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Abstract

Online social networking services (SNSs) involve communication activities between

large number of individuals over the public Internet and their crawled records are often

regarded as proxies of real (i.e., offline) interaction structure. However, structure observed

in these records might differ from real counterparts because individuals may behave differ-

ently online and non-human accounts may even participate. To understand the difference

between online and real social networks, we investigate an empirical communication net-

work between users on Twitter, which is perhaps one of the largest SNSs. We define a

network of user pairs that send reciprocal messages. Based on the mixing pattern observed

in this network, we argue that this network differs from conventional understandings in

the sense that there is a small number of distinctive users that we call outsiders. Out-

siders do not belong to any user groups but they are connected with different groups,

while not being well connected with each other. We identify outsiders by maximizing the

degree assortativity coefficient of the network via node removal, thereby confirming that

local structural properties of outsiders identified are consistent with our hypothesis. Our

findings suggest that the existence of outsiders should be considered when using Twitter

communication networks for social network analysis.
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Online social networking services (SNSs) facilitate the instantaneous and inexpensive ex-

change of information. These SNSs usually provide daily updates of the status of users [1–3] but

they can also circulate urgent information during natural disasters, accidents [4–6], or political

movements [7]. SNSs are increasingly becoming a crucial form of infrastructure for social in-

teractions. From the perspective of social network research, the communication records stored

by these websites provide unprecedented opportunities to analyze the large-scale structure of

social networks.

However, the networks observed in SNSs might differ from real (i.e., offline) social net-

works [8–10], because individuals may behave differently and non-human accounts, such as news

media or companies, may also participate in interactions, which is why SNSs are sometimes

called social media [1]. Therefore, quantifying the differences between SNSs as communication

networks and offline social networks is considered to be a fundamental question if we want to

use these networks as proxies for real social networks.

In this study, we investigate a network defined by conversations between user accounts

on Twitter [11], which is one of the largest SNSs in the world. Social networks are usually

assumed to exhibit a positive correlation in node degree (i.e., the number of connections)

between adjacent nodes (i.e., users) [12–14], but we find that the Twitter conversation network

has a more complex mixing pattern. However, when a small set of specific nodes is removed from

the network, the resultant network exhibits a strongly positive degree correlation. Therefore,

we hypothesize that the network roughly comprises two types of nodes: users who belong to

tightly-connected groups, the members of which have similar degree values; and users located

outside these groups who are connected to different groups, but who are not well connected

to each other. We postulate that the removed nodes correspond to the users of the latter

type, who we refer to as outsiders. We verify the outsider hypothesis by investigating the local

structural properties of nodes in the network. We also find that outsiders are different from the
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remaining users in terms of their other activities on Twitter. The same hypothesis is tested in

data sets derived from other online communication networks, and the results suggest that the

existence of outsiders is a unique property of online conversation networks that mediate fairly

private communication.

The existence of the outsiders, notable in interaction networks based on microblogging ser-

vices such as Twitter, might reflect the characteristic communication patterns of these services,

such as the exchanges of messages in a rather casual manner with small costs and the incen-

tives of sending messages to the general public with the aim of self-promotion and commercial

campaigns. Thus, our finding of outsiders in the Twitter conversation network may be an im-

portant first step when trying to understand the impact of these communication patterns on

the formation of user network structure in online communication services.

Results

Basic statistics of the Mention network

We construct a network between Twitter users in which links are drawn between pairs of nodes

that share reciprocal interactions via Mentions (see Methods for further details). Mention is

a function of Twitter that allows a user to send a tweet (i.e., a short message) directly to

other users by naming their unique IDs. Mention can be regarded as a method for mutual

communication between users rather than broadcasting information to the public. To contract

the network, we employ the relationship defined by exchanges of Mentions, instead of the so-

called follower-friend relationship [15–17], because Mentions indicate more active and closer

communication between users [18–20]. We collected all of the tweets posted by a set of users

for one week in 2011 and extracted all the Mention tweets from them. Next, we connect two
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nodes with an undirected and unweighted link if the corresponding two users exchange Mentions

with each other at least once in both directions during the observation period. We focus on the

largest connected component of the obtained network obtained, which comprises N = 330, 114

nodes (66% of all the users who have sent Mentions) and M = 927, 352 links, which we refer to

as the Mention network. We denote the Mention network by G = (V,E), where the node set

V and link set E are equal in size to N and M , respectively.

