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Abstract

One of the most challenging problems in biomedicine and genomics is the identification of disease

biomarkers. In this study, proteomics data from seven major cancers were used to construct two

weighted protein-protein interaction (PPI) networks i.e., one for the normal and another for the

cancer conditions. We developed rigorous, yet mathematically simple, methodology based on the

degeneracy at -1 eigenvalues to identify structural symmetry or motif structures in network. Util-

ising eigenvectors corresponding to degenerate eigenvalues in the weighted adjacency matrix, we

identified structural symmetry in underlying weighted PPI networks constructed using seven cancer

data. Functional assessment of proteins forming these structural symmetry exhibited the property of

cancer hallmarks. Survival analysis refined further this protein list proposing BMI, MAPK11, DDIT4,

CDKN2A, and FYN as putative multi-cancer biomarkers. The combined framework of networks and

spectral graph theory developed here can be applied to identify symmetrical patterns in other disease

networks to predict proteins as potential disease biomarkers.

keywords: Cancer networks, Eigenvalue analysis, Graph symmetry, Biomarkers.
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1 Introduction

Each cancer tissue comprises a heterogeneous and multi-factorial milieu that varies in

cytology, physiology, signaling mechanisms, cell regulation, control mechanisms and re-



ZU064-05-FPR NS˙Degen˙Review˙Full˙Arxiv 7 October 2019 1:23

Network Science 3

sponse to therapy. Both the existence of genetic diversity among tumors of same can-

cer and the surprising amount of similarity among different cancers have been reported

(Stratton et al., 2009). Interestingly, similarities among different cancers have widely been

observed in cell proliferation rate, cell-cell interactions, metastatic potential and sensitivity

to therapy. Therefore, the abundance of similarity in different cancers has allowed us to

consider cancer as a single system in the present study.

Furthermore, many biological processes can be modeled as graphs composed of in-

teractions among numerous cellular and molecular components (Barabási & Otavi, 2004;

Shinde et al., 2018a). Probing a complex system in network or graph theory framework

allows understanding a phenomenon or system’s behavior by collecting information of

all its constituents rather than focusing to a smaller part with apparent relation with a

phenomenon (Sarkar & Jalan, 2017). Network studies have been providing global under-

standing to corresponding biological processes and functional interactions (Xu et al., 2006;

Folador et al., 2009; Shinde & Jalan, 2015; Shinde et al., 2018b). Important outcomes were

that different types of biological networks exhibit network features such as complexity, ro-

bustness and hierarchical behavior (Barabási & Otavi, 2004). Cancer network based stud-

ies helped to predict protein function, genotype-phenotype relationships between cancer

proteins, a combined effect of DNA, RNA, protein modifications on overall cancer de-

velopment and impact of mutations in altering molecular pathways (Yixuan et al., 2010;

Lage et al., 2007). These cancer network studies have been successful in developing drug

strategies as well as in finding important cancer pathways, e.g., mTOR signaling, p53 path-

way, MAPK, and PI3K signaling pathways (Ahn et al., 2011; Chiang & Abraham, 2007).

However, these investigations have focused mainly on structural positions of proteins or

pathways in underlying networks.

Moreover, biological networks have been found to possess abundant symmetrical pat-

terns (Wang et al., 2012). Symmetrical structures such as motifs have been heavily investi-

gated for their relevance of biological processes (Shinde et al., 2018a; Shinde et al., 2018b;

Ocone & Sanguinetti, 2011; Cheng et al., 2016). Motifs are complete subgraphs, represent

building blocks of many biological networks and these structures have been reported in cel-

lular networks of diverse organisms from bacteria to humans, suggesting motif structures

are highly conserved in evolution (Cheng et al., 2016). Functional failure of such local

structures can have substantial global impacts (Milo et al., 2004). For instance, a group of

tumor suppressor genes forming onco-modules recently identified whereas oncogenic mu-

tations in these modules altered the pan-cancer metabolic landscape (Cubuk et al., 2018).

In this work, we focused on spectral (eigenvalues) properties of the network adjacency

matrix for unraveling symmetrical patterns and corresponding proteins in the underlying

network. The importance and uses of spectra of adjacency matrices have been well char-

acterised in various model networks as well as real-world networks (Sarkar & Jalan, 2018;

Rai A. et al., 2018; Agrawal et al., 2014).

Degeneracy in graph spectra has contributed significantly in our understanding of struc-

tural and dynamical properties of corresponding graphs (Yadav & Jalan, 2015; Van Mieghem, 2010).

