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Abstract

The recently developed bag-of-paths (BoP) framework consists in set-
ting a Gibbs-Boltzmann distribution on all feasible paths of a graph. This
probability distribution favors short paths over long ones, with a free
parameter (the temperature T ) controlling the entropic level of the dis-
tribution. This formalism enables the computation of new distances or
dissimilarities, interpolating between the shortest-path and the resistance
distance, which have been shown to perform well in clustering and clas-
sification tasks. In this work, the bag-of-paths formalism is extended by
adding two independent equality constraints fixing starting and ending
nodes distributions of paths (margins). When the temperature is low,
this formalism is shown to be equivalent to a relaxation of the optimal
transport problem on a network where paths carry a flow between two
discrete distributions on nodes. The randomization is achieved by consid-
ering free energy minimization instead of traditional cost minimization.
Algorithms computing the optimal free energy solution are developed for
two types of paths: hitting (or absorbing) paths and non-hitting, regu-
lar, paths, and require the inversion of an n × n matrix with n being
the number of nodes. Interestingly, for regular paths on an undirected
graph, the resulting optimal policy interpolates between the deterministic
optimal transport policy (T → 0+) and the solution to the corresponding
electrical circuit (T → ∞). Two distance measures between nodes and a
dissimilarity between groups of nodes, both integrating weights on nodes,
are derived from this framework.

Keywords: Network Science, Optimal Transportation, Bag of Paths,
Randomized Shortest Path, Distances between Nodes, Link Analysis.
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1 Introduction

1.1 General introduction and motivation

Today, network data are studied in many different areas of science, including ap-
plied mathematics, computer science, social science, physics, chemistry, pattern
recognition, applied statistics, data mining and machine learning, to name a few
(see, e.g., (Barabási, 2016; Chung & Lu, 2006; Estrada, 2012; Fouss, Saerens, &
Shimbo, 2016; Kolaczyk, 2009; Lewis, 2009; Newman, 2010; Silva & Zhao, 2016;
Thelwall, 2004; Wasserman & Faust, 1994)). In this context, one key problem is
the definition of distances between nodes taking both direct and indirect connec-
tions into account (Chebotarev, 2011, 2012, 2013; Fouss et al., 2016; Herbster
& Lever, 2009; Françoisse, Kivimäki, Mantrach, Rossi, & Saerens, 2017; Lü &
Zhou, 2011; Alamgir & von Luxburg, 2011; Yen, Mantrach, Shimbo, & Saerens,
2008). This problem is faced in many applications such as link prediction, com-
munity detection, node classification, and network visualization, among others.

Now, it has been shown that the standard shortest path distance and the
resistance distance (Klein & Randić, 1993) suffer from important drawbacks
in some situations, which sometimes hinders their use as distance measures
between nodes. More precisely, the shortest path distance does not integrate
the concept of high connectivity between the two nodes (it only considers the
shortest paths, see, e.g., (Fouss et al., 2016)), while the resistance distance
provides useless results when dealing with large graphs (the so-called “lost-in-
space effect” (von Luxburg, Radl, & Hein, 2010, 2014)). Another drawback
of the shortest path distance is that it provides lots of ties when comparing
distances, especially on unweighted undirected graphs.

In order to avoid the drawbacks of the shortest path and resistance distances,
new families of distance measures, interpolating between these two extremes,
were recently suggested based on a bag-of-paths (BoP) framework (Françoisse et
al., 2017; Kivimäki, Shimbo, & Saerens, 2014; Lebichot, Kivimäki, Françoisse,
& Saerens, 2014; Mantrach et al., 2010). This framework defines a Gibbs-
Boltzmann probability distribution over paths on a graph, which focuses on the
shortest paths, but spreads also on longer paths and random walks. The spread
of the distribution is controlled by a temperature parameter monitoring the bal-
ance between choosing low-cost paths and a pure random behaviour. Different
distance measures between nodes are then derived based on this distribution;
other ones are described in the next, related work, subsection.

Following this previous work, the effort is pursued in this paper with the
introduction of weighted distance measures derived from new bag-of-paths (BoP)
models. The weights of the distances are determined by introducing equality
constraints on the path distribution margins, i.e., the a priori probabilities over
starting nodes and ending nodes of paths. In other words, the new model
assumes that the user knows only where paths on average start and where they
on average end but not how they are distributed otherwise. In the original
BoP model, which was developed for the unweighted BoP-based distances, the
starting and ending node distributions are instead unconstrained, and can be
inferred directly from the probabilities of the paths (Françoisse et al., 2017).
The model proposed in the current work will be called the margin-constrained
bag-of-paths framework (abbreviated as cBoP). More precisely, the work defines
two models by considering two different types of paths – the first one is based
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on regular, non-hitting paths, and the second on hitting paths, i.e. paths where
the ending node cannot appear as an intermediate node.

Weighting the nodes of a network for determining distances can be impor-
tant in applications where each node represents a whole collection of items (like
cities where nodes could be weighted by population). Moreover, in some situ-
ations, it could be beneficial to weigh nodes by the reciprocal of their degree
in order to avoid the hubness effect (Radovanović, Nanopoulos, & Ivanović,
2010a). This will be investigated experimentally in further work. In addition to
defining weighted distances between nodes on a graph, a dissimilarity measure
between groups of nodes on the graph is derived from the margin-constrained
BoP framework.

The margin-constrained BoP model can also be understood as defining a ran-
domized policy for the optimal transport problem on a graph (Ahuja, Magnanti,
& Orlin, 1993; Kantorovich, 1942; Villani, 2003, 2008), because the starting
and ending node distributions can be considered as supply and demand distri-
butions for goods meant to be transported over the graph. The randomization is
achieved by finding the probability mass on the set of paths connecting starting
and ending nodes that minimizes free energy (a balance between expected cost
and entropy), subject to margin constraints corresponding to the predefined
supply and demand distributions. As is common for such formulations, min-
imizing this objective function results in a Gibbs-Boltzmann probability mass
on paths.

As discussed in more detail in (Saerens, Achbany, Fouss, & Yen, 2009),
randomization from optimality can prove useful for several reasons, both in the
context of transportation, as well as when measuring distance:

• If the environment is changing over time (non-stationary), the system
could benefit from randomization by performing continual exploration.

• A deterministic policy makes behavior totally predictable; on the contrary,
randomness introduces unpredictability and therefore renders interception
more difficult. Randomization has proved useful for this reason in game
theory (see, e.g., (Osborne, 2004)).

• A randomized policy spreads the traffic on multiple paths, therefore re-
ducing the danger of congestion.

• A distance measure accounting for all paths – and thus integrating the
concept of high connectivity – can be more useful, e.g. in social network
analysis, than relying on the best paths only.

1.2 Related work

The model proposed in this work builds on and extends previous work dedicated
to the bag-of-paths (BoP) framework (Françoisse et al., 2017; Mantrach et al.,
2010), as well as the randomized-shortest-path (RSP) framework (Akamatsu,
1996; Kivimäki et al., 2014; Kivimäki, Lebichot, Saramäki, & Saerens, 2016;
Saerens et al., 2009; Yen et al., 2008), and their variants (Bavaud & Guex,
2012; Guex & Bavaud, 2015; Guex, 2016); see also (Zhang, Zhao, & Wang,
2013) for a related proposition, called path integral.
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The main motivation for using such models can be understood as follows
(Lebichot & Saerens, 2018). Most of the traditional network measures are es-
sentially based on two different paradigms about movement or communication
occurring in the network: optimal communication based on shortest paths, and
random communication based on a random walk on the graph. For instance,
shortest path distance, as well as the standard betweenness centrality (Freeman,
1977) are defined from shortest paths, while resistance distance and random
walk centrality (Brandes & Fleischer, 2005; Newman, 2005) are based on ran-
dom walks (which have a strong analogy with electrical flow on the network
(Doyle & Snell, 1984)).

However, in reality, communication or movements over a network seldom
occur either optimally or purely randomly. The BoP and RSP frameworks both
relax these assumptions by interpolating between shortest paths and a pure
random walk based on a temperature parameter. This enables the definition
of measures with increased adaptability given by the temperature parameter.
In addition to defining distances interpolating between the shortest path and
resistance distances, (Françoisse et al., 2017; Kivimäki et al., 2014; Yen et al.,
2008), the models can also be used to define a centrality measure interpolating
between a shortest path-based betweenness and the random walk betweenness
(Kivimäki et al., 2016).

Besides the works mentioned above, other new families of distances have re-
cently been developed integrating information on both the proximity (shortest-
path distance) and amount of connectivity between nodes (captured, e.g., by
the resistance distance) (Chebotarev, 2011, 2012, 2013; Fouss et al., 2016;
Hashimoto, Sun, & Jaakkola, 2015; Herbster & Lever, 2009; Li, Zhang, & Boley,
2013; Lü & Zhou, 2011; Nguyen & Mamitsuka, 2016; Alamgir & von Luxburg,
2011). Many of these measures indeed interpolate (up to a constant scaling fac-
tor) between the shortest path distance (or length) and the resistance distance,
therefore alleviating the previously mentioned lost-in-space effect.

A short discussion of the standard, deterministic, optimal transport on a
graph problem appears in Section 4. Methods based on the optimal trans-
port problem using entropic regularization have recently been investigated in a
number of pattern recognition and machine learning tasks (e.g., (Courty, Fla-
mary, Tuia, & Rakotomamonjy, 2017; Solomon, Rustamov, Guibas, & Butscher,
2014)). For instance, (Cuturi, 2013; Ferradans, Papadakis, Peyré, & Aujol,
2014; Guex, Emmanouilidis, & Bavaud, 2017) propose to regularize the stan-
dard objective function of the classical discrete optimal transport problem with
an entropy term. They show on various problems, including image processing
problems, that the resulting algorithm is much faster than the original one.
Note that discrete entropy-regularized optimal transport problems were previ-
ously studied in economics, transportation science and operations research (see,
e.g., (Wilson, 1970; Erlander & Stewart, 1990; Kapur, 1989; Kapur & Kesavan,
1992; Fang, Rajasekera, & Tsao, 1997)). The main difference with these previ-
ous contributions is that the present work defines the different quantities, such
as entropy or cost, over full paths on the network by adopting a sum-over-paths
formalism.

Finally, the hubness effect, mentioned earlier, has been studied recently
in various works (Radovanović, Nanopoulos, & Ivanović, 2010b; Radovanović
et al., 2010a; Suzuki, Hara, Shimbo, Matsumoto, & Saerens, 2012; Suzuki,
Hara, Shimbo, Saerens, & Fukumizu, 2013; Tomasev, Radovanovic, Mladenic,
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& Ivanovic, 2014; Hara et al., 2015). Hubness is a problem faced with high-
dimensional data, e.g. when building nearest-neighbor graphs, as some nodes
may become over-represented as hubs in such graphs due to concentration of
distances in high-dimensional spaces. The weighting of distances provided by
the margin-constrained BoP framework could help alleviate this effect in graph-
based data analysis applications.

1.3 Main contributions

This work defines weighted distance measures between graph nodes by develop-
ing a margin-constrained bag-of-paths model. This model can be interpreted as
a solution to the optimal transport problem on a graph involving a regularization
term. The problem is tackled by using Kullback-Leibler divergence (also called
relative entropy (Cover & Thomas, 2006)) as regularization term. Furthermore,
two types of paths are considered: regular paths and hitting, absorbing, paths.

The optimal randomized policy consists in the assignment of a probability
distribution on the set of choices (deciding to follow an available edge) for each
node of the network. It therefore defines (optimal) biased transition probabili-
ties “attracting” the agents to the destination nodes. Furthermore, the model
depends on a temperature parameter monitoring the balance between exploita-
tion (expected cost) and exploration (entropy of paths) so that the solutions
interpolate between the classical deterministic optimal transport solution (pure
exploitation) and the random walk on the graph provided a priori by the user
(pure exploration). Low temperatures correspond to (randomized) near-optimal
solutions while high temperatures simply provide the predefined random walk
behavior. Note that, when considering hitting paths, the model reduces to the
standard randomized shortest path model when there is only one unique initial
node and one unique destination node.

