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Abstract

Detecting communities in large-scale networks is a challenging task when each vertex may belong to

multiple communities, as is often the case in social networks. The multiple memberships of vertices

and thus the strong overlaps among communities render many detection algorithms invalid. We

develop a Partial Community Merger Algorithm (PCMA) for detecting communities with signifi-

cant overlaps as well as slightly overlapping and disjoint ones. It is a bottom-up approach based

on properly reassembling partial information of communities revealed in ego networks of vertices

to reconstruct complete communities. Noise control and merger order are the two key issues in

implementing this idea. We propose a novel similarity measure between two merged communities

that can suppress noise and an efficient algorithm that recursively merges the most similar pair of

communities. The validity and accuracy of PCMA is tested against two benchmarks and compared

to four existing algorithms. It is the most efficient one with linear complexity and it outperforms

the compared algorithms when vertices have multiple memberships. PCMA is applied to two huge

online social networks, Friendster and Sina Weibo. Millions of communities are detected and they

are of higher qualities than the corresponding metadata groups. We find that the latter should not be

regarded as the ground-truth of structural communities. The significant overlapping pattern found in

the detected communities confirms the need of new algorithms, such as PCMA, to handle multiple

memberships of vertices in social networks.

Keywords: Community Detection, Community Structure, Overlapping Community, Partial Commu-

nity, Social Networks, Vertex Memberships, Metadata Groups, Linear Complexity

1 Introduction

Community structure is commonly found in networked systems in nature and society (Girvan & Newman, 2002).

While it is almost common sense to realize the existence of communities, extracting such

mesoscopic structures efficiently and accurately remains a challenging task and yet it is

crucial to the understanding of the functionality of these systems. Although the definition

of community remains ambiguous and a commonly accepted definition is lacking, many

detection algorithms have been developed in the past decade (Fortunato, 2010) with most

of them motivated by an intuitive notion that there should be more edges within the com-

munity than edges connecting to the outside (Seidman, 1983; Girvan & Newman, 2002;

http://arxiv.org/abs/1509.00556v2
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Radicchi et al., 2004). This viewpoint on what a community is about implies that com-

munities are almost disjoint, and it is behind the design of non-overlapping community

detection algorithms. However, it was soon found by empirical studies that it is common for

communities to overlap, i.e. each vertex may have multiple memberships (Palla et al., 2005)

and thus it may be shared by communities. Several approaches have been proposed for

detecting overlapping communities, including clique percolation (Palla et al., 2005), link

partitioning (Evans & Lambiotte, 2009; Evans & Lambiotte, 2010; Ahn et al., 2010), local

expansion and optimization (Baumes et al., 2005; Lancichinetti et al., 2009; Lancichinetti et al., 2011),

and label propagation (Raghavan et al., 2007; Gregory, 2010; Xie et al., 2011). Some of

them inherit the notion of non-overlapping communities and then loose constraint to allow

vertices to be shared by communities. For example, algorithms of local expansion and

optimization usually use a fitness function that is positively correlated to the ratio between

the number of internal and external edges of a community. We remark that the fitness

function is fine with disjoint or slightly overlapping communities, but is not applicable to

significantly overlapping communities of which most vertices have multiple memberships.

For example, if most members of a community have more than one membership, it is

very likely that the community has much more edges to the outside than edges within the

community, which is often the case in social networks. We think a new concept fundamen-

tally different from non-overlapping communities is needed that imposes no constraints

or implications on the fraction of overlapping vertices and the number of communities a

vertex may have. Taking the two aspects into consideration, we propose a general concept

of overlapping community that each member of a community should connect to a certain

fraction of the other members. There are no constraints on whether the community has

more internal than external edges or whether a member devotes most of its edges to

this community. This intuitive idea is similar to k-core, but it is fraction-based and we

name it f -core. Unlike k-core that cannot overlap, an f -core allows its members to belong

to arbitrary number of f -cores and thus it is suitable to be a definition of overlapping

community. Yet, f -core only focuses on edge densities and does not specify how members

are connected to each other. To make it a useful concept in the context of communities, a

further constraint that a community has members who are densely connected to each other

and thus a relatively high value of clustering coefficient will prove effective.

Structurally, communities with significant overlaps are hidden under dense and messy

edges, unlike the cases of disjoint and slightly overlapping communities. Identifying such

communities is highly non-trivial from a global or top-down viewpoint. Starting locally

from a vertex, however, it is easier to identify which groups a vertex belongs to in the

subnetwork consisting of the vertex itself and its neighbors, i.e. the ego network of a

vertex, as illustrated in Fig. 1 using data from an online social network. Several com-

munity detection algorithms that take advantage of such local community structure in ego

networks have been developed in recent years. Coscia et al. proposed a method DEMON

(Coscia et al., 2012; Coscia et al., 2014) that let each vertex vote for the communities it

sees in its ego network democratically and then merges similar communities repeatedly

if the overlap between two communities is above a threshold. The method EgoCluster-

ing by Rees et al. (Rees & Gallagher, 2012) follows a very similar idea with a different

merger criterion. Later on Soundarajan and Hopcroft proposed the Node Perception algo-

rithm (Soundarajan & Hopcroft, 2015), which is a general algorithm template consisting of
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three steps: firstly detect subcommunities in the neighborhood of each vertex; then create

a new network of which each vertex represents a subcommunity and the edges represent

some relationship between subcommunities; and finally detect communities in the network

of subcommunity. Since the merger of similar subcommunities can be reinterpreted as the

second and the third step, DEMON and EgoClustering can be regarded as implementations

and special cases of the template. This intuitive local-first approach is easy to conceive.