The driving force behind the investigation of origin and implication of degenerate eigenval-

ues is that biological networks constructed using empirical data show very high degeneracy,

particularly at 0 and−1 eigenvalues, than corresponding random networks (Shinde et al., 2015;

Marrec & Jalan, 2017; Rai A. et al., 2018). Indeed, these degenerate eigenvalues have been
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shown to exist due to an outcome of the complete and the partial node duplication (Yadav & Jalan, 2015)

which is akin of the fundamental process in the evolution-related with gene duplication and

diversification process (Shinde et al., 2015; Teichmann & Babu, 2004). As part of the cell

cycle, particularly during replication of the genome, seldom another copy of a gene is

synthesized. Immediately after this gene duplication event, both the original gene and the

new identical copy of the gene have the same DNA sequence, so both interact with the

same set of molecular partners. Consequently, as these genes are guided for their particular

functions, each of the molecular partners that interacted with the ancestor gains a new

interaction (Teichmann & Babu, 2004). Similarly in cancer genomes, clonal duplication

and proliferation are achieved by DNA mutations (Furlong, 2013), mainly using somatic

copy number alterations (Zack et al, 2013). The gene duplication and diversification pro-

cess play a crucial role in the growth, adaption, evolution, and subsistence of the biological

system (Teichmann & Babu, 2004). Though degeneracy at −1 eigenvalue can be related to

specific structures in a network, the origin and implication of such structural patterns are

not that obvious. Herein, we focused on symmetrical patterns corresponding to −1 degen-

erate eigenvalues and devised methodology to identify such essential network symmetrical

structures.

In this work, we first provided a methodology to identify an origin and implications of

eigenvalue degeneracy in weighted networks. Second, we applied this technique to find

structural patterns corresponding to degenerate eigenvalue in weighted multi-cancer PPI

network. Network structures linking to −1 degeneracy provided a framework for identi-

fication of proteins corresponding to underlying local patterns. The functional assessment

further deduced that these proteins corresponding to −1 eigenvalue degeneracy have the

property of cancer hallmarks. With survival analysis, we predicted cancer proteins i.e.,

BMI, MAPK11, DDIT4, CDKN2A, and FYN as putative multi-cancer proteins.

Fig. 1. Work-flow diagram depicting network construction, eigenvalue analysis, and

identification and characterisation of multi-cancer biomarkers.
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2 Data and methods

2.1 Dataset sources

We constituted our multi-cancer PPI network using proteomics data from morphologically

seven different cancers such as Breast, Cervical, Colon, Lung, Oral, Ovarian and Prostate.

For straight-forward comparison of the proteome in a diseased state, we also retrieved PPIs

in corresponding healthy tissue states. We termed healthy tissues as ‘normal’ and cancer

tissues as ‘disease’. In this way, we have 14 datasets viz, seven for healthy tissues and seven

for disease tissues. PPIs in a healthy and the corresponding disease tissues were designated

on the basis of their occurrence in the normal or the diseased tissue, respectively. PPI data

mining was broadly divided into two steps, i.e., (I) retrieval of protein names pertaining to

a particular tissue, and then (II) retrieval of PPI of corresponding to proteins identified in

step I.

In the first step, protein-name data mining was independently performed on each tissue

(Figure 3(a) and 3(b)). Here, it is to be noted that we used the text-mining approach to map

proteins for a particular dataset. Similarly, other approaches such as proteins corresponding

to highly expressed genes can be utilized to map proteins. Also, it should be noted that our

protein-name data mining was entirely based on the information available in secondary

bioinformatics databases which are already curated and largely followed data sources viz,

UniProtKB and GeneBank databases. Protein-name data mining was performed using dif-

ferent search words, and accordingly, protein-names were destined to a particular dataset.

For example, if a protein entry in the UniProtKB database has been related to the informa-

tion of oral cancer tissue, we marked that protein entry as a member of oral cancer dataset.

The details of search words (queries) used for protein-name mining from these databases

is given in Supplementary Materials. Additionally, we explored other resources to enrich

our protein-name collection. Swiss-2DPage (https: //world- 2dpage. expasy.org/swiss -

2dpage/) and Cervical cancer database (CCDB) (http:// crdd.osdd. net/raghava /ccdb/)

for cervical tissues, ACTREC Oral Cancer Database (http:// www. actrec. gov.in/ OCDB/

index.htm) and Head and Neck Oral Cancer Database (http:// gyanxet.com/ hno.htm) for

oral cancer, ATCC cell line database (https: //www. atcc.org/) and Cancer Cell Line Ency-

clopedia (https://portals. broadinstitute. org/ccle) for all considered cancers. The detailed

list of proteins for both healthy tissues and the corresponding cancer tissues collected from

various literature and data archives can be found at (FigShare). In the second step, once

all the proteins for seven different tissues for the normal and disease states were collected,

leading to fourteen datasets, the interacting partners of these proteins were retrieved from

the STRING database version 9.189 (Szklarczyk et al., 2014). We used the default param-

eters in STRING database while retrieving PPI’s. An interaction between a pair of proteins

was considered if there exists a direct (i.e., physical), indirect (i.e., functional) or both

relation between them. Direct PPI interactions are straight-forwardly measured between

protein pairs, whereas indirect PPI interactions are identified using the information of one

or more bridging molecules.

