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ABSTRACT

Recent work studying triadic closure in undirected graphs has

drawn attention to the distinction between measures that focus

on the “center” node of a wedge (i.e., length-2 path) vs. measures

that focus on the “initiator,” a distinction with considerable conse-

quences. Existing measures in directed graphs, meanwhile, have

all been center-focused. In this work, we propose a family of eight

directed closure coefficients that measure the frequency of triadic

closure in directed graphs from the perspective of the node initiat-

ing closure. The eight coefficients correspond to different labelled

wedges, where the initiator and center nodes are labelled, and we

observe dramatic empirical variation in these coefficients on real-

world networks, even in cases when the induced directed triangles

are isomorphic. To understand this phenomenon, we examine the

theoretical behavior of our closure coefficients under a directed

configuration model. Our analysis illustrates an underlying con-

nection between the closure coefficients and moments of the joint

in- and out-degree distributions of the network, offering an ex-

planation of the observed asymmetries. We also use our directed

closure coefficients as predictors in two machine learning tasks.

We find interpretable models with AUC scores above 0.92 in class-

balanced binary prediction, substantially outperforming models

that use traditional center-focused measures.

Keywords: directed networks, triadic closure, closure coefficients,

configuration model

1 INTRODUCTION

A fundamental property of networks across domains is the in-

creased probability of edges existing between nodes that share a

common neighbor, a phenomenon known as triadic closure [41, 48,

52]. This concept underpins various ideas in the study of networks—

especially in undirected networkmodels with symmetric relationships—

including the development of generative models [22, 27, 43, 46],

community detection methods [12, 17], and feature extraction for

network-based machine learning tasks [19, 24].

A standard measure for the frequency of triadic closure on undi-

rected networks is the clustering coefficient [4, 37, 52]. At the node
level, the local clustering coefficient of a node u is defined as the

fraction of wedges (i.e., length-2 paths) with centeru that are closed,
meaning that there is an edge connecting the two ends of the wedge,

inducing a triangle. At the network level, the average clustering
coefficient is the mean of the local clustering coefficients [52], and

the global clustering coefficient, also known as transitivity [4, 37], is

the fraction of wedges in the entire network that are closed.

Recent research has pointed out a fundamental gap between how

triadic closure is measured by the clustering coefficient and how

it is usually explained [53]. Local triangle formation is usually ex-

plained by some transitive property of the relationships that edges

represent; for social networks, this is embodied in the idea that “a

friend of my friend is my friend”. In these explanations, however,

triadic closure is driven not by the center of a length-2 path but

rather by an end node (which we refer to as the head), who initiates
a new connection. In contrast, the local clustering coefficient that

measures triadic closure from the center of a wedge implicitly ac-

credits the closure to the center node. The recently proposed local
closure coefficient closes this definitional gap for undirected graphs

by measuring closure with respect to the fraction of length-2 paths

starting from a specified head node that are closed [53].

These closure coefficients were only defined on undirected net-

works, but the interactions in many real-world networks are more

accurately modeled with an associated orientation or direction.

Examples of such networks include food webs, where the direc-

tion of edges represents carbon or energy flow from one ecological

compartment to another; hyperlink graphs, where edges represent

which web pages link to which others; and certain online social

networks such as Twitter, where “following” relationships are often

not reciprocated [9]. The direction of edges may reveal underlying

hierarchical structure in a network [3, 10, 20], and we should expect

the direction to play a role in local triadic closure.

Extensions of clustering coefficients have been proposed in di-

rected networks [11, 47], which are center-based at the node level.

However, formulating directed triadic measures from the center of

a wedge is even less natural in the directed case, while measuring

from the head is a more common description of directed closure

relationships. For example, in citation networks, paperAmay cite B,
which citesC and leadsA to also citeC . In this scenario, the initiator
of this triadic closure is really paper A. Similarly, in directed social

networks, outgoing edges may represent differential status [3, 26],

where if person A thinks highly of B and B thinks highly ofC , then
A is likely to think highly of person C and consequently initiate an

outbound link.

In the above examples, measuring triadic closure from A would

be the analog of the closure coefficient for directed networks, which

is what we develop in this paper. More specifically, we propose a

family of directed closure coefficients, which are natural general-

izations of the closure coefficient for undirected networks. Like

the undirected version of closure coefficients, these measures are

based on the head node of a length-2 path, in agreement with com-

mon mechanistic interpretations of directed triadic closure and

fundamentally different from the center-based clustering coeffi-

cient. Specifically, the directed clustering coefficients proposed by

Fagiolo [11] are not to be confused with the directed closure coeffi-
cients introduced in this work.

Our measurements are based on the notion of a directed wedge
as an ordered pair of directed edges that share a common node, and

the “non-center” end nodes of this wedge on the first and second

edge are called the head and tail nodes, respectively (in Figure 1,

solid lines mark the wedge, where node u is the head and node

w is the tail). Since each edge may be in either direction, there
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Figure 1: Illustration of four wedge types and eight local di-

rected closure coefficients at node u. The type of wedge is

denoted by two letters, each representing an edge direction

(incoming or outgoing). The first letter represents the direc-

tion of the edge between the head nodeu and the center node

v with respect to u. The second letter represents the direc-

tion of the edge between v and the tail node w with respect

to v. A wedge is i-closed if there is an incoming edge to the

head node from the tail, and o-closed if there is an outgoing

edge from the head node to the tail. There are eight local di-

rected closure coefficients at node u, denoted as Hz
xy (u) with

x ,y, z ∈ {i,o}. Each local directed closure coefficient mea-

sures the frequency of triadic closure of a certainwedge type

(denoted by subscript xy) and closing direction (denoted by

superscript z).

are four directed wedge types. When considering triadic closure

for each wedge type, the closing edge between the head and tail

nodes may also take either direction. Therefore, at each node, there

are eight local directed closure coefficients, each representing the

frequency of directed triadic closure with a certain wedge type

and closure direction (Figure 1). Analogous to the undirected case,

we also define the average and global directed closure coefficients

to measure the overall frequency of triadic closure in the entire

network. These statistics provide a natural and intuitive way to

study the frequency of directed triadic closure in detail, including

how directions of the incident and second edge influence a node’s

tendency to initiate or receive directed triadic closure.

Our empirical evaluation of the directed closure coefficients

on real-world networks in Section 3.2 reveals several interesting

patterns. At the node level, we find clear evidence of a 2-block

correlation structure amongst the eight local directed closure co-

efficients, where coefficients within one block are positively (but

not perfectly) correlated while coefficients from distinct blocks are

nearly uncorrelated. The block separation coincides with the direc-

tion of the closing edge in the closure coefficients. We also provide

theoretical justification for this observation, gleaned from studying

the expected behavior of the closure coefficients for directed con-

figuration model random graphs. Specifically, we will show that

the expected value (under this model) of each local directed closure

coefficient increases with the node degree in the closing edge di-

rection, and thus coefficients with the same closure direction and

directed degree are correlated.

