused on the social structure. Now the ahgdlds to generate datasets
as close as possible to real-world social graphs, as donéhblevaet all (2009) where
affiliation information is also generated. This model capspreviously studied properties
(e.g. power-law distribution for social degree) but alsovides new interesting insights
regarding the processes behind group formation. More thc&wonget all (2011) have
proposed a generatigecial-attribute networknodel based on their empirical observations
of Google+ growth. Here attributes describe user charatites like name of attended
school and group membership. Nan Bual. (2010);l Magnani & Rossi (2013a) have in-
stead focused on the generation of graphs with interdepeatteibutes on the edges.
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The idea that attributes and connections are generatediimeadependent way has led
to the development of specialized analysis methods. Seayeph mining tasks have been
extended to attributed graphs, like link prediction (Ge®ddiehl, 2005; Rossettet all,
2011] Gonget al, 12011 Suret all,,[2012) or attribute inference (Li & Yeung, 2009; Goeigal.,
2011; Yanget al,, [2011). This survey is dedicated to one of the most relevaststudied
operations on graphs and complex networks: graph clugteoiiten referred to asom-
munity detectionvhen social graphs are involved. We believe that this is gointant and
timely effort to facilitate research in this still young arén particular considering that the
discussed approaches have been introduced in differenpliies, often unaware of each
other.

1.2 Clustering attributed graphs

Although several surveys on graph clustering have beetenriSchaeffer, 20017; Fortunato,
2010;| Aggarwal & Wang, 2010; Coscé all, [2011), most of the approaches to cluster
attributed graphs are more recent and have not been inclodbdse works. At the same
time, there is a large literature on (multi-dimensionalistéring of tabular data (Moiss al,
2009; Haret all,|2011), but existing surveys in this area have not addresgedsions for
graph data. Attributed graph clustering can be seen as thftueace of these two fields,
the former focusing on the structural and the latter on thapmmsitional aspects. In this
article we focus on recent works resulting from this promgstombination.

The article is organized in three main parts: a review of mdshfor edge-attributed
graphs, a review of methods for node-attributed graphs,aasettion on practical issues
including the evaluation of clusterings and the appliggbdf different approaches. We
conclude by summarizing the status of the research andsdisthe open problems that
are more promising according to our view of the area. Attddugraph clustering has
been independently studied in different disciplines, éfane it is important to know how
different terms have been used in the literature. In Tableehave indicated and briefly
explained the terms used in this article.

2 Clustering edge-attributed graphs

One way to extend a graph model and to provide additionatim&bion to the clustering
algorithm is to represent the different kinds of edges amodiyiduals. As an example, in
Figure[1(b) we can see that the relationship between theeftorlost nodes consists of a
friendshipand aworkingedge.

‘ ;. friend friend @ s ® friend

(@) (b)
Fig. 2. Two alternative representations of the differemgestypes in a multigraph

Different models have been used to represent this sceinol,[1983| Lazega & Pattison,
1999, Skvoretz & Agneessens, 2007; Kazieekal,,[2010; Berlingericet al,,[2011b), some-
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Table 1. Terminology used in this article and synonyms usedhe literature

main term synonyms meaning

Basic component of a graph. As an
example, a node may indicate that a

Node \ertex, site, actor user has an account on the social media
site whose social network is represented
by that graph.

A relationship between two nodes, e.g.,
a following relationship between two
Twitter accounts. When there is an edge
between two nodes we say that they are
directly connected.

Link, arc, tie, connection, bond

Edge relation(ship)

A graph without attributes, neither on
nodes nor on edges, with the exception
. of an optional numerical weight on
Graph Network, social network, Iayeredges indicating the strength of the
connection. Edges may be directed or

indirected.

Attributes indicate connections of dif-

Multiplex network, multi-layer ferent kinds or inside different graphs.

Edge-attributed graphgraph, multidimensional netWith this term we do not indicate the
work, edge-labeled multi-graplpresence of weights, in which case we

explicitly talk of weighted graph/edges.

ﬁ feature vector is associated with each
node and contains information about it,
e.g., age, nationality, language, income.

Node-labeled graph, graph wit

Node-attributed grap cature vectors

Attribute graph, social and affil- .
Attributed graph iation network, relational data’\" €dge-attributed graph, or a node-

multidimensional network attributed graph, or both.

Sometimes all the edges with the same
attribute value in an edge-attributed
graph are indicated aslayer, e.g., the
Layer Aspect, dimension Facebook friendshispacial proximity
Twitter following colleagueor family
layers in an attributed graph indicating
different types of social relationships.

Assignment of each node to one or
more groups of nodes, called clusters.

Clustering Community structure Different criteria can be used to
determine whether two nodes should
belong to the same cluster.

A clustering where each node is

Partition Non-overlapping clusterin )
pping 9 assigned to exactly one cluster.
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times emphasizing the different roles played by individuaith respect to different net-
works (Magnani & Rossi, 2011), including different kinds reddes |(Caét al., [2005) or
providing a more general data model to mathematically ssprea graph with attributes
on both nodes and edges (Kivelall, [2014). In Figurd 2 we can see two alternative
representations of the same data, as a multigraph (a) ansea®finterconnected graphs
(b). The former, sometimes referred to amaltiplex networkfocuses on a single set of
nodes that may have complex relationships between them:

Definition 1(Multi-relational edge-attributed graph

Given a set of nodeNl and a set of labelk, an edge-attributed graph is a trip|& =
(V,E,)} whereV C N, (V,E) is a multi-graph andl: E — L. Each edge € E in the graph
has an associated labé¢).

The latter emphasizes how the same node can belong to reuléiptial) graphs, also
known adayers

Definition 2(Multi-layer edge-attributed graph

Given a set of nodeld and a set of labels, an edge-attributed graph is defined as a set of
graphsG; = (V;, Ei) whereVi C N, E; C Vi x Vi. Each graplG; has an associated unique
namel; € L.

Although very similar, and in this specific example equin|¢hese two representations
emphasize different aspects of an edge-attributed grajghinhportant to understand that
the methods covered in the remaining of this section hava Heeeloped starting from
specific models, influencing their features. Researcheang tise first model have mainly
focused on the reduction of different edge types to singtgesgdwhile researchers using
the second model have looked for clusters spanning difféagars and nodes belonging to
multiple clusters depending on the edge type. With thiedéiice in mind, in the following
we will formally represent both scenarios using the secomaké general) model, where a
family of graphs possibly containing common nodes reprtberdifferent kinds of edges.
A larger working example is shown in Figure 3(a).

More general definitions have been provided in the litesgtwhere one node in one
graph can correspond to multiple nodes in another. Thisides the case of online social
media, where the same user can open multiple accounts orssowiees (Magnani & Rossi,
2011), and the case of non-social networks containingreiffekinds of nodes, such as a
power grid and a control network, where one node in a netwankie related to multiple
nodes in another (Gaet all,|2011). Similarly, the model introduced by Kivedhal. (2014)
allows the presence of attributes both on nodes and edgethd-eake of simplicity we
focus on the simpler definitions above, because they arerthe wsed by almost all works
on clustering social networks to date. Also, notice that @i on nominal attributes, e.g.
work andfriendship the case where attributes are only numeric, that is, wedbtaphs,
has already been treated in depth in existing surveys. Hesvesre will deal with numeric
weights when these are used inside algorithms for nomitrébaties.

2.1 Single-layer approaches

A basic approach to deal with edge-attributed graphs fattenthem: to reconstruct a
single weighted graph so that existing clustering methaatsbe indirectly applied. This
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Fig. 3. An edge-attributed graph, corresponding to a sehtamréonnected graphs defined
on a common superset of individugls|(a). An indirect way tocess it is to reduce it
to a single weighted graph, then apply classical clustealggrithmg (D). A significantly
different approach is to look at exclusive connectjons (c)

approach, exemplified in Figuk§ 3|b), is not restricted testering but can be applied to
any operation defined on weighted graphs. Weights can be wmahgtraightforwardly so
that an edge between two nodes has a weight proportionat toumber of graphs where
the two nodes are directly connected.

Definition 3(Flattening
A flattening of an edge-attributed gragfG;}) is a weighted grapliEs, Vs, ws) where
E: = UE;, Vi = UV andw(u,v) = % (whereN is the total number of graphs).

Berlingerioet al. (20114a) follows this approach. However, the same autharg pat how
this solution may discard relevant information, e.g., thet fthat some attribute values
(or graph layers) are more important than others to defineustenl Tanget al. (2011)
propose a more general framework where the information tatheumultiple edge types
is considered during one of the four different componentshef community detection
process, network flattening being one of them. Neverthetbgsauthors point out that
this kind of integration requires that edges of differergey share the same community
structure. Therefore, it is not suitable for cases wheresthectures significantly vary in
different dimensions.