We analyze the basic statistics of the Mention network. First, the histogram of degree,

denoted by k, for all the nodes is shown in Fig. 1(a), where the tail of the distribution is not

as heavy as that for a power-law function. This is probably because a user can only manage

mutual communication with a limited number of other users at once, as reported in previous

studies [19].

Next, we examine two features that social networks are widely believed to possess [12–14]: a

high clustering coefficient and degree assortative mixing. The average clustering coefficient [21]

is defined by C ≡ (1/N)
∑

i Ci, where Ci = 2×[number of triangles between i′s neighbors]/ki(ki−

1) and ki is the degree of node i (1 ≤ i ≤ N). The C value ranges in 0 ≤ C ≤ 1 and a large

C indicates an abundance of triangles in the network. Degree assortativity indicates the cor-

relation of degree between adjacent node pairs over all the links [12, 13]. If nodes with similar

values of k tend to be connected with links, the network is said to be positively correlated and

assortative. Otherwise, if two nodes with a small and large k tend to be connected, the network

is negatively correlated and disassortative. A standard measure used to quantify the extent of

degree assortative mixing is the degree assortativity coefficient [12, 13] which is defined by

r ≡
〈kikj〉E − 〈(ki + kj)/2〉2E

〈(k2
i + k2

j )/2〉E − 〈(ki + kj)/2〉2E
, (1)

where ki and kj are the degree of nodes i and j, respectively, and 〈·〉E represents the average
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over all of links (i, j) ∈ E. By the definition, the r value is within −1 ≤ r ≤ 1 and the sign of

r is used as a discriminator of assortative and disassortative mixings. Large values of C and

r can be outcomes of homophily [12–14], i.e., a large C value implies that adjacent node pairs

tend to share a high proportion of common neighbors and a large r value implies that nodes

tend to be connected to other nodes that have a similar k.

For the Mention network, we observe C = 0.132 and r = 0.135. These C and r values

are significantly larger than the values expected for random graphs with the same degree se-

quence (for 1, 000 networks generated by the configuration model [22, 23], C and r lie within

[0.00005, 0.0001] and [−0.007,−0.001], respectively). In addition, this r value is larger than

those reported for other networks based on online SNSs [24] which often take negative val-

ues, but it is close to those reported for real social networks such as professional collaboration

networks [13]. In fact, as noted in previous studies [25–28], it is sometimes difficult to decide

whether a network exhibits assortative or disassortative mixing patterns based on the r value

alone, especially when the network possesses a heterogeneous degree distribution. Therefore,

to understand the degree correlation more precisely, we investigate the average degree of the

nodes adjacent to nodes with degree k, denoted by knn(k) [29, 30] (where the superscript “nn”

denotes the nearest neighbor), which is defined by

knn(k) ≡
1

Nk

∑

i:ki=k

(

1

k

∑

j∈Ni

kj

)

, (2)

where Nk is the number of nodes with degree k and Ni is the set of nodes adjacent to node i.

An increase in knn(k) with k indicates an assortative mixing, whereas a decrease indicates

disassortative mixing. In Fig. 1(b), knn(k) is plotted as a function of k. We can see that there

is an almost monotonic increase in knn(k) when 1 ≤ k . 40, which indicates the existence of an

assortative mixing pattern among the nodes with a small k value. By contrast, the nodes with

6



large k value tend to hinder assortative mixing because they are connected to the nodes with

small k value. The r value of the Mention network is not very different from those of other

online social networks [24], but the mixing pattern shown in Fig. 1(b) is a unique property

which differs from those observed in previous studies [8, 24, 31, 32].