In this way, we have seven datasets for the normal and seven datasets for the corre-

sponding disease states. The detailed information of these fourteen datasets representing

PPIs among all the fourteen tissues can be found at (FigShare).
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2.2 Weighted multi-cancer PPI network construction

In a PPI network, vertices represent proteins and edges represent interactions between the

proteins. We overlaid PPIs derived from seven tissues in two datasets i.e., (1) normal and

(2) disease, separately to construct two weighted PPI networks. Weights were assigned

based on edge overlapping viz, the number of times an interaction is found in a set of

cancers (schematic is provided in Fig. 3(c)). For instance, if an interaction between two

nodes k and l found in colon and breast cancer, and was absent in other cancers that

would yield a weight, wkl = 2. Consequently, each element in the adjacency matrix has

value ranging from 1 (min) to 7 (max). If an interaction existed in all seven cancers, the

corresponding weight entry in the adjacency matrix would be 7 and if an interaction existed

in only one cancer in the adjacency matrix, the weight entry would be 1. The weighted

adjacency matrix can be given as:

Wij =

{

wij if i ∼ j

0 otherwise
(1)

where wij was the number of times i interacted with j. In such manner, we considered two

interaction matrices, one for healthy state and another one for the disease state.

2.3 Various structural measures of a network

The most basic structural parameter of a network would be the degree of a node (ki), which

can be defined as a number of weighted edges connected to the node i (ki =∑ j wi j). Further,

the clustering coefficient (C) can be defined as a ratio of the number of interactions a neigh-

bor of a particular node is having and the possible number of connections the neighbors

can have among themselves. For a weighted network, C can be defined as the geometric

average of the subgraph edge weights, Ci =
1

kiki−1
∑ j,k(ŵi jŵ jkŵik)

1
3 (Saramki et al., 2007).

The edge weights ŵ were normalized by the maximum weight in the network ŵ = w
max(w) .

Betweenness centrality (Brandes, 2008) of a node i defined as the sum of the fraction of

all-pairs shortest paths that were passing through i, such that β c(i) = ∑s,t∈V
σ(s,t|i)
σ(s,t) where

V was the set of nodes, σ(s, t) was the number of shortest (s, t)-paths, and σ(s, t|i) was the

number of those paths passing through some node i other than s, t.

2.4 Theoretical framework: relating structural symmetry and degenerate eigenvalues

in weighted networks

We considered finite undirected and weighted graphs defined by G = {V,E} with V is the

node set, and E is the edge set such as |V |=N and |E|=Nc. Eigenvalues λ1 ≤λ2 ≤ ...≤ λN

were obtained by computing the roots of the characteristic polynomial of W. Note that the

eigenvalues were real because W was symmetric. The associated eigenvectors v1, v2 ,...,

vN satisfied the eigen-equation Wvi = λivi with i = 1,2, ...,N.

All the origin and implications of 0 eigenvalue degeneracy in networks spectra has been

already well characterized (Yadav & Jalan, 2015). Briefly, the spectrum of a matrix of size

N and rank r should encompass 0 eigenvalue with multiplicity N−r (Cragg & Donald, 1997).

There exist three conditions which would lead to the lowering of the rank of a matrix:
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Fig. 2. Structures leading to 0 and −1 eigenvalue degeneracy in weighted cancer

PPI network. (a1 and a2) for λ = 0 and (b1 and b2) for λ = −1. Note that to fulfil

partial duplication condition will require more number of nodes than those required to

fulfil complete duplication. It can be seen that there exists only one difference between the

structures corresponding to 0 and -1 degeneracy. In the case of 0 eigenvalue degeneracy,

there is no interaction between the nodes being completely (i.e., 1 and 2) or partially

duplicated (i.e., 1,2,3 and 4) whereas there exists interaction between them in the case

of -1 eigenvalue degeneracy.

