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ABSTRACT

Graphlet counting is a widely-explored problem in network analysis and has been successfully
applied to a variety of applications in many domains, most notatbly bioinformatics, social science
and infrastructure network studies. Efficiently computing graphlet counts remains challenging due
to the combinatorial explosion, where a naive enumeration algorithm needs O(N*) time for k-node
graphlets in a network of size N. Recently, many works introduced carefully designed combinatorial
and sampling methods with encouraging results. However, the existing methods ignore the fact that
graphlet counts and the graph structural information are correlated. They always consider a graph as
a new input and repeat the tedious counting procedure on a regular basis even if it is similar or exactly
isomorphic to previously studied graphs. This provides an opportunity to speed up the graphlet count
estimation procedure by exploiting this correlation via learning methods. In this paper, we raise a
novel Graphlet Count Learning (GCL) problem: given a set of historical graphs with known graphlet
counts, how to learn to estimate/predict graphlet count for unseen graphs coming from the same
(or similar) underlying distribution. We develop a deep learning framework which contains two
convolutional neural network (CNN) models and a series of data preprocessing techniques to solve the
GCL problem. Extensive experiments are conducted on three types of synthetic random graphs and
three types of real world graphs for all 3,4,5-node graphlets to demonstrate the accuracy, efficiency
and generalizability of our framework. Compared with state-of-the-art exact/sampling methods, our
framework shows great potential, which can offer up to two orders of magnitude speedup on synthetic
graphs and achieves on par speed on real world graphs with competitive accuracy.

This is a preprint of the article accepted in Network Science journal, Cambridge University Press.

Keywords Graphlet count estimation - Convolutional neural networks - Deep learning on graph - Network analysis

1 Introduction

Graphlets are defined as k-node connected induced subgraph patterns. For an undirected graph, 3-node graphlets
include open triangle (I.) and close triangle (In). There are 6 different types of graphlets for £ = 4 and 21 types of
graphlets for £ = 5, where Figure [3| and Table [1| depicts all possible 3, 4, 5-node graphlets. The number of each
graphlet, called graphlet count, is a signature which characterizes the local network structure of a given graph. Global
features, such as diameter, degree distribution, in contrast, are less representative, because graphs with similar global
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features can have totally different local structures. Therefore, graphlet count is widely used and plays a prominent role
in network analysis of many fields such as bioinformatics [[1]], social science [2] and infrastructure network studies [3].
In bioinformatics domain, graphlet counts were applied for protein classification and function prediction [4]], disease
gene identification [5]], and biological network comparison [[1]. In social science discipline, researchers utilized graphlet
counts for analyzing social network structure [6] and interpersonal relations [2]. In infrastructure network studies,
graphlet counts were adopted for anomaly detection [3] and spam detection [[7].

While graphlet count is valuable for network analysis, computing exact graphlet count is inherently difficult and
computationally expensive. The main challenge is the combinatorial explosion, where the count of k-node graphlets
in a network grows k-th order polynomially large as the network size grows. For example, a moderate size arXiv
collaboration network with 12K nodes can have more than 3.3 million triangles (I.) and 0.2 billion 4-paths (17).
Experiments show that even the state-of-the-art exact counting method [8]] cannot finish within a week calculating
4-node graphlet counts for a Twitter graph with 21.3M nodes [9].

To deal with this difficulty, many frameworks and algorithms were proposed to achieve a more practical goal: estimate
or approximate graphlet count with acceptable error in exchange for computational efficiency. These methods [10, 11}
12, (131 14} [15, [16] leverage on sampling techniques to estimate graphlet count with bounded error and significantly
outperforms exact counting methods in space and time.

In the real world, many graph instances have some underlying structures or characteristics, and can be thought as
coming from a specific distribution/domain. For example, social networks, are often scale-free networks whose degrees
follow power law distributions [17]]; Brain networks, have been identified as small-world networks [[18]; Sub-graphs or
snapshots of a given network and streaming graphs can also be viewed as coming from some distribution. Recent work
[19] confirmed this fact, and build classifiers to predict (with 95.7% accuracy) the category of a given network, with
only simple features including density, average degree, assortativity and etc.

Since graphlets act as fingerprints of a given graph, graph’s structural information can be naturally reflected in their
graphlet patterns as well as their graphlet counts. In other words, graph structural information and graphlet counts are
correlated. Moreover, this correlation could be further enhanced for graphs from the same (or similar) distribution. For
instance, graphs from some biochemistry datasets, such as MUTAG, NCI1 and NCI109, only have tree-like graphlets.
Nevertheless, conventional graphlet count frameworks, including both exact counting and sampling methods, do not
leverage on this fact and always repeat the onerous counting procedures even if a new graph is similar to or exactly
isomorphic to previously studied graphs. They neglect the connection between the structural information and the
graphlet count, and merely treat them as inputs and outputs separately in the counting procedure. Ideally, this connection
can be modeled as a complicated function mapping from graph structures to their graphlet counts. For instance, given a
graph’s adjacency matrix A and all its eigenvalues which contains important structural information [[20]], the triangle
count can be written as one sixth of the sum of cubes of the eigenvalues [21]]. But note that, for any other graphlets,
there is no literature showed the explicit form of the function. Intuitively, if we can learn to approximate this function,
graphlet counts can be efficiently estimated by applying the learned function to any given graph. Essentially, we need to
solve the Graphlet Count Learning (GCL) problem: assume we have a set of networks with known graphlet counts,
how can we learn to estimate/predict graphlet counts in new-coming networks from the same (or similar) underlying
distribution. Note that we assume the historical graphs and new-coming graphs are coming from the same (or similar)
distribution because the function we want to learn could be related to the underlying graph distributions and has totally
different properties for different distributions.

Learning paradigm has been applied in other graph problems, e.g., graph classification, community detection, etc. Yet,
frameworks for learning graphlet count cannot be found in literature. The GCL problem lies in the intersection of
graphlet count problem and learning paradigm. To the best our knowledge, the problem described above has never been
studied in both graphlet counting and computational learning literature. We are the first to study this problem and our
research goal is to develop a learning framework to solve the GCL problem.