The first contribution consists in deriving the probability distribution over
paths minimizing expected cost under relative entropy regularization and mar-
gin constraints, for both regular and hitting paths. Once the probability distri-
bution over paths is derived, all the quantities of interest, such as

• the policy (optimal routing transition probabilities),

• the flow over the network based on the a priori starting and ending node
distributions of paths,

• a weighted distance measure between nodes, and

• a dissimilarity between groups of nodes

can be defined and computed by simple matrix expressions.
Note that the present work is partly a re-interpretation of (Guex, 2016) in

which the author already studied a similar optimal transport on a graph problem
regularized by an entropic term. There, the entropic term at the node level was
defined by considering, on each node, the relative entropy between the desired
transition probabilities (the policy) and the reference transition probabilities
corresponding to a natural random walk on the graph. Then, the global entropic
regularization term was defined as a weighted sum of the relative entropies over
all nodes. As in (Saerens et al., 2009), the weighting factor is set to the expected
number of visits to the node, therefore putting more emphasis on frequently
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visited nodes. In the current work, we adopt a paths-based formalism and
the entropic term is instead defined according to the relative entropy over path
distributions.

Interestingly, it was found that the model derived in (Guex, 2016) is exactly
equivalent to one of the two models introduced in this work, the one dealing
with regular, non-hitting, paths, in the sense that they provide the same routing
policy. Therefore, in comparison with (Guex, 2016), the present work reformu-
lates the problem in terms of probabilities and relative entropy over paths in the
network, instead of transition probabilities on nodes. It also introduces another
algorithm for solving the problem and it derives a new algorithm for dealing
with hitting paths.

In short, the main contributions of this paper are

• the development of a new margin-constrained bag-of-paths framework, con-
sidering fixed probability distributions on starting and ending nodes,

• the introduction of a randomized solution to the optimal transport on a
graph problem for both regular and hitting paths,

• the definition of a new distance measure between nodes and a dissimilarity
between groups of nodes derived from this framework, and

• some illustrative simulations to explore the potential of the framework.

The remaining of the paper is as follows. Section 2 develops the formalism
and derives the solution to the margin-constrained bag-of-paths problem on a
graph for regular paths, while Section 3 extends the model to hitting paths.
Then, Section 4 discusses the connections with the standard optimal transport
on a graph problem. The derived distances are introduced in Section 5. Section
6 provides some illustrative simulations. Finally, Section 7 is the conclusion.

2 The margin-constrained bag-of-paths formal-
ism

2.1 Background and notation

This Subsection first sets the notation and terminology of the paper, after which
the standard bag-of-paths (BoP) and randomized shortest-paths (RSP) frame-
works are briefly reviewed (note that a discussion of the standard optimal trans-
port problem is deferred to Section 4). Then the margin-constrained BoP (cBop)
framework, and the relevant related results, are presented. Note that in this sec-
tion regular, non-hitting, paths are considered whereas Section 3 restricts the
set of paths to hitting, or absorbing, paths where the ending node may appear
only once as final node.

Notation. In this paper, we always assume a weighted, strongly connected,
directed graph G = (V, E), with set of nodes V = {1, 2, . . . , n} and set of edges
E = {(i, j)} containing m edges in total. The nonnegative weights on edges,
noted aij , represent local affinities between nodes, and are contained in the
weighted adjacency matrix A. Edge weights define a natural reference transition
probabilities matrix Pref of a standard random walk on G, with Pref = D−1A,
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where D is the diagonal matrix containing row sums of A (outdegrees). The
Markov chain defined by these transition probabilities is assumed to be regular.
Elementwise, we have

prefij =
aij∑
k∈V aik

. (1)

Along with weights, nonnegative edges costs, noted cij , are also provided. These
costs are contained in the cost matrix C, and can be defined either independently
from weights aij , or, e.g., thanks to cij = 1/aij . We define a t-length path on the
graph G, denoted by ℘, as a sequence of nodes ℘ = (i0, . . . , it), where t > 0 and
(iτ−1, iτ ) ∈ E for all τ = 1, . . . , t. Note that a node can appear several times on
the path (including the ending node). We denote a path starting in node i and
ending in node j by ℘ij . The likelihood π̃ref(℘) of a t-length path ℘ = (i0, . . . , it)

starting in i0 and ending in it is defined by π̃ref(℘) , Πt
τ=1p

ref
iτ−1,iτ

and its cost

c̃(℘) by c̃(℘) ,
∑t
τ=1 ciτ−1,iτ . We further denote respectively by Pij and P,

the set of paths starting in i and ending in j and the set of all paths in G, also
named the bag-of-paths, with P = ∪i,j∈V Pij . By convention, zero-length paths
starting and ending in the same node with a zero cost are also included in the
set of paths (see (Françoisse et al., 2017) for details).

All vectors will be column vectors and denoted in lowercase bold while ma-
trices are in uppercase bold.

The bag-of-paths and the randomized-shortest-path frameworks. The
context defined above states the usual background of the bag-of-paths framework
developed in (Françoisse et al., 2017; Mantrach et al., 2010). In these works,
a probability distribution over the set of all paths, P(℘) with ℘ ∈ P, was con-
structed in order to favor paths of low cost subject to a constant relative entropy
constraint. It provides the probability of drawing a particular path ℘ from a
bag, with replacement. The distribution can equivalently be obtained by solving
the following problem (see (Kivimäki et al., 2014))1:

minimize
{P(℘)}℘∈P

FE(P) =
∑
℘∈P

P(℘)c̃(℘) + T
∑
℘∈P

P(℘) log

(
P(℘)

Pref(℘)

)
subject to

∑
℘∈P P(℘) = 1,

(2)

where T > 0, the temperature, is a free parameter defining the relative entropy
level (Cover & Thomas, 2006), and Pref(℘) is the natural, reference, probability
of a path ℘ depending on π̃ref(℘) (see Equation (1)) and to be discussed later.
FE(P) is called the (relative) free energy, due to its similarity with the statistical
physics quantity. It corresponds to the expected cost, or energy, to which the
relative entropy weighted by temperature is added. Strictly speaking, a non-
negativity constraint should also be added to (2), but this is not necessary
since the resulting probability distribution will automatically be non-negative.
Indeed, following (Jaynes, 1957; Cover & Thomas, 2006; Kapur & Kesavan,
1992) and (Françoisse et al., 2017; Kivimäki et al., 2014; Mantrach et al., 2010)
for the paths formalism, the solution is a standard Gibbs-Boltzmann distribution

1Alternatively, it can also be obtained by following a maximum entropy argument (Jaynes,
1957; Cover & Thomas, 2006; Kapur & Kesavan, 1992).
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of the form

P(℘) =
Pref(℘) exp [−θc̃(℘)]∑

℘′∈P
Pref(℘′) exp [−θc̃(℘′)]

,

where c̃(℘) is the total cumulated cost along path ℘. It provides the probability
of choosing any path ℘ ∈ P in the network.

In addition, the randomized shortest path framework (Saerens et al., 2009;
Kivimäki et al., 2014; Yen et al., 2008); inspired by (Akamatsu, 1996) restricts
the set of paths to hitting paths (see next section for details) connecting only two
predefined nodes i and j. This defines optimal randomized policies for reaching
node j from i, ranging from shortest paths to a random walk. A method for
computing the RSP on large sparse graphs by restricting the set to paths with
a finite predefined length was developed in (Mantrach et al., 2011, Section 4).

2.2 Problem definition

In this Section, the BoP framework developed in (Françoisse et al., 2017; Mantrach
et al., 2010) is extended into a margin-constrained bag-of-paths framework by
introducing two additional density vectors on nodes, provided by the user: σin

and σout, with
∑
i∈V σ

in
i =

∑
i∈V σ

out
i = 1 and σin

i , σ
out
i ≥ 0, ∀i ∈ V. These vec-

tors define desired constraints on the distribution margins of our bag-of-paths
probabilities, i.e.

P(S = i) ,
∑
j∈V

∑
℘ij∈Pij

P(℘ij) = σin
i ∀i ∈ V, (3)

P(E = j) ,
∑
i∈V

∑
℘ij∈Pij

P(℘ij) = σout
j ∀j ∈ V, (4)

where S and E denote random variables containing respectively the starting
and the ending nodes of the drawn path. In turn, it means that we want to
constrain the probability of picking a path in the BoP starting from i to value σin

i

and the probability of picking a path ending in j to value σout
j . The intuition

is as follows: the model assumes that we are carrying a unit of goods in the
network from the set of nodes In = {i ∈ V : σin

i > 0} (supply nodes) to the set
Out = {j ∈ V : σout

j > 0} (demand nodes) in an optimal way by minimizing a
balance between expected cost and relative entropy of paths. A discussion of
this model in the light of optimal transport on a graph appears later in Section
4.

Altogether, we extend problem (2) and seek the optimal paths probability
distribution, {P(℘)}, ℘ ∈ P, solving

minimize
{P(℘)}℘∈P

FE(P) =
∑
℘∈P

P(℘)c̃(℘) + T
∑
℘∈P

P(℘) log

(
P(℘)

Pref(℘)

)
subject to

∑
j∈V

∑
℘ij∈Pij P(℘ij) = σin

i ∀i ∈ V∑
i∈V

∑
℘ij∈Pij P(℘ij) = σout

j ∀j ∈ V.

(5)

Note that as we have
∑
i∈V σ

in
i =

∑
i∈V σ

out
i = 1, the constraint

∑
℘∈P P(℘) =

1 in (2) can be dropped. The goal of this problem is to find a probability
distribution with fixed margins, such that it favors the paths of least cost when
T → 0, and the paths with high likelihood π̃ref(℘) when T →∞.

8



In order for the high temperature bounds to be consistent, Pref(℘) must
be defined according to π̃ref(℘). In the usual, unconstrained, BoP formalism
with a uniform a priori probability of choosing the starting and ending node,
the definition is simply Pref(℘) = π̃ref(℘)/

∑
℘′∈P π̃

ref(℘′) (Françoisse et al.,

2017)2. However, defining reference probabilities is not as trivial in the margin-
constrained setting studied in this work because of the constraints. This defi-
nition is the goal of the next section (note that the reader mainly interested in
the randomized optimal transport problem can simply assume that the reference
transition probabilities as given, skip the Section 2.3 and go directly to Section
2.4). The solution of problem (5) is then stated and proved in Section 2.4.

2.3 Reference probabilities with fixed margins

The reference probability of a path, Pref(℘), should have appropriate margins in
order to ensure the convergence P?(℘) → Pref(℘) when T → ∞ (pure random
walk). In other words, for consistency, the reference probabilities of paths should
also satisfy the constraints,

Pref(S = i) =
∑
j∈V

∑
℘ij∈Pij

Pref(℘ij) = σin
i ∀i ∈ V, (6)

Pref(E = j) =
∑
i∈V

∑
℘ij∈Pij

Pref(℘ij) = σout
j ∀j ∈ V, (7)

which further implies that the path probabilities Pref(℘ij) sum to one.
In (Françoisse et al., 2017), the reference distribution of a path is simply

set proportional to path likelihood π̃ref(℘), which can be interpreted as follows:
the starting distribution Pref(S = i) is defined as uniform and the ending dis-
tribution Pref(E = j) is equal to the proportion of time spent in each node
for the Markov chain St, defined by transition probabilities matrix Pref , when
t→∞ (stationarity). Obviously, defining the reference probability in a similar
way here would lead to a problem: the ending distribution Pref(E = j) depends
entirely on the transition matrix of the Markov chain defined by Pref and will
generally not yield the desired distribution σout.

To address this problem we introduce a new killed Markov process which
will lead to the desired ending distribution, while being as similar as possible,
in a certain sense, to the original chain. More precisely, we design this killed
Markov process in such a way that the random walker encounters exactly the
same probabilities of jumping to any adjacent node as the original transition
probabilities (Pref) as long as he survives.

2.3.1 A particular killed Markov process

Let us first define a killed random process which will be helpful later.

Definition 2.1. From the reference, regular, Markov process St defined on the
state space V, with initial distribution πin and transition matrix Pref , a killed
Markov process, denoted by Kt, is defined as a new process with the same

2Note that non-uniform prior probabilities on the starting and ending node are briefly
discussed in (Françoisse et al., 2017).
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initial distribution and following a substochastic transition matrix P̂ref , given
by

P̂ref , (I−Diag(α))Pref , (8)

where the probability to be killed after visiting node i is αi, with 0 ≤ αi ≤
1 ∀i ∈ V. Diag(α) is the diagonal matrix containing vector α on its diagonal.
In other words, the vector α = (αi) contains the killing rate of each node. This
killed Markov process can be seen as adding a new (virtual) absorbing state, the
cemetery ω, and following the rules

P(K0 = i) = πin
i , (9)

P(Kt+1 = j|Kt = i) = p̂refij = (1− αi)prefij , (10)

P(Kt+1 = ω|Kt = i) = 1− p̂refi• , αi, (11)

P(Kt+1 = ω|Kt = ω) = 1, (12)

where the dot in p̂refi• means summation over the second index (over the set of
nodes V).

