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Abstract

Statistical inference on graphs often proceeds via spectral methods involving low-
dimensional embeddings of matrix-valued graph representations, such as the graph
Laplacian or adjacency matrix. In this paper, we analyze the asymptotic information-
theoretic relative performance of Laplacian spectral embedding and adjacency spectral
embedding for block assignment recovery in stochastic block model graphs by way of
Chernoff information. We investigate the relationship between spectral embedding per-
formance and underlying network structure (e.g. homogeneity, affinity, core-periphery,
(un)balancedness) via a comprehensive treatment of the two-block stochastic block
model and the class of K-block models exhibiting homogeneous balanced affinity struc-
ture. Our findings support the claim that, for a particular notion of sparsity, loosely
speaking, “Laplacian spectral embedding favors relatively sparse graphs, whereas adja-
cency spectral embedding favors not-too-sparse graphs.” We also provide evidence in
support of the claim that “adjacency spectral embedding favors core-periphery network
structure.”
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1 Preface

The stochastic block model (SBM) (Holland et al., 1983) is a simple yet ubiquitous network

model capable of capturing community structure that has been widely studied via spectral

methods in the mathematics, statistics, physics, and engineering communities. Each vertex

in an n-vertex K-block SBM graph belongs to one of the K blocks (communities), and the

probability of any two vertices sharing an edge depends exclusively on the vertices’ block

assignments (memberships).

This paper provides a detailed comparison of two popular spectral embedding procedures by

synthesizing recent advances in random graph limit theory. We undertake an extensive in-

vestigation of network structure for stochastic block model graphs by considering sub-models

exhibiting various functional relationships, symmetries, and geometric properties within the

inherent parameter space consisting of block membership probabilities and block edge prob-

abilities. We also provide a collection of figures depicting relative spectral embedding per-

formance as a function of the SBM parameter space for a range of sub-models exhibiting

different forms of network structure, specifically homogeneous community structure, affinity

structure, core-periphery structure, and (un)balanced block sizes (see Section 5).

The rest of this paper is organized as follows.

• Section 2 introduces the formal setting considered in this paper and contextualizes this

work with respect to the existing statistical network analysis literature.

• Section 3 establishes notation, presents the generalized random dot product graph

model of which the stochastic block model is a special case, defines the adjacency and

Laplacian spectral embeddings, presents the corresponding spectral embedding limit

theorems, and specifies the notion of sparsity considered in this paper.

• Section 4 motivates and formulates a measure of large-sample relative spectral embed-

ding performance via Chernoff information.

• Section 5 presents a treatment of the two-block SBM and certain K-block SBMs

2



whereby we elucidate the relationship between spectral embedding performance and

network model structure.

• Section 6 offers further discussion and some concluding remarks.

• Section 7 provides additional details intended to supplement the main body of this

paper.

2 Introduction

Formally, we consider the following stochastic block model setting.

Definition 1 (K-block stochastic block model (SBM)). Let K ≥ 2 be a positive integer

and π be a vector in the interior of the (K − 1)-dimensional unit simplex in RK . Let

B ∈ (0, 1)K×K be a symmetric matrix with distinct rows. We say (A, τ ) ∼ SBM(B,π) with

scaling factor 0 < ρn ≤ 1 provided the following conditions hold. Firstly, τ ≡ (τ1, . . . , τn)

where τi are independent and identically distributed (i.i.d.) random variables with P[τi =

k] = πk. Then,A ∈ {0, 1}n×n denotes a symmetric (adjacency) matrix such that, conditioned

on τ , for all i ≤ j, the entries Aij are independent Bernoulli random variables with E[Aij] =

ρnBτi,τj . If only A is observed, namely if τ is integrated out from (A, τ ), then we write

A ∼ SBM(B,π).1 N

The SBM is an example of an inhomogeneous Erdős–Rényi random graph model (Bollobás

et al., 2007) and reduces to the classical Erdős–Rényi model (Erdős and Rényi, 1959) in

the degenerate case when all the entries of B are identical. This model enjoys an extensive

body of literature focused on spectral methods (von Luxburg, 2007) for statistical estima-
1The distinct row assumption removes potential redundancy with respect to block connectivity and la-

beling. Namely, if rows k and k′ of B′ are identical, then their corresponding blocks are indistinguishable

and can without loss of generality be merged to form a reduced block edge probability matrix B with cor-

responding combined block membership probability πk + πk′ . We also remark that Definition 1 implicitly

permits vertex self-loops, a choice that we make for mathematical expediency. Whether or not self-loops are

disallowed does not alter the asymptotic results and conclusions presented here.
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tion, inference, and community detection, including Fishkind et al. (2013); Lei and Rinaldo

(2015); McSherry (2001); Rohe et al. (2011); Sarkar and Bickel (2015); Sussman et al. (2014).

Considerable effort has also been devoted to the information-theoretic and computational

investigation of the SBM as a result of interest in the community detection problem; for

an overview see Abbe (2018). Popular variants of the SBM include the mixed-membership

stochastic block model (Airoldi et al., 2008) and the degree-corrected stochastic block model

(Karrer and Newman, 2011).

Within the statistics literature, substantial attention has been paid to the class of K-block

SBMs with positive semidefinite block edge probability matrices B. This is due in part

to the extensive study of the random dot product graph (RDPG) model (Athreya et al.,

2018; Nickel, 2006; Young and Scheinerman, 2007), a latent position random graph model

(Hoff et al., 2002) which includes positive semidefinite SBMs as a special case. Notably, it

was recently shown that for the random dot product graph model, both Laplacian spectral

embedding (LSE; see Definition 3) and adjacency spectral embedding (ASE; see Definition 3)

behave approximately as random samples from Gaussian mixture models (Athreya et al.,

2016; Tang and Priebe, 2016). In tandem with these limit results, the concept of Chernoff

information (Chernoff, 1952) was employed in Tang and Priebe (2016) to demonstrate that

neither Laplacian nor adjacency spectral embedding dominates the other for subsequent

inference as a spectral embedding method when the underlying inference task is to recover

vertices’ latent block assignments. In doing so, the results in Tang and Priebe (2016) clarify

and complete the groundbreaking work in Sarkar and Bickel (2015) on comparing spectral

clusterings for stochastic block model graphs.

In Tang and Priebe (2016) the authors leave open the problem of comprehensively inves-

tigating Chernoff information as a measure of relative spectral embedding performance for

stochastic block model graphs. Moreover, they do not investigate how relative spectral

embedding performance corresponds to underlying network model structure. This is un-

derstandable, since the positive semidefinite restriction on B limits the possible network

structure that can be investigated under the random dot product graph model.
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More recently, the limit theory in Tang and Priebe (2016) was extended in Rubin-Delanchy

et al. (2017) to hold for all SBMs within the more flexible framework of the generalized

random dot product graph (GRDPG) model. These developments now make it possible to

conduct a more comprehensive Chernoff-based analysis, and that is precisely the aim of this

paper. We set forth to formulate and analyze a criterion based on Chernoff information

for quantifying relative spectral embedding performance which we then further consider in

conjunction with underlying network model structure. The investigation carried out in this

paper is, to the best of our knowledge, among the first of its kind in the study of statistical

network analysis and random graph inference.

This paper focuses on the following two models which have garnered widespread interest

(e.g. see Abbe (2018) and the references therein).

1. The two-block SBM with B =
[
a b
b c

]
and π = (π1, 1− π1) where a, b, c, π1 ∈ (0, 1);

2. The K ≥ 2 block SBM exhibiting homogeneous balanced affinity structure, i.e.Bij = a

for all i = j, Bij = b for all i 6= j, 0 < b < a < 1, and π = ( 1
K
, . . . , 1

K
) ∈ RK .

Using the concept of Chernoff information (Section 4), we obtain an information-theoretic

summary characteristic ρ? ≡ ρ?(B,π) such that the cases ρ? > 1, ρ? < 1, and ρ? = 1

correspond to the preference of spectral embedding procedure based on approximate large-

sample relative performance, summarized as ASE > LSE, ASE < LSE, and ASE = LSE,

respectively. The above models’ low-dimensional parameter spaces facilitate visualizing and

analyzing the relationship between network structure (i.e. SBM(B,π)) and embedding per-

formance (i.e. ρ?(B,π)).

This paper considers the task of performing inference on a single large graph. As such, we

interpret the notion of sparsity in reference to the magnitudes of probability parameters,

namely the magnitudes of the entries of B. This notion of sparsity corresponds to the

interpretation and intuition of a practitioner wanting to do statistics with an observed graph.

We shall, with this understanding in mind, subsequently demonstrate that LSE is preferred as

an embedding method in relatively sparse regimes, whereas ASE is preferred as an embedding

method in not-too-sparse regimes.
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By way of contrast, the scaling factor ρn in Definition 1, which is included for the purpose of

general presentation, indexes a sequence of models wherein edge probabilities change with

n. We take ρn to be constant in n which by rescaling is equivalent to setting ρn ≡ 1. Limit

theorems are known for regimes where ρn → 0 as n→∞, but these regimes are uninteresting

for single graph inference from the perspective of relative spectral embedding performance

(Tang and Priebe, 2016).