The key to success lies in how to implement it, especially for the latter two steps, i.e.

finding a proper way of merging similar communities. There are two key issues to be

addressed: merger order and noise control. In DEMON, a community A is immediately

merged with another community B if the overlap between them is above a threshold,

without considering whether there exists a better candidate C to be merged with A. This

would lead to less accurate results, and we think always merging with the best candidate is

preferable. Also, the detected communities in ego networks may contain noise, i.e. vertices

that are misclassfied into these communities. The noise accumulates quickly as the merger

proceeds and the similarity measure, i.e. the overlap between two merged communities

used in DEMON and EgoClustering, becomes less and less accurate. It eventually leads

to poor accuracy, as we will show in benchmarking in Sec. 3. Taking these aspects into

account, we develop a Partial Community Merger Algorithm (PCMA) based on the same

local-first approach for detecting communities with significant overlaps as well as slightly

overlapping and disjoint ones. We propose a sophisticated yet efficient similarity measure

between merged communities that can trace the merger history and suppress noise ac-

cumulated during the process. The mathematical properties of the measure allow us to

design a linear complexity merger algorithm that always merges the most similar pair

of communities. The variables used in the measure can be utilized to establish a set of

thresholds for further reducing noise after merger. Besides the efficiency and accuracy

ensured by the proposed similarity measure, our method is also equipped with many fea-

tures that are essential to dealing with large-scale real networks. Like other algorithms

based on local approaches, the method does not require an input of the total number

of communities to be detected. Most importantly, the assumption of disjoint or slightly

overlapping communities is abandoned and the method is designed to handle the possibility

of multiple memberships of a vertex and detect significantly overlapping communities. Our

method also allows vertices to be isolated, i.e., they do not belong to any communities.

Community detection algorithms must be able to distinguish real communities from pseudo

communities (Bianconi et al., 2009; Lancichinetti et al., 2010). We are well aware of the

issue and our method sifts out real communities by applying proper thresholds. All these

advantages make the method uniquely capable of detecting communities with significant

overlaps efficiently in large-scale real networks with hundreds of millions of vertices.

The plan of the paper is as follows. In Sec. 2, we introduce the details of the algorithm,

including similarity measure, merger of similar communities, thresholds, and applicability.

In Sec. 3, the method is tested against two benchmarks and its performance in accuracy

and efficiency is compared with four other recently proposed algorithms. In Sec. 4, we

apply the method to two huge social networks and compare the communities detected with

the metadata groups. We show that significantly overlapping communities are common in

social networks. Results are summarized in Sec. 5.
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Fig. 1. (Color online) An ego network of a vertex provides the local information and

reveals several partial communities. The network was constructed from data collected

from Sina Weibo, an online social network akin to the hybrid of Facebook and Twitter.

The partial communities are found by an existing algorithm as described in Appendix A.

PCMA is an efficient and accurate algorithm for detecting complete communities in a huge

network by properly merging partial communities revealed by the ego networks of all the

vertices.

2 Partial Community Merger Algorithm

2.1 General Principle

We aim to detect communities in a network in which vertices could span from being

isolated to belonging to multiple communities. This renders many top-down algorithms

invalid. We first give a physical picture of our algorithm. Consider a community in which

every member is connected to a certain fraction of the other members. At the local level of

the members, they only known their own neighbors and have no knowledge of the complete

community. They are given the task of compiling a roster of the community and identify

who the core members are. To complete the task, each member shares its local information

consisting of a name list including itself and all its neighbors. A complete roster can in

principle be derived by merging these individual name lists skillfully. Those who appear

frequently on the lists are the core members, while those with less occurrence are on
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the periphery of the community. This merger process is the core idea of our method of

detecting communities.

Practically, we start with exploring the ego network of a vertex, i.e. the subnetwork

consisting of the vertex itself and its neighbors, and identifying the communities hidden

in it. This is illustrated in Fig. 1 for a vertex (the central one) in an online social network.

This local view lets us see the communities clearly. Since a vertex may not know all the

members in each of its communities, the identified communities in the ego network of a

vertex are incomplete. We refer to them as the partial communities from the viewpoint

of the vertex. This process can be carried out for every vertex. Although each member

only helps reveal part of the whole picture, the idea is that aggregating local information

should reveal the complete communities, i.e., every community with all its members. With

the partial communities revealed by different vertices, the next step is to determine which

ones are actually different parts of the same community. It is a technically difficult task

as the number of partial communities may even be greater than the number of vertices in

the whole network and vertices may be misclassified into partial communities that they

actually do not belong to. Merger of corresponding partial communities in principle recon-

structs the complete community. It, however, also causes the noise in partial communities to

be accumulated. A cleaning process or post-processing scheme is then invoked to eliminate

the misclassified vertices and sift out the real and complete communities.

Our method thus consists of three steps:

1. Find the partial communities in the ego network of each of the vertices.

2. Merge partial communities that are parts of the same community to reconstruct

complete communities.

3. Clean the merged communities to sift out real communities.

For easy reference, we call the method Partial Community Merger Algorithm or PCMA in

short. For Step 1, many existing algorithms are available and we use the one proposed by

Ball et al. (Ball et al., 2011), with details given in Appendix A. The new elements are Step

2 and Step 3. Below, we introduce our implementation of Steps 2 and 3 in detail.

2.2 PCMA Step 2: Merger

The merger process aims to reassemble partial communities that are part of the same

complete community. As discussed in Sec. 1, care must be taken over the merger order and

noise control to make the process effective. We propose an efficient hierarchical clustering

based algorithm that always merges the most similar pair of communities and it can handle

noise properly.

The key here is to find a suitable similarity measure between communities, each of

which is represented by a set of vertices. The Jaccard index is a commonly used similarity

measure. It is defined to be the size of the intersection divided by the size of the union

of two sets. A drawback of the index is that the members are assumed equal. A merged

community, however, contains core members, peripheral members, and even misclassified

ones. They should be treated differently. Here we propose a novel similarity measure

that incorporates the different importance of members and hence reduce significantly the

interference of the misclassified vertices on the measure.
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For a Vertex i in Community C, let Si,C be a score that represents its importance in C.

Without loss of generality, we define Si,C = 0 if i /∈ C. Let lC be the number of partial

communities that have merged to form Community C. Before the merger, the partial com-

munities identified by Step 1 all have l = 1 and all members carry an initial score of 1.

When two communities A and B merge into one, e.g. C = A∪B, the quantities Si,C and lC

are given by

Si,C = Si,A + Si,B (1)

lC = lA + lB (2)

Physically, Si,C traces the number of occurrences of Vertex i in the lC partial communities

that have merged to form Community C. Vertices with a high value of S/l are regarded as

core members, and those with a small S, say less than 3, are very likely vertices that are

misclassified.