We observe that p̂refij /p̂
ref
i• = prefij for any α. This means that this killing

process will behave similarly to the original process as long as it survives, thus
arguing in favor of the similarity requirement between the two chains. How-
ever, unlike the reference Markov chain, this killed Markov process possesses an
“ending” distribution.

Definition 2.2. A killed Markov process, as defined in Definition 2.1, possesses
an ending distribution, denoted by πout = (πout

i ) and given by

πout
i , P(KM−1 = i) =

∞∑
t=0

P(Kt = i,Kt+1 = ω), (13)

where M is the random variable containing the time where the process is killed
(it reaches the cemetery state ω).

This quantity denotes the probability of being killed in state i when starting
from initial nodes with probabilities πin

i : it sums up the probability of being
killed after 0, 1, 2, . . . steps.

Interestingly, it is possible to find the vector of killing rates α corresponding
to a desired ending distribution πout = σout. This is important as it will allow
us to design a proper reference probability distribution satisfying the predefined
margins. But we first need the following preliminary lemma.

Lemma 2.1. The expected number of visits to j before being killed, given that the
process started from state i, that is, the quantity n̄refij =

∑∞
t=0 P(Kt = j|K0 = i),

is given by element i, j of matrix Ẑref ,
∑∞
t=0(P̂ref)t = (I − P̂ref)−1 which is

well-defined for a substochastic matrix and a strongly connected graph. In other
words, n̄refij = ẑrefij .

Proof. See (Fouss et al., 2016, Section 1.5.7).

Then, the killing rates and the ending distribution are related by the fol-
lowing proposition. This will allow us to determine the killing rates in order to
satisfy a predefined ending distribution.
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Proposition 2.1. For a killed Markov process on a strongly connected graph
(see Definition 2.1), the following equality is satisfied

α = πout ÷ n̄ref , (14)

where ÷ is the elementwise division and column vector n̄ref = (n̄refj ) with n̄refj =∑
i∈V π

in
i n̄

ref
ij , holds the expected number of visits to state i before being killed

which can be computed thanks to(
I− (Pref)>

)
n̄ref = πin − (Pref)>πout, (15)

where Pref is the transition probability matrix defined in Equation (1).

Proof. First, let us observe that the joint distribution for the starting node and
the ending node of the killing process is

P(K0 = i,KM−1 = j) =

∞∑
t=0

P(K0 = i,Kt = j,Kt+1 = ω)

=

∞∑
t=0

P(Kt+1 = ω|Kt = j)P(Kt = j|K0 = i)P(K0 = i)

= πin
i

[ ∞∑
t=0

(P̂ref)t

]
ij

αj = πin
i

[
Ẑref

]
ij
αj

= πin
i ẑ

ref
ij αj , (16)

where Ẑref is defined by Lemma 2.1. Thus the ending distribution (see Definition
2.2) reads

πout
j =

∑
i∈V

P(K0 = i,KM−1 = j) =
∑
i∈V

πin
i ẑ

ref
ij αj . (17)

We know from Lemma 2.1 that ẑrefij can be interpreted as the expected number
of times the killed Markov process visits node j when starting from i. So if we
define

n̄refj ,
∑
i∈V

πin
i ẑ

ref
ij =

∑
i∈V

πin
i n̄

ref
ij , (18)

the column vector n̄ref = (n̄refj ) holds the expected number of times the process
is in j before being killed. Then, (17) directly provides

α = πout ÷ n̄ref . (19)

The second part of the proposition is obtained by starting from the definition
of n̄ref and following (8),

n̄ref = (Ẑref)>πin =
(
I− (P̂ref)>

)−1
πin,

⇒ n̄ref − (P̂ref)>n̄ref = πin,

⇒ n̄ref −
(
(Pref)> − (Pref)>Diag(α)

)
n̄ref = πin.

Then, using Diag(α) n̄ref = πout (see Equation (14)),(
I− (Pref)>

)
n̄ref = πin − (Pref)>πout,

which provides the same results as the expression derived in (Guex, 2016, propo-
sition 1) from another perspective.

11



The Equation (14) simply states that the probability of being killed in state i is
equal to the expected number of visits to i times the probability of jumping to
the cemetery state from i, πout

i = n̄refi αi. This is similar to the computation of
the absorption probabilities when starting from a transient state in an absorbing
Markov chain (Doyle & Snell, 1984; Grinstead & Snell, 1997).

In conclusion, it is possible to determine n̄ref and then α through Proposition
2.1 by considering an additional free parameter. Indeed, as (I−(Pref)>) is rank-
deficient (its rank is n−1, as the initial reference chain is regular), we have (see,
e.g., (Graybill, 1983))

n̄ref =
(
I− (Pref)>

)+(
πin − (Pref)>πout

)
+ επref, (20)

where
(
I− (Pref)>

)+
denotes the Moore-Penrose pseudoinverse, πref is the sta-

tionary distribution of the regular, reference, Markov chain defined by Pref (i.e.
a vector summing to 1 and generating the null-space of (I− (Pref)>)), and ε is
an additional free parameter, named persistence, such that

ε ≥ max
i

(
πout
i − e>i

(
I− (Pref)>

)+(
πin − (Pref)>πout

)
πref
i

)
.

This last inequality ensures that n̄refi ≥ πout
i and thus αi ≤ 1, ∀i ∈ V. Intuitively,

the persistence parameter reflects the difficulty for a process to be killed in nodes
where αi > 0 (called killing nodes), and thus affects the expected length of the
paths (see (Guex, 2016) for a discussion). In (Guex, 2016), the persistence
is shown to have an electrical interpretation within the well-known analogy
between random-walk models and electrical models (Doyle & Snell, 1984): it
corresponds to the lowest electrical potential that can be defined on nodes.
However, the effect of the persistence on the behavior of the model is beyond
the scope of this work, and we will set it to its lower bound in our simulations.

2.3.2 Defining the reference probabilities over paths from the killed
process

We will now define the reference probabilities Pref(℘) over the set of paths, with
the help of a killed Markov process, in order to obtain the desired starting and
ending distributions σin and σout, that is,

∑
j∈V

∑
℘ij∈Pij Pref(℘ij) = σin

i and∑
i∈V

∑
℘ij∈Pij Pref(℘ij) = σout

j . We show that it suffices to set πin = σin and
πout = σout in the previously defined killed Markov process and deduce the
reference probabilities from it.

Proposition 2.2. If the reference probabilities Pref(℘), ℘ ∈ P, are set to

Pref(℘ij) , σin
i π̂

ref(℘ij)αj for each i, j ∈ V, (21)

where π̂ref(℘ij) is the modified likelihood of the path ℘ij, defined by

π̂ref(℘) ,
t∏

τ=1

p̂refkτ−1kτ for any path ℘ = (k0, k1, . . . , kt), (22)
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Algorithm 1 Killing rates for non-hitting paths

Input:
– The n × n non-negative adjacency matrix A of a strongly connected directed
graph, containing edge affinities.
– An input distribution vector σin of size n.
– An output distribution vector σout of size n.
– A scalar persistence gap parameter εg > 0.

Output:
– The killing rates vector α of size n.
– The expected number of visits to each node for the reference random walk, n̄ref .

1. D← Diag(Ae) . the out-degree matrix
2. Pref ← D−1A . the reference transition probabilities matrix
3. Q← I− (Pref)> . the auxiliary matrix Q
4. π ← null(Q); π ← π/sum(π) . computes the stationary distribution of the

Markov chain whose transition matrix is Pref (π spans the null space of Q and
its elements are non-negative and sum to one)

5. Q+ ← pinv(Q) . the Moore-Penrose pseudoinverse matrix of Q
6. n̄ref

0 ← Q+(σin − (Pref)>σout) . the initial expected number of visits to each
node for the reference random walk

7. ε← max((σout − n̄ref
0 )÷ π) + εg . the value of the persistence parameter

8. n̄ref ← n̄ref
0 + επ . the expected number of visits to each node for the reference

random walk
9. α← σout ÷ n̄ref . the killing rates vector; ÷ is the elementwise division

10. return α, n̄ref

with P̂ref = (I−Diag(α))Pref , and where α is computed from Proposition 2.1
(with πin = σin and πout = σout), then we have

Pref(S = i) =
∑
j∈V

∑
℘ij∈Pij

Pref(℘ij) = σin
i ∀i ∈ V,

Pref(E = j) =
∑
i∈V

∑
℘ij∈Pij

Pref(℘ij) = σout
j ∀j ∈ V.

Moreover, these reference probabilities are properly scaled as they sum to one.

Proof. Observe that if we set the reference probabilities to Pref(℘ij) , πin
i π̂

ref(℘ij)αj ,
then, from (16), we have for the probability of picking a paths ℘ij ∈ Pij in the
bag of all paths starting in i (S = i) and ending in j (E = j) (see (Françoisse
et al., 2017))

P(S = i, E = j) =
∑

℘ij∈Pij

Pref(℘ij) = πin
i

∑
℘ij∈Pij

π̂ref(℘ij)αj

= πin
i

[ ∞∑
t=0

(P̂ref)t

]
ij

αj = P(K0 = i,KM−1 = j),

and therefore,

P(S = i) = P(K0 = i) = πin
i ,

P(E = j) = P(KM−1 = j) = πout
j .

13



Moreover, it also follows that
∑
℘∈P Pref(℘) =

∑n
i,j=1

∑
℘ij∈Pij Pref(℘ij) =∑n

i,j=1 P(K0 = i,KM−1 = j) = 1 so that the reference probability distribution
over paths is properly scaled.

Note that the last quantity, P(S = i, E = j), was called the bag-of-paths
probability matrix and played a key role in the bag-of-paths framework (see
(Françoisse et al., 2017) for details). It is also called the coupling matrix in
optimal transportation (see later). The procedure for computing the vectors α
and n̄ref allowing to obtain a desired ending distribution is sumarized in Algo-
rithm 1. In addition to the predefined margins, it takes as input a persistence
gap parameter εg indicating to which extend persistence of flow is present in
the network (see the discussion following Equation (20)).

2.4 Computation of the optimal probability distribution
over paths

In this section, now that we have found a proper reference distribution, we
focus on the computation of the optimal probability distribution P?(℘) solving
problem (5). This solution is obtained through its Lagrange parameter vectors,
which can be obtained from the constraints.

2.4.1 The optimal path probabilities

The optimal probability distribution is obtained by the following proposition.

Proposition 2.3. For reference path probabilities Pref(℘) as defined in Propo-
sition 2.2, the minimization problem (5), as stated in Section 2.2, is solved by

P?(℘ij) = µin
i σ

in
i µ

out
j αj π̂

ref(℘ij) exp(−βc̃(℘ij)) for each i, j ∈ V, (23)

where β , 1/T is the inverse temperature parameter, and µin
i , exp(−βλini ),

µout
j , exp(−βλoutj ) are two vectors derived from the Lagrange parameter vectors

λin, λout, associated with the constraints.

Proof. We derive the solution for the optimal probability distribution P?(℘)
solving problem (5). By introducing Lagrange parameter vectors λin and λout,
the Lagrange function associated to (5) is

L(P,λin,λout) ,
∑
℘∈P

P(℘)c̃(℘) + T
∑
℘∈P

P(℘) log

(
P(℘)

Pref(℘)

)

+
∑
i∈V

(λini − T
2 )

∑
j∈V

∑
℘ij∈Pij

P(℘ij)− σin
i


+
∑
j∈V

(λoutj − T
2 )

∑
i∈V

∑
℘ij∈Pij

P(℘ij)− σout
j

 , (24)

where the Lagrange parameters are shifted by T/2 to simplify the notation.
Taking its partial derivative with respect to P(℘ij), setting the result to zero,
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and defining the inverse temperature β , 1/T , provides

P?(℘ij) = Pref(℘ij) exp
[
−β
(
c̃(℘ij) + λini + λoutj

)]
= µin

i µ
out
j Pref(℘ij) exp(−βc̃(℘ij)),

where we defined

µin
i , exp(−βλini ) and µout

i , exp(−βλouti ), (25)

which corresponds to a re-parametrization of the the Lagrange parameters that
will be used instead of the original parameters. By inserting the reference prob-
ability found in (21) in this last equation, we get the following form for the path
probabilities

P?(℘ij) = µin
i σ

in
i µ

out
j αj π̂

ref(℘ij) exp(−βc̃(℘ij)),

where the π̂ref(℘) are provided by Proposition 2.2.