3 Preliminaries

3.1 Notation

In this paper, all vectors and matrices are real-valued. The symbols := and ≡ are used to

assign definitions and to denote formal equivalence, respectively. Given a symmetric positive

definite n × n matrix M , let 〈·, ·〉M : Rn × Rn → R denote the real inner product induced

by M . Similarly, define the induced norm as ‖ · ‖M :=
√
〈·, ·〉M . In particular, given the

n× n identity matrix I, denote the standard Euclidean inner product and Euclidean norm

by 〈·, ·〉 ≡ 〈·, ·〉I and ‖ · ‖2 :=
√
〈·, ·〉, respectively. Given an underlying matrix, det(·)

and tr(·) denote the matrix determinant and matrix trace operator, respectively. Given a

diagonal matrix D := diag(d11, d22, . . . , dnn) ∈ Rn×n, |D| denotes the entrywise absolute

value (matrix) of D.

The vector of all ones in Rn is denoted by 1n, whereas the zero matrix in Rm×n is de-

noted by 0m,n. We suppress the indices for convenience when the underlying dimensions are

understood, writing instead 1 and 0.

Let N := {1, 2, 3, . . . } denote the set of natural numbers so that for n ∈ N, [n] := {1, 2, . . . , n}.

For integers d+ ≥ 1, d− ≥ 0, and d := d+ + d− ≥ 1, let Id+d− := Id+
⊕

(−Id−) ∈ Rd×d be

the direct sum (diagonal) matrix with identity matrices Id+ ∈ Rd+×d+ and Id− ∈ Rd−×d−

together with the convention that Id+0 ≡ Id+ . For example, I11 ≡ diag(1,−1) ∈ R2×2.

For integers n ≥ d ≥ 1, the set of all n × d real matrices with orthonormal columns shall
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be denoted by On,d. Let O(d+, d−) denote the indefinite orthogonal group with signature

(d+, d−), and let Od+ ≡ Od+,d+ ≡ O(d+, 0) denote the orthogonal group in Rd+×d+ . In

particular, M ∈ O(d+, d−) has the characterization M>Id
+

d−M = Id
+

d− . In the case of the

orthogonal group, this characterization reduces to the relationship M> ≡M−1.

3.2 The generalized random dot product graph model

A growing corpus has emerged within the statistics literature focused on the development

of theory and applications for the random dot product graph (RDPG) model (Nickel, 2006;

Young and Scheinerman, 2007). This latent position random graph model associates to each

vertex in a graph an underlying low-dimensional vector. These vectors may be viewed as

encoding structural information or attributes possessed by their corresponding vertices. In

turn, the probability of two vertices sharing an edge is specified through the standard Eu-

clidean inner (dot) product of the vertices’ latent position vectors. While simple in concept

and design, this model has proven successful in real-world applications in the areas of neuro-

science and social networks (Lyzinski et al., 2017). On the theoretical side, the RDPG model

enjoys some of the first-ever statistical theory for two-sample hypothesis testing on random

graphs, both semiparametric (Tang et al., 2017) and nonparametric (Tang et al., 2017). For

more on the RDPG model, see the survey Athreya et al. (2018) and the references therein.

More recently, the generalized random dot product graph (GRDPG) model was introduced

as an extension of the RDPG model that includes as special cases the mixed membership

stochastic block model as well as all (single membership) stochastic block models (Rubin-

Delanchy et al., 2017). Effort towards the development of theory for the GRDPG model has

already raised new questions and produced new findings related to the geometry of spectral

methods, embeddings, and random graph inference. The present paper further contributes

to these efforts.

Definition 2 (The generalized random dot product graph (GRDPG) model). For integers

d+ ≥ 1 and d− ≥ 0 such that d := d+ + d− ≥ 1, let F be a distribution on a set X ⊂ Rd

such that 〈Id+d−x, y〉 ∈ [0, 1] for all x, y ∈ X. We say that (X,A) ∼ GRDPG(F ) with
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signature (d+, d−) and scaling factor 0 < ρn ≤ 1 if the following hold. Let X1, . . . , Xn ∼ F

be independent and identically distributed random (latent position) vectors with

X := [X1| · · · |Xn]> ∈ Rn×d and P := ρnXI
d+

d−X
> ∈ [0, 1]n×n. (1)

For each i ≤ j, the entries Aij of the symmetric adjacency matrix A ∈ {0, 1}n×n are then

generated in a conditionally independent fashion given the latent positions, namely

{Aij|Xi, Xj} ∼ Bernoulli(ρn〈Id
+

d−Xi, Xj〉). (2)

In this setting, the conditional probability P[A|X] can be computed explicitly as a product

of Bernoulli probabilities. N

To reiterate, we consider the regime ρn ≡ 1 and therefore suppress dependencies on ρn later

in the text. When no confusion can arise, we also use adorned versions of the symbol ρ to

denote Chernoff-related quantities unrelated to ρn in a manner consistent with the notation

in Tang and Priebe (2016) (see Section 4).

When d− = 0, the GRDPG model reduces to the RDPG model. When the distribution F is a

discrete distribution on a finite collection of vectors in Rd, then the GRDPG model coincides

with the SBM, in which case the n × n edge probability matrix P arises as an appropriate

dilation of the K × K block edge probability matrix B. Given any valid B ∈ (0, 1)K×K

as in Definition 1, there exist integers d+, d−, and a matrix X ∈ RK×K such that B has

the (not necessarily unique) factorization B ≡ XId+d−X>, which follows since the spectral

decomposition of B can be written as B ≡ UBΛU>B = (UB|Λ|1/2)Id
+

d− (UB|Λ|1/2)>. This

demonstrates the ability of the GRDPG framework in Definition 2 to model all possible

stochastic block models formulated in Definition 1.

Remark 1 (Non-identifiability in the GRDPG model). The GRDPG model possess two

intrinsic sources of non-identifiability, summarized as “uniqueness up to indefinite orthogonal

transformations” and “uniqueness up to artificial dimension blow-up”. More precisely, for

(X,A) ∼ GRDPG(F ) with signature (d+, d−), the following considerations must be taken

into account.

1. For any Q ∈ O(d+, d−), (X,A)
d
= (Y ,B) whenever (Y ,B) ∼ GRDPG(F ◦Q), where
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F ◦Q denotes the distribution of the latent position vector Y = QX and d
= denotes

equality in distribution. This source of non-identifiability cannot be mitigated. See

Eq. (2).

2. There exists a distribution F ′ on Rd′ for some d′ > d such that (X,A)
d
= (Y ,B) where

(Y ,B) ∼ GRDPG(F ′). This source of non-identifiability can be avoided by assuming,

as we do in this paper, that F is non-degenerate in the sense that for X1 ∼ F , the

second moment matrix E[X1X
>
1 ] ∈ Rd×d is full rank.

Definition 3 (Adjacency and Laplacian spectral embeddings). Let A ∈ {0, 1}n×n be a

symmetric adjacency matrix with eigendecomposition A ≡
∑n

i=1 λiuiu
>
i and with ordered

eigenvalues |λ1| ≥ |λ2| ≥ · · · ≥ |λn| corresponding to orthonormal eigenvectors u1, u2, . . . , un.

Given a positive integer d such that d ≤ n, let SA := diag(λ1, . . . , λd) ∈ Rd×d and UA :=

[u1| . . . |ud] ∈ On,d. The adjacency spectral embedding (ASE) of A into Rd is then defined to

be the n× d matrix X̂ := UA|SA|1/2. The matrix X̂ serves as a consistent estimator for X

up to indefinite orthogonal transformation as n→∞.

Along similar lines, define the normalized Laplacian of A as

L(A) := (diag(A1n))−1/2A(diag(A1n))−1/2 ∈ Rn×n (3)

whose eigendecomposition is given by L(A) ≡
∑n

i=1 λ̃iũiũ
>
i with ordered eigenvalues |λ̃1| ≥

|λ̃2| ≥ · · · ≥ |λ̃n| corresponding to orthonormal eigenvectors ũ1, ũ2, . . . , ũn. Given a positive

integer d such that d ≤ n, let S̃A := diag(λ̃1, . . . , λ̃d) ∈ Rd×d and let ŨA := [ũ1| . . . |ũd] ∈

On,d. The Laplacian spectral embedding (LSE) of A into Rd is then defined to be the n× d

matrix X̆ := ŨA|S̃A|1/2. The matrix X̆ serves as a consistent estimator for the matrix

(diag(XId
+

d−X
>1n))−1/2X up to indefinite orthogonal transformation as n→∞. N

Remark 2 (Consistent estimation and parametrization involving latent positions). The

matrices X and (diag(XId
+

d−X
>1n))−1/2X, which are one-to-one invertible transformations

of each other, may be viewed as providing different parametrizations of GRDPG graphs.

As such, comparing X̂ and X̆ as estimators is non-trivial. In order to carry out such a

comparison, we subsequently adopt an information-theoretic approach in which we consider

a particular choice of f -divergence which is both analytically tractable and statistically
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interpretable in the current setting.

For the subsequent purposes of the present work, Theorems 4 and 5 (below) state slightly

weaker formulations of the corresponding limit theorems obtained in Rubin-Delanchy et al.

(2017) for adjacency and Laplacian spectral embedding.

Theorem 4 (ASE limit theorem for GRDPG, adapted from Rubin-Delanchy et al. (2017)).