Consider two communities A and B. We define an asymmetric measure f (A,B) to take

into account the different importance of members as

f (A,B) = ∑
i

Si,B

lB
· Si,A

wA

, (3)

where wA = ∑
i

Si,A. The term Si,B/lB represents a normalized importance of Vertex i in B,

ranging from 0 to 1, and Si,A/wA is a weighting factor of Vertex i in A. So f (A,B) measures

the weighted average importance of A’s members in B. The product Si,B ·Si,A ensures that f

will not be affected much by the misclassified vertices, i.e. those with small values of S. A

large value of f (A,B) indicates that the core members of A are also core members of B, but

not vice versa as f (A,B) 6= f (B,A) in general. This measure has the following properties:

f (A,B∪C) =
lB

lB + lC
f (A,B)+

lC

lB + lC
f (A,C) (4)

f (B∪C,A) =
wB

wB +wC

f (B,A)+
wC

wB +wC

f (C,A) , (5)

which can be readily shown. Let {A} ({B}) denote the set of partial communities that form

the Community A (B). It follows from Eqs. (4) and (5) that

f (A,B) = f (∪x∈{A}x,∪y∈{B}y) = ∑ x∈{A}
y∈{B}

wx

wAlB
f (x,y) . (6)

Recall that x and y are partial communities and thus f (x,y) is the portion of members of x

who are also members of y, i.e.

f (x,y) =
| x∩ y |
| x | . (7)

Equation (6) indicates that f (A,B) is actually a weighted average of the overlap portion

f (x,y) over all combinations of partial communities forming A and B, i.e. with {(x,y),x ∈
{A},y ∈ {B}}.

The merger of two communities A and B is different from either A absorbing B or B

absorbing A. Thus, a symmetric analogy of f (A,B) is preferred for deciding a merger.

To motivate the construction of such a parameter, we introduce a measure g(C) of a

Community C in a way similar to Eq. (6) that compares members in the partial communities
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forming C:

g(C) =

{

1 if lC = 1

∑ x,y∈{C}
x6=y

wx f (x,y)
wC(lC−1)

if lC > 1
(8)

It gives the average portion of overlap between partial communities in a merged commu-

nity. Its physical meaning can be seen by considering the special case that C is an ER

random network G(n, p) with members randomly connected with a probability p. A partial

community now consists of a vertex and all its neighbors. The expected portion of overlap

between two partial communities f (x,y) is roughly p, giving g(C) ≈ p. This indicates

that g(C) is approximately a measure of the fraction of other members that a member

is connected to. A larger g(C) implies denser internal edges in the community and thus

members are connected tightly to each other. It can be used as an indicator on whether a

merged community is a real community or just a wrongly merged set of vertices.

For the case C = A∪B, g(C) satisfies

g(C) = 1
wC(lC−1) {wA(lA− 1)g(A)+wB(lB− 1)g(B)

+(wAlB +wBlA) fs(A,B)} , (9)

where

fs(A,B) =
wAlB f (A,B)+wBlA f (B,A)

wAlB +wBlA
=

2∑i Si,A ·Si,B

wAlB +wBlA
. (10)

There are three terms in Eq. (9) for g(C). The first and second terms give the overlap

portions within A and within B, respectively.

The third term in Eq. (9) measures the overlap between A and B. It is important to note

that a symmetric measure fs(A,B), as defined in Eq. (10), emerges. It is a weighted average

of the asymmetric measures f (A,B) and f (B,A) and yet itself satisfies fs(A,B) = fs(B,A).

It follows from Eq. (10) that fs(A,B∪C) is given by a weighted average of fs(A,B) and

fs(A,C), and thus

fs(A,B∪C)6 max{ fs(A,B), fs(A,C)} . (11)

We are thus led to apply fs as a symmetric similarity measure between two communities

that accounts for the different importance of the members. We remark that fs is not the

only option but it is a good one because of its many advantages: fs has a clear physical

meaning that measures the average overlap portion of partial communities between A and

B; it respects the different importance of members of a community; it is linear and easy

to calculate; and its mathematical property expressed in Eq.( 11) allows us to optimise the

merger process to be of linear complexity as we will discuss shortly.

Based on the idea of agglomerative hierarchical clustering, the merger process using fs

as the similarity measure can be implemented as follows. Given a set C of communities to

be merged, a straightforward way is to:

1. Calculate fs for each pair of communities in C and maintain a priority queue of fs

in descending order.

2. Merge the pair with the largest fs and update the priority queue.

3. Repeat 2 until the largest fs in the priority queue falls below a threshold t fs .

The time complexity of this algorithm is O(n2 logn), where n is the number of communities

in C . The space complexity is O(n2) as we need to maintain the priority queue of fs. For
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detecting communities in large-scale networks, a more efficient algorithm is desirable. In

what follows, we propose two optimizations to reduce both the time and space complexity

to O(n).

We define the best merger candidate of a community A as

bmc(A) = argmax
X∈C/A

fs(A,X) . (12)

We argue that the algorithm above is equivalent to:

1: given a set of communities C

2: repeat

3: choose a community A from C

4: B← bmc(A)

5: while bmc(B) 6= A do

6: A← B

7: B← bmc(A)

8: end while

9: if fs(A,B)> t fs then

10: merge A and B

11: remove A and B, add A∪B to C

12: end if

13: until no communities can be merged anymore

14: return C

The algorithm makes use of the property of fs given in Eq. (11). If A and B are the best

merger candidates of each other, there does not exist a community C that gives fs(A,C)>

fs(A,B), where C can be any combination of communities in C /A. Therefore, even if

fs(A,B) is not at the top of the fs priority queue, the merger of A and B can be moved

forward since other mergers higher on the priority queue that would take part will not

affect the merger of A and B. An advantage is that merges are not required to proceed in

order in the algorithm, and thus there is no need to maintain the fs priority queue. The

space complexity is reduced from O(n2) to O(n).

The search on bmc(A) is formally within the set C /A. Practically, the search area can be

reduced significantly, as most of the communities in C /A do not even share a single mem-

ber with A in sparse networks. A good approximation is to limit the search to the partial

communities from the viewpoints of A’s members and the merged communities containing

these partial communities. As such, the time complexity of calculating bmc(A) does not

scale with n, providing that the community size and the number of partial communities

per vertex are independent of the network size. The number of iterations of finding a pair

of communities to merge should also be independent of n. The repeated loop requires a

time complexity of O(n). Since n usually scales linearly with the network size, it can also

be regarded as the network size. We thus argue that the time complexity of our optimized

merger algorithm is approximately O(n). This is verified numerically in Sec. 3.