An antithetic approach acknowledging the importance okedliributed models but still
not considering clusters that can span several graphsdslinted by Bonchét all (2012).
While flattening tends to assign nodes directly connectecholiple graphs to the same
group because they get connected by a strong edge in thenddttgaphl, Boncthgt al.
(2012) consider a set of nodes as a good cluster if theirioaktiips are as specific and
homogeneous as possible, i.e., they are mainly conneateupth the same edge type. An
example is presented in Figure 3(c) where the three noddeechar black are connected
with each other in the middle layer but only share one sindigeeon all other layers,
representing a good cluster according to this app@)ach

1 Please notice that this specific example is not compatittie tive original model by Bonctet all
(2012) where individuals are allowed to be directly conadainly on one of the layers. However,
it retains its underlying intuition. While this work was matiginally intended to be applied to this
domain, it still presents a worth-mentioning alternatieénp of view.
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The next sections are devoted to methods aiming at idemgjfgiusters spanning mul-
tiple layers. They are mostly extensions of quality meastraditionally used in graph
clustering, modularity and quasi-cliques being two prognirexamples.

2.2 Extension of modularity

Modularity is a measure of how well the nodes in a graph canedparsted into dense
and independent components (Newman & Girvan, 2004). Fistews four graphs with
their nodes assigned into two communities (black and white)the modularities resulting
from these assignments. In these examples it clearly appear the assignments putting
together highly interconnected nodes and separating grofupodes with only a few con-
nections between them get a higher value of modularitywbigh noticing that modularity
is not a method to find communities, but only a quality functidowever, it can be directly
optimized or used inside community detection methods tdejthie clustering process.

Although this measure suffers from some well known pitf@fisrtunato & Barthélemy,
2007; Lancichinetti & Fortunato, 2011), it has recently @ the basis of several graph
clustering methods and it has also been extended to dealattithuted graphs. Let us
briefly introduce , to later simplify the explanation of its extension. The nladity is
thus expressed as

o L

2m

5 (a5 ) Str @
whered(y, y;) is the Kronecker delta which returns 1 when nodasdj belong to the
same cluster, 0 otherwise. Therefore, the sum is computlydfanthose pairs of nodes
that are inside the same cluster. For each of these pairpréisence of an edge between
them improves the quality of the assignmesf:equals 1 when there is an edge between
i and j, 0 otherwise. As we are dividing everything by (the nhumber of edges in the
graph), edges between nodes belonging to different chistegatively affect modularity
because they are not considered in the numerata¥(fasy;) = 0), but are counted in the
denominatorify). Finally, the formula considers the fact that two nodeswiigh degree
would be more likely to end up in the same cluster by chaneetbre their contribution
is reduced(—%, wherek; andk; are the degrees ofandj).

Now it should be easier to understand the extension of matuteoposed by Muchat all
(2010) for edge-attributed graphs. Let us consider Figuhete we have emphasized how
the same individual can be present in multiple graphs at the same time. For exampl
andj are directly connected on graphands, wherer ands represent two different edge
types. Notice that in this example we have three graphsthee edge types, and thiais
assigned to two different clusters in graphgray) ands,t (white).

2 Please notice that modifications of this formula have beepgsed to make it more adaptable to
different datasets. One typical addition isegolution parameterthat we have omitted from the
following equations because it is orthogonal to our disicuss
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Fig. 4. Modularity of four graph clusterings: nodes in eachpl are assigned to two
clusters (black and white); the modularity of each assignrisereported under the graph

Fig. 5. An edge-attributed graph with three kinds of edgegrasented as three
interconnected graphs. Nodes have been assigned to thetersl(black, gray and white)

Thus, the extended version of the modularity can be expdesse

=53 | (@~ e ) 3 0) 0800 | s i) @
This extended quality function involves not just all paifsmades (, j) but also all
pairs of graphsgr). 4 andd(y s, Yj.r) correspond respectively tm andd(y, ;) in the
modularity formula, whereu also considers the connections between different graphs:
we say that there is a connection between two grapésd s whenever they contain a
common nodg, which increaseg by cjsr. (¥, ¥jr) allows to assign the same node to
different clusters inside different graphs. The sum is noadenof two components. One
is only computed when two nodes in the same graph are copsidbecause ad(s,r)),
corresponding to modularity. In fact, hesgs = 1 wheni andj are directly connected in
graphs andks is the degree of nodein the same graph. The second componegt, is
only computed when we are considering the same rjadside two different graphsand
s. This term increases the quality function &y (typically, a constant value ranging from
0 to 1) whenever we assign the same individual to the sameeclos different graphs.
One practical problem in using this measure is to setcifeparameter. Setting it to
0 for all nodes and graphs, clusters are identified on eadalesgraph independently
of each other. Ittjs is high, e.g., 1, it becomes unlikely to assign the same iddails
to different clusters on different graphs. Other practaspects to consider are the fact
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that the part of the formula corresponding to traditionaldenarity can give a negative
contribution, which is not true for the part taking care deimnetwork relationships, and
also the fact that the contribution of inter-network redaships grows quadratically on the
number of networks while the modularity part only grows &ng. However, while the
choice of appropriate parameters deserves more reseaischxtended definition of mod-
ularity can be directly used to find clusters by using any nteity-optimization heuris-
tics, as done by Muchet al. (2010), or paired with a concept of betweenness to extend
the Girvan-Newman algorithm. The definition of betweenrfesgdge-attributed graphs
follows directly from any definition of distance involvingutiple graphs|(Brodkat all,
2011; Magnanet all,|12013).

Figure[® shows the values of modularity for four differentltingraphs and three dif-
ferent settings for the inter-graph parametgs (which is kept constant for all nodes
and graphs). The figure emphasizes the different compobéttigs measure. On the top
we can see two clusterings aligned with both the singletgeap multi-graph structure.
In particular, groups of nodes sharing several edges bdlotige same cluster, and the
same nodes on different graphs tend to belong to the santercldewever, the top-right
example shows that we can assign a node to different cluatdiferent graphs.

Modularities computed using different values@$; cannot be compared: increasing
Cjsr also increases the absolute value of modularity. Howewecan see how the increase
in the top-right figure is proportionally lower than the onetbe left (from .48 to .68 and
from .54 to .62, respectively). This is determined by theesoassigned to multiple clusters.

The two lower figures show examples of lower modularity, ckisterings not following
the structure of the graphs. The lower-left image has a logralintra-graph modularity
which can be seen whetr)sy = 0 and thus inter-graph connections are not considered.
When we also consider themj§ = .5 andcjsr = 1) we can see that modularity is in-
creasing in the lower-left graph much more than in the lovigint one, where every node
belongs to both clusters on different layers.

2.3 Clique-finding methods

Another concept used to discover clusters in graphsiis ihessli.e., a complete (sub)graph.
Although this is one of the basic concepts in graph theoryiaisdthus well known, we
briefly recall it.

Definition 4(Clique)
A clique is a set of nodes directly connected to all other sadé¢he clique.

Definition 5(Maximal clique
A maximal clique is a clique that is not contained in a lardepue.

Figure[7(d) shows an example of a clique. Any three nodesgnre[7(d) still make a
cligue, but not a maximal one because we can add the fourth awodi still have a clique.
A (maximal) clique clearly corresponds to a cluster. Howglagge cliques are difficult
to find in real data because it is sufficient for one edge noetprbsent to break the clique,
and in social graphs edges can be missing for many reasgnsbecause of unreported
data or just because even in a tight group there can be twadgils that do not get well
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Q = .48 (c=0) .61 (c=.5) .68 (c=1) Q = .54 (c=0) .60 (c=.5) .62 (c=1)

A
R
&

Q=12 (c=0) .37 (¢=.5) .50 (c=1) Q= .12 (c=0) .18 (c=.5) .22 (c=1)

A
B
&

Fig. 6. Multi-layer modularity of four graph clusteringsaes in each graph are assigned
to two clusters (black and gray); the modularity of eachgrssient is reported under the
graph using three settingsisr = 0, Cjsr = .5 andcjsr = 1

together. Therefore, when clustering is applied to soci@blys, it is wiser to look for more
relaxed structures called quasi-cliques.

For example, Freeman (1996) studies the cliques gatheyedifiterviews to a group of
individuals and acknowledges that they are not enough filmidg communities.

Definition 6(Quasi-cliqué
A quasi-clique is a set of nodes where each node is directipected to at leag®s of the
other nodes in the quasi-clique.

Algorithms to discover quasi-cliques taleas a parameter. Please notice that similar
alternative definitions are possible, e.g., using a striot considering the percentage over
all nodes in the quasi-clique — the underlying concept resitie same. In Figufe 7{b),
we have illustrated a .5-quasi-clique, and in Figure]7(®,have four nodes that do not
constitute a .5-quasi-clique because the white node isttiireonnected to only one third
of the other nodes.