Assume the d-dimensional GRDPG setting in Definition 2 with ρn ≡ 1. Let X̂ be the

adjacency spectral embedding into Rd with i-th row denoted by X̂i. Let Φ(·,Σ) denote the

cumulative distribution function of the centered multivariate normal distribution in Rd with

covariance matrix Σ. Then, with respect to the adjacency spectral embedding, there exists a

sequence of matrices Q ≡ Qn ∈ O(d+, d−) such that, for any z ∈ Rd,

P
[√

n
(
QX̂i −Xi

)
≤ z
]
→
∫
X

Φ(z,Σ(x))dF (x) (4)

as n→∞, where for X1 ∼ F ,

Σ(x) := Id
+

d−∆−1E
[
g(x,X1)X1X

>
1

]
∆−1Id

+

d− ,

with ∆ := E[X1X
>
1 ] and g(x,X1) := 〈Id+d−x,X1〉(1− 〈Id

+

d−x,X1〉).

Theorem 5 (LSE limit theorem for GRDPG, adapted from Rubin-Delanchy et al. (2017)).

Assume the d-dimensional GRDPG setting in Definition 2 with ρn ≡ 1. Let X̆ be the

Laplacian spectral embedding into Rd with i-th row denoted by X̆i. Let Φ(·,Σ) denote the

cumulative distribution function of the centered multivariate normal distribution in Rd with

covariance matrix Σ. Then, with respect to the Laplacian spectral embedding, there exists a

sequence of matrices Q̃ ≡ Q̃n ∈ O(d+, d−) such that, for any z ∈ Rd,

P
[
n

(
Q̃X̆i − Xi√∑

j〈Id
+

d−
Xi,Xj〉

)
≤ z

]
→
∫
X

Φ(z, Σ̃(x))dF (x) (5)

as n→∞, where for X1 ∼ F and µ := E[X1],

Σ̃(x) := Id
+

d− ∆̃−1E

[
g̃(x,X1)

(
X1

〈Id+
d−
µ,X1〉

− ∆̃Id
+

d−
x

2〈Id+
d−
µ,x〉

)(
X1

〈Id+
d−
µ,X1〉

− ∆̃Id
+

d−
x

2〈Id+
d−
µ,x〉

)>]
∆̃−1Id

+

d− ,

with ∆̃ := E
[
〈Id+d−µ,X1〉−1X1X

>
1

]
and g̃(x,X1) :=

[
〈Id+d−µ, x〉−1〈Id

+

d−x,X1〉(1− 〈Id
+

d−x,X1〉)
]
.
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4 Spectral embedding performance

We desire to compare the large-n sample relative performance of adjacency and Laplacian

spectral embedding for subsequent inference, where the subsequent inference task is naturally

taken to be the problem of recovering latent block assignments. Here, measuring spectral

embedding performance will correspond to estimating the large-sample optimal error rate

for recovering the underlying block assignments following each of the spectral embeddings.

Towards this end, we now introduce Chernoff information and Chernoff divergence as ap-

propriate information-theoretic quantities.

Given independent and identically distributed random vectors Yi arising from one of two

absolutely continuous multivariate distributions F1 and F2 on Ω = Rd with density functions

f1 and f2, respectively, we are interested in testing the simple null hypothesis H0 : F = F1

against the simple alternative hypothesis HA : F = F2. In this framework, a statistical

test T can be viewed as a sequence of mappings Tm : Ωm → {1, 2} indexed according to

sample size m such that Tm returns the value two when H0 is rejected in favor of HA and

correspondingly returns the value one when H0 is favored. For each m, the corresponding

significance level and type-II error are denoted by αm and βm, respectively.

Assume that the prior probability of H0 being true is given by π ∈ (0, 1). For a given

α?m ∈ (0, 1), let β?m ≡ β?m(α?m) denote the type-II error associated with the corresponding

likelihood ratio test when the type-I error is at most α?m. Then, the Bayes risk in deciding

between H0 and HA given m independent random vectors Y1, Y2, . . . , Ym is given by

inf
α?m∈(0,1)

πα?m + (1− π)β?m. (6)

The Bayes risk is intrinsically related to Chernoff information (Chernoff, 1952, 1956), C(F1, F2),

namely

lim
m→∞

1
m

[
inf

α?m∈(0,1)
log(πα?m + (1− π)β?m)

]
= −C(F1, F2), (7)

where

C(F1, F2) := − log

[
inf

t∈(0,1)

∫
Rd
f t1(x)f 1−t

2 (x)dx

]
= sup

t∈(0,1)

[
− log

∫
Rd
f t1(x)f 1−t

2 (x)dx

]
.
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In words, the Chernoff information between F1 and F2 is the exponential rate at which the

Bayes risk decreases as m → ∞. Note that the Chernoff information is independent of the

prior probability π. A version of Eq. (7) also holds when considering K ≥ 3 hypothesis

with distributions F1, F2, . . . , FK , thereby introducing the quantity min
k 6=l

C(Fk, Fl) (see for

example Tang and Priebe (2016)).

Chernoff information can be expressed in terms of the Chernoff divergence between distri-

butions F1 and F2, defined for t ∈ (0, 1) as

Ct(F1, F2) = − log

∫
Rd
f t1(x)f 1−t

2 (x)dx, (8)

which yields the relation

C(F1, F2) = sup
t∈(0,1)

Ct(F1, F2). (9)

The Chernoff divergence is an example of an f -divergence and as such satisfies the data pro-

cessing lemma (Liese and Vajda, 2006) and is invariant with respect to invertible transfor-

mations (Devroye et al., 2013). One could instead use another f -divergence for the purpose

of comparing the two embedding methods, such as the Kullback-Liebler divergence. Our

choice is motivated by the aforementioned relationship with Bayes risk in Eq. (7).

In this paper we explicitly consider multivariate normal distributions as a consequence

of Theorems 4 and 5 when conditioning on the individual underlying latent positions for

stochastic block model graphs. In particular, given F1 = N(µ1,Σ1), F2 = N(µ2,Σ2), and

t ∈ (0, 1), then for Σt := tΣ1 + (1 − t)Σ2, the Chernoff information between F1 and F2 is

given by

C(F1, F2) = sup
t∈(0,1)

[
t(1−t)

2
(µ2 − µ1)

>Σ−1t (µ2 − µ1) + 1
2

log
(

det(Σt)
det(Σ1)tdet(Σ2)1−t

)]
= sup

t∈(0,1)

[
t(1−t)

2
‖µ2 − µ1‖2Σ−1

t
+ 1

2
log
(

det(Σt)
det(Σ1)tdet(Σ2)1−t

)]
.

LetB ∈ (0, 1)K×K and π denote the matrix of block edge probabilities and the vector of block

assignment probabilities for a K-block stochastic block model as before. This corresponds

to a special case of the GRDPG model with signature (d+, d−), d+ + d− = rank(B), and

latent positions νk ∈ Rrank(B). For an n-vertex SBM graph with parameters (B,π), the
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large-sample optimal error rate for recovering block assignments when performing adjacency

spectral embedding can be characterized by the quantity ρA ≡ ρA(B,π, n) defined by

ρA := min
k 6=l

sup
t∈(0,1)

[
nt(1−t)

2
‖νk − νl‖2Σ−1

kl (t)
+ 1

2
log
(

det(Σkl(t))
det(Σk)tdet(Σl)1−t

)]
, (10)

where Σkl(t) := tΣk + (1− t)Σl for t ∈ (0, 1).

Similarly, for Laplacian spectral embedding, ρL ≡ ρL(B,π, n), one has

ρL := min
k 6=l

sup
t∈(0,1)

[
nt(1−t)

2
‖ν̃k − ν̃l‖2Σ̃−1

kl (t)
+ 1

2
log
(

det(Σ̃kl(t))
det(Σ̃k)tdet(Σ̃l)1−t

)]
, (11)

where Σ̃kl(t) := tΣ̃k + (1− t)Σ̃l and ν̃k := νk/(
∑

k′ πk′〈Id
+

d− νk′ , νk〉)1/2.

The factor n in Eqs. (10–11) arises from the implicit consideration of the appropriate (non-

singular) theoretical sample covariance matrices. To assist in the comparison and interpre-

tation of the quantities ρA and ρL, we assume throughout this paper that nk = nπk for ν̃k.

The logarithmic terms in Eqs. (10–11) as well as the deviations of each term nk from nπk are

negligible for large n, collectively motivating the following large-sample measure of relative

performance, ρ?, where

ρA

ρL
≡ ρA(n)

ρL(n)
→ ρ? ≡ ρ?A

ρ?L
:=

min
k 6=l

sup
t∈(0,1)

[
t(1− t)‖νk − νl‖2Σ−1

kl (t)

]
min
k 6=l

sup
t∈(0,1)

[
t(1− t)‖ν̃k − ν̃l‖2Σ̃−1

kl (t)

] . (12)

Here we have suppressed the functional dependence on the underlying model parameters

B and π. For large n, observe that as ρ?A increases, ρA also increases, and therefore the

large-sample optimal error rate corresponding to adjacency spectral embedding decreases

in light of Eq. (7) and its generalization. Similarly, large values of ρ?L correspond to good

theoretical performance of Laplacian spectral embedding. Thus, if ρ? > 1, then ASE is to

be preferred to LSE, whereas if ρ? < 1, then LSE is to be preferred to ASE. The case when

ρ? = 1 indicates that neither ASE nor LSE is superior for the given parameters B and π.

To reiterate, we summarize these preferences as ASE > LSE, ASE < LSE, and ASE = LSE,

respectively.