The choice of the value of t fs depends on the networks being analyzed, and one’s subjec-

tive view of how dense the internal edges of a community should be. There is no standard

answer. For example, setting t fs = 0.1 means we aim to detect communities of which the

members know more than 10% of the other members on average. Using a higher value
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means PCMA will focus on communities with denser internal edges or the cores inside

them, and those with a lower density are not acknowledged as communities. Lowering

t fs would bring in more peripheral vertices as members and would cause further merger

of similar communities. Tuning t fs from high to low may extract the core-periphery and

possible hierarchical structure of communities. It is another important topic that is beyond

the scope of the present work, we leave it to future work. We think t fs = 0.1 is a good choice

for social communities and it is harsh enough for those with a large size. However, it can

easily be satisfied by small ones. For example, two partial communities of size 10 only

need one common member to satisfy the threshold. Since partial communities detected in

PCMA Step 1 may contain a lot of misclassified members, such loose threshold for small

partial communities may result in a lot of mergers of partial communities that are actually

not part of the same complete community. We suppress such unwanted mergers of small

partial communities by forcing the similarity fs (A,B) = 0 if ∑i Si,A ·Si,B/max{lA, lB}< t f0 .

It means two partial communities can merge only if the number of their common members

is no less than t f0 . A better solution is to use a dynamic t fs that depends on the sizes of

communities and we leave it to future work.

2.3 PCMA Step 3: Post-processing

After merging communities, a cleaning process is needed to handle two types of noise.

First, we need to identify which merged communities are real communities and which

are simply merged sets of vertices by coincidence. The latter usually contain only a small

number of partial communities because they are merged by accidents. The more partial

communities a merged community contains, the more likely it is a real community. Thus,

the parameter l of a community can be used as a measure of whether a detected community

is trustful. A way to sift out real communities is to set a threshold tl and require all real

communities to have l > tl . The threshold can be set in many ways, e.g. setting tl based

on each community’s size, as a larger community usually caries a larger l. Second, we

need to identify and eliminate vertices that are misclassified into partial communities in

Step 1. Recall that Si,C is the number of occurrences of Vertex i in lC partial communities

that formed the Community C. Excluding Vertex i’s own partial communities (if any),

the remaining score S′i,C can roughly be interpreted as the number of other members that

Vertex i is connected to in Community C. Usually S′i,C = Si,C − 1. If the probability of

Vertex i being misclassified into a partial community is 10%, then being misclassified into

S′i,C partial communities of C is 0.1S′i,C . Therefore, the probability of Vertex i being a false

member drops sharply with increasing S′i,C. Thus, a threshold tS′ can be set to eliminate

vertices with S′ < tS′ . Normally tS′ = 4 is sufficiently stringent and it should not be less

than 2. There remain vertices with S′ > tS′ but S′/l ≈ 0. They may still not be members

since they know too few other members. The ratio S′/l gives an estimate on the fraction of

the other members that a member is connected to. Another criterion S′/l > tS′/l becomes

useful, with tS′/l being a threshold that requires each member be connected to at least

tS′/l × 100% of the other members. This criterion echoes the concept of f -core discussed

in Sec 1. The threshold tS′/l can either be set uniformly for all communities or individually

for each community based on the value of g, which reflects the average portion that a

member is connected to the other members. Since different kinds of networks may have
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different community structures, the choice of tS′/l depends on the nature of communities

of a specific network under study.

2.4 Applicability

PCMA works under two conditions: Existence of partial communities (Step 1) and ad-

equate overlap between partial communities for mergers (Step 2). Usually, the second

condition is satisfied automatically when the network under study meets the first condition.

For the first condition, the existence of partial communities from the viewpoint of a vertex

requires that there are sufficient number of neighbors and a high density of edges among

the neighbors, i.e., a high local clustering coefficient of the vertex.

We expect a community detected by PCMA to have the following properties:

1. Two members with common neighbors are highly likely neighbors of each other. As

a consequence, the community has a relatively high value of clustering coefficient.

2. The shortest distances between most pairs of members are generally short and not

longer than 3. Thus, most members are connected to each other either directly or via

one/two intermediate member(s).

3. Each member is connected to at least a certain fraction of the other members.

From another perspective, these properties can be taken as a broad descriptive definition

of community, and are well suited for describing communities with significant overlaps.

PCMA is designed to detect this kind of communities, which are important in large-scale

systems with vertices typically having multiple memberships.

3 Benchmarking

We tested PCMA using two benchmark models to illustrate its performance and applicabil-

ity. Results are compared with DEMON (Coscia et al., 2012), which shares the same gen-

eral idea as that of PCMA, and also three other fast and accurate overlapping community

detection algorithms that are among the best (Xie et al., 2013): namely OSLOM (Lancichinetti et al., 2011),

SLPA (Xie et al., 2011), and BIGCLAM (Yang & Leskovec, 2013b).

First, a simple benchmark model in the spirit of the planted ℓ-partition model (Condon & Karp, 2001)

is used. The network is generated as follows:

1. Generate an ER random network of n vertices with a mean degree 〈k〉 that serves as

background noise.

2. Randomly sample s vertices as a community, with s satisfying the Poisson distribu-

tion with an expected value of 〈s〉. Connect each pair of members with a probability

p.

3. Repeat the step to generate n · 〈c〉 communities. Here, 〈c〉 is the expected number of

communities that a vertex belongs to.

This model is flexible in that the total number, size, and intra-community edge density,

as well as the background noise level can be directly controlled. In addition, vertices can

belong to an arbitrary number of communities, including zero. There is no guarantee that

there are more edges within a community than edges going out. These features make many
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existing community detection algorithms invalid. They reflect the challenges posed by

real social networks, in which a person often simultaneously belongs to many groups, on

community detection. PCMA is designed to solve the problem.

Consider a network with n = 105, 〈k〉= 20, p = 0.3, 〈s〉= 40, and 〈c〉= 2 generated as

described. The threshold t fs = 0.1 is chosen for the merger process. Fig. 2 shows the actual

community size distributions generated by the model (diamonds). The results as detected

by PCMA before (circles) and after post-processing (squares) are shown for comparison.

As discussed in Sec. 2.3, the merged communities without post-processing are noisy. The

results show a peak at a small community size due to many coincidentally merged sets of

vertices, which are targeted for removal in post-processing. The results also show a bump

in the distribution at large community sizes. Although these are real communities, the

many misclassified vertices make their sizes bigger than their actual sizes. Hence, results

before post-processing could be misleading. By setting the thresholds properly, as given in

Table A 2 in Appendix B, the distribution after post-processing is in good agreement with

the actual community size distribution.
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Fig. 2. (Color online) Community size distribution as generated by the benchmark model

(diamonds) described in the text. The corresponding results as detected by our method

before (circles) and after (squares) applying the post-processing scheme are shown for

comparison. The thresholds are given in Table A 2 in Appendix B.