(i) Ri = (00 . . .0) a row with only zero-entries. (ii) Ri = R j at least two rows are equal

(Figure 2 (a1)). (iii) ∑i aiRi =∑ j b jR j with ai,b j ∈R two or more rows together are equal

to some other rows (Figure 2 (a2)). We would not consider the condition (i) which was

related to the isolated nodes in W. Additional information regarding 0 degeneracy can be

found in earlier studies (Yadav & Jalan, 2015).

As precribed in (Marrec & Jalan, 2017), it was possible to reduce the computation of

x-eigenvalue of W matrix to the 0-eigenvalue of (W− xI) matrix. Now, lets understand

the occurrence of x-eigenvalue degeneracy in weighted networks and see when should

conditions (ii) and (iii) get fulfilled in (W− xI) which was written as follows:

W− xI =











−x w12 · · · w1N

w12 −x · · · w2N

...
...

. . .
...

w1N w2N · · · −x











(2)
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Note that we considered graphs without self-loops. The condition (ii) can met if and only

if: wik = w jk with k = 1,2, ...,N. In the particular case R1 = R2, the previous equation

becomes:
{

w12 =−x

w1k = w2k with k = 3,4, ...,N
(3)

Specifically, the case of −1 eigenvalue can be related to K ∗ S structures (Figure 2). In

these structures, all the nodes of K were interlinked with the same weight wK . In addition,

all the nodes of K are connected to the same set of neighbours, S having identical weight,

wSi (Figure 2 (b1)). For (W−xI) matrix, we would get the relation wK =−x. By this way,

D∗ S structure can be seen as a particular case of K ∗ S with wK = 0 (Figure 2 (a2)). This

has highlighted one of the most interesting aspects of degeneracy in weighted graphs. The

condition (ii) would always give a K ∗ S sub-graph and the only difference was based on

the weight of edges. More particularly, the weight of edges in K was directly related to the

eigenvalue to which it contributes. However, because of this supplementary constraint, we

would expect a lower degeneracy resulting from the condition (ii) in weighted networks

as compared to unweighted networks. Indeed, it was sure that most of the K ∗ S structures

observed in unweighted networks would not fulfill this constraint if the weights were taken

into account.

Further, to simplify condition (iii), we considered the particular case R1 +R2 = R3 +R4,

which gave:

w1k +w2k = w3k +w4k with k = 1,2, ...,N (4)

The last equation can be developed as a system:














w12 − x = w13 +w14 = w23 +w24

w34 − x = w13 +w23 = w14 +w24

w1k +w2k = w3k +w4k with k = 5,6, ...,N

(5)

Contrary to the condition (ii), the condition (iii) did not shed light on a typical structure.

Indeed, since wi j can take any real value, the number of possible solutions were high and

so it should be difficult to find a general solution to the previous equation. This was due

to the fact that condition (iii) can result from a linear combination of rows. By this way,

we would expect a degeneracy resulting from the condition (iii) at more eigenvalues in

weighted graphs than in the case of unweighted graphs and so, contrary to the case of

condition (ii), we would observe more different structures which were not brought in to

light by degeneracy in unweighted networks. Here we would limit ourselves to provide an

example of graph that could verify R1 = R2 +R3 in W and (W+ I) (see Figure 2 (b2)).

So far, we focused on finding structures behind occurrence of eigenvalue degeneracy.

The next question was: could we identify the nodes involved in such structures ? The an-

swer was yes since it had been shown that it’s possible by using the eigenvectors associated

to degenerate eigenvalues (Marrec & Jalan, 2017). More particularly, the components of

these eigenvectors verify the following relation:

{

∑i∈Kp
vi = 0 with vi 6= 0 and p = 1,2, ...,nK∗S

v j∈V\{K1∪K2∪...∪KnK∗S
} = 0

(6)
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Table 1. Properties of (un-) weighted normal and disease PPI networks. Here, N means

number of nodes, NC means number of connections, 〈K〉 means average degree, kmax

means degree of the hub node, λ−1 means number of minus one eigenvalues, λ nodes
−1 (ii)

and λ nodes
−1 (iii) represent number of proteins linked to degeneracy corresponding to λ−1

with condition ii and iii, respectively. w stands for weighted network and unw stands for

unweighted network.

Network N Nc 〈kunw〉 〈kw〉 kunw
max kw

max λ−1 λ nodes
−1 (ii) λ nodes

−1 (iii)

Normal 9946 105491 21 32 636 1565 23 39 0

Disease 8354 102701 25 35 877 1409 20 35 4

for nodes belonging to K ∗S structures, where nK∗S denoted the number of such sub-graphs

in the whole network.