A — : ) P : ) A — : )
<\ <\ /-
(@) (b) (c)

Fig. 7. A cliqu€ (d), a quasi-cligyie {b) and four nodes not imgila .5-quasi-clique (F)
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The problem of finding quasi-cliques in a graph is NP-hardcakding to common
beliefs, this implies that no algorithm can exactly sohis groblem in a reasonable amount
of time even for small graphs. However, efficient algorithmtich do not guarantee the
identification of all quasi-cliques have been proposed.

As previously mentioned, the most common interpretatiociasters in edge-attributed
graphs states that multiple kinds of edges between two ithails strengthen their rela-
tionship. Therefore, Peit al. (2005) have introduced algorithms to discover quasi-egu
in all graphs and Wanet al. (2006); Zhiping Zeng (2006) to identify quasi-cliques in at
least a given percentage of graphs (where this threshollledsuppor).

While not based on quasi-cliques, the ABACUS algorithm byliBgerio et al. (2013)
also applies a similar definition, coming from tfrequent itemset miningroblem. First,
clusters are identified in each graph, then those indivilbaing in the same cluster in at
least a given percentage of graphs are also included intoatiuster in the final result.

Itis worth noticing that quasi-clique clustering method=ra/first developed for generic
graph databases without focusing on the application dowfasncial graphs. In this spe-
cific domain, while we may agree that a cluster spanning &l dhaphs represents a
strong global cluster, a group of nodes sharing a large nuwfbedges on a few specific
graphs may also identify a cluster of interest. For exampéemight find that a group of
individuals goes to the same school and plays in the samethadkteam. This is a strong
relationship that should not be negatively affected by tkistence of other relationships
where they do not form a group. However, adding other edgestyp the attributed graph
(which corresponds to adding new graphs to the multi-layaply structure) would reduce
their support.

The approach proposed by Bodetral. (2012) starts from this consideration and looks
for sets of nodes that make a cluster in each single gragimpfsubsebf the graphs in
an edge-attributed model. This work also considers theafaseighted graphs, but this is
peculiar to this method and we will not provide additionatas here.

2.4 Emerging clusters

We conclude this section presenting a hypothesis still dfiwe in the literature that in our
opinion might lead to the development of new clustering roéth The hypothesis is that
clusters can emerge when a specific combination of graphenisidered, and disappear
when more graphs are added to the model.

In Figure[8, the idea is illustrated on a simple example. Thayesis of the three graphs
together (right hand side of the figure) does not reveal argyesting patterns as there are
too many edges in the graph. The same can be observed forieglehggaph (on the left).
However, choosing two specific layers, some more evideste&ts emerge (center, clusters
denoted by black and white nodes). None of the previouslygmied approaches seems to
be able to find such clusterings, because they require eltegtecto be presentin at least
one of the single graphs.

This hypothesis would also provide an answer to the diffjcinlitfinding good cluster-
ings in real social graphs. In fact, although several chirsgealgorithms exist, in practice
they achieve good results when some more or less well-seplachusters exist. This is
strictly related to the way in which community detectionaithms have been defined:
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Fig. 8. Emerging clusters: well separated clusters app&anva specific subset of the
graphs is used, but disappear when less or more networksded a

some try to maximize modularity, favoring well separatadstdrs, some use random walk
approaches, where the probability that a walker crosseslwgters is proportional to the
number of edges between them, some exploit measures lkeéerhess, that is high when
few other edges connect distinct portions of the graph (fat>, 2010). However, when
we deal with on-line relationships, clustering becomeseemely hard. According to our
hypothesis, this depends on the fact that a large numbenwdrstically different layers are
considered all-together, determining the co-existencgewéral overlapping clusters, and
a case of information overload.

In summary, if we consider Figufé 8 (right side), we would agpect any clustering
algorithm to find evident clusters. However, in theory austmay appear when the multi-
layer organization of the edges is unfolded in specific wayg, by only retaining the two
layers in Figuré18 (center). Therefore, the problem shiftsnf being purely algorithmic
(e.g., how do we find the best cut?) toward aspects like thzelod the data model, data
preprocessing and feature selection.

A preliminary work in this direction that can be seen as a gnaijion between the idea
of emerging clusters and the flattening approach is disdusgdrocklin & Pinar|(2011).
This work proposes an algorithm to find a vector that weighedayers to aggregate them
such that the clustering of the resulting flattened graph srailar to a given ground-truth
clustering as possible (the clustering algorithm and alanity measure between weighted
single-layer graphs are given for this problem). The sedwadfiof the paper deals with
the rich clustering structure that the multi-typed edges pavide. Generating random
aggregates of the graph, the authors explore the space sibfgslusterings and study,
e.g., if good graph clusterings askisteredn this space. The final problem that they tackle
is how to give an efficient representation of this resultingfanclustering. Their approach
is to reduce each meta-cluster (of clusterings) into a singbresentative clustering and
select a small number of them to cover the meta-clusteriagespn this way, they provide
a set of diverse and non-redundant clusterings as output.

3 Clustering node-attributed graphs

According to the taxonomy presented by Getoor & Diehl (200®)de-attributed graph
clustering aims at detecting groups of nodes sharing congharacteristics considering
both their attributes and their position in the graph. Mdsthe works addressing this
problem are based grartitioning andhomophily nodes can belong to one and only one
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group, and nodes in the same group must have homogeneoes walidheir attributes. A
few other methods, also covered here, generate overlaphiaters, e.g., by considering
different combinations of the attributes. This last appto&s usually known asubspace

clustering.

3.1 Data representation

Like in the case of edge attributes, also when attributes aaes are considered, the
literature abounds with terminologies and models dep@ndinthe research field or the
finality of the work, making it difficult to provide a unified ew. However, we can see
some main options emerging.

As previously mentioned, Wasserman & Faust (1994) desariliéple dimensions that
can be represented in a social network modstracturaldimension (relationships among
actors), acompositionadimension (attributes of the single actors), andaffiliation di-
mension (representing group memberships). Affiliatiominfation often refers to known
groups such as clubs or companies, but it can also reprdserdluster memberships
discovered through a clustering process.

Two main options to represent such a model are shown in F@ufehe first one,
Figurd9(a), consists in extending a structural graph wifthets describing node properties.
This can be formally expressed as a tride= (V,E,F) where each nodeis associated
with a set ofa attributes (or deature vectoy [f1(v),...fa(Vv)], storing its compositional
dimension. Note here that the affiliation information maysbered in the same way, by
adding attributes dedicated to memberships. The secorahoptgurg 9(H), consists in su-
perimposing one or more graphs where additional nodessepteither specific attribute
values or groups. Structurally, this superimposed graghigartite because it connects
individuals to groups, without edges between groups or éetvusers (the latter are stored
in the original social network). More formally, a grag@y = (Vp,Ep) is augmented by a
bipartite graptG, = (V,UVa, Ea), connecting nodes &, to attribute nodes of,, with no
links between attribute€; C V x Va. This defines an augmented graph= (V, E) with
E=EpUEsandV =V,UVa.

Several terms have been used in the literature to refer togtiens presented in Figures
[O(a) and 9(R), or even for their intermediate variationsmike access to the existing liter-
ature easier, in Tablé 2 we report the main terms togethérthvit references to where they
appear and the indication of which modeling option has beepted. Our objective here
is not to be exhaustive: we aim at capturing the relatiorsshgiween different approaches.
For example when Tonet al. (2007) refer to amttribute graph they imply that they have
previously grouped the nodes with common attributes, anggse a meta-graph where
meta-nodes reflect those groups and edge weights represem-gp-group similarity.
Zhelevaet al. (2009) studysocial and affiliation network&eeping two distinct graphs
and observing the co-evolution of these two graphs via tbeinmon nodes, retrieved
from Flickr groups. In the machine learning field, in the 141@90s and early 2000s,
workshops dedicated tink mining referred torelational data(Neville et all, 2003). In
a more recent data warehousing context, Zbétaal. (2011) introduced an OLAP graph
cube formultidimensional networks
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Fig. 9.[(a) Attributes represented as tuples describe nadeepties. The similar-
ity/distance between tuples can be integrated into thehgeap used during the clustering
process () New nodes representing the additional infdomare added to the original
graph, resulting in a heterogeneous structure with meltglde types.

Table 2. Some terminology used in the literature to referadesattributed graphs

term references option
Social-attribute network | (Yiet al,12010&,b) (b)
Attribute augmented graph_(Zhat all, 2009/ 2010) (b)

. (Zhouet al., 12009; | Cruzet all, 12013;
Attributed graph Cruz & Bothorel| 2013) (@)
Feature-vector graph (Gunnemanret all,[2013) (a)

Vertex-labeled graph

In summary, there has not been a consensus on the model yigt.diffierent formats are
useful to emphasize different aspects, all models incladle &tructural and compositional
data and one can be derived from another. Therefore, todimte existing methods, we
will use a common model consisting of an attributed gr&ph (V, E,F) where nodes are
associated with an attribute vectetv).