Proposed Work. To achieve this goal, we adopt a powerful model in deep learning literature as the core component
of our learning framework, namely the Convolutional Neural Network (CNN). CNN is a class of deep feed forward
artificial neural networks which has become an important tool in addressing a wide variety of machine learning problems,
including image recognition [22]], video recognition [23]] and natural language processing [24]. CNN turns out to be
very good at discovering intricate structures and offers attractive features including significant representation power,
great learning capacity, constant testing speed and efficiency in space. However, since CNN is natively developed
for regular, low-dimensional grid-structured data such as texts, images, and videos; applying CNN to graph data for
graphlet count estimation is far from trivial. In this work, we first propose a straight-forward 2-D CNN model which
applies vanilla CNN on the adjacency matrices of input graphs. Then we point out and analyze some drawbacks of the
2-D CNN and propose a 1-D CNN model. The latter largely improves the learning ability and reduces the number of
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parameters to be trained by tailoring the receptive fields of filters. Experiments show 1-D CNN reduce the relative error
up to 50% with less training and testing time compared to 2-D CNN.

Moreover, we propose four preprocessing techniques to further enhance the performance and generalization ability of
the CNN model. Adjacency Matrix Zero Padding standardize the input adjacency matrices and make them validate
for training. Swapping Augmentation and Node Ordering leverage on graph isomorphism to solve overfitting and
underfitting problem. Random Node Sketching solves the memory restriction problem for large graphs with provable
error bound. Extensive experiments on synthetic random graphs and real world graphs show the effectiveness of these
preprocessing techniques.

Contributions

e Novel Framework. To the best our knowledge, we are the first to formulate the Graphlet Count Learning
problem (GCL), which bridges the gap between classic graphlet count problem and the learning paradigm. We
are also the first to propose a deep learning based 2-D CNN model and its improved version, 1-D CNN model,
to solve the GCL problem for all 3, 4, 5-node graphlets. Together with four novel preprocessing techniques,
we show our framework’s potential to compete with the state-of-the-art methods, and is accurate, efficient and
general given different graph topological structures for different k-node graphlets.

o Extensive Experiments. We conduct extensive experiments on synthetic random graphs, real world biochem-
istry networks, arXiv Collaboration networks and Facebook social networks. We also compare our framework
with a series of state-of-the-art graphlet counting frameworks to validate the effectiveness of our framework.

o Accuracy & Efficiency. Our framework can offer up to two orders of magnitude speedup on synthetic graphs
and is achieves on par speed for real world graphs with highly competitive accuracy compared to state-of-the-art
exact/sampling methods.

e Generalizability. Our framework gives accurate estimation given different graph structures or underlying
distributions (e.g. sparse/dense graphs, small/large graphs, graphs from different graph models etc.). Moreover,
our framework can be easily extended to estimate other k-node graphlet counts (e.g., 6-node graphlets) without
changing the learning model.

The rest of the paper is organized as follows. The preliminary for graphlet counting, Convolutional Neural Networks
and problem formulation are given in Section [2| The proposed CNN-based graphlet count learning framework is
described in Section[3] The framework evaluation experiment results are presented in Section[d] Related works are
discussed in Section[5] Finally, Section[6]concludes the paper and points out the future direction.

2 Preliminary

2.1 Notations and Definitions

Our input network can be modeled as graph G = (V, E), where V is the set of nodes and E is the set of edges of this
graph. In this work, we study undirected and unweighted graph that has no self-loop or multiple edges between any two
nodes, but we do not require the graph to be connected.

o Induced Subgraph. A subgraph can be either an induced subgraph or a non-induced subgraph. A k-node
induced subgraph G, = (Vj, E}) has k nodes in V}, and contains all the edges in the original graph whose both
endpoints are in V. Formally, an induced subgraph in a graph G = (V, E) can be written as G, = (Vi, Ey),
where Vi, C V, |Vi| =k, and Ey, = {(u,v) : Yu,v € Vi A (u,v) € E}. In contrast, a non-induced subgraph
does not require that all edges connecting nodes in V}, are also present in Ej,. For example, in Figure [T} when
Vi = {2,3,4,5}, edge set {(2,3),(2,5), (4,5)} form a non-induced subgraph because it does not contain
the edge (2,4), while the same vertex set V with edge set E, = {(2,3),(2,4), (2,5), (4,5)} represents an
induced subgraph.

o Isomorphism. For two graphs, G1 = (V1, E1) and Go = (Va, E»), graph isomorphism is defined as a bijection
mapping ¢ : Vi — V5 and (u,v) € E; < (¥(u),(v)) € Es, Yu,v € V;. If there exists such a mapping
between G and G, these two graphs are isomorphic. For instance, the two graphs in Figure [2] are isomorphic
to each other, where the mapping is ¥ (a) = d, ¥ (b) = a, ¥ (c) = ¢, (d) = b. The graph isomorphism (GI)
problem is the computational problem of determining whether two finite graphs are isomorphic.

o Graphlet and Graphlet Count. A graphlet is a connected induced subgraph in a graph G. We denote a family
of k-node graphlets as G¥ = {g¥,--- , g%}, k = 3,4, 5. For example, there are two different 3-node graphlets
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Figure 1: An Example of Induced/Non-induced Subgraph
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Figure 2: An Example of Isomorphic Graphs

and six different 4-node graphlets. Figure [3|depicts all the 3-node and 4-node graphlets, and Table[T|depicts all
5-node graphlets

Graphlet count c¥ € Z~ is defined as the number of induced subgraphs that are 1somorphlc to graphlet g¥
in a graph G. F1gurea1s0 gives instances of graphlet counts. In this example graph, ¢] = 2 because there
are two induced subgraphs isomorphic to 4-path gi (7). One is induced by nodes {1, 2, 3,5} and the other is
induced by nodes {1,2,4,5}.

Graphlets  g§ g5 ¢ 95 93 Ui
Shape L IS. n I/J m N
Count 4 2 2 0 0 1

GFD 04 02 02 00 00 01 01

517
)
2 = e

Figure 3: An Example of Graphlet Counts for All 3-node and 4-node Graphlets

Graphlet Frequency Distribution (GFD). Given a set of graphlets S = {¢g1,-- - , g }, graphlet frequency
distribution (GFD) can be denoted as a vector f = [f1,- -, fm], where f; represents the frequency of the
graphlet g;, and f; = E:{ﬁ For the example in Figure we calculate the frequency of each graphlet among
all 3-node and 4-node graphlets.