2.4.2 Computing the Lagrange parameters

The solution (23) requires the values of the Lagrange multipliers λin and λout, or
alternatively the vectors µin and µout, which can be obtained from the equality
constraints. Proposition 2.4 shows how to compute these vectors.

Proposition 2.4. The two vectors, defined as µin
i = exp(−βλini ) and µout

i =
exp(−βλouti ) (see Proposition 2.2), verify the following equations

µin = e÷
(
Ẑ (µout ◦α)

)
, (26)

µout = n̄ref ÷
(
Ẑ> (µin ◦ σin)

)
, (27)

where Ẑ , (I− Ŵ)−1 is the fundamental matrix, obtained from Ŵ , P̂ref ◦
exp[−βC], and ◦ is the elementwise product.

Proof. The Lagrange parameters can be found by enforcing the constraints (3)
and (4) on P?(℘). By injecting (23) for P?(℘) in (3) and (4) provides

σin
i µ

in
i

∑
j∈V

µout
j αj

∑
℘ij∈Pij

π̂ref(℘ij) exp(−βc̃(℘ij))

ẑij

= σin
i ∀i ∈ V, (28)

αjµ
out
j

∑
i∈V

µin
i σ

in
i

∑
℘ij∈Pij

π̂ref(℘ij) exp(−βc̃(℘ij))

ẑij

= σout
j ∀j ∈ V. (29)

By further defining the fundamental matrix as

Ẑ , (I− Ŵ)−1 (30)

with Ŵ , P̂ref ◦ exp[−βC], where ◦ is the elementwise product, it can easily
be shown by using a development similar to (Françoisse et al., 2017; Mantrach
et al., 2010) that ∑

℘ij∈Pij

π̂ref(℘ij) exp(−βc̃(℘ij)) = ẑij = [Ẑ]ij . (31)
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For computing the parameters, we use a variant (Kapur & Kesavan, 1992)
of iterative proportional fitting procedure (discussed below) based on (28) and
(29). Isolating σin

i and σout
i in (28) and (29) after replacing αj by the result

found with Proposition 2.1 (Equations (14) and (20)), i.e. αj = σout
j /n̄refj , in

the second equation, we obtain

µin = e÷
(
Ẑ (µout ◦α)

)
,

µout = n̄ref ÷
(
Ẑ> (µin ◦ σin)

)
.

Note that the above derivation is only valid for nodes i and j for which σin
i > 0

and σout
j > 0, respectively, and that µin

i and µout
j are not needed when these

quantities are equal to zero because the path probabilities also vanish in this case
(see Equations (23)). However, defining and computing the quantities µin

i and
µout
j for all nodes i and j according to (26) and (27) proves to be convenient for

what follows, as these quantities appear in other meaningful expressions. For
unconstrained nodes with σin

i = 0 or σout
j = 0, the Lagrange parameters are

equal to zero, meaning that the corresponding µin
i = 1 and µout

j = 1

Note that by further defining the matrix t̂ij , σin
i ẑijαj , (28) and (29) can

be rewritten in matrix form as Diag(µin)(Diag(σin)Ẑ Diag(α))Diag(µout) e =

Diag(µin)T̂ Diag(µout) e = σin and Diag(µout)T̂
>Diag(µin) e = σout, where

Diag(x) is a diagonal matrix with x on its main diagonal and e is a column
vector full of 1’s. Therefore, we have in matrix form

T̂ = Diag(σin)Ẑ Diag(α). (32)

Thus, the computation of the Lagrange parameters reduces to the problem
of finding two nonnegative row and column scaling vectors (µin and µout),

reweighting the rows and the columns of T̂ such that the row marginals and
the column marginals of the new rescaled matrix are equal to σin and σout, just
like in the context of standard optimal transport with entropy regularization
(Cuturi, 2013).

Indeed, this procedure is closely related to the solution of the standard,
relaxed, optimal transport problem with entropy regularization when using
the matrix T̂ as the matrix containing the costs or rewards of transportation
(Wilson, 1970; Kapur, 1989; Erlander & Stewart, 1990; Kapur & Kesavan,
1992; Cuturi, 2013). It is usually solved by iterative proportional fitting, ma-
trix balancing or biproportional scaling ((Bacharach, 1965; Sinkhorn, 1967); see
(Kurras, 2015; Pukelsheim, 2014) and the references therein for a more recent
discussion). The iterative proportional fitting algorithm has guaranteed conver-
gence to a unique solution under some mild conditions (see, e.g., (Kurras, 2015;
Pukelsheim, 2014)).

Our iterative procedure for solving Equations (26-27) consists of first fixing

an arbitrary µ
(0)
out, and then computing µ

(τ)
in from (26) at iteration τ . Thereafter,

µ
(τ)
in is kept fixed and µ

(τ+1)
out is computed from µ

(τ)
in in (27).

Finally, note that the optimal probability distribution P?(℘) given by Propo-
sition 2.3 is useless in practice, as there is an infinite number of paths. However,
the different interesting and useful quantities can also be computed from the
fundamental matrix and the Lagrange multipliers, as shown in the next section.
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Moreover, it will be shown in Subsection 4.3 that the optimization problem
can be reduced to the estimation of the joint probabilities P?(S = i, E = j) =∑
℘ij∈Pij P?(℘ij) (the coupling), therefore completely avoiding the introduction

of the probability distribution.

2.5 Computation of other important quantities

Similarly to (Françoisse et al., 2017), other meaningful quantities can be com-
puted in closed form after the convergence of µin and µout. This section provides
expressions for computing them. The computation of the Lagrange multipliers
together with the derived quantities, for the regular, non-hitting, BoP model,
are summarized in Algorithm 2.

2.5.1 The coupling matrix

First, the definition and computation of the coupling matrix is presented. Its
name derives from the transportation science literature (Villani, 2003, 2008).

Proposition 2.5. The coupling matrix, denoted by Γ = (γij) and defined by

γij , P?(S = i, E = j) =
∑

℘ij∈Pij

P?(℘ij), (33)

where Pij is the set of paths starting in node i and ending in node j, can be
computed by

Γ = Diag(µin ◦ σin) Ẑ Diag(µout ◦α). (34)

Proof. From the optimal probabilities (23) and the definition of the fundamental
matrix (30), the probability of drawing a path starting in i and ending j is

P?(S = i, E = j) =
∑

℘ij∈Pij

P?(℘ij)

= µin
i σ

in
i µ

out
j αj

∑
℘ij∈Pij

π̂ref(℘ij) exp(−βc̃(℘ij)) (35)

= µin
i σ

in
i ẑijµ

out
j αj , (36)

which in matrix form writes out as Equation (34).

2.5.2 The optimal free energy

Proposition 2.6. The value of the free energy at the optimal paths probability
distribution P? is

FE(P?) = −
(
λ>inσin + λ>outσout

)
, (37)

where the Lagrange parameter vectors λin, λin are obtained from the vectors
µin, µin as stated in Proposition 2.3.

Proof. By replacing P?(℘ij) = µin
i µ

out
j Pref(℘ij) exp(−βc̃(℘ij)) into the free en-

ergy expression (5), we get

FE(P?) = −
∑
i∈V

λini
∑
j∈V

∑
℘ij∈Pij

P?(℘ij)−
∑
j∈V

λoutj

∑
i∈V

∑
℘ij∈Pij

P?(℘ij)

and, as the margins are fixed, we get the result.
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An interesting interpretation of this proposition based on an optimal trans-
portation analogy is discussed in Section 4.

2.5.3 The expected number of passages through an edge

Let us define the matrix N̄ = (n̄ij) as the matrix containing the expected num-
ber of times an edge (i, j) appears on a path drawn from the optimal distribution
P?(℘). Formally,

n̄ij ,
∑
k,l∈V

∑
℘kl∈Pkl

P?(℘kl)η(i→ j ∈ ℘kl),

where η(i → j ∈ ℘kl) denotes the number of times the edge (i, j) appears on
path ℘kl.

In (Guex, 2016), n̄ij is interpreted as the flow on edges, creating a “stream
of matter” going from supply nodes in In to destination nodes in Out. This
interpretation will also be discussed further in Section 4.

Proposition 2.7. The matrix N̄, containing the expected number of times an
edge (i, j) appears on a drawn path, is given by

N̄ = Diag(n̄ref ÷ µout) Ŵ (Diag(µin))−1, (38)

where Ŵ is defined after Equation (30).

Proof. Because costs are additive along paths, η(i → j ∈ ℘kl) = ∂c̃(℘kl)/∂cij .
Then, by using (23), we obtain

n̄ij =
∑
k,l∈V

µin
k σ

in
k µ

out
l αl

∑
℘kl∈Pkl

π̂ref(℘kl) exp(−βc̃(℘kl))
∂c̃(℘kl)

∂cij

= − 1

β

∑
k,l∈V

µin
k σ

in
k µ

out
l αl

∂ẑkl
∂cij

. (39)

We know from direct calculus (Kivimäki et al., 2016, Equation (11)) that
∂ẑkl/∂cij = −βŵij ẑkiẑjl. Thus,

n̄ij = ŵij

(∑
k∈V

µin
k σ

in
k ẑki

)(∑
l∈V

µout
l αlẑjl

)
, (40)

and by using (28)-(29) with αl = σout
l /n̄refl (see Proposition 2.1),

n̄ij =
n̄refi ŵij
µout
i µin

j

, (41)

which provides the desired result.
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Algorithm 2 Regular, non-hitting, margin-constrained bag-of-paths algorithm

Input:
– The n × n non-negative adjacency matrix A of a strongly connected directed
graph, containing edge affinities.
– The n× n non-negative cost matrix C, containing edge costs.
– An input distribution vector σin of size n.
– An output distribution vector σout of size n.
– A killing rate vector α of size n.
– The expected number of visits to each node for the reference random walk, n̄ref ,
of size n.
– A scalar inverse temperature parameter β > 0.

Output:
– The coupling matrix Γ of size n× n.
– The minimum free energy FEmin (a scalar).
– The matrix N̄ of size n × n, containing the expected number of visits to each
edge (i, j).
– The vector n̄ of size n, containing the expected number of visits to each node.
– The resulting biased transition probabilities matrix P of size n×n (the policy).

1. D← Diag(Ae) . the out-degree matrix
2. Pref ← D−1A . the reference transition probabilities matrix
3. P̂ref ← (I−Diag(α))Pref . the killed reference transition probabilities matrix

4. Ŵ← P̂ref ◦ exp[−βC] . the auxiliary matrix Ŵ; ◦ is the elementwise product

5. Ẑ← (I− Ŵ)−1 . the fundamental matrix
6. µout ← e . the initial Lagrange parameters vector for ouputs
7. repeat . main iteration loop

8. µin ← e÷
(
Ẑ (µout ◦α)

)
. the update of input vector; ÷ is the elementwise

division
9. µout ← n̄ref ÷

(
Ẑ> (µin ◦ σin)

)
. the update of output vector

10. until convergence
11. Γ← Diag(µin ◦ σin) Ẑ Diag(µout ◦α) . the coupling matrix
12. FEmin ← 1

β
((log[µin])>σin +(log[µout])

>σout) . the minimum free energy value

13. N̄← Diag(n̄ref÷µout) Ŵ (Diag(µin))−1 . the matrix containing the expected
number of visits to each edge

14. n̄ ← n̄ref ÷ (µin ◦ µout) . the vector containing the expected number of visits
to each node

15. P← pinv(Diag(N̄e)) N̄ . the biased transition matrix (the policy)
16. return Γ, FEmin, N̄, n̄, P

2.5.4 The expected number of visits to a node

Let us further define the vector n̄ = (n̄i), containing the expected number of
times node i is drawn under P?(℘), by

n̄i ,
∑
℘∈P

P?(℘) η(i ∈ ℘),

where η(i ∈ ℘) denotes the number of times node i appears on path ℘.

Proposition 2.8. The vector n̄, containing the expected number of times node
i is drawn, is

n̄ = n̄ref ÷ (µin ◦ µout), (42)
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where ÷ and ◦ are the elementwise division and product.

Proof. In fact, we can decompose this quantity as

η(i ∈ ℘) =
∑
j∈V

η(i→ j ∈ ℘) + δ(E(℘) = i), (43)

where δ(E(℘) = i) is one if i is the ending node of the path ℘. This gives

n̄i =
∑
j∈V

∑
℘∈P

P?(℘)η(i→ j ∈ ℘) +
∑
℘∈P

P?(℘)δ(E(℘) = i) =
∑
j∈V

n̄ij + σout
i .