From empirical network measurements, we also find surprising

asymmetry amongst average closure coefficients. Consider the in-

out wedges in Figure 1, where the coefficients H i
io (u) and Ho

io (u)
correspond to the same directed induced subgraph. For such sym-

metric wedges, the likelihood for outbound closure can be sub-

stantially higher than for inbound, even though the two induced

subgraphs are structurally identical. On the other hand, we show in

Section 4.1 that networks from the same domain exhibit the same

asymmetries.

With extremal analysis, we show in Section 4.1 that there is in

fact no positive lower or upper bound on the ratio between types

of directed average closure coefficients. Additional probabilistic

analysis under the configuration model shows that the expected

values of the directed closure coefficients depend on various second-

order moments of the joint in- and out- degree distribution of the

network. This result partly explains the significant difference in

values between a pair of seemingly related average closure coef-

ficients: their expected behaviors correspond to different second

order moments of the degree distribution.

Beyond our intrinsic study on the structure of directed closure

coefficients, we illustrate in Section 5 how these coefficients can

be powerful features for network-based machine learning. In a

lawyer advisory network where every node (lawyer) is labeled with

a status level (partner or associate) and directed edges correspond

to who talks to whom for profession advice [25], we show that local

directed closure coefficients are much better predictors of status

compared to other structural features such as degree or Fagiolo’s

directed clustering coefficients. Analysis of the regularization path

of the predictive model yields the insight that it is not howmany one
advises but ratherwho one advises that is predictive of partner status.
We conduct a similar network classification task in an entirely

different domain using a food web from an ecological study. Using

the same tools, we find that directed closure coefficients are good

predictors of whether or not a species is a fish. This highlights how

our proposed measurements are potentially useful across many

domains.

In summary, we propose the directed closure coefficients, a fam-

ily of eight new metrics for directed triadic closure on directed

networks. We provide extensive theoretical analysis which help ex-

plain some counter-intuitive empirical observations on real-world

networks. Through two case studies, we demonstrate that our pro-

posedmeasurements are good predictors in network-basedmachine

learning tasks.

2 BACKGROUND AND PRELIMINARIES

An undirected network (graph) G = (V ,E) is a node set V and an

edge set E, where an edge e ∈ E connects two nodes u and v . We

use d(u) to denote the degree of node u ∈ V , i.e., the number of

edges adjacent to u. A wedge is an ordered pair of edges that share

exactly one node; the shared node is the center of the wedge. A
wedge is closed if there is an edge connecting the two non-center

nodes (i.e., the nodes in the wedge induce a triangle in the graph).

Although the notion of triadic closure in general has a long

history [41, 51], perhaps the most common metric for measuring

triadic closure in undirected networks is the average clustering

coefficient [52]. This metric is the mean of the set of local clustering
coefficients of the nodes, where the local clustering coefficient of a

node u, C(u), is the fraction of wedges centered at node u that are

closed:

C(u) = 2T (u)
d(u) · (d(u) − 1) ,

whereT (u) denotes the number of triangles in which node u partic-

ipates. The denominator d(u) · (d(u) − 1) is the number of wedges

2



centered at u, and the coefficient 2 corresponds to the two wedges

(two ordered pairs of neighbors) centered at u that the triangle

closes. If there is no wedge centered at u (i.e., d(u) ≤ 1), the local

clustering coefficient is undefined.

Again, to measure the overall triadic closure of the entire net-

work, the average clustering coefficient is defined as the mean of the

local clustering coefficients of all nodes:

C̄ =
1

|V |
∑
u ∈V

C(u).

When undefined, the local clustering coefficient is treated as zero

in this average [35], although there are other ways to handle these

cases [23]. An alternative network-level version of the clustering

coefficient is the global clustering coefficient, which is the fraction

of closed wedges in the entire network [4, 37],

C =
2

∑
u ∈V T (u)∑

u ∈V d(u) · (d(u) − 1) .

This measure is also sometimes called transitivity [6].

Recent research has exposed fundamental differences in how

triadic closure is interpreted and measured [53]. For example, social

network triadic closure is often explained by the old adage that “a

friend of a friend is my friend,” which accredits the creation of the

third edge to the end-node (also called the head) of the wedge. This
interpretation, however, is fundamentally at odds with how triadic

closure is measured by the clustering coefficient, which is from the

perspective of the center node. To close this gap, Yin et al. proposed
the local closure coefficient that measures triadic closure from the

head node of wedges [53]. Formally, they define this as

H(u) = 2T (u)∑
v ∈N (u)[d(v) − 1] ,

where N (u) is the set of neighbors of u. In this case, the denomina-

tor is the number of length-2 paths emanating from node u. Thus,
in social networks, the closure coefficient of a node u can be inter-

preted as the fraction of friends of friends of u that are themselves

friends with u. The closure coefficient has since been investigated

under scale-free random graph models [49].

Extensions to directed networks. The focus of this paper is on

measuring triadic closure in directed networks. The only defini-

tional difference from undirected networks is that the edges are

equipped with an orientation, and (u,v) ∈ E denotes a directed edge

pointing from u to v .1 We assume that G does not contain multi-

edges or self-loops and denote the number of nodes by n = |V | and
the number of edges bym = |E |.

When an end-node u of an edge is specified, we denote the

direction of an edge as i (for incoming to u) or o (for outgoing

from u). For any node u ∈ V , we use di (u) and do (u) to denote

its in-degree and out-degree, i.e., the number of edges incoming to

and outgoing from node u, respectively. For a sequence of joint in-
and out-degrees [(di (u),do (u))]u ∈V , we useMxy , with x ,y ∈ {i,o}

1
One nuance in directed networks is that an edge might be reciprocal: (u, v) ∈ E and

(v, u) ∈ E . A pair of reciprocal edges are sometimes treated as a single bidirected

edge [15, 47] and sometimes treated as two distinct edges [45]. For readability proposes,

in this paper we treat a pair of reciprocal edges as two separate edges. Extensions for

special considerations of reciprocal edges are straightforward and similar theoretical

and empirical results can be found.

u

v w
Cii(u)

u

v w
Coo(u)

u

v w
Cio(u)

u

v w
Coi(u)

Figure 2: Illustration of the local directed clustering coeffi-

cients at node u, due to Fagiolo [11]. The definition is a di-

rect extension of the local clustering coefficient [52], which

measures triadic closure from the center of each wedge.

being the direction indicator, to denote the different second-order

moments of the degree sequence, i.e.,

Mxy =
1

n

∑
u ∈V

dx (u)dy (u).

There are three second-order moments:Mii ,Moo , andMio = Moi .