To qualify the accuracy of PCMA, we adopt the widely used Normalized Mutual Infor-

mation (NMI) (Danon et al., 2005) as extended by Lancichinetti et al. (Lancichinetti et al., 2009)

to compare overlapping communities. As a recent study showed there may be cases in

which NMI is biased (Zhang, 2015), we use two additional measures, namely the Omega

Index (Murray et al., 2012) and F1 Score, to make the evaluation more comprehensive. The

F1 Score in the present work is defined as

F1(D ,G ) =
2 ·Precision(D ,G ) ·Recall(D ,G )

Precision(D ,G )+Recall(D ,G )
, (13)
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Precision(D ,G ) =
1

|D | ∑
D∈D

max
G∈G

|D∩G|
|D∪G| , (14)

Recall(D ,G ) = Precision(G ,D) , (15)

where D and G are the detected communities and the ground-truth, respectively.

Fig. 3(a) compares the performance of DEMON, OSLOM, BIGCLAM, and PCMA on

synthetic networks with different intra-community edge densities. Results of SLPA are not

shown because the method cannot detect isolated vertices.

DEMON failed to detect communities generated by this benchmark as values of the

NMI and Omega Index are almost zero. As discussed in Sec. 1, a main reason is that the

misclassified vertices invalidate the similarity measure in DEMON which is based on the

overlap between two communities. Fig. A 2 shows an example of a merged community

containing two times more misclassified vertices than true members. It indicates clearly

that a similarity measure capable of tracing the different importance of vertices in a merged

community, such as the one used in PCMA, is essential for the effectiveness of the merger.

The accuracy of OSLOM depends strongly on the number of iterations. We use the de-

fault value r = 10 suggested in Ref. (Lancichinetti et al., 2011), unless specified otherwise.

BIGCLAM and PCMA are shown to be sensitive to the intra-community edge density p.

For PCMA, it is because p affects the existence of partial communities, which is a criterion

for the applicability of PCMA (see Sec. 2.4). In the benchmark model, the probability p

promotes partial communities. PCMA works well when

〈knn〉= [(〈s〉− 1)p− 1]p > 2 , (16)

where (〈s〉−1)p is the expected number of neighbors of a member and 〈knn〉 is the expected

number of edges of a neighbor connecting to other neighbors of the member. The neighbors

start to be strongly connected, i.e. partial communities emerge, when 〈knn〉 > 2. From

Fig. 3(a), PCMA performs better than OSLOM for p> 0.28, corresponding to 〈knn〉> 2.78

for the case of 〈s〉= 40.

Fig. 3(b) shows the dependence of the performance on 〈c〉, which controls the expected

number of communities that a vertex belongs to. A larger 〈c〉 corresponds to more edges

connecting the communities and thus a denser and more complex network. The perfor-

mance of DEMON is far worse than the other methods (similar to what is shown in

Fig. 3(a)) and the result is not shown. For a system with n = 104 members, the accu-

racy of OSLOM falls rapidly with increasing 〈c〉. For PCMA, the accuracy remains high

throughout, with a slight drop due to the finite size of the network instead of 〈c〉. This is

verified by the performance of PCMA in a bigger system of n = 105 (circles in Fig. 3(b)).

Recall that many existing algorithms become invalid in problems that a vertex may belong

to many communities, but PCMA handles them well.

We also tested PCMA with the widely used LFR benchmark model (Lancichinetti et al., 2008).

The results are shown in Fig. 3(c). In the LFR model, a vertex has a degree chosen from a

distribution that follows a power-law of exponent τ1 in a range of degrees kmin 6 k 6 kmax

corresponding to a mean degree 〈k〉. A tunable fraction of vertices are chosen to belong

to more than one communities. They are the overlapping vertices. The remaining vertices

have only one community. For a vertex of degree k, a parameter µ sets the fraction of

the edges to be connected to vertices outside the community(ies) that the vertex belongs
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Fig. 3. (Color online) Performance comparisons of DEMON, SLPA, OSLOM, BIGCLAM, and PCMA in a simple benchmark model and the LFR

benchmark model. Unless stated otherwise, parameters of our simple benchmark model in (a) and (b) are: n = 104, 〈k〉 = 20, p = 0.3, 〈s〉 = 40,

〈c〉 = 3. Parameters of the LFR benchmark model in (c) are: n = 104, 〈k〉 = 40, kmax = 100, µ = 0.3, τ1 = 2, τ2 = 1, cmin = 20, cmax = 100,

each overlapping vertex has two communities. The thresholds of PCMA are given in Table A 2 in Appendix B. For (b), the number of partial

communities set to be found in PCMA Step 1 is K = 10. For DEMON, the default value of the parameter ε = 0.25 is used. The number of

iterations of OSLOM is set to r = 10. For SLPA, the program applies different thresholds ranging from 0.01 to 0.5 by default and we select the

best result. BIGCLAM is informed of the actual number of communities generated by the benchmark models. Each data point is an average of 10

realizations. If not shown, the error bar is smaller than the size of the symbol.
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Fig. 3 (Cont.). (Color online) Performance comparisons of DEMON, SLPA, OSLOM, BIGCLAM, and PCMA in a simple benchmark model and

the LFR benchmark model (continued). All parameters are the same as those stated in the caption of Fig. 3.
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to. The remaining fraction (1− µ) of edges are evenly divided among the communities,

if the vertex is chosen to have multiple communities. As such, the community sizes also

follow a power-law with an exponent τ2 within a range of communities sizes between

cmin and cmin. The combinations of parameters in the LFR model give a class of tunable

structures for the resulting networks. The parameters used in benchmarking are based

on the empirical networks we studied. We use the mean degree 〈k〉 = 40 of the two

real social networks shown in Table 1. The selection of the mixing parameter µ and the

range of community size is close to what we observed in the two networks. Fig. 3(c)

shows OSLOM, SPLA, and PCMA work very well when there are very few overlapping

vertices. When communities overlap more, PCMA achieved higher values of the NMI and

F1 Score than the other four methods over a wide range of the fraction of overlapping

vertices, except for the last data point in Fig. 3(c) in comparison with OSLOM. In the LFR

model, the degree assignment does not distinguish single-community vertices from multi-

community vertices. As a result, a vertex belonging to multiple communities has fewer

edges connecting to each of its communities. In PCMA, however, members are expected

to be connected to at least a certain fraction of the other members before establishing their

membership. This leads to the gradual drop in PCMA’s NMI with increasing number of

overlapping vertices, which are members according to the benchmark model but may not

be acknowledged by PCMA. We remark that it is actually not a problem of accuracy, but

more about what a community should be.