Relationship between GFD and Graphlet Count. If we have the graphlet counts {cl, -++, ¢m } for graphlets
{91, ,gm}, we can obtain graphlet frequency distribution (GFD) as f; = S On the other hand, if
we have GFD, we can also derive the graphlet counts with the help of node degree information d, [9, 13]

where degree d,, is the number of neighbor nodes of node v. For example Zvev(dz) = +3-c3,

Evev(d“) = 02 +c4 +2-ct+4-cf, Zvev(d“) =ch+ci+2-ci+4-cand ZvGV( =g+ +dg+
S +265, + 5+ 3+l +2¢79 + 3¢5, +5c, . For every famlly of k-node graphlets G, we can find a linear
relationship as such. As an example, in Flgure we have E'UEV( ) = 10 and fgs =04, fgs = 0.2. We can

derive the open triangle (1.) count and the close triangle (1) count by letting ¢ = fg ~xand c§ = fg -z and

calculating z via the equation Xyev (%) = fog-x+3-fg-

Computational Complexity. Exact computation of graphlet counts is inheretly expensive as the graphlet size
and/or the graph size grow. First, the number of non-isomorphic k-node graphlets grows exponentially large as
k increases. To illustrate, the number of different types of 4, 5-node graphlets are 6 and 21; for 6-node graphlets,
it becomes |G| = 112; |G7| = 853. Second, it is critical to decide an induced subgraph is isomorphic to
which k-node graphlet, which can be reduced to graph isomorphism problem. Unfortunately, this problem
is not known to have polynomial solutions [25]]. These two facts make graphlet counting highly challenging
when graphlet size k is large. However, even k is small (i.e., k = 3,4, 5), a specific k-node graphlet count can
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Table 1: All 5-node Graphlets

be up to (]]Z ), which is k-th order polynomial or superlinear with respect to the graph size N. This means,
counting graphlets using naive enumeration method is computationally intensive. For example, a moderate
size arXiv collaboration network with 12K nodes can have more than 3.3 million triangles and 0.2 billion
4-paths. Straight-forward exhaustive enumeration approach has to count each graphlet at least once, which has
prohibitively high cost. Experiments show that even the state-of-the-art exact counting method [8] can not
finish within a week to calculate 4-node graphlet counts for a Twitter graph with 21.3M nodes [9].

2.2 Convolutional Neural Network (CNN)

Convolutional neural network (CNN) is a type of feedforward artificial neural networks, which were initially developed
for modeling biological neural systems [26]. CNN has been widely used on learning regular grid data and has led to
breakthroughs in image recognition [22], video recognition [23] and natural language processing [24] problems.

In a CNN architecture, multiple neural network layers are stacked in sequence. Typically, a CNN consists of two main
types of layers: convolutional layer and fully connected layer [27]]. In the context of image task, an image of height
32 pixels, width 32 pixels, and three color channels, R, B, G, will be presented as a 3-D tensor of shape (32, 32, 3).
Taking such a tensor as the input, a convolutional layer computes output values by performing dot products between its
learnable weight filters and local regions, or receptive fields, of the input tensor. For example, from left to right, from
top to down throughout every location in the input tensor, one weight filter of size (5, 5, 3) can have at most 28 x 28 x 1
different dot products by sliding the weight filter by (1, 1) each time. Each dot product usually follows by a non-linear
activation (e.g., ReLU(x) = max(0, x)). Hence, in this case, if the first convolutional layer applies 64 weight filters,
the output tensor would be of shape (28, 28, 64). And the next neural network layer will take it as an input. In a fully
connected layer, each output value is a weighted sum of all elements of the layer’s input. Unlike convolutional layer
which only focuses on one small local region at a time, fully connected layer connects to the whole input tensor. For
instance, suppose the next layer is a fully connected layer with 16 output values. To produce one output value, fully
connected layer takes the 28 x 28 x 64 elements as the input, sum them up with 28 x 28 x 64 learnable weights and a
bias, and applies a non-linear activation on the sum. This activation layer produces a size (1, 1, 16) output.

In general, a CNN architecture serves as a transformation function which maps input tensors to values or labels, and
this function is parameterized by non-linear activations and learnable weights and biases. Parameters such as weights
and biases will be trained in an iterative manner, i.e., via backpropagation refinement.

2.3 Problem Formulation

In this work, we are solving the following Graphlet Count Learning (GCL) problem. Suppose we are given a particular
type of k-node graphlet g¥, k = 3, 4,5, and a dataset G consisting of m undirected unweighted graphs from the same
underlying distribution D, i.e., G = {G1, ..., G, } and G ~ D. We assume the dataset can be divided into two parts
Gy = {G1,...,Gm, } and G2 = {Gp, 11, ..., Gm }, where graphlet counts c¥ are known in G; and unknown in Go.
Our goal is to develop a framework that can learn from G; and estimate unknown graphlet count c¥ for every graph in
G2. Mathematically, for any graphlet g¥, we want to learn a function y; = f¥(G;|D) mapping from the graph structure
G to the graphlet count y; for j € {mq + 1, ..., m}, where the function value f*(G,|D),j = 1,...,m; are given.

Note that we assume our data are coming from the same (or similar) distribution because the function we want to learn
could be related to the underlying graph distributions and has totally different properties for different distributions.
Conventional graphlet count frameworks can directly estimate or compute exact graphlet counts in G. But they fail to
utilize the ground truth G, which will suffer loss in accuracy or efficiency or even both.
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3 Methodology

In this section, we introduce the convolutional neural network (CNN) based framework to address the GCL problem.
This framework consists of two parts: the core CNN architecture and the preprocessing techniques.

In Section [3.1] we propose the basic 2-D CNN model and its improved version, 1-D CNN model, and discuss the main
idea and detailed architecture of both CNN models. In Section[3.2] four preprocessing techniques are designed to (a)
standardize the dataset to create valid inputs for CNN models, (b) enhance the learning power and improve the model
accuracy, (c) solve the memory restriction when dealing with large graphs. In Section[3.3] we assemble above models
and techniques as a whole and show the pipeline of our framework.

3.1 Convolutional Neural Network Models

The basic idea of CNN models is to learn a transformation function which maps the input graph to its graphlet counts.
This function is parameterized by learnable weights and biases which are associated with different layers in CNN, from
shallow to deep. These parameters carry local structural information in the shallow layers, stack and refine themselves
through deeper layers by some non-linear activation functions. In the final layer, the CNN model combines results from
previous layers and produces an estimated graphlet count.

In our work, both 2-D CNN model and 1-D CNN model are developed for taking a graph adjacency matrix (N x N
matrix, where NV is the number of nodes) and/or its variants as input and giving a graphlet count (non-negative integer
number) as output. And the five data preprocessing methods are also for handling graph adjacency matrices. Note that
we choose the adjacency matrix as our input data structure because the CNN model heavily relies on matrix(tensor)
operations, e.g., matrix(tensor) addition and multiplication and etc. Other graph representations, such as edge sequences
and adjacency lists, are not meaningful or well defined under these operations. However, one major drawback of the
adjacency matrix is that it requires O(IN?) space for a graph with N nodes and exhausts memory resources when N is
large. We will talk about how to solve this problem in Section 3.2}

3.1.1 2-D CNN Model

The main idea of 2-D CNN model is to think of the adjacency matrix as an "image" and apply vanilla CNN to it.
Intuitively, each entry in the adjacency matrix forms a pixel-like base element in this "image". The graphlets, such as
triangles, paths and etc., are analogous to higher order patterns, e.g. textures or pattern related objects in an image. Once
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our first few shallow layers of 2-D CNN can recognize the graphlet patterns, the deep layers can sweep the previous
output of shallow layers and combine them to estimate the graphlet count of the adjacency matrix.