Fagiolo proposed a generalization of the clustering coefficient

to directed networks [11]. Similar to the undirected case, a directed
wedge is an ordered pair of edges that share a common node, and

the common node is called the center of this wedge. The wedge
is then called closed if the there is an edge from the opposite end-

point of the second edge to the opposite end-point of the first

edge (this constraint, along with the ordering of the two edges,

covers the symmetries in the problem). In total, there are four

directed clustering coefficients, each defined by the fraction of

certain types of wedges that are closed (Figure 2). Seshadhri et al.
extended Fagiolo’s definition by explicitly accounting for bidirected

(reciprocal) edges, with a focus on network-level (as opposed to

node-level) metrics [47]. While we could also explicitly differentiate

bidirected links, here we focus on bidirected links as counting

towards wedges and closure in both directions.

Directed clustering coefficients have found applications in ana-

lyzing fMRI data [29], financial relationships [33], and social net-

works [1]. However, as discussed above, existing directed clustering

coefficients measure clustering from the center of a wedge, a limited

perspective. Our head-based directed closure coefficients, which

we define formally in the next section, thus enhance the toolkit for

these diverse applications using triadic closure patterns in directed

networks.

Additional related work. The first research on directed triadic

closure is due to Davis and Leinhardt [10] who studied the relative

frequency of each 3-node directed subgraph pattern and compared

the frequencies with random graph models. Milo et al. later ex-
amined significantly recurring patterns of connected directed sub-

graphs as “network motifs" [32], with a particular emphasis on the

role of so-called “feed-forward loops” in biology [31]. Similar to the

case of directed clustering coefficients [11], prior research has stud-

ied the ratio of closed wedges at the global (network) level [7, 38, 47],

which is sometimes called “motif intensity” [38]. Most generally,

we also note that the language of “directed graphlets” [45], which

can be used to quantify node-level subgraph participation counts

within directed networks, provides an expansive characterization

of 128 automorphism orbits from which our closure coefficients can

be thought of as specific, derived quantities. The key differences in

our definitions of directed closure coefficients in the next section

are that (i) we measure closure at the node level; and (ii) they are

head-node-based metrics which are more agreeable with traditional
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explanations of directed triadic closure. We will show later that our

measures also have considerably different behavior than previous

measures.

Directed triadic closure also appears in dynamic network analy-

sis. Lou et al. proposed a graphical model to predict the formation of

a certain type of directed triadic closure: closing an oo-type wedge
with outbound link [30]. This model was later generalized to pre-

dict the closure of any type of wedge based on node attributes [21].

Similarly, the notion of a “closure ratio" has been used to analyze

copying phenomena in directed networks [44]. This is also an end-

node-based metric that measures a closure of in-in wedges with

an incoming edge. Our definitions of directed closure coefficients

are different in that they (i) are defined on static networks, (ii) mea-

sure diverse types of triadic closure, and (iii) are closely connected

to undirected measures of closure and the traditional perspective

of triadic closure. Connecting our static measures of directed clo-

sure and temporal counterparts is an interesting avenue for future

research.

3 DIRECTED CLOSURE COEFFICIENTS

In this section, we provide our formal definition of directed clo-

sure coefficients, and measure them on some representative real-

world networks to demonstrate how they provide empirical insights.

These insights provide direction and motivation for our theoreti-

cal analysis in Section 4. We then show in Section 5 how directed

closure coefficients are useful features in machine learning tasks.

3.1 Definitions

With the same motivation as the undirected closure coefficient, we

propose to measure directed triadic closure from the endpoint of a

directed wedge. Recall that a directed wedge is an ordered pair of

edges that share exactly one common node. The common node is

called the center of the wedge, and here we define the head of this

wedge as the other end of the first edge, and the tail as the other
end of the second edge. Regardless of the direction of the edges, we

denote a wedge by an ordered node triple (u,v,w), where u is the

head, v is the center, andw is the tail.

Since each edge is directed, there are four types of directed

wedges.
2
We denote the type of wedge with two variables, say x

and y, each taking a value in {i,o} to denote incoming or outgoing.

Specifically, a wedge is of type xy (an xy-wedge) if the first edge is
of direction x to the head, and the second edge is of direction y to

the center node. Figure 1 shows the four types of directed wedges.

We say that a wedge is i-closed if there is an incoming edge from

the tail to the head node, and analogously, it is o-closed if there is

an outgoing edge from head to the tail node. For any u ∈ V and

x ,y, z ∈ {i,o}, we denoteWxy (u) as the number of wedges of type

xy where node u is the head, and T zxy (u) as the number of z-closed
wedges of type xy where node u is the head.

Now we give our formal definition of local directed closure coef-

ficients, which is also illustrated in Figure 1.

2
Again, for readability purposes, we do not consider reciprocal edges separately;

instead, a reciprocal edges is treated as two separate directed edges. Our definitions

and analyses can easily be extended to study reciprocal edges, though there would be

9 types of directed wedges and 27 closure coefficients.

Definition 3.1. The local directed closure coefficients of node
u are eight scalars, denoted by Hz

xy (u) with x ,y, z ∈ {i,o}, where

Hz
xy (u) =

T zxy (u)
Wxy (u)

. (1)

If there is no wedge of a certain type with node u being the head,

the corresponding two closure coefficients are undefined.

Here we highlight again the fundamental difference between

the local directed closure coefficients we proposed and the local

directed clustering coefficients proposed by Fagiolo [11]: the clo-

sure coefficients measure triadic closure from the head of wedges,

which agrees with natural initiator-driven explanations on triadic

closure, while the clustering coefficients measure from the center of

wedges. We will show that this small definitional difference yields

substantial empirical and theoretical disparity.

Analogous to the undirected clustering coefficient, we also define

the average and global directed closure coefficient to measure the

overall directed triadic closure tendency of the network.

Definition 3.2. The average directed closure coefficients of a
graph are eight scalars, denoted by H

z
xy with x ,y, z ∈ {i,o}, each

being the mean of corresponding local directed closure coefficient

across the network:

H
z
xy =

1

n

∑
u ∈V

Hz
xy (u),

We treat local closure coefficients that are undefined as taking

the value 0 in this average, though most nodes in the datasets we

analyze have eight well-defined closure coefficients.

Definition 3.3. The global directed closure coefficients of a

graph are eight scalars, denoted by Hz
xy with x ,y, z ∈ {i,o}, each

being the fraction of closed directed wedges in the entire network:

Hz
xy =

T zxy

Wxy
, (2)

whereWxy =
∑
u ∈V Wxy (u) and and T zxy =

∑
u ∈V T zxy (u) are the

total number of xy-wedges and closed xy-wedges.

The global directed closure coefficients are equivalent to some

global metrics of directed clustering coefficients [38, 47], since the

difference in measuring from head or center does not surface.

3.2 Empirical Analysis

To obtain intuition and empirical insights before diving into theo-

retical analysis, we evaluate the directed closure coefficients on 11

networks from five different domains:

(1) Three social networks. soc-Lawyer [25]: a professional advi-

sory network between lawyers in a lawfirm; soc-Epinions [42]:

an online network of who-trusts-whom relationships; and

soc-LiveJournal [2]: an online social friendship network.