We also studied the time complexity of the methods numerically based on the LFR

benchmark model (Lancichinetti et al., 2008). Calculations were performed on a work-

station with Intel Xeon E5-2609 @ 2.40GHz (4 cores / 8 threads). The programs were

allowed to use all threads if they were parallelized. Fig. 4 shows how the execution time

scales with the network size. SLPA and PCMA are very efficient, while OSLOM and

BIGCLAM are a few hundred times slower. DEMON is written in Python, which by nature

is much slower than programs written in C/C++. In the log-log plot in Fig. 4, the slopes for

SLPA, OSLOM, BIGCLAM, and PCMA are 1.09, 1.09, 1.20, and 0.99, respectively. It is,

therefore, numerically verified that the time complexity of PCMA is O(n).

In summary, the benchmark tests showed that PCMA is an efficient algorithm specifi-

cally suitable for detecting communities in networks in which the vertices may belong to

multiple communities.

4 Empirical Analysis

Having established the efficiency and accuracy of PCMA, we tested it against two huge

online social networks, Friendster (Yang & Leskovec, 2013a) and Sina Weibo. The basic

information is listed in Table 1. Friendster is one of the earliest social network service

websites, allowing people to maintain contacts and interact with each other. The net-

work data of Friendster is downloaded from SNAP Datasets (Leskovec & Krevl, 2014).

It comes with metadata groups (Hric et al., 2014), or the so called ground-truth commu-

nities (Yang & Leskovec, 2013a; Yang & Leskovec, 2014), providing us with a reference

to evaluate the accuracy of detection algorithms. Sina Weibo is a directed network like

Twitter for fast information spreading and it also has characteristics of Facebook for in-

teractions with friends. We focused on the embedded undirected friendship network with
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Fig. 4. (Color online) Comparison on time complexity. Tests are conducted on LFR

benchmark model. The fraction of overlapping vertices is set to 50%. Other parameters

are the same as those in Fig. 3. Each data point is an average over 10 realizations. Error

bars are smaller than the size of the symbols.

only reciprocal edges. The network we sampled from the Internet contains about 80 million

vertices and 1.0 billion reciprocal edges, with only 1.2% of the edges being connected to

vertices that are not sampled. The sampled network can thus be roughly regarded as the

whole network.

Both networks are huge and have very high values of the clustering coefficient. Detecting

communities accurately within reasonable time in such huge networks is a great challenge

for many detection algorithms. PCMA, however, successfully detected millions of commu-

nities in both networks within 1 or 2 days, using only several ordinary workstations. The

details of the parameters used in detection are given in Appendixes A and B.

Table 1. Information of the two analysed huge social networks

Dataset n m 〈k〉 CWS c T1 T2+3

Friendster 65.6M 1806M 55.1 0.205 1.6M 24.9h / node × 7 nodes 14.2h

Sina Weibo 79.4M 1046M 26.4 0.155 1.2M 17.5h / node × 7 nodes 5.1h

M stands for million, h stands for hour. n, m, 〈k〉, and CWS are the number of vertices, the number of

edges, average degree, and the average local clustering coefficient, respectively. c is the number of

communities detected by PCMA. T1 and T2+3 are the time spent for PCMA Step 1 and Step 2 & 3,

respectively. Step 1 was set to repeat r = 10 times and pick the best results. It was parallelized on 7

computing nodes with each equipped with 2×Intel Xeon E5-2670 @ 2.60GHz. This step could be

10 times faster if r = 1 is used, just as we did in benchmarking.
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Fig. 5. (Color online) Intra-community edge density δ is used to evaluate the quality of a

community. Histograms of δ and community size are shown for the detected communities

with size no less than tl in both social networks and the metadata groups of Friendster.

To show the patterns clearly, the values in each vertical cut are rescaled by mapping the

highest value to unity. The 0.96 million metadata groups are of low quality compared to

the 1.6 million communities detected by PCMA in Friendster.

4.1 Detected Structural Communities v.s. Metadata Groups

In this subsection, we show that the millions of communities detected by PCMA in both

networks are of high quality, and the metadata groups should not be treated as the ground-

truth of the structural communities, of which the definition is purely based on network

topology.

The number of metadata groups provided in Friendster dataset is about 0.96 million,

while PCMA detected a lot more, 1.6 million communities. We calculated the Normalized

Mutual Information (NMI) between them and the result was approximately 0.004. It means

either PCMA failed to detect the communities or the metadata groups are not the true

ground-truth of the structural communities we aim to detect. To figure it out, we adopted

the intra-community edge density δ to evaluate the quality of the detected communities

as well as the metadata groups. The density δ is defined as the number of edges within a

community over the maximum number of possible edges there could be. Fig. 5 shows the

results for communities detected in both networks, and the metadata groups of Friendster.

Surprisingly, we find that the majority of the metadata groups have very low quality. For

example, a group of size 20 with δ = 0.1 means each member knows only 1.9 other

members on average. The group could not even be connected. On the contrary, PCMA

successfully controlled the quality of the detected communities in both networks, as we

can see that the densities of these communities are reasonably high and seem no lower

than some specific value. This successfulness is rooted in the design of PCMA. Recall

that g(C) introduced in Sec. 2.2 can roughly be regarded as δ and it is guaranteed to be

no less than the threshold t fs used in PCMA Step 2. That means t fs effectively sets a soft

lower bound of the intra-community edge density, i.e. δ ≈ g > t fs . In this analysis, we used

t fs = 0.1. Fig. 5 also shows that some of the metadata groups are of high quality, but they

seem not in the same place of the plot of the detected communities. One explanation is

that these high quality groups are cores of communities. PCMA does not only find the core

members of a community, but may also include peripheral members as long as δ remains

relatively high compared to the given t fs . To verify this speculation, we screened about
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0.23 million high quality groups with s > 10 and δ > 1/
√

s, where s is the group size, then

calculated the recall score for each of them

R(G) = max
C∈D

G∩C

|G| , (17)

where G represents one of the screened metadata groups, D is the set of the detected

communities of Friendster. In contrast to the very low NMI, the average recall score 〈R〉
reached 0.7, meaning the detected communities already included on average 70% of each

of the screened high quality groups. In fact, PCMA not only included these groups, but

also detected a lot more high quality communities that are not presented in the metadata

groups, as we can see in Fig. 6 that the number of detected communities of size above 20

is much greater than the number of metadata groups. We checked carefully whether some

of the detected communities were duplicate by calculating the overlap between any pair of

these communities. Only a tiny fraction of the pairs have overlap. Among them 86% and