13



In what follows, we fixate on the asymptotic quantity ρ?. For the two-block SBM and certain

K-block SBMs exhibiting symmetry, Eq. (12) reduces to the simpler form

ρ? =

sup
t∈(0,1)

[
t(1− t)‖ν1 − ν2‖2Σ−1

1,2(t)

]
sup
t∈(0,1)

[
t(1− t)‖ν̃1 − ν̃2‖2Σ̃−1

1,2(t)

] (13)

for canonically specified latent positions ν1 and ν2. In some cases it is possible to concisely

obtain analytic expressions (in t) for both the numerator and denominator. In other cases

this is not possible. A related challenge with respect to Eq. (12) is analytically inverting the

interpolated block conditional covariance matrices Σ1,2(t) and Σ̃1,2(t). Section 7 provides

additional technical details and discussion addressing these issues.

5 Elucidating network structure

5.1 The two-block stochastic block model

Consider the set of two-block SBMs with parameters π ≡ (π1, 1 − π1) and B ∈ B :={
B =

[
a b
b c

]
: a, b, c ∈ (0, 1)

}
. For π = (1

2
, 1
2
), then a ≥ c without loss of generality by

symmetry. In general, for any fixed choice of π, the class of models B can be partitioned

according to matrix rank, namely

B ≡ B1

⊔
B2 := {B : rank(B) = 1; a, b, c ∈ (0, 1)}

⊔
{B : rank(B) = 2; a, b, c ∈ (0, 1)}.

The collection of sub-models B1 further decomposes into the disjoint union of the Erdős–

Rényi model with homogeneous edge probability a = b = c ∈ (0, 1) and its relative com-

plement in B1 satisfying the determinant constraint det(B) ≡ ac − b2 = 0. These partial

sub-models can be viewed as one-dimensional and two-dimensional (parameter) regions in

the open unit cube, (0, 1)3, respectively.

Similarly, the collection of sub-models B2 further decomposes into the disjoint union of

PD2 ∩B2 and IND2 ∩B2, where PD2 denotes the set of positive definite matrices in R2×2

14



and IND2 := {B ∈ B2 : ∃X ∈ R2×2, rank(X) = 2,B = XI11X
>}. Here only I20 ≡ I2 and

I11 are necessary for computing edge probabilities via inner products of the latent positions.

Both of these partial sub-models can be viewed as three-dimensional (parameter) regions in

(0, 1)3.

Remark 3 (Latent position parametrization). One might ask whether or not for our pur-

poses there exists a “best” latent position representation for some or even every SBM.

To this end and more generally, for any K ≥ 2 and M ∈ PDK ⊂ RK×K , there ex-

ists a unique lower-triangular matrix L ∈ RK×K with positive diagonal entries such that

M = LL> by the Cholesky matrix decomposition. This yields a canonical choice for the

matrix of latent positions X when B is positive definite. In particular, for B ∈ PD2, then

B = XI2X
> with X :=

[ √
a 0

b/
√
a
√
ac−b2/

√
a

]
. In contrast, for B ∈ IND2, then B = XI11X

>

with X :=
[ √

a 0

b/
√
a
√
b2−ac/

√
a

]
, keeping in mind that in this case b2 − ac > 0. The latter

factorization may be viewed informally as an indefinite Cholesky decomposition under I11 .

For the collection of rank one sub-models B1, the latent positions ν1 and ν2 are simply taken

to be scalar-valued.

5.1.1 Homogeneous balanced network structure

We refer to the two-block SBM sub-model with B =
[
a b
b a

]
and π = (1

2
, 1
2
) as the homo-

geneous balanced two-block SBM. The cases when a > b, a < b, and a = b correspond to

the cases when B is positive definite, indefinite, and reduces to Erdős–Rényi, respectively.

The positive definite parameter regime has the network structure interpretation of being

assortative in the sense that the within-block edge probability a is larger than the between-

block edge probability b, consistent with the affinity-based notion of community structure.

In contrast, the indefinite parameter regime has the network structure interpretation of be-

ing disassortative in the sense that between-block edge density exceeds within-block edge

density, consistent with the “opposites attract” notion of community structure.

For this SBM sub-model, ρ? can be simplified analytically (see Section 7 for additional
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Figure 1: The ratio ρ? for the homogeneous balanced sub-model in Section 5.1.1. The empty

diagonal depicts the Erdős–Rényi model singularity at a = b.

details) and can be expressed as a translation with respect to the value one, namely

ρ? ≡ ρ?a,b = 1 +
(a− b)2(3a(a− 1) + 3b(b− 1) + 8ab)

4(a+ b)2(a(1− a) + b(1− b))
:= 1 + ca,b × ψa,b, (14)

where ψa,b := 3a(a− 1) + 3b(b− 1) + 8ab and ca,b > 0. By recognizing that ψa,b functions as

a discriminating term, it is straightforward to read off the relative performance of ASE and

LSE according to Table 1.

Table 1: Summary of embedding performance in Section 5.1.1

ρ? = 1⇐⇒ ψa,b = 0 ; (ASE = LSE)

ρ? > 1⇐⇒ ψa,b > 0 ; (ASE > LSE)

ρ? < 1⇐⇒ ψa,b < 0 ; (ASE < LSE)

Further investigation of Eq. (14) leads to the observation that ASE < LSE for all 0 <

b < a ≤ 3
7
, thereby yielding a parameter region for which LSE dominates ASE. On the

other hand, for any fixed b ∈ (0, 1) there exist values a1 < a2 such that ASE < LSE under

a1, whereas ASE > LSE under a2. Figure 1 demonstrates that for homogeneous balanced

network structure, LSE is preferred to ASE when the entries in B are sufficiently small,

whereas conversely ASE is preferred to LSE when the entries in B are not too small.
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Remark 4 (Model spectrum and ASE dominance I). In the current setting λmax(B) = a+b,

hence λmax(B) > 1 implies ASE > LSE by Eq. (14). This observation amounts to a network

structure-based (i.e. B-based) spectral sufficient condition for determining when ASE is

preferred to LSE.

Remark 5 (A balanced one-dimensional SBM restricted sub-model). When b = 1− a, the

homogeneous balanced sub-model further reduces to a one-dimensional parameter space such

that ρ? simplifies to

ρ? = 1 + 1
4
(2a− 1)2 ≥ 1, (15)

demonstrating that ASE uniformly dominates LSE for this restricted sub-model. Addition-

ally, it is potentially of interest to note that in this setting the marginal covariance matrices

from Theorem 4 for ASE coincide for each block. In contrast, the same behavior is not true

for LSE.

5.1.2 Core-periphery network structure

We refer to the two-block SBM sub-model with B =
[
a b
b b

]
and π = (π1, 1− π1) as the core-

periphery two-block SBM. We explicitly consider the balanced (block size) regime in which

π = (1
2
, 1
2
) and an unbalanced regime in which π = (1

4
, 3
4
). Here, the cases a > b, a < b,

and a = b correspond to the cases when B is positive definite, indefinite, and reduces to the

Erdős–Rényi model, respectively.

For this sub-model, the ratio ρ? is not analytically tractable in general. That is to say, simple

closed-form solutions do not simultaneously exist for the numerator and denominator in the

definition of ρ?. As such, Figure 2 is obtained numerically by evaluating ρ? on a grid of

points in (0, 1)2 followed by smoothing.

For a > b, graphs generated from this SBM sub-model exhibit the popular interpretation of

core-periphery structure in which vertices forming a dense core are attached to surrounding

periphery vertices with comparatively smaller edge connectivity. Provided the core is suffi-

ciently dense, namely for a > 1
4
in the balanced regime and a > 1

2
in the unbalanced regime,
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Figure 2: The ratio ρ? for the core-periphery sub-model in Section 5.1.2. The empty diagonal

depicts the Erdős–Rényi model singularity at a = b.

Figure 2 demonstrates that ASE > LSE. Conversely, ASE < LSE uniformly in 0 < b < a for

small enough values of a in both the balanced and unbalanced regime.

In contrast, when a < b, the sub-model produces graphs whose network structure is inter-

preted as having a comparatively sparse induced subgraph which is strongly connected to

all vertices in the graph but for which the subgraph vertices exhibit comparatively weaker

connectivity. Alternatively, the second block may itself be viewed as a dense core which is

simultaneously densely connected to all vertices in the graph. Figure 2 illustrates that for

the balanced regime, LSE is preferred for sparser induced subgraphs. Put differently, for

large enough dense core with dense periphery, then ASE is the preferable spectral embed-

ding procedure. LSE is preferred to ASE in only a relatively small region corresponding

approximately to the triangular region where 0 < b < 1− 4a, which as a subset of the unit

square has area 1
8
. Similar behavior holds for the unbalanced regime for approximately the

(enlarged) triangular region of the parameter space where 0 < b < 1− 2a, which as a subset

of the unit square has area 1
4
.

Figure 2 suggests that as π1 decreases from 1
2
to 1

4
, LSE is favored in a growing region of the

18



parameter space, albeit still in a smaller region than that for which ASE is to be preferred.

Together with the observation that LSE dominates in the lower-left corner of the plots in

Figure 2 where a and b have small magnitude, we are led to say in summary that LSE favors

relatively sparse core-periphery network structure. To reiterate, sparsity is interpreted with

respect to the parameters a and b, keeping in mind the underlying simplifying assumption

that nk = nπk for k = 1, 2.

Remark 6 (Model spectrum and ASE dominance II). For 0 < b < a < 1, then λmax(B) =

1
2

(
a+ b+

√
a2 − 2ab+ 5b2

)
. Numerical evaluation (not shown) yields that λmax(B) > 1

2

implies ASE > LSE. Along the same lines as the discussion in Section 5.1.1, this observation

provides a network structure (i.e. B-based) spectral sufficient condition for this sub-model

for determining the relative embedding performance ASE > LSE.