(44)

By using (40) we find

n̄i =

(∑
k∈V

µin
k σ

in
k ẑki

)∑
l∈V

µout
l αl

∑
j∈V

ŵij ẑjl

+ σout
i .

However, because (I−Ŵ)Ẑ = I,
∑
j∈V ŵij ẑjl = ẑil− δil as shown in (Kivimäki

et al., 2016, Equation (13)); therefore

n̄i =
∑
k∈V

µin
k σ

in
k ẑki

(∑
l∈V

µout
l αlẑil − µout

i αi

)
+ σout

i ,

which, by using (28)-(29) and αi = σout
i /n̄refi (see Proposition 2.1), provides the

result

n̄i =
n̄refi

µin
i µ

out
i

. (45)

2.5.5 The optimal randomized policy

The expected number of times edges are visited induces a biased random walk
on the network with transition matrix P , (pij) provided by

pij ,
n̄ij∑
k∈V n̄ik

. (46)

Proposition 2.9. The biased random walk transition matrix, P, called the
randomized routing policy, is provided by

P = Ŵ ÷
(
((e÷ µin)− (µout ◦α))µ>in

)
. (47)

Proof. The result is obtained in elementwise form by combining expression (46)
with (41), (44) and (45) and using αi = σout

i /n̄refi (see Proposition 2.1):

pij =
µin
i ŵij

µin
j (1− µin

i µ
out
i αi)

.
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We can observe that when β → 0, then µin → e, µout → e, Ŵ → P̂ref and
we obtain

pij −−−−→
T→∞

p̂refij
(1− αi)

= prefij ,

as it should be.
This biased random walk is the optimal policy that has to be followed for

reaching nodes in Out from nodes in In, and can be interpreted as follows.
When β → 0, the behavior becomes similar to the random walk defined by Pref ,
but as β increases, random walkers are more and more “attracted” by high σout

i

nodes. These “pools of attraction”, whose sizes are related to the components
of σout, get less and less “fuzzy” as β increases, eventually forcing walkers to
adopt quasi-deterministic, optimal, paths following the solution of the optimal
transport on a graph problem (see Subsection 6.2). Therefore, this framework
can be viewed as an extension of standard electrical networks, interpolating
between an optimal behavior based on least cost paths and a random behavior
based on the reference probabilities (Guex, 2016).

3 The margin-constrained bag-of-hitting-paths
formalism

In (Françoisse et al., 2017), the BoP formalism was defined for regular paths
(as in previous section) as well as for hitting paths, i.e. paths where the final
node j appears only once as last node of the path. In this section, we will
now consider the margin-constrained problem for hitting paths and define, ac-
cordingly, the margin-constrained bag-of-hitting-paths framework (abbreviated
as cBoHP). This new model will yield interesting properties and analogies with
other models, and will require less computation time in comparison to the non-
hitting, regular, bag-of-paths model considered so far in this work. We will see
that while both models are similar when T → 0, they are quite different when
T → ∞, and that the hitting formalism has a somewhat more straightforward
solution. Nevertheless, the hitting paths assumption can prove more practical
and appropriate in practice. But, of course, the choice of whether to consider
non-hitting or hitting paths depends on the application.

3.1 Problem definition

Let Ph
ij be the set of all hitting paths starting in i and ending in j, i.e. all paths

℘ij = (i0, . . . , it) where i0 = i, it = j and iτ 6= j,∀τ 6= t where t is the length
of the path. This means that, technically, the ending node is turned into a
killing, absorbing, node from which we cannot escape (Françoisse et al., 2017;
Kivimäki et al., 2014; Fouss et al., 2016). We define the set of all hitting paths,
also named bag-of-hitting-paths, by Ph = ∪i,j∈VPh

ij . By analogy with (5), the
problem here is to find the optimal hitting paths probability distribution, P?h(℘),
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solving

minimize
{Ph(℘)}℘∈Ph

FEh(Ph) =
∑
℘∈Ph

Ph(℘)c̃(℘) + T
∑
℘∈Ph

Ph(℘) log

(
Ph(℘)

Pref
h (℘)

)
subject to

∑
j∈V

∑
℘ij∈Ph

ij
Ph(℘ij) = σin

i ∀i ∈ V,∑
i∈V

∑
℘ij∈Ph

ij
Ph(℘ij) = σout

j ∀j ∈ V.

(48)

As probabilities for regular paths containing the final node more than once
converge to zero in the non-hitting formalism when T → 0 (it is sub-optimal
to visit several times the same node), we easily see that both problems are
equivalent at this limit. However, this is not the case when T →∞, due to the
difference in reference probabilities between the two models and the structure
of the paths, as shown in the next section.

Yet another important difference between the hitting and the non-hitting
formulations is that the former model is equivalent to the standard entropy
regularized optimal transport problem (Wilson, 1970; Erlander & Stewart, 1990;
Cuturi, 2013) based on the directed free energy distance (or potential) between
nodes (Kivimäki et al., 2014; Françoisse et al., 2017; Fouss et al., 2016), which
can easily be pre-computed for the whole graph. This is detailed in Section
4 (see Equation (71)). A last difference is that the hitting paths formulation
does not need the pre-processing step computing the reference probabilities with
fixed margins described in Section 2.3 and Algorithm 1.

3.2 Reference probabilities with fixed margins

Finding reference probabilities Pref
h (℘) is at the heart of the difference between

both formalisms, and is greatly simplified in the hitting case. In fact, it was
shown in (Françoisse et al., 2017) that the sum of likelihoods over all hitting
paths between two nodes i and j is always equal to 1. In other words,∑

℘∈Ph
ij

π̃ref(℘) = 1,

where π̃ref(℘) , Πt
τ=1p

ref
iτ−1,iτ

and with the prefij being the reference transition
probabilities (1). From this, it is easy to observe that the reference probability
defined by

Pref
h (℘ij) , σin

i σ
out
j π̃ref(℘ij), (49)

yields the correct margins as expressed in the constraints of problem (48).

3.3 Computation of the optimal probability distribution
over paths

The reasoning for finding the solution follows the same rationale as before for
the non-hitting case; therefore the details of the proofs are not repeated in this
section. The main difference lies in the replacement of the reference probabilities
with (49), and the following new expression for hitting paths (the equivalent of
Equation (31)) ∑

℘ij∈Ph
ij

π̃ref(℘ij) exp(−βc̃(℘ij)) = zhij , (50)
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with Zh = (zhij) being the fundamental matrix for hitting paths as introduced in
((Kivimäki et al., 2014), Equation (12)), obtained through

Zh , ZD−1h , (51)

where Z , (I−W)−1, W , Pref ◦ exp[−βC], and Dh , Diag(Z), the diagonal
matrix containing the main diagonal of Z. Elementwise, we have zhij = zij/zjj .

3.3.1 The optimal hitting-paths probabilities

The optimal hitting-paths probabilities are obtained with the following propo-
sition.

Proposition 3.1. When the set of paths P is restricted to the set of hitting
paths Ph and the reference path probabilities Pref(℘) are defined according to
Equation (49), then the minimization problem (48) is solved by

P?h(℘ij) = µh,in
i σin

i µ
h,out
j σout

j π̃ref(℘ij) exp(−βc̃(℘ij)), (52)

where β , 1/T is the inverse temperature parameter, and µh,in
i , exp(−βλh,ini ),

µh,out
j , exp(−βλh,outj ) are two vectors derived from the Lagrange parameter

vectors λh,in, λh,out, associated with the constraints.

Proof. The proof is similar to the proof of Proposition 2.3.

3.3.2 Computing the Lagrange parameters

Proposition 3.2. The two vectors µh,in and µh,out, defined by µh,in
i = exp(−βλh,ini )

and µh,out
i = exp(−βλh,outi ), verify the following expressions

µh
in = e÷

(
Zh

(
µh

out ◦ σout

))
, (53)

µh
out = e÷

(
Z>h
(
µh

in ◦ σin

))
. (54)

Proof. The proof is similar to the proof of Proposition 2.4, but by replacing the
matrix Z with Zh.

As for regular paths, these two expressions are recomputed iteratively until
convergence. Note that in the hitting paths case, the matrix that needs to be
rescaled in order to satisfy the margin constraints is

Th = Diag(σin)ZhDiag(σout). (55)

The computation of the Lagrange multipliers and the derived quantities for
the hitting bag-of-paths model is summarized in Algorithm 3.

3.4 Computation of other important quantities

The computation of the other interesting quantities is slightly different in the
hitting formalism, and shows some interesting new properties. They are re-
viewed in this section.
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3.4.1 The coupling matrix

Proposition 3.3. The coupling matrix for hitting paths Γh = (γhij) is given by

Γh = Diag(µh
in ◦ σin) Zh Diag(µh

out ◦ σout). (56)

Proof. The proof is similar to the proof of Proposition 2.5.

Notice that, for the hitting paths case, an alternative way of obtaining the
coupling matrix by pre-computing the directed free energy distances is discussed
in Subsection 4.3 (see Equation (71)).

3.4.2 The optimal free energy

Proposition 3.4. The value of the free energy at the optimal distribution P?h
is

FEh(P?h) = −
(
(λh

in)>σin + (λh
out)
>σout

)
. (57)

Proof. The proof is similar to the proof of Proposition 2.6.

3.4.3 The expected number of visits to an edge

Proposition 3.5. The matrix N̄h, containing the expected number of times an
edge (i, j) appears on a hitting path, is given by

N̄h =
(
(e÷ µh

out)(e÷ µh
in)> − (ZhDiag(σout)Zh)>

)
◦ (Diag(Z)W), (58)

where Diag(Z) is a diagonal matrix containing the main diagonal of Z and ◦
is the elementwise matrix product.

Proof. Let n̄hij be the expected number of times edge (i, j) appears on a path
drawn according to Ph(℘), i.e.,

n̄hij ,
∑
k,l∈V

∑
℘kl∈Ph

kl

Ph(℘kl) η(i→ j ∈ ℘kl),

where η(i→ j ∈ ℘kl) denotes the number of times the edge (i, j) is visited along
hitting path ℘kl. By a reasoning similar to (39) we get

n̄hij = − 1
β

∑
k,l∈V

µh,in
k σin

k µ
h,out
l σout

l

∂zhkl
∂cij

.

This time, we have (Kivimäki et al., 2016, Equation (11)),

∂zhkl
∂cij

=
∂ (zkl/zll)

∂cij
= −βwij

(
zkizjl
zll

− zklzlizjl
z2ll

)
,

leading to

n̄hij =
∑
k,l∈V

µh,in
k σin

k µ
h,out
l σout

l

zll

(
zki −

zklzli
zll

)
wijzjl. (59)
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From (56), and recalling that zhkl = zkl/zll, we get (µh,in
k σin

k µ
h,out
l σout

l )/zll =
γhkl/zkl, where γhkl is element k, l of the coupling matrix (see Equation (56)),
thus

n̄hij =
∑
k,l∈V

γhkl

(
zki
zkl
− zli
zll

)
wijzjl =

∑
k,l∈V

γhkln̄
(kl)
ij , (60)

and n̄
(kl)
ij ,

(
zki
zkl
− zli

zll

)
wijzjl is the expected number of times (i, j) is visited

when the starting node is fixed to k and the ending node to l, as shown in
(Kivimäki et al., 2016, Equation (12)). Within the constrained bag-of-hitting-
paths formalism, this quantity is simply the average over all starting and ending
nodes, weighted by the coupling probabilities, Γh. In fact, n̄hij can be seen as
a weighted randomized shortest-paths (RSP) betweenness centrality for edges,
compared to the unweighted RSP betweenness centrality defined in (Kivimäki et
al., 2016). More precisely, this quantity provides a weighted group betweenness
between the two sets of nodes, In and Out.

While the decomposition (60) of n̄hij provides an interesting analogy, we will
use another expression to actually compute this quantity. From (59) with the
help of (53) and (54), we get

n̄hij =

(
1

µh,out
i µh,in

j

−
∑
l∈V

σout
l zhliz

h
jl

)
ziiwij , (61)

which provides the expression for computing N̄h , (n̄hij).