3.2 Weight modification according to node attributes

The first class of methods we presentis based on the follog@sgg first the node-attributed
graph is reduced to a single weighted graph, where weightgsent attribute similarity.
Then, any clustering algorithm for weighted graphs can lieghin principle. Different
methods use alternative functions to compute node siryilarid to update edge weights
when similarities have been computed. However, in all thggeroaches the change of
weights influences the clustering algorithm to privilege theation of groups in which the
nodes are not only well connected but also similar.
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Fig. 10. A node-attributed graph (a) and an attribute-fepeasentation of the same graph
(b) where attribute similarities are stored in the edge Wsi@b). Thicker edges indicate a
higher weight, i.e., a stronger connection

Table 3. Variations of theveight modificatiorapproach

reference similarity clustering

Karger's Min-Cut
(Neville et all,[2003) Matching coefficient MajorClust
Spectral

Assign u and v to the same
(Steinhaeuser & Chawla, 2008) Extended matching coefficietuster when the weight ofi(v)
is above a given threshold

(Cruzet al.,[2011b)

(Cruzet all,[2012) Self-organizing maps Louvain

As an example, consider Figuire 10. Focusing solely on thibattts, node$l1,2,3,4,7}
would form a homogeneous cluster, well separated from nf8l€g . If we only consider
the structure of the graph, two clear clusters emerge (ngdd@s3} and nodeg$4,5,6,7}).
These two pieces of information are summarized in the weigiraph in (b). While the
specific final clusters depend on the assigned weights, weseatihe emergence of a cluster
made of nodeg1,2,3,4}, presenting both structural and compositional similesitand
otherwise difficult to identify. Tablel3 summarizes the maiorks adopting this strategy,
and the measures mentioned in the table are reported inltbeiftg.

For example, Nevillet all (2003) use thematching coefficiensimilarity metric §;
qguantifying the number of attribute valudg (he nodes have in common. This similarity
metric is expressed as

: ©)

S = Sksk(i,j) ifejeEoreieE
) 0 otherwise



ZU064-05-FPR article 9 January 2015 1:22

Clustering attributed graphs 17

where
. 1 ifk=k
ihj)= .
S(i.) {O otherwise

Once the weights have been changed, the graph is clustengdane of the three meth-
ods reported in Tablg 3: Karger's Min-Cut (Karder, 1993)jdi&lust (Stein & Niggemann,
1999) or spectral clustering with a normalized cut objectiinction (Shi & Malik, 2000).
Experimenting with artificial datasets, spectral clustgidppears to be robust to irrelevant
attributes and graphs with low linkage.

Steinhaeuser & Chawla (2008) extend the matching coefficmmputation to take both
discrete and continuous attributes into account: for discattributes, each common at-
tribute shared by two nodes increments the weiglet(afv) by 1; for continuous attributes,
the idea is to add the normalized distance between thewt#tsbOnce the weights have
been changed and normalized, all nodes, connected by armddige weight is greater
than a thresholtl, are assigned to the same cluster. In this specific work thétguf the
final partition is evaluated using modularity (Newman & Gimv 2004).

The approach presented by Ceizll (2011b,/ 2012) deals with the fact that not all
attributes may be relevant to determine the similarity leetwnodes. When too many
attributes are involved in the computation of traditionataince functions, e.g. Euclidean
distance, we lose the ability to discriminate between diffie nodes. In fact, the so-called
curse of dimensionalityaterializes in that all distances tend to converge to threesalue.

In addition, some attributes may need to be combined/toamsfd to become relevant.
Therefore, the authors use a classical machine learningagip developed by Kohonen
(1997) and known as self-organizing map (S@M)) find the latent information worth

to establish the similarity between the nodes. An edge iweo nodes from the same
cluster gets its weight strengthened proportionally to/aigconstandér > 1. The resulting
weighted graph is finally clustered using the Louvain met{ldndelet all, [2008) and
the overall complexity is linea® (n) + &'(fn) + &'(m), wheren is the number of nodes,

the number of attributes or features andhe number of edges. Additionally, the authors
introduce the notion gioint of view by manually selecting subsets of attributes, it becomes
possible to analyze the social network from different pecsipes.

It is worth noticing that this family of techniques producesv edge weights according
to node attributes. If the original social graph is also &gl the two kinds of weights
must be combined is some way, e.g., by multiplying them.

3.3 Linear combination of attributes and structural dimerns

The previous family of methods removes node attributesdnyrgy their information inside
the edges of the graph. Some studies adopt an opposite appaasisting in the removal
of the network: structural information is stored into a darity (or a distance) function
between nodes. After defining this function, classic distabased clustering methods can
be applied. As an example, Comékal. (2012) define a distance between nodes which is

3 Self-organizing maps have been proposed as a learningagsptbat is robust to noise and can
map high dimensional data into low dimensionality spaceg,text.
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Table 4. Similarity or distance functions combining sturet and compositional
dimensions
reference similarity or distance
(Combeet al, 2012) a-dr(i,j)+(1—a)ds(i, )
(Villa-Vialaneix et al., 2013) aoKo (i, j) + 34 adKg (cid,cj)
(Dang & Viennet, 2012)  a-Gjj+(1—a)-simA(i, )
given by

dTS(iaj):a'dT(ivj)+(1_a)dS(iaj)7 (4)
wheredr (i, j) andds(i, j) are the attribute and structural similarity, respectivbbtween
nodesi and j and 0< a < 1 is a weighting factor. The authors leave the choice of the
clustering method open. Another similar distance funchgiDang & Viennetl(2012), as
listed in Tabld 4, is used to build a k-nearest neighbor gmminder to find clusters using
the Louvain method (Blondet all,[2008).

The main feature of these approaches is that nodes whichtraiusally far from
each other in the social graph can result to be close in casenilar attribute values.
As a consequence, and depending on the distance-basegticlgshethod, clusters may
contain disconnected portions of the graph. Hangtcl. (2002) experiment with a similar
approach on biological networks and gene expression dditar. the computation of the
combined distance, they apply hierarchical clustering arsthtistical measure to define
the cutting point of the dendrogram.

While|Villa-Vialaneix et all (2013) share a similar purpose using a weighting parameter
to balance their components, they relyl@mnelso map the original (multi-space) data into
an (implicit and unique) Euclidean space where SOMs can bd.un this case authors
define a multi-kernel similarity function to combine comitios and structure as indicated
in Table[4.Kq (i, j) indicates the kernel measuring structural similaifyis thedth label
of nodei anday are weighting factors.

This approach also exploits the visual potential of SOMscivtdan be represented as
bi-dimensional grids. In such grids, each cell represegi®ap of nodes, and the size of
the cells is proportional to the number of observationsasad with it. In this way the
authors are able to represent the size of the communitieslistribution of topics and the
links on the same 2-dimensional representation.

Dang & Viennetl(2012) propose an extension of the Louvairnetvith a modification
of modularity to include the similarity of the attributestire community discovery process.
This is given by

Q=3 5 (@-Si.i)+(L-a)simAl ), -

whereC indicates the set of graph partitior®(i, j) represents the strength between two
nodes (computed as in the original definition of modulayiginA(i, j) is a similarity
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function based on attributésand j and can be adapted according to how the attributes
are represented.Q a < 1 is a weighting factor.

In general, for parametric methods an important questibovsto chooser. According
to the authors of these methods clusters are stable agaiafitchanges in the parameter.
Dang & Viennet [(2012) also propose a way to estimateand kernel-based approaches
support automated parameter tuning (Villa-Vialanetiall, [2013). Depending on applica-
tion, analysts may also setto emphasize attribute homophily or connectivity. However
more case studies and future independent analyses will loemve.

3.4 Walk-based approaches

A random walkon a possibly infinite network is a stochastic process whevalker goes
from node to node by choosing a target neighbor at randomcét sep [(Noh & Rieger,
2004). In the clustering context walk models are used tanedd vertex distances on
attributed graphs. In accordance with this distakemeans-like approaches attratbse
nodes around the predefinkedentroids in order to aggregate the members of the commu-
nities.

Zhouet al. (2009) define a random walk process on graphs like the onegur &B(b).
The result is that the more attribute values two verticeseshhe more paths via the
common attribute nodes exist. In this way random walks candesl to measure vertex
proximity through both the structural links and the comfiosal links.