The findings shown in Fig. 1(b) suggest that there are two types of nodes in the Mention

network and that the Mention network can exhibit an assortative mixing pattern if we remove

nodes of a specific type. Based on this idea, we propose the network model illustrated in Fig. 2

to explain the characteristic structure observed in the Mention network. In this model, a large

proportion of nodes belong to groups where nodes are tightly connected to each other and have

a similar k value. However, the connections between the node groups are sparse and there are

few links bridging different groups. In contrast to the majority of nodes, a small number of

nodes mediate contacts between different groups. These nodes have three properties: (i) they

tend to have a large k value; (ii) they are independent of the node groups; and (iii) they have

low connectivity with each other. We refer to these nodes as outsiders because they are located

outside of any of the groups. It should be noted that this outsider model is consistent with the

degree correlation observed in the Mention network (see Fig 1(b)). In the following section, we

show that this simple model is completely consistent with the explicit structure of the Mention

network.

Increase in the degree assortativity coefficient after node removal

First, we show that the removal of a small number of specific nodes increases the r value of

the resultant network, i.e., it makes the resultant network have an assortative mixing pattern.

This supports the validity of the outsider model (shown as a schematic in Fig. 2) at the global

network level.
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We assume that outsiders would undermine assortative mixing if they exist and we identify

them by removing nodes one by one from the Mention network in order to maximize the r

value of the resultant network (see Methods for further details). We refer to this removal as

assortativity-preference scheme. We also perform node removal based on degree-preference and

random schemes for comparison. In degree-preference scheme, we choose the node with the

largest k and remove it from the network. Next, we recalculate the k value of all the remaining

nodes and repeat the removal process. In random scheme, we remove the nodes in a uniformly

random order.

The resulting r values for the three removal schemes are shown in Fig. 3(a) as a function

of the proportion of nodes removed, which is denoted by fremoved. As expected, r increases

monotonically towards unity (i.e., the largest possible value) in assortativity-preference scheme.

However, an increase in r is not observed in degree-preference and random schemes. Indeed,

in degree-preference scheme even decreases, r decreases towards zero when 0 ≤ fremoved . 0.3.

This result also implies that the order of node selection differ for assortativity- and degree-

preference schemes.

The difference between the nodes chosen by the two schemes is clearer when we consider

the changes in the size of the largest connected components of the remaining and removed

nodes, which are denoted by sremain and sremoved, respectively (Figs. 3(b) and 3(c)). In the

remaining networks, sremain tends towards zero in degree-preference scheme, with a smaller

value of fremoved than assortativity-preference scheme. The fact that sremain maintains a large

value even with a relatively large fremoved in assortativity-preference scheme is consistent with

the outsider model because different groups are connected by a small number of links even

in the absence of outsiders. The nodes removed first in assortativity-preference scheme, i.e.,

outsiders according to our definition, are less connected to each other, which is consistent with

the low connectivity between outsiders in the outsider model. In Fig. 3(c), we can see that
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sremoved is larger in degree-preference scheme than assortativity-preference scheme, especially

when fremoved is very small. It should be noted that the large sremoved in degree-preference might

be evidence of the so-called rich-club phenomenon [33, 34] where nodes with a large k value

tend to be connected to each other.

Local structural properties of outsiders

In this section, we evaluate the outsider model more deeply by investigating the structural

properties at each node level. Before the analysis, we determine the number of outsiders

explicitly. We assume that outsiders are the nodes removed first in assortativity-preference

scheme, but no unique criteria could determine the number of outsiders present in the Mention

network. Nevertheless, we define the number of outsiders as Noutsider = 1, 000, which are the

first 1, 000 nodes removed in assortativity-preference scheme. We set Noutsider = 1, 000 based on

the observations shown in Fig. 3. At fremoved = 1, 000/330, 114 ∼ 0.003, the degree assortativity

coefficient r (0.216) is sufficiently larger than the original value (0.135), while the remaining

network retains its connectivity (sremain = 0.985) and the connectivity between outsiders is low

(sremoved = 0.0003) .

First, we check the degree distribution of outsiders in the original Mention network. As

indicated by the filled circles in Fig. 1(a), outsiders tend to have a larger k value than other

nodes, i.e., the average k for all outsiders 〈k〉outsider = 46.25 but for all nodes 〈k〉 = 5.618.

However, it should be noted that a node with a large k is not always an outsider and that

nodes with a small k could also be outsiders.