Based on this idea, we design a 3-layer 2-D CNN model whose architecture is illustrated in Figure (). For an input
of shape (IV, N, 1), this 2-D CNN model deploys two convolution-activation layers, both with filters of shape (3, 3),
followed by a fully connected layer. In the first layer, 64 filters are employed in order to capture more variety of feature
patterns. At the second layer, the number of filter decreases to 32. Shape (3, 3) filter has been shown more effective in
many deep learning researches, and same for our case. We choose the ReLU function (i.e., ReLU(x) = max(0, x))
for all the activations in this model because the graphlet count estimation is a regression task for which we expect the
output to be a real number in [0, 00).

. l 1 1
Let us define some notations for our CNN models. Let O() € RN xN®xC® pe the output tensor at layer [, where

1=0,1,2,3, N® denotes the width (and height) along each channel and C' () denotes the channel size. Let Ol(l;t be
the (i, j)™ element along the t™ channel. We assign O(?) as the graph adjacency matrix. Mathematically, our 2-D CNN

structure can be described as follows:

0, =ReLUW . 0UVi:iv BV 1,55+ H 1, : ]+ b)), (1)

3T
0®) = ReLU(Flatten(O®)T . W® 4 p3)), 2)

Equation (1) corresponds to two convolution layers, [ = 1,2. Each layer applies C'‘*+1) filters over the input feature
map O~V and the t*” filter is parameterized by a trainable 3-D weight tensor Wt(l) e R <1y xc® , where Hl(l),

HQ(Z) denotes the width and height of the filter. [a : b, ¢ : d,:] is a slicing function which extracts subset of elements
indexing from a to b (include both ends) in width, ¢ to d (include both ends) in height and all in channel to form a

new tensor. The operator - is the sum of element wise product of two tensors. After adding bias term b(l), we apply
ReLU (max (0, z)) as the activation function to obtain the output feature map O"). Equation (2) is associated with

the fully connected layer. It flattens the output O into a column vector, applies W), b(3) and ReLU to obtain the
estimated graphlet count. Our 2-D CNN is trained with back propagation and mean squared error as the loss function.

Finally, we choose the shape of filters as (Hfl), Hél)) =(3,3) and (H{Q), H2(2)) = (3, 3). The channel size is set to be
CO =100 =64,0? =32,00) =1,

3.1.2 1-D CNN Model

The straightforward 2-D CNN offers an efficient architecture to extract meaningful statistical patterns. In this section,
we adapt the structure of the 2-D CNN and propose a 1-D CNN model, which is inspired by Johnson and Zhang’s
work [24]] of applying the CNN for 1-D text data for region embedding. The 1-D CNN improves the efficiency by
reducing the number of trainable parameters and enhance the learning performance by feeding the complete 1-hop
neighborhood connection information into the first layer filters.

Concretely, we consider the input graph with NV nodes and model its adjacency matrix as a tensor of shape (N, N, 1).
Our 1-D CNN model also deploys two convolution-activation layers and one fully connected layer, and adopts the
ReLU activation function. The difference is the shapes of the filters. We apply 64 (N, 1)-shaped filters instead of (3,
3)-shaped filters at the first convolutional layer. Also, 32 (1, IV)-shaped filters is used at the second layer rather than
another 32 (3, 3)-shaped filters. The Figure {(b) depicts this structure when N = 50.

Under such a paradigm, the first convolution layer cover all 1-hop neighbors for each node, and the function of this
neural network layer is analogous to computing an embedding for each node. At the second layer, the (1, N)-shaped
filters learn the higher level latent features based on the first level embedding of the nodes. Mathematically, our 1-D
CNN structure can described using Equation (3)),@) and (5). It differs from the 2-D CNN model by setting the shape of

filter (H"), HS)y = (N, 1) and (H(®, H{®) = (1, N) in Equation (1) and (2).

0, =ReLU(W" - 00[0: N 1,54, :]+b"), i=0,j=0,...,N - 1,t=0,...63, )
0%, =ReLU(W,” - 0" D(0:0,0: N =1, :]+b"), i=0,j = 0,6 =0,..,31 “)
0® = ReLU(Flatten( 0 . W 4 p® ). ©®)
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Compared with the 2-D CNN model which only applies small sized (i.e. (3, 3)-shaped) filters, the 1-D CNN allows the
filters to take in more local connection information. Moreover, the total number of trainable parameters is only O(N),
whereas 2-D CNN has O(N?) in the last fully connected layer.

3.2 Preprocessing Techniques

Given the core CNN architecture, we further develop five preprocessing techniques to improve the performance and
generalization ability of our framework. In Section[3.2.T} we propose Adjacency Matrix Zero Padding technique to
standardize the size of input adjacency matrices and make them valid for training. In Section[3.2.2]and Section[3.2.3]
we utilize graph isomorphism property to enhance the learning ability of CNN model by Node Ordering and Swapping
Augmentation. In Section [3.2.4] we develop the Random Node Sketching to solve the memory restriction when dealing
with large graphs and provide a theoretical guarantee for the accuracy of this approach.

3.2.1 Adjacency Matrix Zero Padding

Due to the constraint of the fixed fully connected units in CNN model, the size of input data has to be the same.
However, in many real world graph datasets, graph samples not necessarily have the same size (same number of nodes).
In the context of learning images, common solutions are to crop images or pad the images with a solid color so that
they will have the same sizes. In our situation, cropping is not appropriate as it causes the loss of edge connectivity
information that is essential for graphlet counting.

To preserve edge connectivity information of all training graphs, we consider the largest graph in the training set, and
use its dimension (say V) as the dimension of the input adjacency matrix (/N x V). For other graphs in the training set,
we take each adjacency matrix and pad it with zero till we have an input matrix of dimension N x . This solves the
varying input size problem. Moreover, the physical meaning of padding adjacency matrix with zero is analogous to
adding isolated nodes to a graph, which do not form any extra graphlet.

3.2.2 Node Ordering

In many cases, the nodes in a graph are not precisely labeled and strictly ordered; hence, an adjacency matrix is actually
not a unique representation of a given graph. The very same graph can be represented by adjacency matrices that, on
the face of it, look totally different. This is unfavorable for learning as it introduces more uncertainty/variance to the
distribution of the dataset. If a CNN model is not powerful enough, this property makes it harder for neural network to
learn the graphlet count estimation.