5.1.3 Two-block rank one sub-model

The sub-model for which B =
[
a b
b c

]
with a, b, c ∈ (0, 1) and det(B) = 0 can be re-

parameterized according to the assignments a 7→ p2 and c 7→ q2, yielding B =
[
p2 pq
pq q2

]
with p, q ∈ (0, 1). Here rank(B) = 1 and B is positive semidefinite, corresponding to the

one-dimensional RDPG model with latent positions given by the scalars p and q with as-

sociated probabilities π1 and π2, respectively. Explicit computation yields the expression

ρ? =
(
√
p+
√
q)2(π1p

2 + π2q
2)2
(√

π1p(1− p2) + π2q(1− pq) +
√
π1p(1− pq) + π2q(1− q2)

)2
4(π1p+ π2q)2

(√
π1p4(1− p2) + π2pq3(1− pq) +

√
π1p3q(1− pq) + π2q4(1− q2)

)2 , (16)

whereby ρ? is given as an explicit, closed-form function of the parameter values p, q, and π1

with π2 = 1 − π1. The simplicity of this sub-model together with its analytic tractability

with respect to both B and π makes it particularly amenable to study for the purpose of

elucidating network structure. Below, consideration of this sub-model further illustrates the

relationship between (parameter-based) sparsity and relative embedding performance.

Figure 3 demonstrates how LSE favors sparse graphs in the sense of the edge probabilities,

p and q, as well as how relative performance changes in light of (un)balanced block sizes,

19



0.9

1.3

1.4

1.4

1.5

1.5

0.9

1

1

1.1

1.1

1.2

1.2

1.3

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

p

q

0.9
1.1
1.3
1.5

ratio

(a) ρ? when π = (12 ,
1
2) i.e. balanced

0.8

1.3

1.4

1.4

1.5

1.5

0.9

1

1

1.1

1.1

1.2

1.2

1.3

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

p

q

1.00
1.25
1.50

ratio

(b) ρ? when π = (14 ,
3
4) i.e. unbalanced

Figure 3: The ratio ρ? for the two-block rank one sub-model in Section 5.1.3. The empty

diagonal depicts the Erdős–Rényi model singularity at p = q.

reflected by π1. Here the underlying B matrix is always positive semidefinite, and each of

the regions p > q and p < q corresponds to a modified notion of core-periphery structure.

For example, when p > q, then B =
[
p1 p2
p2 p3

]
with p1 > p2 > p3, yielding a hierarchy of

core-periphery structure when passing from vertices that are both in block one to vertices

that are in different blocks and finally to vertices that are both in block two. Note the

similar behavior in the bottom-right triangular regions in Figure 3a–3b and in the same

bottom-right triangular region in Figure 2.

Remark 7 (The two-block polynomial p SBM restricted sub-model). Consider the restricted

sub-model in which B =
[

p2 pγ+1

pγ+1 p2γ

]
, where γ > 1 and π1 ∈ (0, 1). For γ � 1 and π1 fixed,

then ρ? in Eq. (16) satisfies the approximate behavior

ρ? ≈
(
1+
√

1−p2
)2

4(1−p2) . (17)

The above approximation exceeds the value one since 1 >
√

1− p2 for p ∈ (0, 1) and is

simultaneously agnostic with respect to π1. Moreover, for large values of γ, the block edge

probability matrix is approximately of the form B ≈
[
p1 p2
p2 p3

]
with p1 � p2 ≈ p3, where

p2 and p3 are very small. This restricted sub-model can therefore be viewed as exhibiting

an extremal version of core-periphery structure corresponding to the extremal regions in
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Figure 4: The ratio ρ? for p, π1 ∈ (0, 1) when q = pγ, γ ∈ {2, 4, 6} in Section 5.1.3.
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Figure 5: The ratio ρ? for p ∈ (0, 1), γ ∈ [2, 7] when q = pγ in Section 5.1.3.
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Figure 2 where ASE is preferred.

In Figure 4, the progression from left to right corresponds to tending towards the approxi-

mation presented in Eq. (17). For larger values of γ when q = pγ (not shown), the region

where ASE > LSE continues to expand. We do not discuss or pursue the taking of limits

within the parameter space(s) in light of degenerate boundary value behavior and in order

to avoid possible misinterpretation.

Figure 5 offers a different perspective in which γ is allowed to vary continuously for both

the balanced and the unbalanced regime. As in Figure 3, Figure 5 demonstrates that LSE is

preferred for network structure wherein the block with comparatively higher edge probability

exhibits smaller block membership size.

5.1.4 Full rank two-block stochastic block models

This section presents a macroscopic view of full rank two-block SBMs with B =
[
a b
b c

]
,

(a, b, c) ∈ (0, 1)3, for the regimes π = (1
2
, 1
2
) and π = (1

4
, 3
4
). The parameter space is

partitioned via the latent space geometry of B, namely according to whether B is either

positive definite or indefinite.

Figure 6a and Figure 6b each present a three-dimensional view of the region in the parameter

space where ASE < LSE. The separate positive definite and indefinite parameter regions

exhibiting ASE < LSE can be seen extending from faces of the unit cube. Specifically, the

conic-like region rising up from the b = 0 face corresponds to B for which B ∈ PD2, whereas

the hyperbolic-like regions extending from the a = 0 and c = 0 faces corresponds to B for

which B ∈ IND2.

For the balanced case reflected in Figure 6a, let a ≥ c without loss of generality by symmetry,

and hence ρ? is symmetric about the plane defined by a = c. For the unbalanced case shown

in Figure 6b, symmetry no longer holds, and geometric warping behavior can be seen with

respect to the a = c plane. Figure 7a and Figure 7b provide a birds-eye view of the three-

dimensional positive definite parameter region from the vantage point b = “∞”. The latter
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(a) ρ? < 1 for rank(B) = 2 when π = (12 ,
1
2) (b) ρ? < 1 for rank(B) = 2 when π = (14 ,

3
4)

Figure 6: The parameter region where ASE < LSE for full rank B in Section 5.1.4. The

plots depict numerical evaluations of ρ? for a, b, c ∈ [0.01, 0.99] with step size 0.01.
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Figure 7: A top-down projected view of the positive definite region where ASE < LSE in

Section 5.1.4, with a, b, and c corresponding to length, depth, and width, respectively. The

plots depict numerical evaluations of ρ? for a, b, c ∈ [0.01, 0.99] with step size 0.01.
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provides another view of the warping phenomenon observed for π = (1
4
, 3
4
) that holds in

general for all unbalanced regimes.

In both block size regimes depicted in Figure 6, the colored parameter region occupies less

than one-fourth of the unit cube volumetrically, thereby quantitatively providing a coarse

overall sense in which ASE is to be preferred to LSE for numerous two-block SBM models.

5.2 The K-block model with homogeneous balanced affinity net-

work structure

This section generalizes the analysis in Section 5.1.1 to the setting of K-block homogeneous

balanced affinity SBMs where Bij = a for all i = j, Bij = b for all i 6= j, 0 < b < a < 1, and

πi = 1
K

for 1 ≤ i ≤ K.

Theorem 6. For K-block homogeneous balanced affinity SBM models as in Section 5.2, the

ratio ρ? in Eq. (12) can be expressed analytically as

ρ? = 1 + (a−b)2(3a(a−1)+3b(b−1)(K−1)+4abK)
4(a+(K−1)b)2(a(1−a)+b(1−b)) := 1 + ca,b,K × ψa,b,K , (18)

where ψa,b,K := 3a(a− 1) + 3b(b− 1)(K − 1) + 4abK and ca,b,K > 0.

As in Table 1, the function ψa,b,K is the discriminating term that explicitly characterizes the

relative performance of ASE and LSE.

Here ψa,b,K satisfies (4ab− 3(a− b2))K < ψa,b,K < (4ab)K, and there are explicit constants

c
(1)
a,b and c

(2)
a,b depending only on a and b such that 1

K
c
(1)
a,b < ca,b,K × ψa,b,K < 1

K
c
(2)
a,b. Taking a

and b to be fixed, these observations allow Eq. (18) to be summarized in terms of K as

ρ? = 1 + Θa,b(
1
K

), (19)

demonstrating that ρ? → 1 as K →∞. In words, for the class of SBMs under consideration,

ASE and LSE in a sense have asymptotically (in K) equivalent embedding performance (via

ρ?). This amounts to a statement concerning a sequence of models with a necessarily growing

number of vertices in order to ensure the underlying assumption of equal block sizes.
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Rewriting the level-set ψa,b,K = 0, which holds if and only if ρ? = 1, yields the equation(
1−a
b

)
1
K

+
(
1−b
a

)
K−1
K

= 4
3
, (20)

together with the observation that ASE > LSE (resp. ASE < LSE) when the left-hand

side of Eq. (20) is less than (resp. greater than) the value 4
3
. The above equation perhaps

interestingly depicts a convex combination in K of a reparameterization in terms of the

variables 1−a
b

and 1−b
a
, where the value 4

3
is interpretable as a Chernoff-based information

theoretic threshold.

The observation that ψa,b,K > (4ab − 3(a − b2))K in the context of Eq. (18) implies a

sufficient condition for determining a parameter region in which ASE > LSE uniformly in

K. Specifically, the condition (4ab− 3(a− b2)) > 0, equivalently written as a−b2
ab

< 4
3
, ensures

that ψa,b,K > 0 and hence that ρ? > 1.