3.4.4 The expected number of visits to a node

Proposition 3.6. The vector n̄h, containing the expected number of times node
i appears on a hitting path drawn from a bag of hitting paths, is provided by

n̄h = Diag(Z)
[
(e÷ (µh

in ◦ µh
out))− diag(ZhDiag(σout)Zh)

]
+ σout, (62)

where diag(X) is a column vector containing the main diagonal of matrix X.

Proof. Let us define n̄hi , the expected number of times node i appears on a path
under Ph(℘), by

n̄hi ,
∑
℘∈Ph

Ph(℘) η(i ∈ ℘),

where η(i ∈ ℘) denotes the number of times node i is visited along hitting path
℘. Using (43) and (44) again, we get

n̄hi =
∑
j∈V

n̄hij + σout
i , (63)

which, after using (60) and
∑
j∈V wijzjl = zil − δil (Kivimäki et al., 2016,

Equation (13)), results in

n̄hi =
∑
k,l∈V

γhkln̄
(kl)
i + σout

i ,

where n̄
(kl)
i ,

(
zki
zkl
− zli

zll

)
zil is the number of times i is visited when starting in

k and ending in l, as defined in (Kivimäki et al., 2016). Notice that n̄
(kl)
i = 0
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Algorithm 3 Margin-constrained bag-of-hitting-paths algorithm

Input:
– The n × n non-negative adjacency matrix A of a strongly connected directed
graph, containing edge affinities.
– The n× n non-negative cost matrix C, containing edge costs.
– An input distribution vector σin of size n.
– An output distribution vector σout of size n.
– A scalar inverse temperature parameter β > 0.

Output:
– The coupling matrix Γh of size n× n.
– The minimum free energy scalar FEmin

h .
– The matrix N̄h of size n× n, containing the expected number of visits to each
edge (i, j).
– The vector n̄h of size n, containing the expected number of visits to each node.
– The resulting biased transition probabilities matrix Ph of size n×n (the policy).

1. D← Diag(Ae) . the out-degree matrix
2. Pref ← D−1A . the reference transition probabilities matrix
3. W← Pref ◦ exp[−βC] . the auxiliary matrix W; ◦ is the elementwise product
4. Z← (I−W)−1 . the fundamental matrix
5. Dh ← Diag(Z) . the column-normalization matrix for hitting paths probabili-

ties
6. Zh ← ZD−1

h . the column-normalized fundamental matrix
7. µh

out ← e . the initial Lagrange parameters vector for ouputs
8. repeat . main iteration loop
9. µh

in ← e÷
(
Zh

(
µh

out ◦ σout

))
. the update of input vector

10. µh
out ← e÷

(
Z>h
(
µh

in ◦ σin

))
. the update of output vector

11. until convergence
12. Γh ← Diag(µh

in ◦ σin) Zh Diag(µh
out ◦ σout) . the coupling matrix

13. FEmin
h ← 1

β
((log[µh

in])>σin +(log[µh
out])

>σout) . the minimum free energy value

14. N̄h ←
(
(e÷ µh

out)(e÷ µh
in)> − (ZhDiag(σout)Zh)>

)
◦ (Diag(Z)W) . the ma-

trix containing the expected number of visits to each edge
15. n̄h ← Diag(Z)

(
(e÷ (µh

in ◦ µh
out))− diag(ZhDiag(σout)Zh)

)
+ σout . the vec-

tor containing the expected number of visits to each node
16. Ph ← pinv(Diag(N̄he)) N̄h . the biased transition matrix (the policy)
17. return Γh, FEmin

h , N̄h, n̄h, Ph

when i = l and when k = l. Again, this quantity can be seen as a weighted RSP
betweenness centrality for sets of nodes, by analogy with the unweighted RSP
betweenness centrality defined in (Kivimäki et al., 2016, Equation (15)).

However, for computation, it is more convenient to apply the equivalent of
Equation (61). Following the same path as for the derivation of (61), we first
use

∑
j∈V wijzjl = zil − δil with (63) on (59), and then (53) and (54) in order

to get

n̄hi =

(
1

µh,out
i µh,in

i

−
∑
l∈V

σout
l zhliz

h
il

)
zii + σout

i , (64)

which provides the expression for computing the vector n̄h , (n̄hi ).
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3.4.5 The optimal randomized policy

Proposition 3.7. The biased random walk transition matrix, Ph = (phij), that
is, the randomized routing policy, is given by

phij ,
n̄hij∑
k∈V n̄

h
ik

=

(
1

µh,out
i µh,in

j

−
∑
l∈V σ

out
l zhliz

h
jl

)
(

1

µh,out
i µh,in

i

−
∑
l∈V σ

out
l zhliz

h
il

) wij . (65)

Proof. We get the result by combining (61), (63) and (64).

Again, we observed experimentally that this quantity converges to the ref-
erence transition matrix of the reference random walk when β → 0, i.e.,

phij −−−→
β→0

prefij .

Conversely, when β → ∞, the problem becomes an optimal transport on a
graph problem (see Subsection 6.2). Note that, for convenience, in Algorithm
3, matrix Ph , (phij) is computed thanks to

Ph = (Diag(N̄he))−1N̄h.

Let us now turn to a discussion of the relations between the proposed models
and the regularized optimal transport problem.

4 The regularized optimal transport problem anal-
ogy

In this section, we will show that both non-hitting (see Equation (5)) and hit-
ting (see Equation (48)) problems correspond to two different kinds of regu-
larization for the optimal transport problem (Ahuja et al., 1993; Guex et al.,
2017; Kantorovich, 1942; Villani, 2003, 2008). It therefore generalizes dis-
crete entropy-regularized optimal transport problems (Wilson, 1970; Erlander
& Stewart, 1990; Kapur & Kesavan, 1992) to a graph structure.

4.1 The optimal transport problem

General optimal transport is a well-known problem defined, for example, in
(Kantorovich, 1942; Villani, 2003, 2008), and the special case where the space
is a graph is easily derived from it (Guex et al., 2017). Assume we have a
subset of nodes In ∈ V, called sources, with a supply of a certain quantity of
matter, while we observe a demand of the same matter in another subset of
nodes, Out ∈ V, called targets. We suppose that the overall supply is equal to
the overall demand, thus these quantities on nodes can be represented, without
loss of generality, by their proportion of the total. In other words, supply and
demand are represented respectively by two discrete distribution vector σin and
σout, with

∑
i∈V σ

in
i =

∑
i∈V σ

out
i = 1 and σin

i , σ
out
i ≥ 0, ∀i ∈ V.

The goal of the optimal transport problem is to find an optimal attribution
plan or optimal coupling (Villani, 2003, 2008), i.e. a n× n matrix Γ, where γij
represents the proportion of matter going from i to j, in order to fulfill supply
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and demand. Optimality here means that the cost of transportation of this
attribution plan, i.e.

∑
i,j∈V γij cij where cij is the cost of transportation from

i to j, must be minimal. Altogether, we have

minimize
Γ

∑
i,j∈V γij cij

subject to
∑
j∈V γij = σin

i ∀i ∈ V,∑
i∈V γij = σout

j ∀j ∈ V,
γij ≥ 0 ∀i, j ∈ V.

(66)

Another interesting interpretation can be found in the dual optimal transport
problem (Guex et al., 2017; Villani, 2003, 2008), expressed by

maximize
λin,λout

∑
i∈V λ

in
i σ

in
i +

∑
j∈V λ

out
j σout

j

subject to λini + λoutj ≤ cij ∀i, j ∈ V.
(67)

Here, the dual vectors λin = (λini ) and λout = (λouti ) can be interpreted respec-
tively as the dual embarkment prices on sources and disembarkment prices on
targets, as shown in (Villani, 2003, 2008). This is a common property of the
dual problem in linear programming (Griva, Nash, & Sofer, 2009).

4.2 The standard optimal transport flow on a graph prob-
lem

For completeness, let us recall the standard (exact) transport flow problem on
a graph. The linear programming optimal transport flow problem is defined as
(Ahuja et al., 1993)

minimize
X

e>(X ◦C′)e

subject to
(
X−X>

)
e = σin − σout,

xij ≥ 0 ∀i, j ∈ V,
(68)

where C′ is the cost matrix containing non-negative costs on the edges of the
network with infinite components set to 0. As before, it is assumed that input
and output flows are non-negative as well as (σin)>e = (σout)

>e = 1. The idea
is therefore to minimize the total cost of flows while satisfying the input and
output constraints. The solution X = (xij) of this problem corresponds to the
matrix containing directed flows on the edges.

4.3 The regularized optimal transport problem

In order to show that the bag-of-paths formalism is closely related to the optimal
transport problem, we need to compute again the minimum free energy value
in terms of the elements of the coupling matrix γij , instead of the Lagrange
parameters λini , λ

out
j as in (37).

Let us start with the regular, non-hitting paths model. By inserting the
form taken by the optimal path probability distribution P?(℘), given by (23),
in the free energy functional (5) (similarly to the proof following Proposition
2.6), we obtain

FE(P?) = T
∑
i,j∈V

log(µin
i µ

out
j )

∑
℘ij∈Pij

P?(℘ij)

γij

,
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which directly provides from µin
i µ

out
j = γij/(σ

in
i αj ẑij) (see Equation (36)) and

γij =
∑
℘ij∈Pij P?(℘ij) (Equation (33))

FE(P?) = −T
∑
i,j∈V

log(ẑij) γij + T
∑
i,j∈V

γij log

(
γij
σin
i αj

)
. (69)

Following the same reasoning for the hitting paths formalism, we obtain

FEh(P?h) =
∑
i,j∈V

−T log(zhij)

φT (i,j)

γhij + T
∑
i,j∈V

γhij log

(
γhij

σin
i σ

out
j

)
. (70)

This shows that, instead of working with the whole probability distribution as
required by Equation (5), it is sufficient to compute the elements of the coupling
matrix γij if the quantities φT (i, j) are pre-computed.

Indeed, the resulting expression in the hitting formalism has a nice inter-
pretation. Indeed, in (Kivimäki et al., 2014) it was shown that in the sim-
ple randomized shortest-paths framework φT (i, j) , FEh(P?h) = −T log(zhij) is
known to be the minimum free energy when problem (2) is restricted to hit-
ting paths connecting a single source i to a single destination j. This quantity
corresponds to the pairwise directed free energy distance between nodes of a
graph introduced in (Kivimäki et al., 2014; Françoisse et al., 2017), where it is
proved that it is a distance metric. This distance provided competitive results
in pattern recognition tasks (Françoisse et al., 2017; Sommer, Fouss, & Saerens,
2016, 2017).

Moreover, it is shown in (Françoisse et al., 2017) that φT (i, j) converges
to the directed shortest path distance between i and j when T → 0, and to
the average first passage time (up to a scaling factor) between i and j when
T → ∞. The free energy distances between all pairs of nodes can easily be
computed in matrix form (Kivimäki et al., 2014; Françoisse et al., 2017; Fouss
et al., 2016). It has further been shown that, when computing the continuous
time – continuous state equivalent to the randomized shortest-paths model by
densifying the graph, the minimum free energy becomes a potential attracting
the agents to the goal state (Garćıa-Dı́ez, Vandenbussche, & Saerens, 2011).

From (70), once the directed free energy distances have been computed, we
observe that problem (48) can be restated as

minimize
Γh

∑
i,j∈V φT (i, j)γhij + T

∑
i,j∈V γ

h
ij log

(
γhij

σin
i σ

out
j

)
subject to

∑
j∈V γ

h
ij = σin

i ∀i ∈ V,∑
i∈V γ

h
ij = σout

j ∀j ∈ V,
γhij ≥ 0 ∀i, j ∈ V.

(71)

Knowing that the directed free energy distance φT (i, j) converges to the directed
shortest path distance when T → 0, we conclude that problem (71) reduces to
the optimal transport problem at this limit. Thus, problem (71) is actually
a “soft” (entropy regularized) optimal transport problem, similar to the one
studied in, e.g., (Wilson, 1970; Erlander & Stewart, 1990; Cuturi, 2013) and
based on the directed free energy distance (Kivimäki et al., 2014; Françoisse et
al., 2017; Fouss et al., 2016), monitored by temperature.
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Therefore, in the case of hitting paths, an alternative way of solving the
entropy-regularized optimal transport on a graph problem (48) is to pre-compute
the free energy distances φT (i, j) and then solve problem (71) (see (Cuturi, 2013)
for a recent discussion).