(2) Two communication networks. msg-College [39]: an online

messaging network between college students; and email-

Eu [54]: an email network between researchers at a European

institute.

(3) Two citation networks. cit-HepTh and cit-HepPh [16]: con-

structed from arXiv submission in two categories.
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Network n m Mii Mio Moo r% ∆c ∆ac

soc-Lawyer 71 892 227.41 166.15 208.65 0.39 880 5075

soc-Epinions 75.9K 509K 1179.40 526.15 721.82 0.41 740K 3.59M

soc-LiveJournal 4.85M 69.0M 2091.52 1220.33 1504.35 0.75 244M 946M

msg-College 1899 20.3K 347.80 391.99 592.42 0.64 11K 40K

email-Eu 1005 25.6K 1428.97 1509.56 1756.77 0.72 132K 433K

cit-HepTh 27.8K 353K 1746.72 269.14 416.35 0.00 572 1.49M

cit-HepPh 34.5K 422K 790.63 189.62 380.70 0.00 555 1.29M

fw-Everglades 69 916 394.12 136.52 257.16 0.07 538 4781

fw-Florida 128 2106 493.08 201.92 451.62 0.03 357 8688

web-Google 876K 5.11M 1572.90 69.30 77.46 0.31 3.89M 28.2M

web-BerkStan 685K 7.60M 62430.80 324.71 390.55 0.25 13.8M 131M

Table 1: Summary statistics of networks: number of nodesn; number of edgesm; second-ordermoments of the degree sequence

Mii , Mio , and Moo ; fraction r of edges that are reciprocal (i.e., reciprocity); and number of cyclic and acyclic triangles (∆c and

∆ac ).

(4) Two food webs. fw-Florida and fw-Everglades [50]: car-

bon exchange relationships collected from the Florida Bay

and the Everglades Wetland.

(5) Two web graphs. web-Google and web-BerkStan [28]:

hyperlink networks from a Google competition as well as a

crawl of berkeley.edu and stanford.edu domains.

Table 1 lists some basic statistics of the networks.We emphasize that

the reciprocity of these networks vary substantially. For example,

the citation networks and food webs contain mostly unidirectional

edges, and the communication networks many bidirected (recipro-

cal) edges.

Figure 3 shows the global and average directed closure coeffi-

cients of the soc-Lawyer dataset. From the first row, we see that

the eight global closure coefficients can be grouped into four pairs,

{(H i
ii ,H

o
oo ), (Ho

ii ,H
i
oo ), (H i

io ,H
o
io ), (H

i
oi ,H

o
oi )}

with each pair of coefficients taking the same value. This observa-

tion is expected due to the symmetry in the wedge structure, which

we study in more detail in Section 4.1. In contrast, these group-

ings do not take the same value in the case of the average closure

coefficients (the second row of Figure 3): we observe an a priori
unexpected asymmetry. For example, H

o
io = 0.362 ≫ H

i
io = 0.263

(in orange, Figure 3). When an in-out wedge is closed with either

an incoming or outgoing edge, the induced triangle is actually the

same: both are feedforward loops [32]. It is not obvious why closure

with an outgoing edge is so much more likely that with an incoming

edge. We develop some theoretical explanations for this asymmetry

in Section 4.2.

We also explore the correlations between the eight average di-

rected closure coefficients in the soc-Lawyer and fw-Florida net-

works (Figure 4). Each network has a clear separation amongst the

eight local closure coefficients: the coefficients in the first four rows

and columns (with incoming closure edge), and the coefficients on

the last four rows and columns (with outgoing closure edge). Within

each group, the coefficients are strongly correlated. In soc-Lawyer,

the coefficients in different groups are nearly uncorrelated, whereas

in fw-Florida, the coefficients in different groups are negatively

Hz
xy 0.
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0.
35
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Figure 3: Global (top) and average (bottom) directed clo-

sure coefficients in soc-Lawyer, with head nodes in gray.

The global closure coefficients exhibit symmetry (e.g., H i
io =

Ho
io ), while the average closure coefficients exhibit counter-

intuitive asymmetry between pairs of coefficients, e.g.,H i
io =

0.263 ≪ H
o
io = 0.362 (in orange, second row). The induced

structure is the same in both closure coefficients (a feedfor-

ward loop or acyclic triangle). We explain this phenomenon

in Section 4.

correlated. This correlation pattern is representative across the net-

works that we have studied with directed closure coefficients, and

we explain this correlation separation as part of the next section.

To study the difference in frequencies of directed triadic closure,

we visualize the eight average directed closure coefficients of 10

networks in Figure 5, where each row contains two networks within

the same domain. We find that each domain of networks has their

own directed triadic closure patterns. In social networks, different

wedge types have similar closure frequencies, likely due to the

abundance of reciprocal edges [36]. In communication networks,

the tall blue bars associated with out-in wedge type means one is

more likely to connect to people with whom they both send com-

munications; this might be a result of shared interest. In contrast,
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Figure 4: Heatmap of the correlation matrix of the eight

local directed closure coefficients in soc-Lawyer (left) and

fw-Florida (right). There is a clear separation on the eight

local closure coefficients: the ones for i-closed and the ones

for o-closed. Coefficients within each group are highly cor-

related while between groups are almost uncorrelated.

citation networks have low closure coefficients for out-in wedge

(short blue bars), meaning that one is not likely to cite or be cited

by papers with the same reference: this phenomenon might come

from a conflict of interest; moreover, due to near non-existence of

cycles, in-in wedges and out-out wedges are each only closed in one

direction. Similar patterns appear in the food webs and web graphs,

where there is a hierarchical structure and few cycles. Lastly, we ob-

serve similar asymmetry in all citation, food web, and web graphs,

namely thatH
o
io > H

i
io , from the orange bars showing significantly

higher outbound closure rate than inbound rate.

4 THEORETICAL ANALYSIS

We now provide theoretical analysis of our directed closure coeffi-

cients. We first prove the symmetry between the four pairs of global

directed closure coefficients. Motivated by the empirical asymmetry

amongst average directed closure coefficients, we first prove that

this asymmetry can be unboundedly large. Finally, to explain the

asymmetry, we study how the in- and out- degree distributions

influence the expected value of each average closure coefficients

under a directed configuration model with a fixed joint degree

distribution.

4.1 Symmetry and Asymmetry

Recall that each global directed closure coefficient is the fraction of

certain types of wedges that are closed in the entire network. We

observed in Section 3 that the eight global directed closure coeffi-

cients can be grouped into four pairs, with each pair of coefficients

having the same value. The following proposition shows that these

values must be the same in any network.

Proposition 4.1. In any directed network,H i
ii = Ho

oo ,H
o
ii = H i

oo ,
H i
io = Ho

io , and H
i
oi = Ho

oi .