The node ordering technique works as follows. First, we label each node v € V in the input graph G(V, E) by a specific
labeling strategy and denoted the label as [(v). In this work, we propose four different labeling strategies: (1) degree
centrality: [(v) = deg(v), where deg(v) is the degree of v (2) closeness centrality: I(v) = 1/, .y d(u,v), where
d(u,v) is the distance between node v and v. (3) betweenness centrality: [(v) = ZS##GV ost(v)/ost, where o4
is total number of shortest paths from node s to ¢ and o (v) is the number of those paths that pass through v. (4)
Weisfeiler-Lehman algorithm: {(v) = WL(v), where WL(v) is the label given by Weisfeiler-Lehman algorithm [28].
Then we reorder the nodes according to the label value {(v) in decreasing (increasing order) and settle down its
adjacency matrix representation accordingly. This transformation are applied to all input adjacency matrices in the
dataset. By node ordering, we obtain more consistent representations (canonical representations) of graphs to reduce
the variance of the dataset.

3.2.3 Swapping Augmentation

As we mentioned in previous subsection, an unattributed graph which has no node labels can have many different
representatives in adjacency matrices (as isomorphic graphs). This may be harmful if a CNN model is not powerful
enough to fit the data. However, when the dataset contains too few samples or the model tends to overfit the data, we
can utilize this isomorphism property to acquire sufficient data for training.

The approach is straightforward: we randomly pick two indices i and j, and then swap the i row with j" row j
and swap the i column with j® column. We can repeat the swapping operation for each graph m times to create
m more training data. Analogous to flipping or rotation of images, via augmenting the dataset, we can improve the
generalization ability of CNN models and, thereby, improve the accuracy.
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3.2.4 Random Node Sketching

Real world graphs can be extremely large. For instance, social networks like Sina Weibo can produce up to 21M-
node, with 261M edges dataset [29]. In practice, our GPU and CPU resources are limited. Faced with the memory
constraint, it is inefficient and impractical to build a CNN model which takes in the whole adjacency matrix as the
input. Consequently, we save all our adjacency matrices using the sparse matrix format (i.e. COOrdinate format ")), and
unpack them when necessary. Moreover, we propose the Random Node Sketching (RNS) approach to further improve
the our scalability. Intuitively, we are training our model on randomly sampled subgraphs (i.e., sub-matrices) instead
of the whole (sparse) adjacency matrix. Note that there are other sketching/sampling methods, such as Random Edge
Sketching (RES) which samples a subgraph by preserving each edge uniformly at random. Though RES may give
more accurate estimation (especially for some of sparse 3-node and 4-node graphlets, e.g., g3, g1, g3), we choose RNS
over RES for the following reasons. First, RNS is more space efficient given the same node/edge sampling probability
p, i.e., the expected edges preserved is p? for RNS, and p for RES. Second, RNS requires less trainable parameters,
because our 1-D CNN model has O(N) trainable parameters for a network of size N, and RNS reduces the number
of nodes to pN while RES preserves almost all the nodes. Take the social network socfb-FSUS53 [30]] as an example,
when RES samples 2% edges, 75% nodes are preserved, and RNS only preserve 2% nodes. Third, as to be explained
below, for any graphlet, the count in the sampled RNS graphs has one-to-one correspondence from graphlet counts in
RNS samples to the original large graph’s. However, RES needs all other graphlet counts (e.g. graphlet counts for all 6
types of 4-node graphlets) in RES samples to infer the graphlet counts for the original graph [31]], so the accuracy may
decrease due to the inaccurate estimation of other graphlet counts.

The basic idea of RNS is to randomly generate a set of small subgraphs which can easily satisfy the memory constraint
for each large graph. After that, we apply our CNN model to these subgraphs, combine the results together and estimate
the graphlet count of the original large graph. We also provide a theoretical guarantee that this process will not amplify
the relative error.

To be concrete, each RNS graph is generated as follows. For each large graph G(V, E) in our dataset, we choose a node
preserving probability p and determine m as the total number of RNS graphs to be generated for G. Then, we select a
set of p - |[V| nodes from G uniformly at random, and denote them as V’. One RNS graph G'(V’, E) is exactly the
subgraph induced from G using this node set V. Finally, We repeat this process m times to generate m RNS graphs
G ={G1, G, ... G, }.

After generating the RNS set G, we establish an equation between the expected graphlet count on G’ and the truth
count on G, with one-to-one correspondence. Let ¢ and ¢’ denote the graphlet count of a specific k-node graphlet g for
the large graph G and any RNS graph G respectively. Let the function I(x) be the indicator function and g(j) be the
j™ k-node graphlet instance of large graph G, where j € {1, ..., c}. We have:

Eld] = E[Z I(Every node of g(j) is preserved)]

=1

= Z E[I(Every node of g(j) is preserved)]
j=1

= Z Pr(Every node of g(j) is preserved)

j=1
= pFe (6)

We introduce a RNS based estimator of c¢:

e=p* Z &(i)/m (7

, where &(i) is the estimated graphlet count by applying the CNN model on the i RNS graph G’.. We define the relative
error for our CNN model on each RNS graph G to be e(i) = |&(i) — ¢(4)|/c(i) and the relative error for the RNS
estimator of large graph G as e = |¢ — ¢|/c. Note that the RNS based estimator ¢ is not unbiased because we can
not guarantee our CNN model is unbiased. We have the following theorem to bound the relative error with (1 — 9)
probability:

"https://docs.scipy.org/doc/scipy/reference/sparse.html
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Theorem 3.1. Given any graph G, its any k-node graphlet count c , its RNS set G' = {G, ..., G.,} with node
preserving probability p and any parameters «, 6 > 0, if the relative error of CNN is at most ¢, ie., e(i) < € for
each i = {1,...,m}, then the relative error on G is at most € + (1 + €) with (1 — 0) probability, i.e. e < €, when
m > %04_21)_2’C log %.

Proof of Theorem We first use the Hoeffding’s inequality [32] to give a high probability bound of the relative error
|c(i) — Ele(@)]|/E[c(i)], given m > Fa~2p~2*log 2. Because c(i) are independent RNS samples and bounded by
[0, c], we define ¢ = ).~ | ¢(i)/m and use the Hoeffding’s inequality,

2m?2a’Elc)?