The non-hitting problem is another regularization of the optimal transport
problem as both (69) and (70) converge to the same limit when T → 0. As a
matter of fact, when T → 0, ẑij and zhij have the same limit, as the effect of
αi vanishes in the first case and zjj → 1 in the second case. In contrast, these
two formalisms diverge when T → ∞. The hitting paths formalism converges
to the problem described in (Guex et al., 2017), and thus results in the trivial,
independent, coupling γhij = σin

i σ
out
j when T →∞, while the non-hitting paths

formalism provides a more interesting solution, though harder to interpret (see
Equation (69)). Actually, following the derivations appearing so far in this paper
and results discussed in (Guex, 2016), it appears that the high temperature limit
of the non-hitting formalism corresponds, in the case of an undirected graph, to
the electrical circuit formalism, where sources and targets correspond to nodes
with potentials fixed by the user (a high potential on sources and a low potential
on targets) (see (Guex, 2016) for details). A study of this interesting question
is left for further work.

Interestingly, Equations (37) and (57) give two different, alternative, expres-
sions for the minimal free energy, which are equivalent to the objective function
of the dual optimal transport problem (with Lagrange multipliers correspond-
ing to the dual variables multiplied by −1). It implies that, when T → 0, −λin

and −λout (and equivalently, −λh
in and −λh

out) converge respectively to the dual
embarkment prices on sources and disembarkment prices on targets. Therefore,
a mapping of these variables on nodes can highlight problematic sources and
targets, in terms of optimal transport (see, e.g., (Guex et al., 2017)).

4.4 The optimal transportation flow

Within the context of the optimal transport problem, it is interesting to discuss
the interpretation of the matrix containing the expected number of visits to
edges, i.e., N̄ = (n̄ij). Note that the discussion is developed within the non-
hitting formalism, but remains valid in the hitting case.

In Section 2.5.4, the number of times node i appears on a path ℘ was de-
composed in η(i ∈ ℘) =

∑
j∈V η(i → j ∈ ℘) + δ(E(℘) = i) (Equation (43)),

leading to n̄i =
∑
j∈V n̄ij +σout

i (Equation (44)). However, it is also possible to
write

η(i ∈ ℘) =
∑
j∈V

η(j → i ∈ ℘) + δ(S(℘) = i),

where δ(S(℘) = i) is 1 iff ℘ begins with i and 0 otherwise. This second version
results in having

n̄i =
∑
j∈V

n̄ji + σin
i ,

and combining this result with (44), we obtain∑
j∈V

n̄ij −
∑
j∈V

n̄ji = σin
i − σout

i , ∀i ∈ V.
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This last equation shows that n̄ij can be interpreted as a directed flow on edges,
as shown in (Guex, 2016). This flow is emitted by sources, absorbed by targets,
and conserved everywhere else. Mapping this flow allows us to analyse the
transportation of matter along the edges of the graph, and is illustrated in
Section 6. In (Guex, 2016), it is shown that the net flow on an undirected graph,
i.e. n̄ij− n̄ji, converges to the electrical flow for the non-hitting formalism when
T → ∞. Furthermore, in the hitting formalism, summing the absolute values
of the net flows over the edges results in a weighted randomized shortest path
(RSP) net betweenness centrality (Kivimäki et al., 2016). For an unweighted
graph, the standard, unweighted RSP net betweenness converges to the current
flow betweenness in the limit T → ∞ (Newman, 2005; Brandes & Fleischer,
2005).

5 Derived distances and dissimilarities

Two general families of distances are derived from our framework: distances
between nodes and dissimilarities between groups of nodes (both for the non-
hitting and the hitting case).

5.1 Distances between nodes

Let us first discuss distances between nodes.

5.1.1 Definitions

For both the hitting and non-hitting formalism, we can now define a distance
named the surprisal distance, generalizing the one introduced in (Françoisse et
al., 2017; Kivimäki et al., 2014). The particularity here is that we can attach
positive weights w = (wi) (with wi > 0 and summing to 1) to nodes, which affect
the distances through σin and σout. More precisely, for a strongly connected
graph, we define the margin-constrained bag-of-paths surprisal distance ∆sur =
(∆sur
ij ), and margin-constrained bag-of-hitting-paths surprisal distance, ∆h

sur =

(∆h,sur
ij ) by, respectively,

∆
sur
ij ,

{
− 1

2 (log(γij) + log(γji)) if i 6= j,
0 if i = j,

(72)

∆
h,sur
ij ,

{
− 1

2 (log(γhij) + log(γhji)) if i 6= j,
0 if i = j,

(73)

where Γ = (γij) and Γh = (γhij) (the elements of the coupling matrix, see
Sections 2.5.1 and 3.4.1) are obtained from, respectively, the non-hitting and
hitting path formalisms with σin = σout = w. From this definition, each node
acts as a source and a target and larger weights induce a stronger influence over
the graph, as the flows along the paths starting and ending in a particular node
will scale accordingly.

Proposition 5.1. The margin-constrained bag-of-paths surprisal distance, ∆sur,
defined in (72), and the margin-constrained bag-of-hitting-paths surprisal dis-
tance, ∆h

sur defined in (73), are both metrics.
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Proof. The triangle inequality for both surprisal distances, i.e., ∆sur
ij ≤ ∆

sur
ik +

∆
sur
kj is trivially proven if i = k, i = k or j = k. So we will assume here that

i 6= j 6= k 6= i.

Non-hitting formalism. First, notice that the reasoning found in Appendix
B of (Françoisse et al., 2017) is still valid with the non-hitting reference prob-
abilities derived in Section 2.3, namely, we have π̂ref(℘ij) = π̂ref(℘h

ij)π̂
ref(℘jj)

and c̃(℘ij) = c̃(℘h
ij) + c̃(℘jj), where ℘h

ij is the hitting path consisting of the first
part of ℘ij , until it reaches j for the first time, and ℘jj is the remaining part of
℘ij . Thus, we also have

ẑij = ẑhij ẑjj , (74)

where ẑhij ,
∑
℘h
ij∈Ph

ij
π̂ref(℘h

ij) exp(−βc̃(℘h
ij)). Now, it is easy to see that, for

the optimal path probabilities obtained in (23),

P(S = i, E = j) ≥ P(S = i, k ∈ ℘,E = j) ,
∑

℘ij∈Pij

δ(k ∈ ℘ij)P?(℘ij), (75)

where δ(k ∈ ℘ij) is equal to 1 if node k lies on path ℘ij and 0 otherwise. By
developing with (23), we obtain

P(S = i, k ∈ ℘,E = j) = µin
i σ

in
i µ

out
j αj

∑
℘ij∈Pij

δ(k ∈ ℘ij)π̂ref(℘ij) exp(−βc̃(℘ij))

= µin
i σ

in
i µ

out
j αj

∑
℘h
ik∈P

h
ik

π̃ref(℘h
ik) exp(−βc̃(℘h

ik))
∑

℘kj∈Pkj

π̂ref(℘kj) exp(−βc̃(℘kj))

= µin
i σ

in
i µ

out
j αj ẑ

h
ikẑkj ,

where each path from i to j is again cut in two sequential sub-paths.
Then, using Equations (74) and (36) provides

P(S = i, k ∈ ℘,E = j) =
µin
i σ

in
i µ

out
k αkẑikµ

in
k σ

in
k µ

out
j αj ẑkj

µin
k σ

in
k µ

out
k αkẑkk

=
P(S = i, E = k)P(S = k,E = j)

P(S = k,E = k)
.

Using the inequality in (75) and P(S = k,E = k) ≤ 1, we get

− log(P(S = i, E = j)) ≤ − log(P(S = i, E = k))− log(P(S = k,E = j)),

which proves the triangle inequality for the non-hitting surprisal distance for
i 6= j 6= k 6= i.

Hitting formalism. The reasoning is similar to the previous case. First let
us consider

Ph(S = i, E = j) = µh,in
i σin

i µ
h,out
j σout

j zhij = µh,in
i σin

i µ
h,out
j σout

j

zij
zjj

≥ µh,in
i σin

i µ
h,out
j σout

j

∑
℘ij∈Pij δ(k ∈ ℘ij)π̃

ref(℘ij) exp(−βc̃(℘ij))
zjj

.

(76)
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And again,

µh,in
i σin

i µ
h,out
j σout

j

∑
℘ij∈Pij δ(k ∈ ℘ij)π̃

ref(℘ij) exp(−βc̃(℘ij))
zjj

=
µh,in
i σin

i µ
h,out
j σout

j

zjj

∑
℘h
ik∈P

h
ik

π̃ref(℘h
ik) exp(−βc̃(℘h

ik))
∑

℘kj∈Pkj

π̃ref(℘kj) exp(−βc̃(℘kj))

=
µh,in
i σin

i µ
h,out
k σout

k zhik µ
h,in
k σin

k µ
h,out
j σout

j zhkj

µh,in
k σin

k µ
h,out
k σout

k

=
Ph(S = i, E = k)Ph(S = k,E = j)

Ph(S = k,E = k)
,

where we used zhkk = 1. With (76) and Ph(S = k,E = k) ≤ 1, we finally obtain

− log(Ph(S = i, E = j)) ≤ − log(Ph(S = i, E = k))− log(Ph(S = k,E = j)),

which shows the triangle inequality for the hitting surprisal distance for i 6= j 6=
k 6= i.

5.2 Distances between groups of nodes

A different family of dissimilarities naturally arises from the optimal transport
interpretation of the margin-constrained BoP formalism, namely dissimilarities
between groups of nodes. These dissimilarities can be viewed as an extension
of the Wasserstein distance between node distributions on a graph, also known
under the name of the Monge-Kantorovich distance or the earth mover distance
in the literature (see e.g. (Dobrushin, 1970; Villani, 2003, 2008; Zolotarev,
1983)).

This dissimilarity is defined as the total cost of transportation in order to
move from the distribution on source nodes, σin, to the distribution on target
nodes, σout. Similarly to the usual free energy distance described in (Kivimäki
et al., 2014; Françoisse et al., 2017), interpolating between the shortest path
distance and the commute cost distance (which is proportional to the resistance
distance for undirected graphs), the margin-constrained BoP formalism uses
the value of the free energy functional in order to derive a dissimilarity which
interpolates between the Wasserstein distance and an electrical circuit-based
dissimilarity between groups of node.

5.2.1 Definitions

Let G be a directed, strongly connected, graph with n nodes, weighted by vector
w. Suppose we have p groups of nodes, and the membership matrix M = (mig)
with mig ≥ 0 and

∑p
g=1mig = 1, represents the membership degree of node i

to group g (fuzzy memberships are allowed). From that, we can compute the
node distribution in group g, σg = (σgi ), as , e.g.,

σgi =
wimig∑
j∈V wjmjg

.

Then, as for the standard free energy distance between two nodes (Kivimäki et
al., 2014, see this paper for details), the bag-of-paths free energy dissimilarity
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between groups g and h is defined as the symmetrized minimum free energy
between these two groups of nodes

∆
FE
gh ,

{
1
2 (FEmin(σg,σh) + FEmin(σh,σg)) if i 6= j,
0 if i = j,

(77)

and the bag-of-hitting-paths free energy dissimilarity between groups g and h by

∆
h,FE
gh ,

{
1
2 (FEmin

h (σg,σh) + FEmin
h (σh,σg)) if i 6= j,

0 if i = j,
(78)

where FEmin(σin,σout) is the non-hitting free energy (37), and FEmin
h (σin,σout)

the hitting free energy (57), with starting and ending node flows respectively
equal to σin and σout. By definition of the free energy, we are sure that this
quantity is always positive. When T → 0, the dissimilarity between groups g
and h will yield the optimal cost of transportation from group g to h and from
group h to g, which is obviously a metric (Dobrushin, 1970; Villani, 2003, 2008;
Zolotarev, 1983). It is, however, possible that this dissimilarity is not a metric
anymore for other values of T .

From a computational point of view, there exists an important difference
between the bag-of-hitting-paths and the bag-of-paths algorithms computing
their respective free energy dissimilarities. As a matter of fact, in the hitting
formalism, the matrix Zh is only computed once, and dissimilarities between
each pair of groups can be obtained afterward by solely changing the values of
σin and σout in the iterative procedure defined by (53) and (54). It is however
impossible to proceed that way for the non-hitting formalism, as the computa-
tion of Ẑ requires the values of σin and σout. Therefore, the bag-of-hitting-paths
distances are obtained in a more efficient way than the bag-of-paths distances.