Similarly, for the nodes which has belonging to a sub-graph verifying the condition (iii)

in W− xI, one has the relation:

{

∑i∈(L.C)p
vi = 0 with vi 6= 0 and p = 1,2, ...,nL.C

v j∈V\{(L.C)1∪(L.C)2∪...∪(L.C)nL.C
} = 0

(7)

where L.C and nL.C were the linear combinations and the number of linear combinations,

respectively. Thanks to these relations, one could identify easily the nodes contributing to

degenerate eigenvalue. One way to handle this issue was to consider the matrix (W− xI)

and to search for each Ri =R j, which was computationally doable. Then, we could consider

one of the eigenvectors associated to x eigenvalue and identified all the non-null entries.

These should not obey Ri = R j to belong necessarily to a linear combination.

2.5 Gene enrichment and survival analysis

We used genes from significant signatures i.e, corresponding to -1 eigenvalue degeneracy

as an input into STRING (Szklarczyk et al., 2014), Panther (Mi et al., 2005), and MSigDB

(Liberzon et al., 2011) gene ontology platforms. Further, we measured the correlation be-

tween each gene activity and patient survival outcomes using Cox proportional risks group

hazards models available with SurvExpress biomarker validation tool (Aguirre-Gamboa et al., 2013)

for TCGA cancer gene expression data (Supplementary materials). TCGA database pro-

vides a catalogue genetic mutations responsible for over 20,000 primary cancer and matched

normal samples spanning 33 cancer types. In particular, we inserted details of Gene name(s)

and Tissue of interest in the data-fields given at SurvExpress homepage. Then, we have

chosen the TCGA database for data retrieval and performed Biomarker Cox survival anal-

ysis using default parameters.
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Fig. 3. Construction and analysis of weighted multi-cancer PPI network. (a and b)

Schematic diagram showing overall network data collection from healthy and cancer

tissues, (c) Schematic diagram illustrates the construction of weighted network where

edges from two networks (in actual seven) constitute one weighted network. (d) Common

proteins found between group tissues in normal and cancer datasets. (e) Venn diagram

shows overlap between the number of proteins found in healthy and cancer tissues. (f)

shows the number of times a protein can be found in a particular group of tissue. For

instance, if a protein is present in breast and oral cancer, it is said to present in a group of

two tissues.

3 Results

3.1 Analysis of normal and cancer datasets

Before we would present results based on the analysis of weighted networks, we outlined

few observations about number of proteins in the healthy and cancer tissues by considering

all the cancers as a single unit. Existence of common proteins in both the normal and

corresponding cancer states have suggested that their common aetiology and common

functions which are essential for cell survival and growth. We found that more than 65%

(± 23%) proteins in the normal tissues were found in corresponding cancer tissues when

we considered each tissue separately (Figure 3(C)). However, there were as much as 85%
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of proteins in normal tissues were found in cancer tissues when we took all the normal

tissues as a single unit (Figure 3(D)). It suggested that a large portion of proteome of

healthy tissues have role in some or other cancer related activities. Similarly, more than

51% (±16%) proteins from individual cancer tissues were found in normal tissues when

we considered each tissue separately (Figure 3(C)). Interestingly, there were as much as

71% of cancer proteins were also present in normal tissues when we considered all cancer

tissues as a single unit (Figure 3(D)). It would be institutive to have a higher proteome

overlap when different tissues were considered as one unit but it was interesting to note

that cumulative cancer tissue proteome has less overlap than cumulative normal tissue

proteome.

3.2 Importance of nodes based on structural properties of networks

We constructed two types of networks for both the disease and the normal datasets: (1)

unweighted networks which was constructed based on the presence and the absence of

interactions between proteins, and (2) weighted networks where weights were assigned to

an interaction based on the number of times an interaction was repeated in the combined

list (Figure 3(A)). First, we examined the structural properties of these networks. We found

that 〈k〉 was higher in the disease networks than that of normal networks (for both the

weighted and the unweighted cases) suggesting that cancer proteins have more affinity

to interact among themselves. Further, we found that the highest degree nodes (kmax) in

the unweighted and the weighted multi-cancer networks were different (Supplemetary

materials). The hub protein in unweighted cancer network was UBC (k = 877) whose

pathway function is translation regulation whereas the hub protein in weighted multi-

cancer network was CACNB2 (k = 1565). Additionally, the top 10 degree proteins in

weighted multi-cancer network were also among pathway regulators (Supplemetary ma-

terials). This observation lie in accordance of known fact that the regulatory proteins

were high degree proteins in PPI networks (Fox et al., 2011). Second, weighted multi-

cancer network has CACNB2 and BRD7 (k = 1524) as two high degree proteins in which

CACNB2 has the role among CCR5 pathway in macrophages and PEDF induced signaling

(http://www.proteinatlas.org/ENSG00000165995-CACNB2/cancer) and BRD7 has TP53

activity (Yu et al., 2016). It was interesting to note that though CACNB2 and BRD7 perform

essential cancer activities (Yu et al., 2016), they are yet to get thoroughly investigated for

drug related activities in cancer. Nevertheless, weighting scheme have provided identifi-

cation of another set of nodes which were vital for cellular processes in cancers under

investigation.