In the Connected Centers method proposed by &eall (2008) the walk strategy is
a simple breadth-first search (BFS) defined for graphs likeotie in Figur¢ 9(&), where
the feature vector is also used to determine the next visibele. This method implements
thek-means algorithm using walks to compute distances: firpicksk random nodes as
cluster centers, second, all the nodes are assigned to dnekoflusters by traversing the
graph using BFS; third the centroids of the clusters arelcalzied. The second and third
steps are repeated until there are no further changes itusters’ centroids.

3.5 Methods based on statistical inference

Statistical inference is the process of drawing propetdfetatasets from a set of observa-
tions in a model and then inferring predictions about a lapggulation represented by the
sample. In this section, and according to the classificagiowided by Fortunato (2010),
we focus on two types of methods: the ones using generatigeisicas an intermediary
step or in a pure manner to mix attributes and links in a unifiediel, and the ones using
stochastic block models.

Many studies focus on the task of clustering networks of duenis. Here, every doc-
ument can be seen as a node characterized by a complextetulidéiined by the words
contained in the document. For examplegLall (2008) propose a clustering method to
find communities in a large-scale document corpus expiplioth the document content
(the words), and their references/citations. They usesstat inference as an intermediate
step to find hidden topics to further manipulate the documdrite general principle is to
find community cores and then include their members. Thectieteof cores identifies the
documents that are frequently co-referenced and may ptayadle of community seeds.
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A second phase merges the initial cores according to thpic similarity in order to
improve the core consistency. The authors use here thekwelin text-mining method
called Latent Dirichlet Allocation (LDA) to find topics. LDAs a generative topic model
so that unobserved or latent topics have probabilities teegge various observed words.
A Bayesian inference finds the best fit of the model to the alagiins through likelihood
maximization. Finally, the third step is to affiliate the r@ming documents to the clusters.
This affiliation propagation process may lead to misclaagilocuments and a final step
removes false hits.

LDA is also used by Liet al. (2009) and Balasubramanyan & Cohen (2011) but as a
central approach and in an extended manner to identifytigteaps. The Topic-Link LDA
model defined by Litet al. (2009) is a generative model considering topics, membeoghi
authors and link formation between pairs of documents étxhdgboth topic similarity and
community closeness. The inference is designed to regal#ie topic information when
inferring the hidden communities and vice versa. The agth@ximize likelihood using an
expectation-maximization algorithm and demonstrate tiv@fied model on three different
tasks: topic modeling, community detection and link prédit in blogs and CiteSeer
datasets. For the community detection task, we would fgbhliere an interesting remark.
Their approach offers a meaningful investigation of howteahsimilarity and community
similarity contribute to the formation of links. They ardalo reveal that author member-
ship has a much stronger effect on link formation betweeg plsts in political domains
than technical papers. They also show that the topic dimangays a more important
role than the community similarity in blog citing. Balasabranyan & Cohen (2011) also
address the problem of link modeling and combine two populkthods: block modeling
and LDA.

Xu et all (2012) propose a community detection model that is transédrinto a statisti-
cal inference problem. Authors start by defining a geneg&myesian model that produces
a sample of all the possible combinations of a graph, defigetstadjacency matriX, a
matrix of feature&” and a vectoZ containing the assignation of each node to one olt of
groups, i.e., a partition of the graph. This model produaesgoint probabilityp (X,Y,Z).
The idea is thus to find a partitidi* such thaZ* = arg, maxp(Z | X,Y).

These techniques are very attractive to mix both attribatestopology into the same
model, but unfortunately the optimization process to estinthe parameters of the likeli-
hood is often costly. In addition, they do not rely on the d&bn of any distance, and the
choice of thea priori distributions in the statistical models requires a nowidtiexpertise.

3.6 Subspace-based methods

Some of the clustering approaches reviewed so far sharelieéthat a carelessly usage of
all the available attributes may lead to poor clusteringssTs the case, e.g., in the work
by |Villa-Vialaneix et al. (2013). We have already recalled the phenomenon callese

of dimensionalityin Section[3.R2: when the number of attributes is large théedifice

in the distance between two random pairs of data points f@ciio this case) tends to
zero. This phenomenon motivates the development of clogt@pproaches focused on
the identification of the discriminative attributes to pucé well separated clusters. This
general approach is known asbspace clustering@nd has been also applied to the case
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of node-attributed graphs. Subspace clustering methaddesigned to select the ‘best’
subsets of dimensions. They search the projections of tlaeidifferent dimensions and
identify clusters that are relevalocally to some of these subspaces.

Subspace clustering is interesting because it may reveapgrthat would not be de-
tected considering the entire set of attributes. Howevdirfmrelevant projections is com-
putationally hard. The final choice of which groups to keepl& costly and requires
an optimization step combining the best size, density,opptfrdimensionality and any
other relevant quality function (see Sectionl4.1). More@pag each cluster is relevant in its
own subspace, this has the effect of producing overlappiraiers and requires additional
efforts to control the redundancy ratio between them.

One semi-automated approach to identify relevant subdetiributes has been pre-
sented by Cruet all (2011b), where the authors propose a framework helping huma
analysts to manually select their preferred compositipeatpective. The choice of the
subset of attributes is given explicitly as an input to aroenatic clustering process.

Differently, (Ginnemanet al. (2013) propose a completely automated method to ef-
ficiently combine subspace and subgraph clusters. In péaticthey use their former
GAMer method to extract an exhaustive list of candidatetehss but apply a different
final selection of the clusters to be returned to the user@Algler method greedily selects
the clusters that locally optimize a quality measure. Htérey propose a solution based
on global optimization, maximizing the sum of the clustegsalities under redundancy
constraints. The overall complexity of this definition ofistering is #P-haﬁd Therefore,
the authors propose a heuristic that, for example, produchksstering of the whole DBLP
databaﬁin about 7 hours with commonly available hardware. They alsow that the
quality remains comparable to the greedy solution comphie@AMer in terms of F1
value and density.

The time complexity of subspace clustering approaches tsriooisly high, but the
discovery of dense subgraphs in selected subspaces cariubableaHowever, the high
number of required input parameters (minimum cluster sim@gnsionality, density, re-
dundancy) can have a negative impact on the practical ityadifithese methods. Finally,
as we will see in Sectidn 4.1, the evaluation of attributesprclusters in general is still
under study, and maybe more for overlapping ones where nmdriouth exists.

3.7 Other methods

Other works directly extend well-known and efficient grapdsed methods. Cret al.
(20114a) extend the Louvain method (Blondéehll, [ 2008) introducing a local minimization
of the entropygenerated by the attributes between the modularity opéitioiz and the
community aggregation steps. Dang & Vienret (2012) alserekthe Louvain method
in a similar way, by optimizing at each iteration the lineanbination of the classical
modularity and a new modularity based on the attributes.

4 This is the complexity of some hard counting problems, anglis that an exact solution to this
problem cannot be currently computed in acceptable time
5 133 097 nodes; 631 384 edges; 2 695 attribute dimensiondaBleat: http://dblp.uni-trier.de
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Akoglu et al. (2012) propose a method to identify cohesive groups inbaitteid graphs
composed oh nodes each described by a feature vector. In this case, tifiteutds are
binary, i.e., a node either has or not certain attributeg dlgorithm uses the adjacency
matrix Anxn Of the graph and a matrik,. s representing the assignation of features for
each vector. The main underlying idea is to fikgroups of nodes using the structural
information and groups using the feature information. The cost functionaisdal on the
encoding of the matrice& andF as well as the configuration of the clusters, where the
encoding uses the approach proposed by Rissanen (1983).

Barbieriet al. (2013) present an approach using the notion of informatastades,
and in particular the idea that an information cascade isenfikely to occur within a
community rather than between communities. Thus, they ugigem set of information
cascades to build a probabilistic model named Communitsc@de Network (CCN). To
learn the parameters of the model authors use an expectatgmization approach,
which however has been reported to be computational expensi

Ruanet all (2013) also propose a content- and structure-based cormyrietiection
algorithm called CODICIL. The algorithm starts by creatalgedge set with the structure
and a graph generated from the similarity of the nodesthe.final edge set will contain
the original structure plus edges derived from obtainirgttpk most similar neighbors
for each node. This similarity is calculated using the ceslistance between the TF-IDF
vector from the content of each node. Then, this new graphrigpged to select certain
relevant edges and, at last, this sampled graph is clustisiag a classic graph clustering
technique.