Second, we examine the diversity of the k values for the nodes adjacent to outsiders. If

outsiders bridge different groups where nodes have similar k values, the diversity of k for the

neighboring nodes would be larger for those of outsiders compared with those of the other
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nodes. To quantify this property, we measure the coefficient of variation of k for the neighbors

of node i (1 ≤ i ≤ N), which is given by

Vi ≡

√

1
ki

∑

j∈Ni
k2
j −

(

1
ki

∑

j∈Ni
kj

)2

1
ki

∑

j∈Ni
kj

(3)

Thus, Vi is the ratio of the standard deviation relative to the average of kj over all of i’s neighbors

j. We use the coefficient of variation instead of the standard deviation or variance because we

want to sift out the diversity of kj rescaled with the average. In Fig. 4(a), the distribution of

Vi is shown for outsiders and for all the remaining of nodes (labeled as non-outsiders) using

box plots. As expected, the average value of Vi is significantly larger for outsiders than non-

outsiders (p < 2.2 × 10−16 according to Welch’s t test), while some non-outsider nodes have

large Vi values. We also confirm that the large Vi of outsiders is not due simply to their large k.

In Fig. 4(a), the distribution of Vi is also shown for 1, 000 nodes with the largest k (labeled as

high-degree nodes) using a box plot. The average value of Vi is significantly larger for outsiders

than that for high-degree nodes (p < 2.2× 10−16 according to Welch’s t test).

Third, we examine the local clustering coefficient Ci of outsiders. If outsiders bridge different

groups that are less connected to each other, outsiders should be involved in fewer triangles

than non-outsiders. This property is measured using the local clustering coefficient Ci (for its

definition, see Basic statistics of the Mention network), where a lack of triangles associated

with a node indicates a small Ci value. In Fig. 4(b), C(k) ≡ (1/Nk)
∑

i:ki=k Ci is plotted as

a function of ki for outsiders and non-outsiders. We compare the average of Ci over nodes

with the same ki because Ci decreases with ki by definition. As expected, C(k) is smaller for

outsiders than non-outsiders with the same k. Some outsiders have a large Ci with a small k,

but they are due simply to small k value. For example, an outsider with ki = 5 has Ci = 0.3,
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thereby indicating that there are three links between its five neighbors.

Finally, we examine the node betweenness centrality [35] of outsiders. The betweenness

centrality of node i, which is denoted by bi, is defined by

bi ≡
∑

j 6=ℓ

j,ℓ 6=i

σjℓ(i)

σjℓ

, (4)

where σjℓ is the number of different shortest paths between nodes j and ℓ, and σjℓ(i) is the

number that pass through node i. Based on the outsider model, bi for outsiders should not

be very large because there are links between different groups and the paths mediated by

outsiders tend not to be the shortest path between nodes in different groups. In Fig. 4(c),

b(k) ≡ (1/Nk)
∑

i:ki=k bi is plotted as a function of ki for outsiders and non-outsiders. Again,

we used the average bi over outsiders and non-outsiders with the same ki because the bi value

tends to increase with ki. As expected, the b(k) values of outsiders are indistinguishable from

those of non-outsiders with the same k.

In summary, the outsider model correctly predicts the three structural properties of out-

siders: larger Vi, smaller Ci, and similar bi compared with the remaining nodes. Therefore, we

confirm that the outsider model captures the structural characteristics of the Mention network.

Furthermore, we briefly show that the links between outsiders and the remaining nodes

are not completely random, which implies that outsiders might be connected to the nodes of

different groups in a specific manner. To demonstrate this, we perform the same analyses of the

Mention network after randomizing the links connected to outsiders (see Supplementary Infor-

mation for further details). If outsiders are connected to the other nodes in a random manner

in the original Mention network, the results of the analysis of the randomized network should

be similar to those shown in Fig. 4. However, we obtain different results for the randomized

network (see Sec. S1 and Fig. S1 in Supplementary Information), which suggests that there is
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a correlation among the links connected to outsiders.

Characteristics of outsiders in terms of other activities

In the previous section, we confirmed that outsiders exhibited different properties in terms of Vi

and Ci compared with the remaining nodes (see Fig. 4). In this section, we examine the other

activities of outsiders on Twitter in addition to Mentions, in order to further understand the

roles of outsiders in communication activities on Twitter. In principle, the activities performed

on Twitter are based on posting tweets, where the posted tweets are categorized into three

types according to their contents. The first type comprises Mentions in which a user mentions

or directs tweets to other users. The second type comprises Retweets in which a user replicates

a tweet that was originally posted by another user. The third type comprises simple tweets

which is any tweets other than Mention or Retweet. To quantify the other activities of users, we

use the following two measures. First, the total number of tweets posted by user i, denoted by

nT
i , is a proxy of the activity level of user i. Second, the total number of times that the tweets

made by user i are retweeted, which is denoted by nR
i , is a proxy of the popularity of user i.