3.3 Importance of nodes corresponding to degeneracy in weighted cancer network

Next, we discussed to the prime focus of the current study by screening nodes forming

structural patterns corresponding to -1 eigenvalues (λ−1) in weighted multi-cancer PPI

network and further noted down their biological significances and network properties.

There were 39 proteins corresponding to -1 eigenvalues (summarized in Supplemetary

materials Table 1). These proteins, except APOL6 and BTBD7, have been reported to be

related to more than one tumors. Each of 39 proteins posses one or more property of can-

http://www.proteinatlas.org/ENSG00000165995-CACNB2/cancer
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Fig. 4. Network structural properties and functional assessment of 39 cancer proteins

identified using network symmetry. (A) Network structural properties such as degree

(k), betweeness centrality (βC) and clustering coefficient (C) for 39 proteins are displayed

where proteins showing high value of particular property are highlighted. Horizontal line

(green) shows the average value.(B) Gene functional assessment is categories into four

groups i.e., molecular function, gene ontology, location and other.

cer’s hallmarks (Hanahan & Weinberg, 2011) as they have participated in cell signaling,

signal transduction, transport etc (Figure 4(B)). Additionally, they exhibited essential bio-

physical and bio-chemical activities such as enzymatic (kinase, transferase), immunolog-

ical (B-cell, T-cell) and molecular (RNAi, signalling) activities. Few of them were also

found to perform activities at multiple cellular locations such as cell nucleus, cytoplasm,

nucleoplasm and extracellular matrices which was biologically more relevant in perform-

ing specific biological activities related to cellular communications (Figure 4(B)). It was

interesting to report that these 39 proteins did not take any significant structural position

in global-level weighted multi-cancer PPI network. Therefore, they were not detectable at

global-level network using various measures such as node degree, clustering coefficient

and betweenness centrality (Figure 4 and Supplemetary materials) available in network

literature to identify them as structurally important nodes.

Since it was known that disease biomarkers would tend to have higher degree and con-

nectivity in comparison to non-disease genes because of higher values of gene expressions

(Winter et al., 2014), among these 39 proteins we first focused on those proteins which

have degree higher than average degree of 39 nodes. Second, we focused on proteins having

βc higher than 〈βc〉 of 39 proteins. Betweenness centrality measures the extent to which

a node lies on paths between other vertices. The removal of nodes with high betweenness
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Fig. 5. Comparison of biomarkers using overall survival analysis. The listed 11

proteins are distinguished proteins among 39 proteins. (A) Single protein analysis. C-

index and HR values of 11 candidate proteins in cancer cohorts are shown. For example,

CDKN2A showed significant HR value in COAD (HR 2.3 [95% 1.2 - 4.4), p=0.01]). It is

to note that we select two cancer cohorts for lung cancer i.e., LUAD and LUSC. (B) Multi-

protein analysis where group of 11 candidate proteins are analysed against each cancer

cohort. Kaplan-Meier curves for both single protein and multi-protein analysis are given in

Supplementary materials.

centrality from the network will most disrupt communications between other nodes be-

cause they lie on the largest number of paths (Barh et al., 2014). It’s known that high degree

nodes have high βc value. However, there were interesting reports where moderate degree

nodes have high βc and these nodes were proposed to be selected as effective cancer targets

(Barh et al., 2014). Lastly, we noted down proteins with higher C values than 〈C〉 of 39

proteins. Clustering coefficient demonstrates cluster forming ability of nodes or how well

a node is connected among its direct neighbours (Albert & Barabási, 2002). Interestingly,

above five nodes were among top 10 nodes with high C value in our weighted multi-cancer

PPI network. Overall, we short-listed 12 significant candidate proteins by refining the list

of 39 proteins with respect to network properties.

3.4 Survival Analysis

It’s essential to study function of a protein with its role in patient survival to devise cancer

biomarker (Brockmoller et al., 2011). To achieve this, we assessed whether the selected 12

candidate proteins were also associated with the overall survival (OS) in different cancers.