Finally, some approaches focus on the discovery of sigmifisatterns, such as associa-
tion rules or regular structures in graphs. Significant gxasiare the works by Moset al.
(2009), Silveet al. (2010), Atzmueller & Mitzlaif (2011) and Poei al. (2014), focusing
on mining descriptive community patterns and allowing thalgsts to understand the
structure of frequent subgraphs around topics which maysbé&lin scenarios like fraud
detection or counter-terrorism. Differently from graphjgeoning methods, frequent pat-
terns can overlap and do not necessarily cover the entiaseiat

4 Practical aspects
4.1 Evaluation

Comparing the quality of two clusterings is a fundamentalatslity. It can be used to
choose among alternative algorithms, inside a single #lgoras a stopping condition or
as a guide to choose the next step in a so-caleddyapproach, making an assignment
that maximizes the quality improvement. However, evahgtlustering algorithms is an
open problem, even when graphs without attributesor everidadata are involved. This
has been clearly discussed in recent surveys by SchaefieirY2and Fortunata (2010)
where the identified problems not only concern the ambigamaspersonal definition of
good clusterbut also the need for results that are easier to interpattiaa, benchmark
datasets and quality functions to explain why a clusteringgarded as good or not.
While evaluating graph clustering is a hard and open proldeem when no attributes
are present, several measures to evaluate graph clustéidng been proposed, and some
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have been extensively applied. Therefore, without claintiat these measures represent
the final or only solution to the problem, in this section warsfrom them as an existing
way of evaluating graph clustering and focus on what we needitl when we deal with
attributed graphs.

The main additional aspect to consider when attributedhggae involved is the co-
existence of multiple objective functions. Having a dgstion of the data that includes
both structural and compositional aspects, we may havetatsles that are very similar
according to their attributes but disconnected from eabbroSimilarly, we may have well
connected sets of nodes with rather heterogeneous comopasiattributes. Both cases
can be considered good clusters depending on the useregwrits and while we would
certainly prefer to identify sets of nodes making a goodteluwith respect to all these
aspects, we must accept the co-existence of multiple e@futunctions — or amulti-
objective evaluation function

In the rest of this section, we introduce relevant evaluatieasures for different as-
pects involved in defining good attributed graph clustemsodder to demonstrate their
differences, we apply these measures to a toy graph.

4.1.1 Structural measures

Evaluating the quality of a clustering of a simple graph withnode or edge attributes
is a complex problem in itself. In this section, we will cathesi two different scenarios:
evaluation with and without ground truth.

External evaluation measures. When ground truth is available, the problem is reduced
to computing similarity between two clusterings. Since wefcont the found structures to
externally provided class information, we call such simiijfameasuregxternal evaluation
measuresThese measures can be divided into two main groups: baspdipoounting
and based on information theory. We will briefly discuss thestitypical representatives
to give the readers an idea rather than a complete overvigweohethods.

Given two partitionsCy = {Cy1,Cu2,...,Cum} and Cy = {Cy1,Cyp,...,Cy} Of a set
of nodes, the pair-counting-based measures show the piapaf agreement between
both partitions. These measures have two requirementtgartitions are disjoint, i.e.,
NcecGi =0, and (2) all elements have the same weight in the clugt@riacess.

The Rand index (RI) is one of the first approaches for compavim partitions|(Rand,
1971). It can be considered as an alternative to accura@ubedt expresses the number
of pairs of nodes that were placed within the same group ih pattitions divided by the
number of all node pairs. This comparison leads to a simtyléwinctionc(Cy, Cy) between

partitions that is expressed as
n

c(Cy,Cy) = z

i<)

=

L 6
) (6)

—~
NS

where
1 if 3k K 1 x,X; € CukAXi,Xj € Ce
yi=1q1 if 3K :x,X; ¢ CuAX,Xj ¢ Cu
0 otherwise.
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The agreements between partitiadbgandC, can be summarized using a contingency
matrix as presented in Figurel11. In this matrix,is the number of agreements while
is the number of elements of tlida group from theC, partition andn.j is the number of
elements in thgth group in theCy, partition.

Cv

Clasgvi Vo ... V¢ [
U (N11N12...0N79¢|N1.
Uz |N21N22...Nor|No.

Cu . . L
Yjlninz...ngn
Fig. 11. A contingency matrix representing the agreemmptsetween two partitions

Using a contingency matrix similar to the one presentedgufe[ 11, Equationl6 can be
re-expressed as

2
() - {1/2 (Zi (Zimi)"+3; (i nij)z) - Zznﬂ
0 : (7)
(2
Note thatc(Cy,Cy) € [0,1], i.e., itis 0 when the partitions are dissimilar and 1 when th
partitions are identical. Later Hubert & Arable (1985) oduced the adjusted Rand index

(ARI) which is a version of the Rand index corrected for chearithe ARl is given by
a3 () = [T (D) 53 (D] /0)

5D+ 55 ()] - 5 (D) 55 (D] /)
wheren;., n.; andn;j are values taken from the contingency matrix in Figure 11.

Another common measure is the Jaccard index which is givahdoyatio of the node
pairs that were clustered together in both partitions aectbde pairs clustered together
in at least one partition (Jaccard, 1901).

The second group of external evaluation measures uses Ininfioianation (M) be-
tween partitions, i.e., the information both partitionsugh These measures are based on

entropy and joint entropy of the partitions. Using the sametingency matrix presented
in Figure[11, the Ml index is given by

C(Cu, Cv) ==

ARI (Cu, Cv) -

(8)

MI(CU’CV)_iiiml nij /n

5 N n.n.j/n?’

(9)

This measure can be normalized by the joint entropy of thtitjgens ensuring that the Ml
lies within the interval—1,1] or [0, 1]. Variations of this measure with different normaliz-
ing factors or adjustments with correction for chance aes@nted in detail by Danaat all
(2005) and Vinket all (2010).

Internal evaluation measures. Without ground truth, determining the quality of a clus-
tering is based on its intrinsic characteristics. We redesuch measures @gernal eval-
uation measuredAccording ta Ben-David & Ackerman (2008), “a clusteringadjty mea-
sure is a function that maps pairs of the fofdatasetclustering to some ordered set
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(say, the set of non-negative real numbers), so that thdeesveeflect how good or co-
gent that clustering is.” Some general properties for goodlity measures have been
proposed, such as scale invariance, monotonicity and eashBen-David & Ackerman,
2008; van Laarhoven & Marchiori, 2013), but in practice thelppem depends on the pur-
pose of the analysis.

To assess quality, _Gaertler (2005) uses two functid{§) andg(C), to measure,
respectively, the density and the sparsity of the clusgeriiese functions are combined
as follows
f(C)+9(C)

N(G)

whereN (G) is a normalization function for the index defined as ffx g} over all

clusterings|(Brandest al,, 12008). Using the general index defined in Equaliioh 10, three

different quality indices can be derived: coverage, cotahue, and performance.
Coveragey (C) is a measure of the ratio of the intra-cluster weights to ¢i@ fmount

of edge weights:

index(C) = (10)

(11)

whereE (C) is the set of intra-cluster edges amd-) is the sum of the weights of a set of
edges. According to the general definition in Equafionfl&, w(E (C)) andg = 0.

Conductanced (G) is a measure based on the observation that if a cluster isconedl
nected, then a large number of edges have to be removed in tordesect it. Thus,
conductance (G) of a graphG is the minimum conductance value over all cutsGf
(Brande<t all, |12008) — that is, the lowest possible value of the total weajftall edges
between the clusters of a partiti@h Along with thegraph conductancegwo other mea-
sures exist: intra-cluster conductanz€C) and inter-cluster conductan@C). Intra-
cluster conductancis the minimum conductance value over all induced subgre{{i®s)
while the inter-cluster conductance is the maximum corahuaz over all induced cuts
(Gi,Gi). Thus, given a cu€ = (C,C), according to Brandest all (2008), the conductances
¢ (C) and¢ (G) can be defined as follows:

1, ce{o\V}

$(C)=¢0 C¢{oV}Aw(C)=0 (12)
W, otherwise

¢ (G) =ming (C), (13)

ccv

wherea(C) is the sum of the weight over all edges adjacer@.ttt is expressed as

alC)=2 Y w(e+ % w(f).
ecE(C) feE(CT)

The intra-cluster conductance of a partiti@ris defined as

a(C)=_min ¢(G(C)), (14)
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while the inter-cluster conductance of a partitioas

5(C) = 1 ifC={V} (15)
1-maxc1,. .1y ¢ (Ci), otherwise.

In order to express the preceding indices in the form of theegd framework from
Equatior 10, we set= 0 for intra-cluster conductancé = 0 for inter-cluster conductance
andN = f + g =1 for both cases.

Performancedefines the quality of a partition based on the “correctne$she clas-
sification of a node pair. The density functidncounts the number of edges within all
clusters while the sparsity functiag counts the “nonexistent edges” between clusters
(Gaertler, 2005), that is, the numbermdt connected pairs of nodes among all clusters.
The definitions are

k
)=y E)
:k

(16)
9(C)= > [(uv) £EJli;uv),
where the function is defined as:
1, ueGAVEeCi#]j
I (u,v>:{ VG 7)
0, otherwise
Finally, performance as presented by Branelesl. (2008) is
perf(C) = ) +a(€) (1(:) +g(C)7 (18)
sn(n—1)

wheren is the number of nodes of the graph.