Remark 8 (Detectability and phase transitions in random graph models). With respect to

the random graph literature, the setting considered in this paper corresponds to a strong

consistency regime (i.e. exact recovery) in which the block membership of each individual

vertex is recovered almost surely for graphs on n vertices with n→∞. For different regimes

where edge probabilities are allowed to decrease as a function of n, numerous deep and

fascinating detectability and phase transition phenomena are known, some of which also

employ Chernoff divergence and related considerations (Abbe, 2018). In the context of

homogeneous balanced affinity SBMs, the quantity SNR := (a−b)2
K(a+(K−1)b) has been shown

to function as an important information-theoretic signal-to-noise ratio. Here too the SNR

appears, albeit with respect to ca,b,K , in the sense that

ca,b,K := (a−b)2
4(a+(K−1)b)2(a(1−a)+b(1−b)) ≡

(
(a−b)2

K(a+(K−1)b)

)
c̃a,b,K

for some constant c̃a,b,K > 0. Perhaps more interestingly,

ca,b,K ≡ 1
4

(
λmin(B(K))
λmax(B(K))

)2 (
1

σ2(B11(K))+σ2(B12(K))

)
where σ2(Bij(K)) is the edge variance corresponding to a pair of vertices in blocks i and j,

together with λmin(B(K)) = a−b and λmax(B(K)) = a+(K−1)b, noting that the constant

factor 1
4
could just as easily be absorbed by redefining ψa,b,K . It may well prove fruitful to

further investigate these observations in light of existing results.
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6 Discussion and Conclusions

Loosely speaking, Laplacian spectral embedding may be viewed as a degree-normalized ver-

sion of adjacency spectral embedding in light of Eq. (3). As such, our analysis complements

existing literature that seeks to understand normalization in the context of spectral methods

(Sarkar and Bickel, 2015; von Luxburg, 2007). Moreover, our work together with Rubin-

Delanchy et al. (2017) addresses network models exhibiting indefinite geometry, an area that

has received comparatively limited attention in the statistical network analysis literature.

The ability of indefinite modeling considerations to reflect widely-observed disassortative

community structure is encouraging and suggests future research activity in this and related

directions.

Core-periphery network structure, broadly construed, is demonstrably ubiquitous in real-

world networks (Csermely et al., 2013; Holme, 2005; Leskovec et al., 2009). With this under-

standing and the ability of the SBM to serve as a building block for hierarchically modeling

complex network structure, our findings pertaining to spectral embedding for core-periphery

structure may be of particular interest.

This paper examines the information-theoretic relationship between the performance of two

competing, widely-popular graph embeddings and subsequent vertex clustering with an eye

towards underlying network model structure. The findings presented in Section 5 support

the claim that, for sparsity interpreted as B having entries that are small, loosely speaking,

“Laplacian spectral embedding favors relatively sparse graphs, whereas adjacency spectral

embedding favors not-too-sparse graphs.” Moreover, our results provide evidence in sup-

port of the claim that “adjacency spectral embedding favors certain core-periphery network

structure.” Of course, caution must be exercised when making such general assertions, since

the findings in this paper demonstrate intricate and nuanced functional relationships linking

spectral embedding performance to network model structure. Nevertheless, we believe such

summarative statements are both faithful and useful for conveying a high-level, macroscopic

overview of the investigation presented in this work.
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7 Supplementary material

7.1 Latent position geometry

All stochastic block models in Definition 1 can be formulated as instantiations of generalized

random dot product graph models possessing inherent latent position (vector) structure.

Earlier observations for the two-block SBM in Section 5 are summarized in the following

table, for which the implicit underlying vector π may be viewed as an additional parameter

space dimension that weights the latent positions ν1 and ν2 by π1 and π2, respectively.

Model geometry: Canonical latent positions:

Positive definite B(a, b, c) ν1 = (
√
a, 0), ν2 = (b/

√
a,
√
ac− b2/

√
a) in R2

Indefinite B(a, b, c) ν1 = (
√
a, 0), ν2 = (b/

√
a,
√
b2 − ac/

√
a) in R2

Rank one B(p2, pq, q2) ν1 = p, ν2 = q in R

For the homogeneous balanced affinity two-block network structure investigated in Sec-

tion 5.1.1, the latent position geometry can be equivalently reparameterized as two vectors

on the circle of radius r :=
√
a separated by the angle θ := arccos(b/a). This behavior

generalizes to the homogeneous balanced affinity K-block model.

When B ≡ B(K) ∈ (0, 1)K×K has value a on the main diagonal and value b on the off-

diagonal with 0 < b < a < 1, we can write B = XX> via the Cholesky decomposition,

where X has rows given by X = [x1|x2| . . . |xK ]>. For each i ∈ [K] let the zero-dilation of

the RK vector xi be denoted by x◦i := (xi, 0) ∈ RK+1. For K = 2, 3, 4, X is given by
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X(2) :=

√a 0

b√
a

√
(a−b)(a+b)

a

 , (21)

X(3) :=


√
a 0 0

b√
a

√
(a−b)(a+b)

a
0

b√
a

√
(a−b)(a+b)

a
b

a+b

√
(a−b)(a+2b)

a+b

 , (22)

X(4) :=



√
a 0 0 0

b√
a

√
(a−b)(a+b)

a
0 0

b√
a

√
(a−b)(a+b)

a
b

a+b

√
(a−b)(a+2b)

a+b
0

b√
a

√
(a−b)(a+b)

a
b

a+b

√
(a−b)(a+2b)

a+b
b

a+2b

√
(a−b)(a+3b)

a+2b

 . (23)

By induction, for K ≥ 3, the entries of the vector xK are given by

xK =

(
x1K−1, x

2
K−1, . . . , x

K−2
K−1,

(
b

a+(K−2)b

)
xK−1K−1,

√
(a−b)(a+(K−1)b)

a+(K−2)b

)>
∈ RK . (24)

Only IK0 and I1K−1 are necessary with respect to combining possible inner products on

account of the sign-flip involving a − b. Beginning with the second row in each of the X

matrices, the first column of each matrix can be written in the more illuminating form
√
a b
a
.

For this specific K-block model, symmetry with respect to equally-spaced vectors on the
√
a-radius sphere in RK together with block membership balancedness translates into shared

covariance structure such that Eq. (12) reduces to Eq. (13). The first two rows of X are

ideal candidates to serve as canonical latent positions for subsequent computation, since

these vectors are maximally sparse in the sense of having the fewest non-zero entries and

merely become zero-inflated as a function of K. These geometric considerations are crucial

in the subsequent proof of Theorem 6.

7.2 Analytic derivations for the two-block SBM

The value of ρ? in Eq. (14) for the homogeneous balanced two-block SBM can be computed

by brute force; however, such an approach offers only limited insight and understanding of
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how the covariance structure in Theorem 4 and Theorem 5 interact to yield differences in

relative spectral embedding performance as measured via Chernoff information. This section

offers a different approach to understanding ρ? as a covariance-based spectral quantity.

The following lemma is a general matrix analysis observation that establishes a correspon-

dence between the inverse of a convex combination of 2× 2 matrices and the inverses of the

original 2×2 matrices. The proof of Lemma 7 follows directly from elementary computations

and is therefore omitted. Extending Lemma 7 to n× n invertible matrices is intractable in

general.

Lemma 7. Let M0,M1 ∈ R2×2 be two invertible matrices. For each t ∈ [0, 1] define the

matrix Mt := (1 − t)M0 + tM1. Provided Mt is invertible, then the inverse matrix M−1
t

can be expressed as

M−1
t ≡

(1−t)M−1
0 +det(M1M

−1
0 )tM−1

1

det(M1M
−1
0 )t2+tr(M1M

−1
0 )t(1−t)+(1−t)2 . (25)

If, in the context of Lemma 7, det(M1M
−1
0 ) = 1, then Eq. (25) simplifies to

M−1
t ≡

(1−t)M−1
0 +tM−1

1

t2+tr(M1M
−1
0 )t(1−t)+(1−t)2 ,

which is nearly a convex combination of the inverse matricesM−1
0 andM−1

1 modulo division

by a degree two polynomial in the parameter t. If, in addition, tr(M1M
−1
0 ) 6= −2 (which

always holds when M0 and M1 are both positive definite), then the inverse matrix at the

value t = 1
2
further simplifies to

M−1
1/2 ≡

(
2

2+tr(M1M
−1
0 )

) (
M−1

0 +M−1
1

)
. (26)

For the homogeneous balanced two-block SBM considered in Section 5.1.1, one can explicitly

check that the above det(·) and tr(·) conditions are satisfied. Moreover, the value t? = 1
2

achieves the supremum in both the numerator and denominator of ρ? in Eq. (12). With

these observations in hand, it follows by subsequent computations that for both the positive

definite and indefinite regimes,
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ρ? =
‖ν1 − ν2‖2Σ−1

1,2(1/2)

‖ν̃1 − ν̃2‖2Σ̃−1
1,2(1/2)

=

(
( 2
2+tr(Σ(ν1)Σ−1(ν2))

)

( 2

2+tr(Σ̃(ν1)Σ̃−1(ν2))
)

)
×

(
(ν1 − ν2)>(Σ−1(ν1) + Σ−1(ν2))(ν1 − ν2)
(ν̃1 − ν̃2)>(Σ̃−1(ν1) + Σ̃−1(ν2))(ν̃1 − ν̃2)

)

=

(
2 + tr(Σ̃(ν1)Σ̃

−1(ν2))

2 + tr(Σ(ν1)Σ−1(ν2))

)
× 1

= 1 +
tr(Σ̃(ν1)Σ̃

−1(ν2))− tr(Σ(ν1)Σ
−1(ν2))

2 + tr(Σ(ν1)Σ−1(ν2))

= 1 +
(a− b)2(3a(a− 1) + 3b(b− 1) + 8ab)

4(a+ b)2(a(1− a) + b(1− b))
.