Pr(lc—E|c]| £ aElg)) > 1-2 —
r(le—Eld| < aBld) > 1-2exp(-— )
2 2.2, 2k 2
=1 gexp( 2
mc
> 1-46 ®)

The relative error on the large graph G is then bounded with probability at least (1 — §):

e = |é—¢|/c

m

= Yo e m =/

< |p_kZ(1i€)C(i)/m—C|/C
< pFple(l+e)(1+a) — /e
< e+t (l+ea 9

The first and second equality holds by definition. The first inequality holds because the relative error of CNN for each
instance i is at most e. The second inequality holds because of the inequality (8)) and the fact E[¢] = p”c. O

Theorem[3.1]can be viewed as the sensitivity analysis of RNS method. In the high probability error bound (Inequality (9)),
the first part of the error term e is brought by the inaccurate estimation of the CNN model and the second part (1 + €)a
is brought by inadequate RNS samples. When we have sufficient number of RNS graphs, i.e. m — oo, the relative error
e = €, which is no larger than the relative error of CNN. This shows that Random Node Sketching method is effective
in leveraging CNN to estimate graphlet counts on large graphs without amplifying the relative error. Note that this
theoretical high probability bound is conservative whereas fewer RNS samples (or smaller preserving probability p) are
needed to achieve accurate estimation in practice.

3.3 Overall CNN based Framework

Figure 5| presents the overall architecture of the proposed framework. Given a set of graphs with known graphlet count,
some preprocessing techniques are applied before inputing these graphs into CNN for training. First, we determine if
the size of graphs can fit into the memory, if not, we use random node sketching to obtain some sample graphs. Second,
we apply zero padding if the sizes of graphs in the dataset are not consistent. Third, we use swapping augmentation to
enlarge the training dataset if the graph samples are insufficient. On the contrary, if the data is adequate, we use node
ordering to enhance the accuracy of count estimation Finally, we use the preprocessed data to train a CNN model which
learns a mapping from graph structures to graphlet counts. For large graphs, we recover the global graphlet count from
the graphlet count estimations for random node sketching samples in the end.

4 Experiments

In this section, we present extensive experiments to evaluate the performance of our framework. We aim to answer the
following questions:

e 01 Accuracy: Is the graphlet count estimation of our framework accurate? Is 1-D CNN always more accurate
than 2-D CNN?

10
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o (2 Efficiency: Is our framework faster than other existing methods?

e 03 Generality: Does our framework give accurate estimation on any graph structures (e.g. sparse v.s. dense
graphs, graphs of different random graph models)?

o (4 Scalability: Can our framework handle large graph?

e 05 Practicality: 1s our framework effective on real world networks?

4.1 Experimental Setup
4.1.1 Performance Evaluation Metrics

We consider the following statistics and metrics, which provide a comprehensive picture of the graph dataset property,
graphlet count estimation errors, and running speed, for evaluating the performance of the proposed framework. All
results are averaged over multiple runs (i.e. 10 runs) to reduce the random effects in the experiments.

o Mean and Standard Deviation (STD) of the Ground Truth. Given a graph dataset with .S’ graph samples. Let
¢; be the ground truth graphlet count of sample graph ¢, 7 = 1,--- , S. We calculate the mean of ground truth
counts as jt = %7, ¢;/S and the standard deviation (STD) of ground truth counts as § = X%, (¢; — u)?/S.
These two statistics provide information about the underlying distribution of the dataset. The former shows the
average count of each graphlet. The later measures the heterogeneity/diversity of a dataset by showing the
derivation from the average graphlet count.

e Mean of Absolute Error (MAE). Given a graph dataset with S graph samples. Let ¢; be the ground truth
graphlet count and ¢} be the estimated graphlet count of sample graph ¢, = 1, -- ,.S. We compute the mean
of absolute error as MAE = %2, ¢} — ¢;|/S. This metric measures how accurate our estimation is.

o Relative Error (RE). Although mean of absolute error (MAE) measures the accuracy of estimation, it does
not show us if such error is acceptable for the given dataset. For example, MAE = 10 may be a good result if
the mean of ground truth over the dataset is 1000; on the contrary, if the mean of ground truth is 20, this error
is less acceptable. In order to measure the effectiveness of the estimation, we compute the ratio between mean
of absolute error (MAE) and mean of ground truth. We take relative error as e = MAE/ .

e Running Time. In order to evaluate the efficiency of our methods, we choose the running time as the evaluation
metric. For our CNN framework, we provide both training time and testing time. The training time records
the total running time to load the dataset into the memory, preprocess the dataset (e.g. node ordering, RNS
sampling, etc.) and train the model parameters. The testing time records the total running time to predict the
testing graphs in the dataset. For baseline methods, we provide the total running time to count/estimate testing
graphs after they have been preprocessed and loaded into the memory. While training time is an important
criteria to evaluate the efficiency, we care more about the testing time and use testing time to compete with
other methods. The reason is that our CNN method has the “once for all”” property. Concretely, once we have
trained our model, we do not need to retrain it for all the new coming data from the same distribution D. Since
the training time can be amortized over each testing graph, it can be neglected when we have considerable
number of testing graphs.

Moreover, we separately report the testing/testing time for each graphlet, because the user may want to
separately estimate the count for a specific graphlet. Notice that our CNN model are fully decoupled for
different graphlets and can be highly paralleled. Therefore, the time for each graphlet can also represent the
total time for counting all graphlets. As for competing methods, they depend on counts of other graphlets to
count a specific graphlet, and we use total time for each graphlet unless they provide separate modules to count
a specific graphlet.

4.1.2 Dataset

We synthesize datasets with three random graph models: Barabasi-Albert (BA) graph, Erdos-Renyi (ER) graph, and
random geometric graph (RGG). The size of synthetic graphs in experiments, if not specified otherwise, is 50-node. In
each dataset, we have 3000 training graphs, 300 validation graphs, and 300 testing graphs. The ground truth of graphlet
counts is calculated by PGD library [33]].

o Barabasi-Albert (BA) Graph. Barabasi-Albert model generates random graphs with the preferential attach-
ment mechanism. Specifically, starting from the base connected graph, every newly added node connects to m
existing nodes, and the probability of connecting to a particular existing node is proportional to its degree.
Hence, the degrees in a Barabasi-Albert random graph is exponentially distributed.