Proof. Here we only prove H i
ii = Ho

oo , and the other three

identities can be shown analogously. By counting wedges from the

center node,Wii =
∑
u di (u) · do (u) = Woo . Next, there is a one-

to-one correspondence between a closed in-in wedge and a closed

out-out wedge by flipping the roles of the head and tail nodes. Thus,

T iii = T
o
oo and H i

ii = Ho
oo , according to Definition 3.3. □
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Figure 5: Average directed closure coefficients of networks

fromfive domains.Wedge types are colored in the sameway

as in Figure 3, with incoming closure represented by slashed-

bars and outgoing closure represented by dotted-bars. Net-

works from the same domain (each row) have similar di-

rected closure patterns, while the patterns across domains

can be quite different.

Proposition 4.1 illustrates the fundamental symmetry among the

eight global directed closure coefficients. The four pairs of global

closure coefficients

{(H i
ii ,H

o
oo ), (Ho

ii ,H
i
oo ), (H i

io ,H
o
io ), (H

i
oi ,H

o
oi )}

correspond to the same structure and triadic closure pattern in the

entire network, so their values have to be the same.

As an alternative global measure of directed triadic closure, we

might expect the average closure coefficients to have a similar

symmetric pattern. Specifically, by pairing up the average closure

coefficients in the same way,

{(H i
ii ,H

o
oo ), (H

o
ii ,H

i
oo ), (H

i
io ,H

o
io ), (H

i
oi ,H

o
oi )}, (3)
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Class #nodes Wio (u) T iio (u) T oio (u)

C4

C3

C2

C1 n1 n3n2 + n3n4 n3n2 0

n2 n3n1 + n3n4 0 n3n1

n3 0 0 0

n4 n3n1 + n3n2 0 0

Figure 6: An example graph used in the proof of Theo-

rem 4.2, showing maximal differences between directed clo-

sure coefficients H
i
io and H

o
io . Each double circle Cj repre-

sents a class of nodes and an edge Cj → Ck means that

uj → uk for all uj ∈ Cj and uk ∈ Ck .

onemight initially guess that the two values in a pair would be close.

However, our empirical evaluation on the soc-Lawyer datasets

above, as well as all the citation, food webs, and web graphs, showed

asymmetry in thesemetrics: for example,H
o
io ≫ H

i
io in the soc-Lawyer

dataset. Here we study how large such difference can be and find

that there is no non-trivial upper or lower bound on H
i
io based on

H
o
io and vice versa. Furthermore, this same flavor of unbounded-

ness is valid for the other three pairs of average directed closure

coefficients.

Theorem 4.2. For any ϵ > 0, and any pair of average directed
closure coefficients from Equation (3), denoted as (Ha ,Hb ), there is
a finite graph such that Ha < ϵ and Hb > 1 − ϵ , and another finite
graph such that Ha > 1 − ϵ and Hb < ϵ .

Proof. Here we give a constructive proof for the pair (H i
io ,H

o
io );

the same technique works for the other three pairs. We use the

example graph in Figure 6. Each double-circle in the figure, denoted

by Cj with j ∈ {1, 2, 3, 4}, represents a set of nodes, and we let nj
denote the number of nodes in each class. A directed edge from class

Cj to Ck means that for any node uj ∈ Cj and any node uk ∈ Ck ,
there is an edge uj → uk . The number of in-out wedges as well

as closed wedges are listed in the last three columns of the table.

We have that H i
io (u) =

n2

n2+n4

for any node u ∈ C1, H
i
io (u) = 0 for

u ∈ C2 or C4, and H
i
io (u) undefined for u ∈ C3. Now,

H
i
io =

n1n2

(n2+n4)(n1+n2+n3+n4) , H
o
io =

n1n2

(n1+n4)(n1+n2+n3+n4) .

The nj ’s can take any integer value. We first fix n3 = n4 = 1. If

n1 = k2
and n2 = k for any integer k > 3/ϵ , H i

io > 1 − ϵ and

H
o
io < ϵ . And if n1 = k and n2 = k2

for any integer k > 3/ϵ ,
H
i
io < ϵ and H

o
io > 1 − ϵ . □

In contrast, the directed clustering coefficients due to Fagiolo [11]

are based on the center of wedges, so the two edges are naturally

symmetric and consequently, themetric is always symmetric. There-

fore, there are four directed clustering coefficients and eight directed

closure coefficients.

In the next section, we study how we expect the directed closure

coefficients to behave in a configuration model, which provides

additional insight into why asymmetries in the directed closure

coefficients might be unsurprising.

4.2 Expectations under Configuration

The previous section showed that pairs of average directed closure

coefficients can have significantly different values; in fact, our ex-

tremal analysis showed that their ratio can be unbounded in theory.

However, we have not yet provided any intuition for asymmetry in

real-world networks. Here, we provide further theoretical analysis

to show that the structure of the joint in- and out-degree distri-

bution of a network provides one explanation of this asymmetry.

When considering random graphs generated under a directed con-

figuration model with a fixed joint degree sequence, the coefficients

are generally asymmetric even in their expectations.

The configuration model [13, 34] is a standard tool for analyzing

the behavior of patterns and measures on networks. The model

is typically studied for undirected graphs with a specified degree

sequence, but the idea cleanly generalizes to directed graphs with

a specified joint degree sequence [8]. It is often hard to understand

the determinants of unintuitive observations on networks. What

aspect of the specific network under examination leads to a given

observation? As one specific angle on this question, does the ob-

servation hold for typical graphs with the observed joint degree

sequence, and if so, what are the determinants of the behavior?

Analyses using the configuration model can thus be used to inves-

tigate the expected behavior of a measure, in our case the directed

closure coefficients, under this random graph distribution.

If a degree sequence satisfies the condition that the maximum

degree is upper bounded by

√
n, then under the configuration model

with this degree sequence, the probability of forming an edgeu → v
is

P[(u,v) ∈ E | S] = do (u) · di (v)
m

· (1 + o(1)), (4)

where the o(1) term is with respect to large graphs (i.e.,n → ∞) [35].

As further notation for this section, for an event denoted by A, we
use 1[A] as the indicator function for event A, i.e., 1[A] = 1 when

eventA happens and 0 otherwise. Moreover, we use the symbol “∼"
between two quantitiesX ∼ Y ifX = Y · (1+o(1)). For any direction
variable x ∈ {i,o}, we use x̄ to denote the opposite direction of x .

Before presenting the main theoretical results, we first provide a

useful lemma. The error term o(1) here, as well as those in subse-

quent theorems in this subsection, vanishes as the size of network

grows to infinity, which is the scenario when the probability of

an edge between two nodes in the directed configuration model is

proportional to the product of the nodes’ degrees (Equation (4)).