Figures. 5(a) and (b) show the histograms of nT
i and nR

i , respectively, for outsiders and the

remaining nodes. On average, nT
i and nR

i are larger for outsiders than those of non-outsiders,

i.e., average of nT
i = 173.64 (71.19) and the average of nR

i = 47.47 (13.38) for outsiders (non-

outsiders). These results suggest that outsiders are likely to be more active and popular on

Twitter than other users.

Other data sets

In the previous sections, we showed that the existence of outsiders is a characteristic of the

Mention network. Thus, we might ask whether this is a unique property of communication
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on Twitter or if other online communication networks also exhibit this property. To answer

this question, we perform the same analyses to five other network data sets that are publicly

available online: the Enron [1], EU-email [2], Facebook [3], Slashdot [4], and Wikipedia [5]

networks. All of these network data sets are obtained from online communication logs and

made available online by the Koblenz network collection [6]. These networks are originally

directed, and we draw an undirected link between node pairs if the two nodes have reciprocal

contacts, in the same manner as the definition of the Mention network (see Methods).

The basic statistics for these network data sets and the figures are shown in Supplementary

Table S1 and Supplementary Figures S1, S2, S3, S4, and S5, but we provide a brief summary

of the results here. The outsider model does not appear to be applicable to the Enron and

EU-email networks, because both networks exhibit disassortative mixing patterns. This may be

logical if we consider that the communication activities in these two networks are constrained

by their formal organization structure, i.e., a focal company and institution. Furthermore, the

outsider model is not applicable to the Slashdot and Wikipedia networks, because these two

networks exhibit no obvious degree correlation. Only the Facebook network exhibits a similar

pattern to that we observed in the Mention network, i.e., assortative mixing between nodes with

small k values, low connectivity between outsiders, and larger Vi values and smaller Ci values

for outsiders. These results suggest that the existence of outsiders might be a characteristic of

online communication networks that are defined by rather private and casual communication.

Discussion

In this study, we showed that the structure of the Mention network on Twitter is characterized

by the existence of outsiders, i.e., a small number of distinctive users who are not involved

in any particular user groups but who are connected to different groups. When we removed
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outsiders from the network, the remaining part of the network exhibited an assortative mixing

pattern which agrees with our conventional understanding of social networks. In addition to

Mention activity, we also confirmed that outsiders are more active and popular than other users

on Twitter. The existence of outsiders should be considered carefully when studying processes

taking place in Twitter, such as information spreading processes and group organizations.

The presence of outsiders is related to the structural hole theory [42], which has been

proposed in previous studies of social network analysis. When two node groups in a network are

separated from each other, there is a structural hole between the two groups. If a node brokers

the two groups by connecting the links, this node may benefit by capturing non-redundant

information from the two groups and controlling the flow of information between them. Thus,

outsiders in the Mention network hold the brokerage of structural holes. The unique feature

of outsiders is that they are separate from any node groups, although this is not necessary for

nodes that bridge structural holes.

Our results are consistent with the previous study on a sampled Twitter network [9], which

showed that the tweets posted by the intermediate users located in different groups (or commu-

nities) were more likely to be retweeted than those of users within a single community. In terms

of the definition of the intermediate users, our analysis can be regarded as a complementary

approach to that described in Ref. [9]. In particular, we identified outsiders initially by node

removal and we then investigated their connections to the remainder of the network, whereas all

of the nodes were clustered into communities (although a node might belong to no community)

and the nodes that belonged to multiple communities were then identified in Ref. [9].

The classification of Twitter users was also proposed in the previous study based on ego

network structure [10]. In Ref. [10], the users were categorized as occasional users, regular

users, or aficionados, based on the length of their active periods. The majority of users were

occasional users who tended to make frequent contacts with a number of other users initially
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but they stopped posting tweets after a short period, unlike regular users and aficionados.