8% of the overlaps are just 1 or 2 vertices, respectively. Thus the 1.6 million communities

detected by PCMA are considered authentic and unique.
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Fig. 6. (Color online) The size distribution of the metadata groups and the structural

communities detected by PCMA in Friendster dataset. The first 4 data points of the

metadata groups staring from (3,209764) are beyond the shown area of the figure.

We conclude that most of the metadata groups of Friendster are of low quality or too

small size, while PCMA detected a lot high quality communities that are not in them. The

metadata groups may be taken as a reference, but not the ground-truth of the structural

communities.

4.2 Significant Overlaps in Social Communities

The detected communities also confirm the multiple memberships of vertices and thus the

significant overlaps among communities. Fig. 7 gives an example of a complete community

that is only partially revealed in the ego network in Fig. 1. The number on a vertex in
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Fig. 7 gives the number of communities that the vertex belongs to. To illustrate the multiple

memberships of vertices, we picked a vertex labeled 6 (the same vertex centered in Fig. 1)

and visualized the 6 communities it belongs to in Fig. 8. For clarity, the vertex itself and the

edges to its neighbors (vertices with deeper colors) are not shown. The purple community

is the same community shown in Fig. 7. It overlaps with the other 5 communities through

the picked vertex (not shown). In other words, the vertex acts as a bridge that connects its 6

communities. Most members of the community, just like the picked vertex, have multiple

memberships. They make the community overlap with nearly 200 other communities while

its size is only 54, resulting in the number of edges going out of the community (ex-

community edges) 5139 to be much larger than the number of reciprocal edges within the

community (intra-community edges) 702× 2. It is not an exceptional case, in fact more

than 99% of the communities detected in both social networks are found to have more ex-

community than intra-community edges. This confirms that detection algorithms based on

concepts for disjoint or slightly overlapping communities do not work in social networks,

and new algorithms that can handle multiple memberships of vertices, such as PCMA, are

called.
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Fig. 7. A real community consisting of 54 members identified by PCMA in Sina Weibo

friendship network. It is the corresponding complete community of the purple partial

community shown in Fig. 1. The label on a vertex gives the number of different

communities that the vertex belongs to. The number of reciprocal intra-community edges

(counted twice) is 702×2, and the number of ex-community edges (not shown) connecting

to the outside is 5139.

5 Summary

We proposed and implemented a Partial Community Merger Algorithm specifically de-

signed for detecting communities in large-scale networks in which a member may have
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Fig. 8. (Color online) The communities that the center vertex in Fig. 1 belongs to. For

clarity, the vertex itself and the edges to its neighbors (vertices with deeper colors) are

not shown. The vertex is a core member of 3 communities (blue, green, purple) as it is

connected to a considerable number of their members. These deeper color members are just

the 3 partial communities shown in Fig. 1 in the same color. PCMA not only reconstructed

the complete communities of these 3 partial communities, but also found another 3 that

cannot be seen in Fig. 1 of which the vertex is a peripheral member. The positions of the

vertices calculated by an independent algorithm are in good agreement with the colors

determined by PCMA.

multiple memberships. The structure of these communities is signified by a large number

of overlaps in members and thus a community may have many more edges connecting to

the outside compared to those within the community. Such structures make many existing

community detection algorithm invalid, but yet they often show up in real-world systems.

Through PCMA, we provided a conceptual framework as well as a practical algorithm

and significantly advanced the techniques in dealing with these systems. Details of imple-

menting PCMA were discussed. We used two benchmark models and compared results

with four algorithms to establish the efficiency and accuracy of PCMA. We also tested

the method on two huge social networks and millions of high quality communities were

detected. The metadata groups are of low quality compared to the detected and we showed
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that they should not be considered as the ground-truth of the structural communities that

detection algorithms usually aim to detect. We also verified that the multiple memberships

of vertices and significant overlaps are extremely common in the detected communities.

Thus new algorithms that can detect communities with these complex structures, such as

PCMA, are essential and urgently needed.

PCMA does not need a prior knowledge of the total number of communities to search

for and it is capable of analyzing communities in large-scale networks in linear time. In

addition to identifying the communities, PCMA also gives who the key members are in a

community and how many different communities a member belongs to. The high accuracy

and linear time complexity makes PCMA a promising tool for detecting communities with

significant overlaps in huge social networks, which cannot be handled by most existing

algorithms.

We end with a few remarks. Although we described and implemented PCMA only

for unweighted networks, the approach is flexible and it can be readily extended to treat

weighted networks. Another extension is to properly tune the threshold t fs for exploring

the hierarchical structure of communities. Like any other algorithm, PCMA also has its

limitations. It is not designed to detect small communities and it will not work in networks

that are too sparse. There is also the common problem among algorithms on distinguishing

real communities from false ones. This is actually a deeper question because whether there

really exists a clear boundary, i.e. a set of thresholds, for distinguishing “real communities”

from “false ones” is questionable. A more practically approach would be to explore meth-

ods of choosing the thresholds properly or constructing a credibility function involving g,

l, and community size to make the detected communities more trustful. These quantities

in the PCMA framework provide us with vast space for further improvement in post-

processing and in-depth analysis of community structure.

Finally, the source code of PCMA is released as free software under the GNU General

Public License version 2 or any later version (Xu, 2016).
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A Searching for Partial Communities

PCMA Step 1 is to search for partial communities in the ego network of each vertex. We

adopt an efficient community detection algorithm proposed by Ball et al. (Ball et al., 2011)

for the purpose. Starting from an ego network of size n, the algorithm takes the number

K of communities to be found as an input. The output is an n×K matrix, with the K

numbers in a row that signifies the belonging coefficients (Gregory, 2011) of a vertex for

the K communities. For example, we set out to find K = 5 communities in an ego network,

labelled by C1 to C5. Then each row has 5 numbers, e.g. 0.64, 0.29, 0, 0.07, 0 for the

j-th row, denoting that the vertex j has a portion of 64% belonging to C1, 29% to C2,
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and 7% to C4. To convert the fuzzy assignment (Gregory, 2011) of members to definite

assignment, we impose a threshold that a community carries a vertex j as its member only

if the belonging coefficient of the vertex j for the community is above a certain value.