7.3 Proof of Theorem 6

This section is dedicated to proving Theorem 6 for K ≥ 2 block SBMs exhibiting homo-

geneous balanced affinity structure. The proof is divided into two parts which separately

evaluate the suprema in the numerator and denominator of ρ? in Eq. (12). By invoking un-

derlying symmetries in latent space and the covariance structure of the ASE and LSE limit

results, respectively, we shall leverage the (considerably simpler) ASE computations (numer-

ator) when working with LSE (denominator). Simplifying the numerator and denominator

yields the more easily interpretable (shifted) expression of ρ? provided in Eq. (18).

Proof: First recall the discussion of latent space geometry in Section 7.1, specifically that

for the homogeneous balanced affinity K-block SBM, the canonical latent positions can be

arranged row-wise as a lower-triangular matrix X where each latent position vector has

norm
√
a and each pair of distinct latent position vectors has common inner-product b.

This rotational symmetry implies rotational symmetry for the block-conditional covariance

matrices in Theorems 4–5, and as such, the formulation of ρ? in Eq. (18) can be reduced to

simply working with the latent position pair {ν1, ν2} without loss of generality. This pair is

attractive, since the non-zero entries of these vectors remain unchanged for all K ≥ 2. One

need only work with the standard inner product since d− = 0.
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7.3.1 Proof of Theorem 6: ASE (numerator)

Let g(x,X1) := 〈x,X1〉(1 − 〈x,X1〉) and for 0 < t < 1 define gt(x1, x2, X1) := tg(x1, X1) +

(1− t)g(x2, X1). By Theorem 4, Σ(x) = ∆−1E[g(x,X1)X1X
>
1 ]∆−1, and therefore Σ1,2(t) :=

tΣ(ν1) + (1 − t)Σ(ν2) = ∆−1E[gt(ν1, ν2, X1)X1X
>
1 ]∆−1. Evaluating the inner expectation

yields

E[gt(ν1, ν2, X1)X1X
>
1 ] =

K∑
i=1

1
K

(t〈ν1, νi〉(1− 〈ν1, νi〉) + (1− t)〈ν2, νi〉(1− 〈ν2, νi〉))νiν>i

= b(1− b)∆ +
(
a(1−a)−b(1−b)

K

) [
tν1ν

>
1 + (1− t)ν2ν>2

]
= b(1− b)∆ + V(c0Dt)V

>,

where V := [ν1|ν2] ∈ RK×2, c0 :=
(
a(1−a)−b(1−b)

K

)
, and Dt := diag(t, 1 − t). Clearly c0Dt is

invertible, as is ∆ since the underlying distribution F is non-degenerate. Moreover,X is also

invertible since the K-block model under consideration is also rank K. The relationX>X =

K∆ implies ∆−1 = KX−1(X>)−1 and therefore X∆−1X> = KI, so ν>i ∆−1νj = KIij
where Iij denotes the indicator function for indices i and j. Thus, (c0Dt)

−1+ 1
b(1−b)V

>∆−1V =

(c0Dt)
−1 + K

b(1−b)I, which is also invertible. By an application of the Sherman–Morrison–

Woodbury matrix inversion formula (Horn and Johnson (2012), Section 0.7.4), then

E[gt(ν1, ν2, X1)X1X
>
1 ]−1 =

(
b(1− b)∆ + V(c0Dt)V

>)−1
=
(

1
b(1−b)

)
∆−1 −

(
1

b(1−b)

)2
∆−1V

(
1
c0
D−1t + K

b(1−b)I
)−1

V>∆−1.

For ν := ν1 − ν2 =
(
a−b√
a
,−
√

(a−b)(a+b)
a

,0,...,0

)>
∈ RK , then ν>∆ν = 2

K
(a − b)2 and V>ν =

(a − b)(1,−1)> ∈ R2. These observations together with subsequent computations yield the

following chain of equalities.
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‖ν‖2
Σ−1

1,2(t)
= ν>

(
∆−1E[gt(ν1, ν2, X1)X1X

>
1 ]∆−1

)−1
ν

= ν>(∆E[gt(ν1, ν2, X1)X1X
>
1 ]−1∆)ν

= ν>∆

(
1

b(1−b)∆
−1 −

(
1

b(1−b)

)2
∆−1V

(
1
c0
D−1t + K

b(1−b)I
)−1

V>∆−1
)

∆ν

= ν>
(

1
b(1−b)∆−

(
1

b(1−b)

)2
V
(

1
c0
D−1t + K

b(1−b)I
)−1

V>
)
ν

=
(

1
b(1−b)

)
ν>∆ν −

(
1

b(1−b)

)2
ν>V

(
1
c0
D−1t + K

b(1−b)I
)−1

V>ν

=
(

2(a−b)2
b(1−b)K

)
−
(

a−b
b(1−b)

)2
(1,−1)

(
1
c0
D−1t + K

b(1−b)I
)−1

(1,−1)>

=
(

2(a−b)2
b(1−b)K

)
−
(

a−b
b(1−b)

)2
tr
((

1
c0
D−1t + K

b(1−b)I
)−1)

=
(

2(a−b)2
b(1−b)K

)
−
(

a−b
b(1−b)

)2 (
(a(1−a)−b(1−b))b(1−b)t

((a(1−a)−b(1−b))t+b(1−b))K + (a(1−a)−b(1−b))b(1−b)(1−t)
((a(1−a)−b(1−b))(1−t)+b(1−b))K

)
= (a−b)2(a(a−1)+b(b−1))

(a(1−a)+(a(a−1)−b(b−1))t)(b(b−1)+(a(a−1)−b(b−1))t)K .

In particular,

sup
t∈(0,1)

[
t(1− t)‖ν‖2

Σ−1
1,2(t)

]
= 1

K
(a−b)2

a(1−a)+b(1−b) , (27)

where by underlying symmetry the supremum is achieved at t? = 1
2
over the entire parameter

region 0 < b < a < 1.

7.3.2 Proof of Theorem 6: LSE (denominator)

Recall that for this model Id+d− ≡ Id since d− = 0. From Theorem 5 for LSE, the block

conditional covariance matrix for each latent position x can be written in the modified form

Σ̃(x) = E
[(

g(x,X1)
〈x,µ〉

)(
∆̃−1X1

〈X1,µ〉 −
x

2〈x,µ〉

)(
∆̃−1X1

〈X1,µ〉 −
x

2〈x,µ〉

)>]
.

We begin with several preliminary observations in order to define the quantities c1, c2, and
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c3. Namely, for each latent position (row) x of X,

〈x, µ〉 =
(
a+(K−1)b

K

)
=: c1, (28)

E[g(x,X1)] =
(
a(1−a)+(K−1)b(1−b)

K

)
=: c2, (29)

E[g(x,X1)X1] :=
(
a(1−a)−b(1−b)

K

)
x+ b(1− b)µ =: c3x+ b(1− b)µ. (30)

Subsequent computations yield

∆x =
(
a−b
K

)
x+ bµ,[

∆−
(
a−b
K

)
I
]
xx> = bµx>,

〈∆x, x〉 =
(
a2+(K−1)b2

K

)
,

∆̃ ≡ E
[

1
〈X1,µ〉X1X

>
1

]
= 1

c1
∆.

The above observations allow us to write Σ̃(x) as

E
[(

g(x,X1)
〈x,µ〉

)(
∆̃−1X1

〈X1,µ〉 −
x

2〈x,µ〉

)(
∆̃−1X1

〈X1,µ〉 −
x

2〈x,µ〉

)>]
= ∆̃−1E

[
g(x,X1)
〈x,µ〉

(
X1

〈X1,µ〉 −
∆̃x

2〈x,µ〉

)(
X1

〈X1,µ〉 −
∆̃x

2〈x,µ〉

)>]
∆̃−1

= 1
c1

∆−1E
[
g(x,X1)

(
X1 − 1

2c1
∆x
)(

X1 − 1
2c1

∆x
)>]

∆−1.

Expanding the term inside the expectation and applying linearity of expectation allows us to

analyze each piece in turn. The first term in the expansion can be analyzed via the previous

computations under ASE. For the second term,

E
[

1
2c1
g(x,X1)X1x

>∆
]

= 1
2c1

E[g(x,X1)X1]x
>∆

= 1
2c1

(
c3xx

> + b(1− b)µx>
)

∆

= 1
2c1

(
c3xx

> + (1− b)
[
∆− (a−b

K
)I
]
xx>

)
∆

=
(

1−b
2c1

)
∆xx>∆ +

(
Kc3−(a−b)(1−b)

2c1K

)
xx>∆

=
(

1−b
2c1

)
∆xx>∆ +

(
a(b−a)
2c1K

)
xx>∆.