The number of aficionados was rather small, but they tended to maintain stable ego networks

for longer periods. These results appear to contradict our finding that a small number of

outsiders actively communicate with users in different groups, whereas the majority of users

have conversations within their own groups. This disparity may be attributable to the difference

in the length of observation period, i.e., seven days for our data set and up to seven years (the

time of the oldest available tweet depended on each specific user) for the data set considered in

Ref. [10]. Because occasional users tend to stop using Twitter after a short period, aficionados

are more likely to be observed than occasional users in a given short observation period, such as

seven days. Therefore, our data set might be biased toward aficionados. Further our analysis

should be extended using a data set acquired over a longer period in future research.

The reason why outsiders are present on Twitter is still unclear from our analysis, although

we suggest the following two causes. First, they may be users who want to promote their

popularity online [43]. Some users, such as bloggers or lesser-known TV personalities, may try

to engage with a number of their followers at the same time by chatting with the use of this

low effort communication tool. Second, some of outsiders may represent the user accounts of

so-called bots, which behave automatically on Twitter according to computer programs [44, 45].

Some of the bot accounts are programmed to search for specific tweets posted by other users

(e.g., those containing predefined keywords) and to reply to the users by sending Mentions.

Our analysis was based on the Mention network that mainly comprised Japanese users,

and the same analysis of networks composed of users with other languages would provide more

general anthropological insights [46–48]. We discarded the weights of links (e.g., the interaction

frequency between node pairs) in the present study, but structural analysis that considers the

link weights would be useful in future work because the link weights may play a crucial role in

organizing social networks, e.g., in the “strength of weak ties” phenomenon [9, 49–51].
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We should also discuss the relationship between outsiders in the Mention network and a

similar phenomenon that has been observed in networks in a completely different context, that

is, the metabolic systems of living organisms. In Ref. [52], the substrates of metabolic sys-

tems were considered in the form of a graph in which each node represented a metabolite,

i.e., a substance involved in biochemical reactions, and an undirected link was drawn between

two nodes if one could produce the other. The so-called currency metabolites that appeared

in widely different reaction processes and that played an important role in the system were

identified purely on the basis of the network structure [52]. The resulting currency metabo-

lites overlapped greatly with those conventionally suggested in the previous biological studies,

such as water, oxygen, and hydrogen ion. In addition, these currency metabolites share some

characteristics with outsiders, i.e., very few are present in networks and they are apart from

any modules (i.e., groups), they have a large degree, and the resultant network becomes more

module-like after they are removed. Thus, although more careful investigations should be per-

formed to extend this simple analogy, this similarity between two networks in different contexts

might suggest that these special classes of nodes have important effects in general problems,

e.g., robustness of networks against damages and efficiency of information flows on networks.

Methods

Twitter data set and construction of the Mention network

We crawled public tweets posted by a set of designated users via Twitter API. We determined

these users by a snowball sampling in the following manner. On 15th March, 2011, we selected

about 30 users who had the highest numbers of followers and we collected all the public tweets

posted by them after that date. Next, we tracked back and collected their tweets until we
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reached the posts on 11th March, 2011. When we found new user IDs in the collected tweets

(i.e., in Mentions and Retweets), we added the new users to the set of designated users and

started collecting their subsequent tweets. Because all of the initial designated users used

Twitter in Japanese, most of the subsequent users also communicated in Japanese. In total,

we had designated 499, 733 users by 1st December, 2011. We collected all of the tweets posted

by these users from 1st to 7th December, 2011, which comprised 48, 949, 334 tweets including

19, 667, 443 Mentions and 4, 123, 662 Retweets. Before analyzing the data set, we anonymized

the user IDs and discarded the text contents of the tweets.

Using the tweets collected, we constructed the Mention network G = (V,E) as follows.

We considered a network G′ = (V ′, E ′), where V ′ is the set of designated users, and there

is link (i, j) ∈ E ′ if two users i and j send Mentions to each other in both directions within

the observation period. We defined the Mention network G = (V,E) as the largest connected

component of network G′.