Out of 12 proteins, we did not find data of patient survival for KIR2DL2. Therefore,

we selected 11 proteins for further analysis. First, we performed OS with multi-protein
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(11 proteins) to understand the role of degeneracy in eigenvalues which arises due to

underlying symmetry in interaction in each cancer (Figure S13). Risk hazard ratio (HR)

measures an effect of an intervention on an outcome of interest over time whereas C-index

measures and compares the discriminative power of a risk prediction model. HR value 1

means lack of association, a hazard ratio greater than 1 suggests an increased risk, and a

hazard ratio below 1 suggests a smaller risk. HR value was found be more than 1.5 for

each cohort in which Cervical squamous cell carcinoma (CESC) and Prostate adenocarci-

noma (PRAD) displayed significantly high value (Figure 5). Secondly, we carried out the

single-protein analysis which identified most significantly associated proteins with OS in

each cancer, independently (Figures S3-S12). We identified five proteins as putative multi-

cancer biomarkers i.e., BMI, MAPK11, DDIT4, CDKN2A, and FYN. These proteins have

HR value more than average HR value for atleast 3 cohorts as well as they occurred in

atleast 3 cohorts in multi-protein analysis.

Furthermore, we compared the differential expression of BMI, MAPK11, DDIT4, CDKN2A,

and FYN proteins between low-risk and high-risk patient groups in each cancer cohort. The

definition of low-risk and high-risk patient groups were taken from SurvExpress, which

generates two equal groups of patients cohort using the prognostic index (Aguirre-Gamboa et al., 2013).

In particular, we identified BMI1 which was epigenetic regulator and it promoted oncoge-

nesis with DNA damage response (Nacerddine et al., 2012). Our OS analysis found that

BMI1 has increased levels of gene expression in high-risk groups in seven cohorts (expect

in HNSC) (Supplemetary materials). Interestingly, we found that CDKN2A was absent in

Breast cancer adenocarcinoma (BRCA) cohort and it has decreased expression in high risk

patients (except Colon adenocarcinoma (COAD) and PRAD). We also found that CDKN2A

showed significant HR value in COAD (HR 2.3 [95% 1.2 - 4.4), p=0.01]) and almost sig-

nificant HR value in PRAD (HR 7.4 [95% 0.9 - 59.1, p=0.06]) cohorts. Further, we found

the increased level of MAPK11 expression in high-risk patients of BRCA (Supplemetary

materials) which was supported by the fact that MAPK11 was highly expressed in the

metastatic breast cancer (He et al., 2014). In a way, it was possible to correlate increased

MAPK11 expression in high risks patients with high HR value. Interestingly, we found

that DDIT4 has high HR values in all fast growing cancers (Supplemetary materials).

DDIT4 is considered to be a driver in the aggressiveness of cancer cells because of its

apoptotic activity. DDIT4 is induced by a variety of stress conditions and inhibit mTORC1

pathway (Pinto et al., 2017). FYN is known to be up-regulated in human prostate cancer

and has role in cancer progression and metastasis (Elias & Ditzel, 2015). Overall, our

survival analysis predicted i.e., BMI, MAPK11, DDIT4, CDKN2A, and FYN as putative

multi-cancer proteins which could effectively stratify low and high-risk cancer patients.

4 Discussion

Our analysis focused on weighted PPI network constructed based on the number of times

a particular interaction among couple of proteins present in seven most prevalent and

morphologically different cancers. Most of earlier works were typically node-centric where

as we adopted a holistic approach excessively exploiting significance of functional interac-

tions among different cancer tissues. In a way, our method provided an ultimate scope for

identification of a protein set that would not have over-represented otherwise. The obser-
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vation of cumulative cancer tissue has lesser protein overlap than normal tissues suggested

the possibility of diverse cancer related activities within and across cancer tissues. We also

found that hub proteins in unweighted and weighted networks were completely different.

In unweighted network, CACN2 and BRD7 were turned out as two high degree proteins

in which both of them were largely unexplored for their therapeutic use. In other case,

UBC was identified as hub protein in unweighted network which was very well known for

cancer related activities. All this implicated the significance of weighing scheme to identify

another set of nodes which were vital.

Significance of this approach laid in the identification of simple and precise, yet funda-

mental, symmetrical structures of underlying network through -1 eigenvalues. Biological

network motifs drive very specific functions depending on the needs of the cell. Though

many efforts have been devoted to identify network motifs to capture particular local func-

tionality within a biological network, still scope persist for efficient method development.

Our method identified symmetrical structures in the underlying weighted PPI networks and

picked up proteins forming these essential network structures as candidate proteins. These

symmetrical structures were based on degeneracy in −1 eigenvalues.