A comparison of clustering algorithms and measures haspiresided by Leskoveet al.
(2010), and more details concerning the limitations of ¢hgasures can be found in the
works by Gaertler (2005) and Brandetsal. (2008).

Other candidates for a quality measure deasityandmodularity(Newman & Girvan,
2004 Fortunato, 2010), and they can also be directly op@thinstead of just being used as
evaluation functions. We will not add additional detail®abmodularity, that has already
been described earlier in the article.

In Figure[12, some sample measures are illustrated on twmalive partitions of the
same graph.

4.1.2 Edge-attributed graph clustering

Only a few works have proposed evaluation measures for pheiljraphs. The measure
introduced by Muchet al. (2010) takes into account both the pairs of nodes and the pair
of graphs — this approach has already been described im8EXR.

A different approachis given by Bode al. (2012). In the spirit of subspace clustering,
a set of “interesting” non-redundant clusters is soughhdttate multidimensional clus-
ters are considered to be all the node sets that are densetgced in every respective
dimension (in all single layers that are contained in thestel). From these, the result
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Modularity: 0.347
Coverage: 0.867

Modularity: 0.357
Coverage: 0.867
Rand Index: 0.8
Adjusted RI: 0.597

MI Index: 0.52
Normalized Mll: 0.619

Modularity: 0.263
Coverage: 0.8

Rand Index: 0.64
Adjusted RI: 0.286

MI Index: 0.764
Normalized MII: 0.433

Fig. 12. Two graph partitions (lower graphs) and groundhtiwipper graph): the values
of some internal (modularity, coverage) and external eatadn measures (computed
according to the ground truth) are shown

is selected by maximizing the quality suFrQ(C) of all clusters while keeping the
set of clusters non-redundant. Redundancy is computed asveatap of edges of two
clusters. The quality functio@(C) is meant to be specified by users since it is application-
dependent. Nevertheless, the authors provide a defaditygfumction which multiplies
average density of the layers, size and dimensionality.ithaadlly, a minimum cluster
size is set to 8 nodes and a minimum of 2 dimensions is reqfreeach cluster. This
evaluation measure is bound to a specific cluster model. ddereit is limited to finding
multi-dimensional clusters that are clustered in all tngyks layers at the same time (this
results from the condition on the candidate clusters).

The problem of measuring distances between clusteringsaphg with weighted edges
of multiple types is also tackled by Rocklin & Pinar (2011).

4.1.3 Node-attributed graph clustering

Node-attributed graph clustering approaches like the byp@$ouet al. (2009)| Cruzet al.

(2014) and Dang & Viennet (20112) use a combination of two mess densityd for the

structural part and entropy?’ for the attributes. Given a graph(V,E) and a partition
C={C,Cy,...,C} of G, density is defined as:

5©) =g 3 E©)L (19)

GeC

whereE (C)) is the set of edges that start and finish in ithecommunity. That is, density
represents the proportion of edges that lie within the comitias and a higher density
corresponds to a better clustering.

The termentropy used in several different contexts to measure the degrdisafder of
a complex system, indicates the heterogeneity of the elenigside a cluster according to
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their attribute values. It is given by

S HE). (20)

%(C) = mqec

whereH (G) is the entropy of thé&h community and is calculated as
r
H(C) =~ pijnpij+(1—pij)In(1-pij),
=1

wherer is the number of attributes arj is the proportion of elements in the community
Ci with the same value on the attributeThe objective of the clustering is to reduce the
entropy which is equivalent to increasing the homogenditii® partition.

Another validation technique is presented byetall (2008). In this work, documents
are classified into ACM’s 17 major computer science categoifhis is a fuzzy classifica-
tion that allows each document to belong to several categofihus, each documeaitis
assigned to a (17-dimensional) topic vectaaind then the documents are clustered Kto
groups. Each grou@; is further assigned to a topic veciy.

The paper defines a measure calR@Bas

PCS

PCS= —2. (21)

whereK is the number of communitieBCS is

doec: N (d;
PCS _ Zk.djke(;:jn ( Jk)7

wheren; is the size of the communityand

n (di) = {

Thus for each clusteC;, the measure computes the proportion of elemdjts Cj such
thatz = Zj, i.e., how many documents within the community have a topitter that is
equal to the community’s topic vector.

In some cases it is possible to define the number and labelseofroups by hand
as presented by Gt all (2008) where authors compare the obtained partition with th
expected one by counting the number of elements classifiggatly by an algorithm.
This approach is acceptable for small networks but becomushptive for large networks
with high dimensional feature spaces.

When ground truth is available, it is possible to use vala@amethods such as Rand
index or mutual information index. In this line, Coméeall (2012) define a framework
for comparing the resulting partition with the ground truthey use a contingency matrix
(similar to the one presented in Figlre 11) created from toermd truth and a partition
found by the tested algorithm. Then they calculate the ptapoof nodes that were well
grouped according to the ground truth.

Yanget al. (2009) use two validation approaches that are based on grouth: the
normalized mutual information (NMI), briefly described ir@io4.1.1L, and the pairwise
F measure (PWF). The PWF measure is given by the relationglegtwairwisgrecision

1 if Zik = Zj
0 otherwise
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andrecall. This relation is

1+ B2) precisionx recall

_
PWF= (B x precision + recall

: (22)

wheref > 0 is a parameter used to favor either precision or recal. ¢ommon to leave
B = 1. To calculate precision and recall, the following expi@ss are used

precision = ‘S‘”—T‘
_ s
recall = T

whereSis the set of node pairs that are assigned to the same conmynamd is the set
of node pairs that have the same label.

4.1.4 A multi-objective evaluation approach

In the previous sections we introduced several evaluatieasures and we have seen
that, in general, finding a good clustering of an attributealph requires optimization
of at least two objective functions. Therefore, there willays be a trade-off between
compositional and structural dimensions. For node-aiteidh graphs, the objectives are
the structural quality of the clusters (intra-cluster vger-cluster edges) and the intra-
cluster homogeneity of the node attributes. For edgebatd graphs, the situation is
more complicated since it is less obvious how to define a ghustering. According to
Bodenet all (2012), cluster candidates are well clustered in all ofrtd@nensions, but
this assumption could prevent the discovery of potentiadigful clusters.

Another possible evaluation perspective consists in ngdorchecking if a clustering
is good as a whole, but whether any specific interesting@lsigtre found. In general, in
order to evaluate a specific cluster in an attributed graph,aan take into consideration
its structural quality, homogeneity of node attributegesidimensionality and novelty.
We can thus see these variables as different dimensions edrats space where each
multidimensional point is a cluster. Good clusters can lecsed based on custom settings
of weights of the dimensions, or unweighted approachesligeéPareto front can be used
to find all clusters that are potentially better than othexading to any combination of
these basic evaluation functions.

For structural quality and node homogeneity, any measore 8ections 4.711 ahd 4.1.3
may be selected. To assess novelty, we suggest to use one pfaposed measures of
overlap, such as Jaccard index. The value of the maximuniapvean be returned as
novelty. In this way, emerging clusters of minimal dimemsility are favored, preventing
information overload.

4.2 Applicability

Approaches preprocessing edge- or node-attributed graypheducing them to graphs
without attributes normally keep the same asymptotic cexipf of the clustering algo-
rithm used after preprocessing. The exact complexity optleprocessing phase depends
on the data structure and the specffatteningalgorithm, but it is normally achievable
in close-to-linear time on the size of the graph. As an examgdge-attributed flattening
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as described in Definitidd 3 and using a tree-based main meimadexing structure takes
¢ (mlogm), wheremis the number of edges, that is, the average number of edgesge
type times the number of edge types.

As such, while not taking full advantage of the informatiepresented by the different
edge types, these methods can be applied to very large guapigany of the existing
efficient clustering algorithms reported e.g. lby Costiall (2011), they are simple to
implement and (with some variation in the flattening aldorm} can also be applied to
directed and weighted graphs. However, in the case of waigbtige-attributed graphs,
domain knowledge is necessary to decide how to merge wedghtkfferent edge-types.
The conceptual problem of merging weights with differeninaatics as described by
Magnani & Rossil(2013b), e.g., the number of exchanged rgessan an email layer and
the duration of friendship on a social media network, emizieaghe deficiencies of single-
layer approaches.