Implementation of node removal based on assortativity-preference

scheme

The naive computation of the degree assortativity coefficient r (defined by Eq. (1)) requires

O(M) time, and recalculating r after removing all the nodes one by one requires O(NM) time,

which is infeasible for large networks such as the Mention network. Therefore, we used an

efficient implementation of node removal, which avoids fully recomputing the terms in r, as

described below.

Let us define Ai ≡
∑

j∈Ni
kikj, Bi =

∑

j∈Ni
(k2

i + k2
j )/2, and Ci ≡

∑

j∈Ni
((ki + kj)/2)

2.
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Then, we have

r =

∑

i Ai −
∑

i Ci
∑

i Bi −
∑

i Ci

. (5)

When node i is removed, only the degrees of i’s neighbors j ∈ Ni are changed, and thus only

Aℓ, Bℓ, and Cℓ need to be recomputed for the second neighboring nodes ℓ of node i, i.e.,

ℓ ∈
⋃

j∈Ni
Nj. Therefore, recomputing r after removing node i requires O(k

(2)
i ) time, where k

(2)
i

is the number of nodes that are the second neighbors of node i. In general, k
(2)
i ≪ M holds

true and this implementation facilitates assortativity-preference node removal in a manageable

amount of computational time.
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Figure 1: (a) Histograms showing the node degree for the Mention network for all the nodes
(squares) and for the outsiders (circles). (b) Average degree of nodes adjacent to the nodes
with degree k, denoted by knn(k), as a function of k.
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Figure 2: Schematic image of the outsider network model. The larger circles filled with blue
represent node groups and the smaller circles filled with red represent outsiders.
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Figure 3: (a) Degree assortativity coefficient r, (b) the sizes of the largest connected component
of the remaining nodes sremain and the removed nodes sremoved, as a function of the proportion
of nodes removed fremoved. The nodes are removed according to assortativity-preference (solid
lines), degree-preference (dashed lines), and random (dotted lines) schemes. Panel (c) shows
an enlargement of sremoved for [0, 0.01] from Panel (b).
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Figure 4: (a) Box plots showing the diversity of degree for the neighbor nodes of node i, denoted
by Vi, for non-outsiders, outsiders, and high-degree nodes. (b) The local clustering coefficient
Ci and (c) node betweenness centrality bi for outsiders (circles) and non-outsiders (squares).
Both Ci and bi are the averages of the nodes with degree k and plotted as a function of k.
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S1 Rewiring of links connected to outsiders

We first remove all the links connected to outsiders and then rewire the links while keeping

the degree of all the nodes. In total, 46, 465 links associated with outsiders are rewired (∼ 5%

of M = 927, 352 links in the original mention network). This rewiring process keeps the total

number of links and the degree distribution (it possibly create self-loops but this effect is

negligible since the number of the rewired links is sufficiently large). By contrast, the rewiring

process may change Ci, r, and the connectedness of the network. If it holds true that outsiders

cast their links to other nodes in a random manner, the following properties should be observed

for the rewired network: (1) an increase in r after the removal of the same set of outsiders, (2)

low connectivity between outsiders, (3) similar Vi and Ci values for outsiders as those in the

original Mention network.

In Fig. S1, the results for a rewired network are shown, which indicate that the links between

outsiders and other nodes are not completely random. First, as shown in Fig. S1(a), the r value

of the rewired network without node removal is equal to 0.341 and larger than 0.135 for the

original Mention network. This implies that outsiders help the rewired network be assortative,

which is also supported by the fact that r value decreases in fremoved . 0.002. The sremoved value

in the rewired network is larger than the original network, and outsiders are more connected to

each other. The rewiring process reduces the variety of Vi and Ci among outsiders as shown in

Figs. S1(b) and (c). While Vi of outsiders take values within [0.3, 2.5] in the original network,

Vi in the rewired network concentrate around unity. In a similar way, Vi of outsiders take values

within [0, 0.3], Ci in the rewired network take value close to zero, regardless the Vi values in

the original network. These results suggest that the links between outsiders and other nodes

play an important role in determining the local structure around outsiders and that the links

are not created in a random manner.
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S2 Results for other data sets

We examine the outsider model in other network data sets to investigate the generality of

the existence of outsiders that we confirmed in the Mention network. The five network data

sets we use are the Enron [1], EU-email [2], Facebook [3], Slashdot [4], and Wiki-talk [5]

networks that were all originally made available online by the Koblenz Network Collection