If the threshold is 0.2, only communities C1 and C2 have the vertex j as a member. For

the central vertex of the ego network, as the communities are its partial communities, it

is treated as a default member of all the communities regardless of the threshold. Partial

communities can then be derived from every ego network. We remark that although the

number of partial communities in an ego network is not known in prior to the search, it

can easily be estimated for small networks. An appropriate overestimation is necessary as

isolated vertices in an ego network also need to be accommodated by some communities.

Such overestimation is harmless as the false partial communities can be handled properly

in the merger and post-processing steps that follow. It is reasonable to assume the number

of partial communities to be proportional to the ego network size, optionally with an upper

and a lower bound. The overestimation will not cause problem, as the true communities

can be merged when they have a considerable overlap. For the example in Fig. 1, we set

out to find 10 communities and obtained 3 apparent partial communities (colored purple,

blue and green) and 2 possible ones (red and yellow). The green one actually consists of

3 highly overlapping communities which should be regarded as one. We merge a pair of

partial communities if either one shares more than a certain fraction of the members of the

other.

It is important to note that PCMA does not require a high accuracy in this step of finding

all the partial communities. Any error generated in this step can be greatly reduced by

the mergers and post-processing step, as discussed in Sec. 2.3. For example, the detection

algorithm we used in this step needs to try r = 10 to 100 random initial conditions to get

relatively good results, as suggested by the authors of the algorithm (Ball et al., 2011).

We used only one in benchmarking, yet PCMA still performed very well. Increasing the

number of random initial conditions could get even better results, although with the im-

provement not be much. For empirical analysis, we used r = 10 to get more accurate results.

The parameters used in empirical analysis are summarized in Table A 1. For benchmarking,

K = 5, , r = 1, b = 0.2, m = 0.3. Parameter c and d are not used.

B Thresholds in PCMA Step 2 & 3

The thresholds used in PCMA Step 2 & 3 for both benchmarking and empirical analysis are

summarized in Table A 2. For more information about the physical meanings and proper

use of the thresholds, see Sec. 2.3 and Sec. 2.2. Here we briefly illustrate how the applied

thresholds remove false communities and false members.

Fig. A 1 shows the histograms for the detected communities as a function of their value

of g and community size, under two different thresholds tl = 10 and 2. The quantity g is

another community quality indicator in addition to the intra-community edge density δ .

Usually a smaller community would have a higher g. Choosing a low threshold of tl = 2

gives an abnormal plunge in g at small community sizes as shown in Fig. A 1(a). The low

threshold leads to many false communities that are merged only a few times, as discussed

in Sec. 2.3. Raising tl from 2 to 10 successfully removes most false communities, as shown

in Fig. A 1(b). And the number of communities detected in Friendster and Sina Weibo
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Table A 1. Parameters of PCMA Step 1 used in the empirical analysis

Parameter Value Description

K -
The number of partial communities set to be found in a vertex’s ego network is K = min{3+k/10,20}, where k is the

degree of the vertex

r 10 Repeat the detection of partial communities for r times, pick the best result

b 0.2 A vertex is regarded as a member of a partial community if its belonging coefficient to this community is above b

m 0.2 Merge partial communities of the same vertex if the overlap between two partial communities is above the threshold

c 0.05 Discard partial communities of which the clustering coefficient (treat the community as a subnetwork) is below c

d 10 Skip vertices with degree lower than d as it is less likely to find partial communities in these vertices’ ego networks

Table A 2. Thresholds used in PCMA Step 2 & 3 for both benchmarking and empirical analysis

Threshold Value Description

t fs
0.1 A pair of partial communities can be merged only if the similarity fs between them is above t fs

t f0
4 Used to suppress unwanted mergers of small partial communities

tl 10 A merged community must contain at least tl partial communities to be regarded as a real complete community

tS′/l 0.1 The score S′ of a member (its own contribution excluded) must be greater than tS′/l · l
tS′ 2 The score S′ of a member (its own contribution excluded) must be no less than tS′
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Fig. A 1. (Color online) The histogram of communities as a function of their value of g and

community size provides an alternative to inspect the quality of the detected communities.

Each vertical cut gives the distribution of g for communities of the same size. The values

in each cut are rescaled by mapping the highest value to unity.

is reduced from 9.0 million to 1.6 million, 4.7 million to 1.2 million, respectively. This

success is accompanied by the drawback that real communities with less than tl = 10

vertices are also removed. Note that there is no best answer to the value of tl because

the boundary between true and false communities itself is indistinct. A more practically

approach is to find a function involving g, l, and community size to evaluate the credibility

of a detected community, instead of labelling them either true or false. We leave it to future

work.

For tS′/l and tS′ , there is no standard answer to which values are the best either. It depends

on the network being analyzed, and one’s subjective view of what a community is. Fig. A 2

illustrates a merged community that is the same community shown in Fig. 7 but with false

members not removed. Since l = 54 and tS′/l = 0.1, only vertices with S′> 6 are considered

members (colored blue). As we can see in Fig. A 2, the thresholds successfully sift out

the core of the community. It is, however, hard to say whether vertices in the periphery

with S′ = 5 or 4 are members or not. In fact, there does not exist a clear boundary of the

community. A better solution is to assign each vertex a belonging coefficient representing

its degree of affinity to the community, e.g. S′/l, instead of forcing each vertex to be either

in or not in the community.

The quantities S′, l, g, and fs introduced in the PCMA framework have sound physical

meanings and they provide us with vast space for further improvement in post-processing

and in-depth analysis of community structure.
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Fig. A 2. (Color online) A merged community with false members not removed. It is

merged from l = 54 partial communities and has 160 vertices before post-processing. The

size (area) of each vertex represents its degree in this subnetwork. The label on each vertex

(zoom in to see the numbers) gives the score S′ of the vertex. The grey vertices with S′ < 6

fail to meet the threshold tS′/l = 0.1 so they are not considered members. The remaining

54 blue vertices are members of the community.
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