Lemma 4.3. Suppose G is a random directed graph sampled from
the directed configuration model with joint degree sequence S and let
u be any node. Let (u,v,w) be a random type-xy wedge with head
node u. Then for either direction z ∈ {i,o},

E[dz (w) | S,u] = (n/m) ·Mȳz · (1 + o(1)).
7



Proof. Conditional on the degree sequence, for any node pair

v∗ andw∗
, (u,v∗,w∗) forms an xy-wedge with probability

dx (u)dx̄ (v∗)
m

·
dy (v∗)dȳ (w∗)

m
· (1 + o(1)) ∼ C · dȳ (w∗)

whereC is a constant independent ofw∗
. Therefore, for any nodew∗

,

it is the other end of a randomwedgewith probabilityP [w = w∗ | S,u]
∝ dȳ (w∗) · (1 + o(1)), and thus

P
[
w = w∗ | S,u

]
∼

dȳ (w∗)∑
w ∈V dȳ (w) =

dȳ (w∗)
m

.

Consequently, we have

E[dz (w) | S,u] =
∑
w∗∈V

dz (w∗) · P[w = w∗ | S,u]

∼
∑
w∗∈V

dȳ (w∗)dz (w∗)
m

=
nMȳz

m
.

□

Nowwe present the following theoretical results on the expected

value of local directed closure coefficients under the directed con-

figuration model, which relates the expected closure coefficient of

node u with closing direction i and o to the in- and out-degrees

di (u) and do (u) of u.

Theorem 4.4. Let S be a joint degree sequence and G a random
directed graph sampled from the directed configuration model with S .
For any node u and any local directed closure coefficient Hz

xy (u), we
have

E[Hz
xy (u) | S] =

n(dz (u) − 1[x=z])
m2

·
(
Mȳz̄ − 1[y=z] ·

m

n

)
· (1+o(1)),

whereMȳz̄ is the second-order moment of degree sequence S .

Proof. Note thatHz
xy (u) can be directly interpreted as the prob-

ability that a random type-xy wedge (u,v,w) is z-closed, where
node u is the head of this wedge. This is the case if there is an

edge between u and w of direction z (with respect to u): a z-stub
from node u is matched to a z̄-stub from node w . Note that the

number of z-stubs of node u that are not used in wedge (u,v,w) is
(dz (u) − 1[x=z]), where we need to subtract the indicator function

because one z-stub is already used in wedge (u,v,w) if x = z. Simi-

larly, the number of z̄-stubs of nodew that are not used in wedge

(u,v,w) is (dz̄ (w) − 1[ȳ=z̄]). According to the setup of the directed

configuration model (Equation (4)), this probability is

(dz (u) − 1[x=z]) · (dz̄ (w) − 1[ȳ=z̄])/m · (1 + o(1))
with the given joint degree sequence, and consequently

E[Hz
xy (u) | S] ∼ E[(dz (u) − 1[x=z]) · (dz̄ (w) − 1[ȳ=z̄])/m | S]

=
dz (u) − 1[x=z]

m
·
(
E[dz̄ (w) | S] − 1[ȳ=z̄]

)
∼

dz (u) − 1[x=z]
m

·
(
(n/m) ·Mȳz̄ − 1[ȳ=z̄]

)
=

n(dz (u) − 1[x=z])
m2

·
(
Mȳz̄ − 1[y=z] ·

m

n

)
where the second step follows from the fact that the only random

variable is the degree of a random tail nodew , and the third step is

due to Lemma 4.3. □

Theorem 4.4 shows that the expected value of the local directed

closure coefficient Hz
xy (u) increases with dz (u), the degree in the

direction of closure. One corollary of this result is that under the

configuration model the expected values of the local closure co-

efficient with the same closure direction are all monotonic with

the same corresponding degree, and thus they should be corre-

lated themselves. This result provides one intuition for the block

structure of the correlations between coefficients found in Figure 4.

We can easily aggregate the results of Theorem 4.4 to give ex-

pected values of the average directed closure coefficients.

Theorem 4.5. Let S be a joint degree sequence andG be a random
directed graph generated from the directed configuration model with
S . For any average directed closure coefficient H

z
xy ,

E[Hz
xy | S] =

m − n · 1[x=z]
m2

·
(
Mȳz̄ − 1[y=z] ·

m

n

)
· (1 + o(1)).

Proof. We have

E[Hz
xy | S] =

1

n

∑
u
E[Hz

xy (u) | S]

∼
(
Mȳz̄ − 1[y=z] ·

m

n

)
· 1

m2

∑
u
[dz (u) − 1[x=z]]

=
(
Mȳz̄ − 1[y=z] ·

m

n

)
·
m − n · 1[x=z]

m2
,

where the second line is due to Theorem 4.4. □

Theorem 4.5 shows that the expected value of any average clo-

sure coefficient H
z
xy is mainly determined byMȳz̄ , a second-order

moment of the degree sequence. In the soc-Lawyer dataset, we

have Mio = 166.15 ≪ 227.41 = Mii , meaning that E[H i
io ] ≪

E[Ho
io ]. This result (partly) explains the asymmetry observed in

Figure 3: the different coefficients are related to different moments

of the joint degree sequence of the network, at least for graphs

sampled from a configuration model with different empirical joint

degree sequences.

Finally, we can also determine the expected value of global di-

rected closure coefficients under the configuration model, as given

in Theorem 4.7. Again we first present a useful lemma, which is

analogous to Lemma 4.3.

Lemma 4.6. Suppose G is a random directed graph sampled from
the directed configuration model with joint degree sequence S . Let
(u,v,w) be a random type-xy wedge, then

(1) E [dz̄ (w) | S] = (n/m) ·Mȳz̄ · (1 + o(1));
(2) E [dz (u) | S] = (n/m) ·Mxz · (1 + o(1));
(3) E [dz (u)dz̄ (w) | S] = E [dz (u) | S] · E [dz̄ (w) | S] · (1 + o(1)).

Proof. Result 1 is a corollary of Lemma 4.3:

E[dz̄ (w) | S] = E [E[dz̄ (w) | S,u] | S] ∼
nMȳz̄

m
.

Result 2 is a corollary of result 1: (u,v,w) being a type-xy wedge is

equivalent to (w,v,u) being a type-ȳx̄ wedge.

Nowwe show the last result. Conditional on the degree sequence,

for any node triple (u∗,v∗,w∗), it forms an xy-wedge with proba-

bility

dx (u∗)dx̄ (v∗)
m

·
dy (v∗)dȳ (w∗)

m
· (1 + o(1)) ∼ C · dx (u∗)dȳ (w∗)

8



whereC is a constant independent of u∗ andw∗
. Therefore, for any

node pairu∗ andw∗
, they are the two ends of a random wedge with

probability P [u = u∗,w = w∗ | S] ∝ dx (u∗)dȳ (w∗) · (1 + o(1)), and
thus

P
[
u = u∗,w = w∗ | S

]
∼

dx (u∗)dȳ (w∗)∑
u,w ∈V dx (u)dȳ (w) =

dx (u∗)dȳ (w∗)
m2

.