Symmetrical structures presented here depict groups of proteins having a structural

equivalence in a network. Degeneracy at −1 eigenvalue essentially detects pairs of nodes

which are not only connected to exactly the same other nodes (similar to 0 eigenvalue

degeneracy), but also connected to one another forming motifs structures. Each network

motif or a complete subgraph can operate as an elementary circuit with a well-defined func-

tion, which is integrated within a larger network and has a role in performing the required

information processing. Such recurring elementary circuits have already been emphasised

within varieties of biological networks including cancer networks (Hanahan & Weinberg, 2011).

In general, degeneracy in cancer can be understood in terms of independent adaptation of

each cancer gene arising due to natural selection (Hanahan & Weinberg, 2011). In present

context, we used network structures corresponding to −1 eigenvalues as a measure of

degeneracy in network graph. This structural phenomenon is very interesting since many

proteins are essentially backups for others, and can perform similar functions if one is

knocked out or not functional at a particular phase of the cell cycle. For example, when

a eukaryotic cell is exposed to ionizing radiation, a group of RAD52 proteins attends

as a backup pathway operating independently in place of DNA dependent protein kinase

(Perrault et al., 2004). In another example, the presence of two distinct pathways of gly-

coproteins and non-glycoproteins exist in mammalian cells for translocation of misfolded

proteins from the endoplasm reticulum (ER) to the cytosol (Ushioda et al., 2013). First one

is functional in non-stress condition and later is functional in ER stress (Ushioda et al., 2013).

One more interesting example is that a significant number of cancerous mutations found

to fall at structurally equivalent positions within the proteins catalytic core, particularly

in kinases (Dixit et al., 2009). These structurally equivalent positions are also termed as

mutational hotspots (Dixit et al., 2009).

The identified 39 proteins corresponding to patterns linked to −1 eigenvalue degeneracy

did not take any significant structural position in weighted multi-cancer PPI network and

hence they were not detectable using various measures such as node degree, clustering

coefficient and betweenness centrality. However, these proteins should have profound ef-

fects on information processing in the protein-protein interactions since their position in a
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network arised due to underlying symmetry among interactions. In addition, the list of 39

proteins showed important biological roles given by gene enrichment analysis. Essentially,

because these 39 proteins were not hub proteins, their removal would have little impact on

the overall statistics of the network which was essential to rid of false positive outcomes.

Further, we short-listed 12 significant candidate proteins by refining the list of 39 pro-

teins with respect to network properties. Finally, we convinced with five putative proteins

which displayed high HR values in both single- and multi-protein analysis. Also, these

five proteins displayed very specific roles in group of cancers in survival analysis. The

current study demonstrated that the spectral graph theory framework is a powerful concept

and tool for revealing important structural patterns in network. Utilizing networks, cancer

biomarkers were identified considering their stands in pathways and cycles instead of mere

higher values of network features alone.

5 Conclusion

The current study was focused on the importance of interactions between proteins partic-

ipating among various cancer tissues. Two main objectives were currently pursued: first,

the glance at functional interactions among all cancers as single unit, which permitted us

to look at all cancer related processes under one data framework; and second, the use of

network theory and spectral graph theory as a means to identify important causative agents

for multi-cancer diagnosis and therapy.

Overall, the systems biology and spectral graph theory approach that we adopted in

this study allowed us to identify putative proteins those can be termed as multi-cancer

biomarkers. In which, some proteins were already known to serve as candidate multi-

cancer biomarkers that have confirmed the reliability of our results. Our study has broad-

ened the approach to identify cancer biomarkers using patterns corresponding to −1 eigen-

value degeneracy. The selected five proteins viz., BMI, MAPK11, DDIT4, CDKN2A, and

FYN showed both biological significance and effectiveness in survival analysis. The iden-

tification of multi-cancer biomarkers may lead to proposals of novel diagnostic tools and

therapeutic schemes. This finding could lead to another predictive angle and biological

validation in the future. Furthermore, on technical ground, the article has presented a

method to detect symmetrical patterns in weighted networks. The technique can be used to

detect symetrical patterns in any networks generated from other real-world data.

Additional files

File of supplementary material comprises of Supplementary information, figures and ta-

bles. It lists information on Hallmarks of Cancer. It also includes table information on

(Table S1) Datasets used for survival analysis. All datasets are considered for TCGA

database, (Table S2) Datasets of seven cancers and their details, (Table S3) Top 10 degree

nodes in weighted multi-cancer PPI network, (Table S4) Gene Expressions by risk groups,

(Table S5) Biological functions of proteins, (Figure S1) Zero Degeneracy.
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Availability of data and materials
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