11
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Table 2: Biochemistry Dataset Details

Dataset MUTAG  NCII NCI109
Maximum # of Nodes 28 111 111
Average # of Nodes 17.93 29.87 29.86
Number of Graphs 188 4110 4127
# of Training Set Graphs 160 3800 3800
# of Validation Set Graphs 8 100 100
# of Testing Set Graphs 20 210 227

Table 3: Collaboration & Social Network Dataset Details

Graph ca-hep-ph  ca-hep-th  socfb-MSU24  socfb-FSUS53
# of Node 28k 23k 32k 28k
# of Edge 3.1M 2.4M 1.1IM 1.0M
Triangle Count 195.7M 191.3M 6.5M 7.9M

o Erdos-Renyi (ER) Graph. In Erdos-Renyi random graph, the edge between every two nodes exists with
probability gq. The degree distribution in Erdos-Renyi random graph is mostly evenly distributed.

e Random Geometric Graph (RGG). A random geometric graph is constructed by placing nodes uniformly at
random in a unit cube and connecting two nodes by an edge if and only if their distance is within a given
radius 7. Different from Barabasi-Albert graph or Erdos-Renyi graph, random geometric graph has more clear
community properties in its structure.

We also evaluate our proposed framework on three categories of real world networks: biochemistry graph datasets,
collaboration networks and social networks.

e Biochemistry Datasets. We conduct experiments on three biochemistry datasets: the MUTAG dataset [34]]
which contains the graphs of mutagenic aromatic and heteroaromatic compounds, and the NCI1 and NCI109
dataset [35] which contains the graphs of chemical compounds tested on lung cancer cells and ovarian cancer
cells respectively. We divide each dataset into three parts, one for training, one for validation, and one for
testing. Details are listed in Table[2]

o Collaboration Networks. We evaluate our framework with two collaboration graphs: ca-hep-ph and ca-hep-th
[36]. These two graphs are the author networks of arXiv where a node denotes an author and an edge denotes
a common publication. ca-hep-ph and ca-hep-th are the networks of the High Energy Physics Phenomenology
section and the High Energy Physics Theory section respectively. Details of these two graphs are listed in
Table[3

e Social Networks. We also evaluate our framework with two sparse social networks: socfb-MSU24 and
socfb-FSUS53 [30]. These two graphs are social friendship networks extracted from Facebook consisting of
people as nodes and friendship ties as edges. The detailed information can be found in Table[3]

4.1.3 CNN Training Setup

All adjacency matrices are saved using the sparse matrix format to save space, and unpacked when necessary. When
space are limited, we use sparse matrix multiplication to train (or test) our model, instead of unpacking them during
training (or testing). We train our CNN models on training datasets using the mean squared error loss function and the
Adam optimizer [37]. Hyperparameters are tuned with validation datasets: the batch size was selected from {16, 32, 64}
examples and the learning rate is selected from {0.0001, 0.0005, 0.001, 0.005, 0.01}. Our models are trained for at
most 600 epochs (with early stopping), which usually takes up to 20 minutes (depends on the total number and the size
of training graphs) on one 12GB memory GeForce GTX TITAN X GPU. Finally, we test our model on testing datasets
using best hyperparameters. Moreover, in all our experiements, we find different hyperparameters does not affect our
results very much and it is always safe to choose the learning rate as 0.001 and batch size as 32. For some rare cases,
the 0.001 learning rate is too large and we then use 0.0001 instead to get stable results. For each set of the experiment,
we repeat 10 times, present the average of relative errors eq, - - - , e1¢ as final result, and use the standard deviation of
these ten relative errors as the error bar in our figures.

12
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Figure 7: 1-D CNN v.s. 2-D CNN for 5-node graphlets

4.2 1-D CNN vs. 2-D CNN

In Section 3] we propose two CNN models and discuss the physical meaning of 1-D and 2-D convolutions. In this
subsection, we validate our hypothesis by comparing the accuracies of 1-D CNN and 2-D CNN on estimating 3,4-node
graphlets in three kinds of random graphs. In the experiments presented in Figure[6] 1-D CNN is always more accurate
than 2-D CNN. Although the accuracy improvements on estimating tree-like graphlets, such as 4-path (g7 I1) and 3-star
(g5 ¥%), are slight, the accuracy improvements on approximating dense graphlets, such as 4-chordal cycle (g4 1) and
4-clique (gg %), go up to 50%. For 5-node graphlets, Figure 7| gives the similar result, which shows that 1-D CNN
outperforms 2-D CNN for all random graphs. Another advantage of 1-D CNN is that it reduces the number of weights

to be trained compared with the 2-D CNN as we mentioned in Section [3.1]

4.3 Comparison with Competing Methods

We empirically compare the speed of our framework with that of state-of-the-art graphlet count or graphlet frequency
distribution (GFD) estimation algorithms. To compare with GFD estimation works, we derive graphlet counts from
the estimated GFD using the relationship as introduced in Section[2] In this experiment, we evaluate our model and
previous works by estimating all eight types of 3, 4, 5-node graphlets on three synthetic datasets: 50-node Erdos-Renyi
random graphs (ER graphs) with edge existing probability ¢ = 0.5, 50-node Barabasi-Albert graphs (BA graphs) with
m = 6 and 50-node Random Geometric graphs (RGG) with » = 0.45. Each dataset contains 3000 training graphs,
300 validation graphs and 300 testing graphs. We benchmark with six sampling frameworks: GRAFT [L1]], CC2 [15],
GUISE [38], LGE [29], ApproxG [39] and MOSS-5 [40]. We also provide the running time for exact counting method
PGD EXACT [8] and ESCAPE [41]] for reference. Following is a brief synopsis of these works:

e GRAFT [11]. GRAFT first samples a set of edges uniformly randomly. Then for each sampled edge, it counts
the number of occurrence of each graphlet that uses this edge. In the end, the obtained sample graphlet counts
are scaled up to approximate the global 3,4,5-node graphlet counts. Note that GRAFT are hard wired to
compute sl%latistics for all 3,4,5-node graphlets, and do not provide separate modules to compute 3,4-node
graphlets.

o CC2 [15]. Color coding is a general approach that prunes the enumeration search tree by sampling. Yet,
general color coding was proposed only for estimating treelet counts. [42] This work adopts the general color

>We use the implementation of GRAFT from http://dmgroup.cs.iupui.edu/mmrahman-GRAFT.php.
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Table 4: Running Time of 1-D CNN and Competing Methods for 3,4-node graphlets

(a) ER Graph
93 93 g1 95 93 9i 95 96
L. N 1 v 1 N S b2

Training (in Minutes) CNN (Ours) 1.55 2.73 3.92 3.22 3.47 3.36 4.05 2.96
Testing (in Seconds) CNN (Ours) 0.012 0.02 0.01 0.015 0.019 0.02 0.025 0.02