Similarly, for node-attributed graphs where the node laitas are flattened into edge
weights before applying a community detection algorithhe time complexity of the
preprocessing step depends on the number of attributesathe emmethod used to compute
how similar the nodes are. In case mftching similarity for each edge, the number
of common attributes between the end nodes is computed wdkels&' (mf), where f
is the attribute space size and where in genérg m. In high dimensional spaces we
expect that each node is described by a sparse vector aralltved for efficient methods
such as growing self-organizing maps. These methods, wiguled with efficient graph
clustering, exhibit a near linear complexity. The othermoels still take advantage of the
sparse nature of the graph and thus, having less than gicadoatplexity, are able to
address large datasets.

With more integrated methods, such as subspace approacihies one proposed by
Ruanet al. (2013), the clustering process can reach a high complexityuadratic and
more. But in general, for linear combination or walk-basesthods, the complexity de-
pends on the algorithm used for clustering the features, 8@M or k-means among
others, and whether the approach is global or local. Theltiegyrocess can still be
practically used for reasonably large graphs, and graptishwindred thousand nodes have
been successfully processed in the reviewed works on scbshastering.

On the other hand, most of the community detection algostheguire the choice of
parameters that control the output of the algorithm, fomepie the number of clusteks
the weight to emphasize the connectivityor weighting variables for linear combination
approaches, the number of iterations, statistical digtidins for model-based methods,
redundancy or heuristics in NP-hard subspace approadtiesametimes requires major
assumptions and domain knowledge about the data, whiclcesdineir applicability. Only
a few methods among the ones reported in this work are pagaiinet, including the ones
by [Neville et all (2003)) Cruzet al. (2011a) and Akoglet al. (2012).

Regarding the directionality of the edges, most of the netidescribed in this article
rely on the application of existing approaches when thecsiral part of the graph must
be analyzed, in which case any existing algorithm for dedajraphs can be used. This
evidently applies to the single-layer and weight-modifaatpproaches, and is also the
case for subspace methods, even if these last approacheseemase some adaptation
when specific algorithms have been hardcoded inside therthdde based on extended
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modularity cannot be used without modifications on diredeabhs, because they are
based on the original definition of modularity which assummegirected edges. However,
they can be extended in the same way as it has been done hyid\itas (2009) for
non-attributed graphs. With respect to node-attributeglys, approaches based on linear
combination can be straightforwardly used with directedesdas they are based on the
computation of graph distances, that can be obtained ootdad@raphs as well. Similarly,
walk-based approaches are naturally well suited to didegtephs.

As a final consideration, the works we have mentioned so faradirbased on the
general idea of clustering several dimensions at the sames 8.9g., relationships, affili-
ation, competencies, socio-demographic features, amitiegso However, the information
stored respectively in the attributes and in the edges maynleerrelated and will not
necessarily reinforce the same clusters. In practicendrg merge several dimensions may
result in failing to find any well separated clusters evennvblesters exist under a single
dimension. An alternative approach is to run dedicated prdislized clustering steps for
each dimension (structure, edge attributes, etc.), anditiiegrate the resulting partitions
a posteriorionly if this leads to better clusters. Cruz & Bothorel (20p8ypose to ma-
nipulate the partitions with a contingency matrix whereistural groups are in rows and
compositional ones are in columns. The integration of thétmas relies on predefined
strategies. Even if matrix manipulation may not seem usendly, this original proposal
is interesting from another perspective: according tortbbjectives, the analysts can try
different combinations without re-computing the basiditians and thus potentially save
computational costs.

5 Open problems and discussion

Attributed graph clustering is an active research area,aansuch it presents a number
of open problems. In addition, being it an extension and doatlon of well established
areas (graph clustering and multi-dimensional relatiahadtering), open problems can
be classified into two main categories: 1) those alreadyepteshen single graphs are
considered (and the easier to identify) and 2) those spaltyfielated to the combination
of structure and attributes.

An example of the first category pertains to partitioning awveérlapping algorithms.
While the majority of graph clustering methods partitiordas into disjoint sets, many
authors have pointed out that in real contexts individuiendbelong to multiple commu-
nities. Even without considering attributes, this has wadéd the development of several
methods, such as the well-known clique percolation methcHdilaet al. (2005), or the
ones by Nicosiat all (2009) and Wanet al. (2011) where extended versions of mod-
ularity are used to evaluate overlapping clusters. In thesient paper, Xiet al. (2013)
review the state-of-the-art in overlapping community déts algorithms, quality mea-
sures, and benchmarks for non-attributed graphs. Theyigega framework to evaluate
the performances of both the community-level and nodeltistection, and conclude that
this research field is still work in progress, as more than t®%e overlaps still remain
uncovered. Other problems include how to measure the signife of overlapping nodes
and how to interpret the resulting communities (¥teal, 12013). Recently, Yangt al.
(2013) have used node attributed graphs for detecting aymgirhg communities, stating
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that the resulting communities can be interpreted mordyelgianalyzing the attributes
of the nodes belonging to each community. However, qualityiaterpretation issues are
still open questions.

In general, like for other kinds of approaches, the presehatributes introduces more
parameters to be considered and requires the consideddtionltiple aspects at the same
time. However, in our opinion, when edge attributes aregrgshe dispute between parti-
tioning and overlapping approaches should be reconsideréakt, overlapping is usually
determined by participation in different networks: as aaraple, the same individual can
be in her working team community, in her family communitytie community of her
team mates at the fencing club, etc. This example suggest# the can split our social
network into a set of specialized networks (or, saying itriother way, if we can cluster our
relationships into different classes), then we may find $oate specialized networks only
involve partitions. However, this consideration should he understood as a statement
against overlapping methods.

An example of the second category of open problems is therexy@l explosion in
the number of attribute value combinations to be considdugihg the clustering process.
While this is a well-known problem in relational data minjiitgs unknown in the domain
of single graph clustering, and it is one of the main aspestg&ewed in this article. In
Sectiori 2, we hypothesized that clusters can emerge whestdisggombination of graphs
is considered, and disappear when more graphs are added todtiel. In Sectionl3,
we discussed the notions of point of view and subspace cingt® counteract the fact
that considering all the node attributes may lead todimse of dimensionalitproblem.
Furthermore, beyond thuantitativeselection of a good subset of original data (which can
be stated as a feature selection problem), scientists awi# ko take into accouqualitative
considerations: how to define the analysis context in oaldetide how good a clustering
is? How to make this context understandable to an analystowitdomain knowledge
and usable by a domain expert without deep analytical kilew to conceive efficient
techniques to present multiple results in real-time?

The main problem related to the existence of multiple paifitsew which is peculiar of
graphs with edge labels (and more in general multiple iot@nected graphs) is the exis-
tence of a large number of views, where every view corresptmd specific combination
of values on the edges. Despite some promising attemptsitesslthis problem, inspired
by the field of sub-space clustering, in the authors’ opirtios aspect deserves a lot more
research to be able to apply clustering algorithms to rediransocial networks. Given
the intrinsic computational complexity of the problem, agible direction involves the
consideration of domain knowledge to focus the clusteradisty process on promising
combinations of dimensions.

Initial work in this direction by Cruzt all (2013) has defined control facilities to com-
bine existing precomputed partitions. The objective isfteraools to compare different
approaches and visualize the results in a way that allows feselback. The success
of UCINET and — more recently — visual analytics softwaresliéephi and NodeXL
is a sign that analysts are requesting such easy-to-apply. tdhis requires advances
focusing on usability, simplicity, efficiency and scalatyil evaluation facilities such as
comparison of methods, selection of relevant attributeanmodeling. In fact, these
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research directions are as meaningful in an attributegigcantext as they are for non-
attributed graphs.

Understandably, early works on attributed graph clustgawve focused on finding static
communities, which is a preliminary and necessary stepudystheir evolution. Here
researchers can partially reuse the same approaches usatl¢golving communities on
simple graphs, in particular the comparison of nodes dedtat different timestamps to
identify evolutionary steps likereate mergeandsplit. However, in the case of attributed
graphs the evolution does not only regard the networks. Xistemce of multiple inter-
connected graphs and communities spanning some of them|stageguire a revision of
the concept of evolutionary step.

A related problem that has generated a whole research ddbrfigne realm of simple
graphs is the study of network creation models. What aredree$ leading to a specific
network model exposing a modular structure? Rephrasirsgaéstion in the context of
attributed graphs, how can we explain not only how some gelogle become densely in-
terconnected, i.e., a cluster, but also why their attribééow a specific value distribution
and how these connections have developed in the differaphdayers or edge types?

All the aspects mentioned so far highlight different levefsincreasing complexity
that we have to face when we consider attributes: the numibeiews to evaluate, the
number of parameters to consider, e.g., in the evaluatiootifons, and the number of
configurations of the system, e.g., the additional degrédéseedom in its evolution. A
straightforward conclusion is that in the case of attriduggaphs the applicability of
forthcoming results may be strictly dependent on algorithadvances, in particular re-
garding computational models like streaming, distributediget-based, approximate and
incremental approaches enabling big data analysis.
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