Note that the transpose of this matrix corresponds to the third term in the implicit expansion

of interest (not shown). Finally, the fourth term simply reduces to the form

E
[
g(x,X1)

(
1
2c1

∆x
)(

1
2c1

∆x
)>]

= c2

(
1
2c1

∆x
)(

1
2c1

∆x
)>

=
(
c2
4c21

)
∆xx>∆.
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Thus,

E
[
g(x,X1)

(
X1 − 1

2c1
∆x
)(

X1 − 1
2c1

∆x
)>]

= E[g(x,X1)X1X
>
1 ]− E[ 1

2c1
g(x,X1)X1x

>∆]− E[ 1
2c1
g(x,X1)X1x

>∆]> + E[g(x,X1)(
1
2c1

∆x)( 1
2c1

∆x)>]

= E[g(x,X1)X1X
>
1 ]−

(
a(b−a)
2c1K

)
xx>∆−

(
a(b−a)
2c1K

)
∆xx> +

(
c2
4c21
− 1−b

c1

)
∆xx>∆.

Let M1 ≡M1(t) := VDtV
> and M2 := ∆ with respect to the notation introduced earlier

in the derivation for ASE. By completing the appropriate matrix product, there are explicit

constants {di}4i=1 depending on a, b, and K, such that

Σ̃1,2(t) = tΣ̃(ν1) + (1− t)Σ̃(ν2)

= ∆−1
(
d1∆ + d2VDtV

> + d3VDtV
>∆ + d3∆VDtV

> + d4∆VDtV
>∆
)

∆−1

= ∆−1 ([d1M2 + d5M1] + (I + d6M2)(d7M1)(I + d6M2)) ∆−1

=: ∆−1 (M3 +M4) ∆−1,

where M3 ≡ M3(t) := d1M2 + d5M1(t) and M4 ≡ M4(t) = (I + d6M2)(d7M1(t))(I +

d6M2).

Note that ν̃k :=
(

1
〈νk,µ〉

)1/2
× νk =

(
K

a+(K−1)b

)1/2
× νk for k = 1, 2, so

‖ν̃‖2
Σ̃−1

1,2(t)
= ν̃>Σ̃−11,2(t)ν̃ =

(
K

a+(K−1)b

)
ν>∆ (M3 +M4)

−1 ∆ν.

The above matrix inversion can again be carried out via the Sherman–Morrison–Woodbury

formula. We omit the algebraic details. Subsequent computations and simplification yield

sup
t∈(0,1)

[
t(1− t)‖ν̃‖2

Σ̃−1
1,2(t)

]
= 4(a−b)2(a+(K−1)b)2

4(a(1−a)+b(1−b))(a+(K−1)b)2K+(a−b)2K(3a(a−1)+3b(b−1)(K−1)+4abK)
(31)

where by underlying symmetry the supremum is achieved at t? = 1
2
over the entire parameter

region 0 < b < a < 1. Taken together, Eq. (27) and Eq. (31) simplify to yield ρ? as in

Eq. (18), thereby completing the proof. �

35



References

Abbe, E. (2018). Community detection and stochastic block models: Recent developments.

Journal of Machine Learning Research 18 (177), 1–86. 4, 5, 25

Airoldi, E. M., D. M. Blei, S. E. Fienberg, and E. P. Xing (2008). Mixed membership

stochastic blockmodels. Journal of Machine Learning Research 9, 1981–2014. 4

Athreya, A., D. E. Fishkind, M. Tang, C. E. Priebe, Y. Park, J. T. Vogelstein, K. Levin,

V. Lyzinski, Y. Qin, and D. L. Sussman (2018). Statistical inference on random dot

product graphs: A survey. Journal of Machine Learning Research 18 (226), 1–92. 4, 7

Athreya, A., C. E. Priebe, M. Tang, V. Lyzinski, D. J. Marchette, and D. L. Sussman (2016).

A limit theorem for scaled eigenvectors of random dot product graphs. Sankhya A 78 (1),

1–18. 4

Bhatia, R. (1997). Matrix Analysis, Volume 169 of Graduate Texts in Mathematics. Springer-

Verlag, New York.

Bollobás, B., S. Janson, and O. Riordan (2007). The phase transition in inhomogeneous

random graphs. Random Structures and Algorithms 31 (1), 3–122. 3

Chernoff, H. (1952). A measure of asymptotic efficiency for tests of a hypothesis based on

the sum of observations. The Annals of Mathematical Statistics 23 (4), 493–507. 4, 11

Chernoff, H. (1956). Large-sample theory: Parametric case. The Annals of Mathematical

Statistics 27 (1), 1–22. 11

Csermely, P., A. London, L.-Y. Wu, and B. Uzzi (2013). Structure and dynamics of core-

periphery networks. Journal of Complex Networks 1 (2), 93–123. 26

Devroye, L., L. Györfi, and G. Lugosi (2013). A Probabilistic Theory of Pattern Recognition,

Volume 31. Springer. 12

Erdős, P. and A. Rényi (1959). On random graphs. Publicationes Mathematicae (Debrecen) 6,

290–297. 3

36



Fishkind, D. E., D. L. Sussman, M. Tang, J. T. Vogelstein, and C. E. Priebe (2013). Con-

sistent adjacency-spectral partitioning for the stochastic block model when the model pa-

rameters are unknown. SIAM Journal on Matrix Analysis and Applications 34 (1), 23–39.

4

Hoff, P. D., A. E. Raftery, and M. S. Handcock (2002). Latent space approaches to social

network analysis. Journal of the American Statistical Association 97 (460), 1090–1098. 4

Holland, P. W., K. B. Laskey, and S. Leinhardt (1983). Stochastic blockmodels: First steps.

Social Networks 5 (2), 109–137. 2

Holme, P. (2005). Core-periphery organization of complex networks. Physical Review E 72,

046111. 26

Horn, R. A. and C. R. Johnson (2012). Matrix Analysis. Cambridge University Press. 32

Karrer, B. and M. E. J. Newman (2011). Stochastic blockmodels and community structure

in networks. Physical Review E 83, 016107. 4

Lei, J. and A. Rinaldo (2015). Consistency of spectral clustering in stochastic block models.

The Annals of Statistics 43 (1), 215–237. 4

Leskovec, J., K. J. Lang, A. Dasgupta, and M. W. Mahoney (2009). Community structure

in large networks: Natural cluster sizes and the absence of large well-defined clusters.

Internet Mathematics 6 (1), 29–123. 26

Liese, F. and I. Vajda (2006). On divergences and informations in statistics and information

theory. IEEE Transactions on Information Theory 52 (10), 4394–4412. 12

Lyzinski, V., M. Tang, A. Athreya, Y. Park, and C. E. Priebe (2017). Community detection

and classification in hierarchical stochastic blockmodels. IEEE Transactions on Network

Science and Engineering 4 (1), 13–26. 7

McSherry, F. (2001). Spectral partitioning of random graphs. In Proceedings of the 42nd

IEEE Symposium on Foundations of Computer Science, 529–537. 4

37



Nickel, C. L. M. (2006). Random dot product graphs: A model for social networks. Ph.D.

thesis, Johns Hopkins University . 4, 7

Rohe, K., S. Chatterjee, and B. Yu (2011). Spectral clustering and the high-dimensional

stochastic block model. The Annals of Statistics 39 (4), 1878–1915. 4

Rubin-Delanchy, P., C. E. Priebe, M. Tang, and J. Cape (2017). A statistical interpreta-

tion of spectral embedding: the generalised random dot product graph. arXiv preprint

arXiv:1709.05506 . 5, 7, 10, 26

Sarkar, P. and P. J. Bickel (2015). Role of normalization in spectral clustering for stochastic

blockmodels. The Annals of Statistics 43 (3), 962–990. 4, 26

Sussman, D. L., M. Tang, D. E. Fishkind, and C. E. Priebe (2014). A consistent adjacency

spectral embedding for stochastic blockmodel graphs. Journal of the American Statistical

Association 107 (499), 1119–1128. 4

Tang, M., A. Athreya, D. L. Sussman, V. Lyzinski, Y. Park, and C. E. Priebe (2017). A

semiparametric two-sample hypothesis testing problem for random graphs. Journal of

Computational and Graphical Statistics 26 (2), 344–354. 7

Tang, M., A. Athreya, D. L. Sussman, V. Lyzinski, and C. E. Priebe (2017). A nonparametric

two-sample hypothesis testing problem for random graphs. Bernoulli 23 (3), 1599–1630. 7

Tang, M. and C. E. Priebe (2016). Limit theorems for eigenvectors of the normalized Lapla-

cian for random graphs. arXiv preprint arXiv:1607.0123, The Annals of Statistics, ac-

cepted . 4, 5, 6, 8, 12

von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing 17 (4),

395–416. 3, 26

Young, S. and E. Scheinerman (2007). Random dot product graph models for social networks.

Algorithms and Models for the Web-Graph 4863, 138–149. 4, 7

38


	1 Preface
	2 Introduction
	3 Preliminaries
	3.1 Notation
	3.2 The generalized random dot product graph model

	4 Spectral embedding performance
	5 Elucidating network structure
	5.1 The two-block stochastic block model
	5.1.1 Homogeneous balanced network structure
	5.1.2 Core-periphery network structure
	5.1.3 Two-block rank one sub-model
	5.1.4 Full rank two-block stochastic block models

	5.2 The K-block model with homogeneous balanced affinity network structure

	6 Discussion and Conclusions
	7 Supplementary material
	7.1 Latent position geometry
	7.2 Analytic derivations for the two-block SBM
	7.3 Proof of Theorem 6
	7.3.1 Proof of Theorem 6: ASE (numerator)
	7.3.2 Proof of Theorem 6: LSE (denominator)