Consequently, we have

E [dz (u)dz̄ (w) | S] =
∑

u∗,w∗∈V
dz (u∗)dz̄ (w∗)P

[
u = u∗,w = w∗ | S

]
∼

∑
u∗,w∗∈V

dz (u∗)dz̄ (w∗) ·
dx (u∗)dȳ (w∗)

m2

=
nMxz
m

·
nMȳz̄

m
∼ E [dz (u) | S] · E [dz̄ (w) | S] ,

which completes the proof. □

Theorem 4.7. Let S be a joint degree sequence andG be a random
directed graph generated from the directed configuration model with
S . For any global directed closure coefficient Hz

xy ,

E[Hz
xy | S] =

(
Mȳz̄ − 1[y=z] ·

m

n

)
·
(
Mxz − 1[x=z] ·

m

n

)
· n

2

m3
·(1+o(1)).

Proof. For a random type-xy wedge (u,v,w), we have shown
that the probability of it being z-closed is of the order (dz (u) −
1[x=z])·(dz̄ (w)−1[ȳ=z̄])/m. Different from the proof of Theorem 4.4

where node u is fixed, here we do not fix node u, and meaning that

both node u and nodew are random.

E
[
Hz
xy | S

]
∼ 1

m
· E

[
(dz (u) − 1[x=z]) · (dz̄ (w) − 1[ȳ=z̄]) | S

]
∼ 1

m
·
(
E[dz (u) | S] − 1[x=z]

) (
E[dz̄ (w) | S] − 1[ȳ=z̄]

)
∼ 1

m
·
( n
m

·Mxz − 1[x=z]
)
·
( n
m

·Myz̄ − 1[ȳ=z̄]
)
,

where the second line is due to the last result in Lemma 4.6, and

the last line is due to the first two results in Lemma 4.6. □

As a byproduct of our analysis, the proof of Theorem 4.7 also

shows that, under the directed configuration model, the probability

that a wedge is closed is independent of the center node, and thus

equal to the network-level average. This observation gives us the

expected value of Fagiolo’s directed local clustering coefficients [11]

under this random graph model as well.

Proposition 4.8. Let S be a joint degree sequence and G be a
random directed graph generated from the directed configuration
model with S . For local directed clustering coefficient Cxy (u),

E[Cxy (u) | S] = E[H i
x̄y | S].

Proof. Consider a random wedge with u being the center node,

(v,u,w), which is an x̄y-wedge to node v . From the definition of

Cxy (u), this wedge is closed if it is i-closed to node v . Since the
probability of this wedge being i-closed is independent of node u, it
is the same as if we randomly choose a wedge without constraining

node u as the center, and thus E[Cxy (u) | S] = E[H i
x̄y | S]. □

Next, we study the accuracy of the theoretical expected values

of the average and global closure coefficients under the directed

configuration model. The directed configuration model can be sam-

pled by using double-edge swaps [40]. To sample graphs from the

model, we begin with an empirical graph (the graph of interest)

with joint degree sequence S . We then select a pair of random di-

rected edges to swap, which changes the graph slightly but notably

preserves the degree sequence. Taking care to avoid self-loops and

multi-edges [13], the double-edge swap can be interpreted as a

random walk in the space of simple graphs with the same degree

sequence, and the stationary distribution of this random walk is

the uniform distribution over the network space. The swap is then

repeated many times to generate graphs that are sampled from the

stationary distribution. The mixing time of these random walks are

generally believed to be well-behaved, but few rigorous results are

known [18].

We generate 1,000 random graphs with the same joint degree

sequence as the soc-Lawyer and cit-HepPh network; to generate

each graph, we repeat the edge-swapping procedure 10,000 times.

Figure 7 shows histograms of the distribution of each average and

global closure coefficient under this configuration model. We see

that our approximate formulas from Theorems 4.5 and 4.7 are very

accurate even when the network is only moderate in size (n = 71

for soc-Lawyer). The theoretical formulas are only guaranteed to

be accurate on large sparse networks, and we do observe a small

difference between the expected and simulated means (e.g., H
i
ii ).

The simulation shows that the average and global closure co-

efficients have low variance under this configuration model, and

the values in the original network deviate significantly from these

distributions. More specifically, the values in the citation network

are mostly larger than the distribution by orders of magnitude, and

the exceptions are H i
oo and Ho

ii , as well as their average closure

coefficient counterparts, where the real-world values are low due

to the natural lack of cycles in the nature of citation networks. This

provides evidence that the directed closure coefficients of real-world

networks capture interesting empirical structure beyond what one

would expect from a graph drawn uniformly at random from the

space of graphs with the same joint degree sequence.

5 CASE STUDY IN NODE-TYPE PREDICTION

Now that we have a theoretical understanding of our directed clo-

sure coefficients, we turn to applications. Directed closure coeffi-

cients are a new measurement for directed triadic closure and thus

can serve as a feature for network analysis and inference. In this

section, we present two illustrative examples to exhibit the strong

predictive potential in directed closure coefficients. Specifically, we

present two case studies of node-type classification tasks, where

we show the utility of local directed closure coefficients in pre-

dicting the node type in the soc-Lawyer and fw-Florida datasets

analyzed above. By using an interpretable regularized model, we

are able to identify the salient directed closure coefficients that

are useful for prediction. This analysis reveals new social status

patterns in the social network and also automatically identifies

previously-studied triadic patterns in food webs as good predictors.
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Figure 7: Histogram of each global closure coefficient (first two rows) and average closure coefficient (last two rows) in 1,000

directed configuration model random graphs with the joint degree sequence of the soc-Lawyer and cit-HepPh network. The

x-axis is the value of various directed closure coefficients and the y-axis is the frequency. Besides the histogram, we also plot

the expected value of closure coefficients from Theorems 4.5 and 4.7 (red) as well as the actual value in the original network

(orange).

5.1 Case Study I: Identifying Lawyer Status in

an Advisory Network

The soc-Lawyer dataset collected by Lazega [25] is a social network

of lawyers at a corporate firm. There is a node for each of the 71

lawyers, and each is labeled with a status level—partner or associate.
Of the 71 lawyers in the dataset, 36 are partners and 35 are associates.

The edges come from survey responses on who individuals go to

for professional advice: there is an edge from i to j if person i went

to person j for professional advice. Of the edges, there are 395

between two partners; 196 between two associates; 59 from partner

to associate; and 242 from associate to partner.