6 Some illustrations

Although the main contribution of this work lies in the theoretical development
of the margins constrained bag-of-paths models, we provide here an illustration
of the algorithms on a toy example. The bag-of-paths formalism (as well as the
bag-of-hitting-paths, as they converge to the same solution when T → 0) defines
an efficient way to find an approximate solution of the transportation problem
on a graph. Moreover, by varying the temperature of the model, we can add
uncertainty to the optimal paths and offer a flexible, stochastic, alternative to
the optimal solution. With this feature, we can, e.g., pinpoint target nodes for
which the optimal source coupling is most unclear. In a practical setting, when
focusing on a deterministic transportation policy, this can help in evaluating
the importance of each source-target coupling decision. Unlike other efficient
optimal transport solvers, the algorithm here provides not only the coupling be-
tween pairs of nodes, but also the flows on edges. Knowing the most frequented
edges could be a major asset for real-life applications, for example in order to
forecast network traffic. This section illustrates this idea on a toy graph (a
10 × 10 lattice). In addition, we evaluate the computational efficiency of Al-
gorithms 2 and 3 by comparing the computation times with a baseline linear
solver on lattices of different sizes.
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(a) cBoP, β = 10−3 (b) cBoHP, β = 10−3

(c) cBoP, β = 10−1 (d) cBoP, β = 10

Figure 1: Resulting coupling Γ and edge flows N̄ for the margin-constrained
bag-of-paths (cBoP) and the margin-constrained bag-of-hitting-paths (cBoHP)
models, for different values of β. Source nodes are represented by a square and
targets by a circle. Γ is shown on targets by a color interpolation representing
their membership to corresponding sources (the membership of target j to source
i is P(S = i|E = j) = γij/σ

out
j ). N̄ is represented on edges.
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6.1 Illustrations on a 10× 10 lattice

In this illustrative example, 5 random nodes were picked with σin
i = 0.2 and

50 others with σout
i = 0.02. The resulting coupling Γ and flows on edges N̄

are represented in Figure 1 for the constrained bag-of-paths (cBoP) and the
constrained bag-of-hitting-paths (cBoHP), with different values of β. In this
figure, target nodes j are colored to represent their distribution of membership
over sources, i.e. P(S = i|T = j) = γij/σ

out
j , and edge colors display the flows,

N̄.
We observe that results obtained by the bag-of-paths model and the bag-

of-hitting-paths model are quite different for β = 10−3 (Figure 1, top row):
the bag-of-paths model displays a behavior similar to a diffusive process, with
edges near sources drawn more frequently, which is known to be similar to the
electrical current (Ahuja et al., 1993; Doyle & Snell, 1984; Guex, 2016). On
the other hand, the bag-of-hitting-paths solution for β = 10−3 is quite trivial,
with a uniform distribution of memberships of every target j to sources and the
flow almost similar on every edge. In contrast, when the temperature is low,
both models converge to the same solution and, to avoid redundancy, only the
bag-of-paths model is shown here (Figure 1, bottom row). With β = 10, this
model displays an optimal transport solution, with only shortest paths followed
and almost deterministic distributions of targets-to-sources memberships.

Therefore, in the present problem, the constrained bag-of-hitting-paths is
perhaps less useful than the constrained bag-of-paths when the parameter β is
close to zero. However, this depends on the application at hand and, essentially,
on the desired behaviour of the system when β → 0, either the solution of an
electrical circuit or the independence between sources and destinations.

6.2 Comparison of computation time

To assess the computation time of the constrained bag-of-paths and bag-of-
hitting-paths algorithms, we compare them to the open-source Computational
Infrastructure for Operations Research (Coin-or) linear programming solver (clp)
written in C++ (Lougee-Heimer, 2003), which is considered as an efficient base-
line algorithm for finding the coupling and the flow of the exact optimal trans-
port problem (see Equation (68)). We run the algorithms on lattices of various
dimensions in order to increase the number of nodes n. The number of source
nodes and target nodes are set to be both bn/3c (rounded down) with similar
weights, and their locations are randomly selected.

The results are presented in Figure 2. We can observe that on large graphs,
both hitting and non-hitting bag-of-paths algorithms perform much faster than
the linear programming baseline, with a slight advantage for the hitting al-
gorithm. This was already observed in (Cuturi, 2013) for entropy regularized
optimal transport problems. All results were obtained with Julia (version 0.5.0)
running on an Intel Xeon with 2× 8 3.6GHz processors and 128 GB of RAM.

7 Conclusion

This work extends the bag-of-paths framework introduced in (Mantrach et al.,
2010; Françoisse et al., 2017) by allowing the user to set constraints on the start-
ing and ending nodes of paths, σin and σout. Like its predecessor, this formalism
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Figure 2: Computation times for, respectively, the open-source “Coin-or” linear
programming solver (clp, blue), the margin-constrained bag-of-paths algorithm
(cbop, red), and the margin-constrained bag-of-hitting-paths algorithm (cbopH,
green) on lattices containing n nodes (x-axis), bn/3c sources and bn/3c targets
with uniform weights.

is derived for two types of paths, non-hitting paths and hitting paths. It also de-
pends on a user-defined parameter, the temperature T > 0, according to which
the model interpolates between a deterministic optimal policy and a completely
random behavior. Both the non-hitting and hitting paths formalisms allow the
computation of various quantities: the coupling, γij = P(S = i, E = j); the
expected number of times a node appears on the paths (a betweenness value),
n̄i; and the optimal policy defining a biased random walk with transition prob-
abilities pij . All these quantities are expressed in terms of three computational
elements: a fundamental matrix Z, also found in (Françoisse et al., 2017), and
Lagrange multipliers λin and λout.

The addition of the set of constraints over starting and ending node distri-
butions adds flexibility to its unconstrained predecessor, and yields interesting
connections with other models. When T → 0+, both the non-hitting and hit-
ting formalisms are shown to be similar, and converge to a solution of the
optimal transport on a graph problem. Unlike most algorithms solving the
transportation problem, both bag-of-paths formalisms not only give sources-to-
targets attributions, i.e. the coupling γij , but also corresponding embarkment
and disembarkment prices (with λin and λout) and the flow on edges (n̄ij),
while running with a competitive computation time compared to a baseline lin-
ear solver. In contrast, when T → 0, each formalism behaves differently, each
having its own merits. The non-hitting formalism converges to the electrical
solution, with starting and ending node distributions corresponding to differ-
ent potentials defined on nodes, and the hitting formalism, which is faster to
compute, converges to the trivial, independent coupling.

These constraints also enlarge the range of applications of the bag-of-paths
formalism, and it was shown here how to derive two families of dissimilarities
from it. The first family of dissimilarities is defined as the surprisal distance
between nodes, and constraints on starting and ending nodes provide a way to
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associate weights on nodes. The second family of dissimilarities is the free energy
dissimilarity between groups of nodes. For the moment, these dissimilarities are
quite theoretical and their applications are not explored in this paper. However,
future research will investigate the use of these new dissimilarities in semi-
supervised classification, hierarchical clustering, as well as other applications.

Generally speaking, the flexibility and the richness of this model could lead
to different use cases, and future investigations will aim at finding various ap-
plications of the different introduced quantities. An on-going study will also
investigate the introduction of flow constraints in the bag-of-paths framework.
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Walloon region, Belgium. Ilkka Kivimäki was partially funded by Emil Aaltonen
Foundation, Finland. We thank these institutions for giving us the opportunity
to conduct both fundamental and applied research.

We also thank the anonymous reviewers and the editor whose remarks al-
lowed to improve significantly the manuscript.

References

Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows: theory,
algorithms, and applications. Prentice Hall.

Akamatsu, T. (1996). Cyclic flows, Markov process and stochastic traffic as-
signment. Transportation Research B , 30 (5), 369–386.

Alamgir, M., & von Luxburg, U. (2011). Phase transition in the family of
p-resistances. In Advances in neural information processing systems 24:
Proceedings of the NIPS ’11 conference (p. 379-387). MIT Press.

Bacharach, M. (1965). Estimating nonnegative matrices from marginal data.
International Economic Review , 6 (3), 294–310.

Barabási, A.-L. (2016). Network science. Cambridge University Press.
Bavaud, F., & Guex, G. (2012). Interpolating between random walks and

shortest paths: a path functional approach. In International conference
on social informatics (pp. 68–81).

Brandes, U., & Fleischer, D. (2005). Centrality measures based on current
flow. In Proceedings of the 22nd annual symposium on theoretical aspects
of computer science (STACS ’05) (pp. 533–544).

Chebotarev, P. (2011). A class of graph-geodetic distances generalizing the
shortest-path and the resistance distances. Discrete Applied Mathematics,
159 (5), 295–302.

Chebotarev, P. (2012). The walk distances in graphs. Discrete Applied Mathe-
matics, 160 (10–11), 1484–1500.

Chebotarev, P. (2013). Studying new classes of graph metrics. In F. Nielsen
& F. Barbaresco (Eds.), Proceedings of the 1st international conference
on geometric science of information (GSI ’13) (Vol. 8085, pp. 207–214).
Springer.

38



Chung, F. R., & Lu, L. (2006). Complex graphs and networks. American
Mathematical Society.

Courty, N., Flamary, R., Tuia, D., & Rakotomamonjy, A. (2017). Optimal
transport for domain adaptation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 39 (9), 1853-1865.

Cover, T. M., & Thomas, J. A. (2006). Elements of information theory, 2nd
ed. John Wiley and Sons.

Cuturi, M. (2013). Sinkhorn distances: lightspeed computation of optimal
transport. In Advances in neural information processing systems 26: Pro-
ceedings of the NIPS ’13 conference (p. 2292-2300). MIT Press.

Dobrushin, R. L. (1970). Prescribing a system of random variables by con-
ditional distributions. Theory of Probability & Its Applications, 15 (3),
458–486.

Doyle, P. G., & Snell, J. L. (1984). Random walks and electric networks. The
Mathematical Association of America.

Erlander, S., & Stewart, N. (1990). The gravity model in transportation analysis.
theory and extensions. VSP International Science Publishers.

Estrada, E. (2012). The structure of complex networks. Oxford University
Press.

Fang, S., Rajasekera, J., & Tsao, H. (1997). Entropy optimization and mathe-
matical programming. Springer.
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Garćıa-Dı́ez, S., Vandenbussche, E., & Saerens, M. (2011). A continuous-
state version of discrete randomized shortest-paths. Proceedings of the
50th IEEE International Conference on Decision and Control (IEEE CDC
2011), 6570-6577.

Graybill, F. (1983). Matrices with applications in statistics. Wadsworth Inter-
national Group.

Grinstead, C., & Snell, J. L. (1997). Introduction to probability (2nd ed.). The
Mathematical Association of America.

Griva, I., Nash, S. G., & Sofer, A. (2009). Linear and nonlinear optimization:
Second edition. Society for Industrial and Applied Mathematics (SIAM).

Guex, G. (2016). Interpolating between random walks and optimal transporta-
tion routes: Flow with multiple sources and targets. Physica A: Statistical
Mechanics and its Applications, 450 , 264–277.

Guex, G., & Bavaud, F. (2015). Flow-based dissimilarities: shortest path, com-
mute time, max-flow and free energy. In B. Lausen, S. Krolak-Schwerdt,
& M. Bohmer (Eds.), Data science, learning by latent structures, and
knowledge discovery (Vol. 1564, pp. 101–111). Springer.

Guex, G., Emmanouilidis, T., & Bavaud, F. (2017). Transportation clustering:
a regularized version of the optimal transportation problem. (Submitted

39



for publication)
Hara, K., Suzuki, I., Shimbo, M., Kobayashi, K., Fukumizu, K., & Radovanovic,

M. (2015). Localized centering: Reducing hubness in large-sample data. In
Proceedings of the 29th AAAI conference on artificial intelligence (AAAI
’15) (pp. 2645–2651).

Hashimoto, T., Sun, Y., & Jaakkola, T. (2015). From random walks to distances
on unweighted graphs. In Advances in neural information processing sys-
tems 28: Proceedings of the NIPS ’15 conference (p. 3429-3437). MIT
Press.

Herbster, M., & Lever, G. (2009). Predicting the labelling of a graph via
minimum p-seminorm interpolation. In Proceedings of the 22nd conference
on learning theory (COLT ’09) (pp. 18–21).

Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical
Review , 106 , 620–630.

Kantorovich, L. V. (1942). On the translocation of masses. Doklady Akademii
Nauk SSSR, 37 (7-8), 227–229.

Kapur, J. N. (1989). Maximum-entropy models in science and engineering.
Wiley.

Kapur, J. N., & Kesavan, H. K. (1992). Entropy optimization principles with
applications. Academic Press.
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