(http://konect.uni-koblenz.de/) [6]. In all of these networks, we define the nodes by the users

of the online communication tools and the links by the reciprocal interactions between pairs of

users. The Enron and EU-email are based on the record of email exchanges within a company

and an European institution. The Facebook network is based on the the post of messages by

a user on another user’s personal page in Facebook. The Slashdot and Wiki-talk networks are

based on the message exchanges between the users of these websites. The basic statistics of the

five networks are summarized in Tab. S1 The results for the five networks are shown in Figs. S2,

S3, S4, S5, and S6. We fix the number of outsiders Noutsider = 1, 000 for all the networks.
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Figure S1: Results for a rewired mention network. (a) Degree assortativity coefficient r of
the resultant networks (main panel) and the sizes of the largest connected component of the
removed nodes sremoved (inset), as a function of the proportion of nodes removed fremoved. The
dashed lines are the results for the rewired network and the solid lines the original network
as a reference. (b) Scatter plot of the diversity of the neighbors’ degree Vi of outsiders in the
original network (horizontal axis) against Vi in the rewired network (vertical axis). Each dot
corresponds to an outsider. (c) Scatter plot of the local clustering coefficient Ci of outsiders in
the original network (horizontal axis) against Ci in the rewired network (vertical axis).
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Figure S2: Results for the Enron network. (a) Histogram showing the node degree for outsiders
and non-outsiders. (b) The average degree of nodes adjacent to the nodes with degree k. (c)
Assortativity coefficient r (solid lines) and (d) the sizes of the largest connected component of
removed nodes sremoved, as a function of the proportion of nodes removed fremoved. (e) Diversity
of neighbors’ degree Vi. (f) Average local clustering coefficient C(k) as a function of node
degree k.
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Figure S3: Results for the EU-email network. (a) Histogram showing the node degree for
outsiders and non-outsiders. (b) The average degree of nodes adjacent to the nodes with
degree k. (c) Assortativity coefficient r (solid lines) and (d) the sizes of the largest connected
component of removed nodes sremoved, as a function of the proportion of nodes removed fremoved.
(e) Diversity of neighbors’ degree Vi. (f) Average local clustering coefficient C(k) as a function
of node degree k.
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Figure S4: Results for the Facebook network. (a) Histogram showing the node degree for
outsiders and non-outsiders. (b) The average degree of nodes adjacent to the nodes with
degree k. (c) Assortativity coefficient r (solid lines) and (d) the sizes of the largest connected
component of removed nodes sremoved, as a function of the proportion of nodes removed fremoved.
(e) Diversity of neighbors’ degree Vi. (f) Average local clustering coefficient C(k) as a function
of node degree k.
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Figure S5: Results for the Slashdot network. (a) Histogram showing the node degree for
outsiders and non-outsiders. (b) The average degree of nodes adjacent to the nodes with
degree k. (c) Assortativity coefficient r (solid lines) and (d) the sizes of the largest connected
component of removed nodes sremoved, as a function of the proportion of nodes removed fremoved.
(e) Diversity of neighbors’ degree Vi. (f) Average local clustering coefficient C(k) as a function
of node degree k.
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Figure S6: Results for the Wiki-talk network. (a) Histogram showing the node degree for
outsiders and non-outsiders. (b) The average degree of nodes adjacent to the nodes with
degree k. (c) Assortativity coefficient r (solid lines) and (d) the sizes of the largest connected
component of removed nodes sremoved, as a function of the proportion of nodes removed fremoved.
(e) Diversity of neighbors’ degree Vi. (f) Average local clustering coefficient C(k) as a function
of node degree k.



Table S1: Summary of basic statistics of the network data sets used: the total number of nodes
N and links M , the average clustering coefficient C, and the degree assortativity coefficient r.

Name N M C r
Enron 7, 015 22, 474 0.240 −0.209

EU-email 32, 430 54, 397 0.113 −0.382
Facebook 29, 342 79, 230 0.084 0.213
Slashdot 8, 815 12, 859 0.003 −0.058
Wiki-talk 92, 117 360, 767 0.059 −0.034