In this case study, our goal is to predict the status of the lawyers

(associate or partner) with predictors extracted from the advice

network. We consider the following six sets of network attributes

as predictors:

(1) degree: the in- and out-degree, and the number of reciprocal

edges at each node;
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Table 2: Validation set accuracy andAUC in classifying node

types in the soc-Lawyer dataset (partner vs. associate). Our

proposed local directed closure coefficients are the best set

of predictors, illustrating the utility of directed closure coef-

ficients in node-level prediction tasks. In contrast, the local

directed clustering coefficients [11] are not as effective.

degree degree closure closure clustering clustering

+ 1-hop + degree + degree

accuracy 0.7884 0.8270 0.8743 0.8585 0.6255 0.7884

AUC 0.8763 0.8978 0.9235 0.9183 0.6362 0.8765
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Figure 8: Regularization path of the ℓ1-regularized logistic

regression model with predictor set closure + degree for the

model of the soc-Lawyer dataset. The x-axis is the regular-

ization level, and the y-axis is the regression coefficient for

each predictor. The vertical black dashed line represents the

optimal regularization level obtained from cross-validation.

The degree attributes are only selected at very low regular-

ization levels, and various local directed closure coefficients

dominate the prediction model.

(2) degree + 1-hop: the union of the degree predictors and four

neighbor-degrees: the average in- and out-degree of all in- and

out-neighbors of each node;

(3) closure: the eight local directed closure coefficients defined in

this paper;

(4) closure + degree: the union of the closure coefficients and the

degree predictors;

(5) clustering: the four local directed clustering coefficients as

defined by Fagiolo [11]; and

(6) clustering + degree: the union of the local directed clustering

coefficients and the degree predictors.

For each predictor set, we use 100 random instances of 3-fold

cross-validation to select an ℓ1-regularized logistic regressionmodel

for predicting whether or not a node is a partner (i.e., the positive la-
bel is for partner). Table 2 reports validation set accuracy and AUC.

(Even though different predictor sets have different dimensions,

evaluating the performance in this way makes them comparable.)

The predictors that include our local directed closure coefficients

substantially outperform the other predictor sets. The predictor set

that includes both degrees and closure coefficients slightly under-

performs the one with only closure coefficients, indicating slight

overfitting in the training data, which implies that the degree at-

tributes provides redundant and noisy information in addition to

Table 3: Validation set accuracy andAUC in classifying node

types in the fw-Florida dataset (fish vs. non-fish). Our pro-

posed local directed closure coefficients are again the best

set of predictors (see also Table 2), illustrating the utility of

directed closure coefficients in node-level prediction tasks

outside of social network analysis.

degree degree closure closure clustering clustering

+ 1-hop + degree + degree

accuracy 0.6250 0.8466 0.8735 0.8700 0.6875 0.7366

AUC 0.6772 0.9127 0.9538 0.9529 0.7472 0.7834
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Figure 9: Regularization path of the ℓ1-regularized logistic

regression model with predictor set closure + degree for the

model of the fw-Florida dataset. The x-axis is the regular-

ization level, and the y-axis is the regression coefficient for

each predictor. The vertical black dashed line represents the

optimal regularization level obtained from cross-validation.

The degree attributes are only selected at very low regular-

ization levels, and various local directed closure coefficients

dominate the prediction model.

the closure coefficient attributes in this prediction task. In contrast,

adding the 1-hop degrees does not give as much improvement as

they do not consider the triadic closure factors.

To understand how the directed local closure coefficients im-

prove prediction performance, we analyze the regularization path

of our model, a standard method in sparse regression to visualize

the predictors at each regularization level [14]. Figure 8 shows the

regularization path for the predictor set that includes both the local

directed closure coefficients and the degree predictors.

We highlight a few important observations. First, as regulariza-

tion is decreased, directed local closure coefficients are selected

before the degree predictors, indicating that the closure coefficients

are more relevant in prediction than degrees. Second, the two pre-

dictors with largest positive coefficients at the optimal level of

regularization are H i
io (u) and H

i
oo (u), meaning that lawyers with

partner status are more likely to advise people who also advise

others. In contrast, the in-degree di (u) predictor is not one of the
first selected, which implies that it is not how many one advises
but rather who one advises that is correlated with partner status.

Finally, the two predictors with the largest negative coefficients

at the optimal regularization are H i
oi (u) and H

o
oi (u), meaning that

partner-status lawyers are less likely to interact with other lawyers

with whom they share an advisor.

11



5.2 Case Study II: Identifying Fish in a Food

Web

We now perform a similar network prediction task. Here, the data

comes from an entirely different domain (ecology), but we still find

that our local directed closure coefficients are effective predictors

for identifying node type.

More specifically, we study a food web collected from the Florida

Bay [50]. In this dataset, nodes correspond to ecological compart-

ments (roughly, species) and edges represent directed carbon ex-

change (roughly, who-eats-whom). There is an edge from i to j if
energy flows from compartment i to compartment j. There are 128
total compartments, of which 48 correspond to fish. Our prediction

task in this case study is to identify which nodes are fish using basic

node-level features. The dataset contains 2,106 edges, of which 268

are between fish; 699 are between non-fish; 648 are from a fish to a

non-fish; and 491 are from a non-fish to a fish.

We used the same model selection procedure as in the first case

study on the soc-Lawyer dataset described above. Table 3 lists

the accuracy and AUC of the ℓ1-regularized logistic regression

model. We again find that our proposed directed closure coeffi-

cients form the best set of predictors for this task. We also find

minimal difference in prediction accuracy when including degree

features, indicating that the degree features provide little predictive

information beyond the directed closure coefficients.

In fact, the regularization path shows that the two closure co-

efficients Ho
oo (u) and Ho

oi (u) are the most important predictors for

identifying fish (Figure 9), the former being positively correlated

with the fish type and the latter positively correlated with the non-

fish type. The type of closure associated with the coefficient Ho
oo (u)

has previously been identified as important for the network dy-

namics of overfishing [5], so it is reasonable that this predictor is

important.

6 CONCLUSION

Triadic closure and local clustering are fundamental properties of

complex networks. Although these concepts have a storied his-

tory, only recently have there been local closure measurements

(for undirected graphs) that accurately reflect the “friend of friend”

mechanism pervasive in discussions of closure. In this paper, we

have extended the subtle definitional difference of initiator-based

vs. center-based clustering to directed networks, where clustering

in general has received relatively little attention. We observed a

seemingly counter-intuitive result that the same induced triadic

structure can produce two different average directed closure coef-

ficients; however, this asymmetry is understandable through our

analysis of closure coefficients within a configuration model, which

points to the role of moments of the in- and out-degree distributions.

Additional analysis showed that this asymmetry can be arbitrarily

large.

One of the benefits of these new local network measurements

is that they can be used as predictors for statistical inference on

networks. Two case studies showed that our directed closure coeffi-

cients are good predictors at identifying node types in two starkly

different domains–social networks and ecology–with simple mod-

els using these features achieving over 92% mean AUC in both

cases. Furthermore, directed closure coefficients are much better

predictors than generalizations of clustering coefficients to directed

graphs for these tasks. We anticipate that closure coefficients will

become a useful tool for understanding the basic local structure of

directed complex networks.
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