GRAFT 3186 3036 2818 2471 1763 2632 1751 2106
cc2 - - - - - - - -
GUISE 2978 2978 3349 2709 3349 2632 2709 4579
LGE 858 858 858 858 858 858 858 858
ApproxG 830 830 994 981 899 897 994  9.02
MOSS-5 498 502 566 630 565 534 325 559
PGDEXACT 1020 1020 1020 1020 1020 1020 1020  10.20
ESCAPE 282 28 28 282 28 28 28 28
(b) BA Graph
g3 93 g7 93 g3 93 g8 ga
. N 19 Y o N N 2

Time (in Minutes) CNN (Ours) 0.49 0.36 0.60 1.82 0.35 1.40 0.99 0.38
Testing (in Seconds) ~ CNN (Ours) 0.012 0.02 0.01 0.015  0.019 0.02 0.025  0.02

GRAFT 471 413 513 291 196 401 196 179
cC2 - - - - - - - -
GUISE 1620 1620 2077 58 854 112 221 1620

LGE 2265 2423 1976 1651 2689 2146 19.76  22.65
ApproxG 9.10 9.09 9.20 9.18 9.18 9.20 8.99 8.99
MOSS-5 6.19 6.19 6.39 6.39 6.21 6.27 6.27 6.39

PGD EXACT 8.62 8.62 8.62 8.62 8.62 8.62 8.62 8.62
ESCAPE 2.61 2.61 2.61 2.61 2.61 2.61 2.61 2.61

(c) RGG Graph

it 93 g1 93 93 i g2 98
L. N 11 v 1 N S ®

Time (in Minutes) CNN (Ours) 1.75 2.51 2.56 1.00 1.72 2.56 2.53 2.51
Testing (in Seconds) CNN (Ours) 0.02 0.015  0.015 0.03 0.015 0.02 0.02 0.015

GRAFT 605 1052 605 202 138 605 605 400
cC2 - - - - - - - -
GUISE 1037 1214 896 339 691 691 529 206

LGE 7.05 7.01 6.91 22.85 7.46 2285 1298 322

ApproxG 2256 2256 2350 2251 2256 2256 2315 2275
MOSS-5 1779 1779 1959 1744 1741 1998 1722 19.97
PGD EXACT 9.28 9.28 9.28 9.28 9.28 9.28 9.28 9.28
ESCAPE 291 291 291 291 291 291 2.91 291

Note: a hyphen (-) indicates that the method did not terminate within 6 hours. Bold faces are the best results.

coding tichnique and further extends it to estimate the frequency distribution of all kinds of graphlets up to
7-node.

GUISE [38]. GUISE employs a Markov Chain Monte Carlo method to sample 3,4,5-node graphlets uniformly
and construct the approximate graphlet frequency distribution of a graph. Similar to GRAFT, its implementation
is hard wired to compute statistics for all 3,4,5-node graphlets.

LGE [29]. The LGE framework derives 3,4-node global graphlet count estimation by computing graphlets
in a set of sampled localized neighborhoods (egonet). Here, we stick to the settings in [29]], sampling edge
neighborhoods and applying the PGD [8]] framework for the edge-centric graphlet counting.

ApproxG [39]. ApproxG applies edge sampling and parallel computing to reduce the 3,4-node graphlet
counting runtime. ﬁp

MOSS-5 [40]. MOSS-5 is a 5-node graphlets counting method based on subgraph sampling. In their
implementation, they separately provide MOSS-4 to count 4-node graphlets, which are used for estimating
4-node graphlet counts in our experiments. E]

3We use the implementation of CC2 from https://github.com/Steven—/graphlets.

*We use the implementation of GUISE from http://dmgroup.cs.iupui.edu/mmrahman-GUISE.php.

>We use the implementation of PGD from https://github.com/nkahmed/PGD.

5We use the implementation of ApproxG from https://bitbucket.org/approxg/approxg/src/master’.

"We use the implementation of MOSS-5 from http://nskeylab.xjtu.edu.cn/dataset/phwang/code/mosscode.zip.
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Table 5: Running Time of 1-D CNN and Competing Methods for 5-node graphlets

(a) ER Graph
% 9 93 g3 9 9% 2 3 9 970 9h

w b w  = L om Y 0 o=
CNN Train (Ours) 4.582 5.725 5.722 5.687 5.716 5.699 5.774 5.546 5.744 5.752 5.715
CNN Test (Ours) 0.022 0.027 0.024 0.024 0.024 0.024 0.024 0.025 0.026 0.026 0.023

MOSS-5 9654 4142 4142 2165 737 4142 737 4142 2165 737 73.7

GRAFT 888.5 2668.4 2668.4 2074.6 1780.7 2819.2 2074.6 26684 2369.7 2369.7 2668.4

ESCAPE 89.34 8934 89.34 8934 8934  89.34 89.34 89.34 89.34 89.34 8§9.34
972 973 914 975 976 917 978 979 920 921

v om Y A m moom Y O w
CNN Train (Ours) 5.749 5.609 4.987 5.601 5.675 5.680 5.374 5.692 5.600 4.504
CNN Test (Ours) 0.027 0.026 0.025 0.023 0.025 0.023 0.026 0.022 0.026 0.024

MOSS-5 737 169 737 737 737 169 737 737 169 169
GRAFT 2369.7 888.5  1780.7 1780.7 28192 17807 2369.7 26684 20746 596.6
ESCAPE 8934 8934 8934 8934 8934 8934 8934 8934 8934  89.34
(b) BA Graph
97 95 93 93 9z 98 9 93 95 90 9

w b ow  = L om Y 0 o=
CNN Train (Ours) 4.876 6.219 6.253 5.892 3.248 5.444 5.613 3.907 3.607 4.550 4.568
CNN Test (Ours)  0.023 0.024 0.022 0.024 0.024 0.022 0.023 0.026 0.025 0.025 0.022

MOSS-5 14.1 25.5 57.6 25.5 25.5 25.5 0.6 25.5 14.1 14.1 14.1

GRAFT 207.1 308.5 308.5 274.1 274.1 308.5 142.6 175.5 207.1 274.1 274.1

ESCAPE 136.3 136.3 136.3 136.3 136.3 136.3 136.3 136.3 136.3 136.3 136.3
972 973 914 975 976 917 978 979 920 921

M om Y A = moom Y w
CNN Train (Ours) 4.516 3.525 4.004 3.814 3.986 3.402 3.153 3.937 3.349 2.874
CNN Test (Ours) 0.026 0.025 0.024 0.024 0.024 0.023 0.023 0.024 0.023 0.024

MOSS-5 5.6 3.0 5.6 3.0 56 5.6 56 0.6 3.0 56
GRAFT 2071 751 1755  207.1 2741 1755 1755  240.1  240.1  75.1
ESCAPE 1363 1363 1363 1363 1363 1363 1363 1363 1363 1363
(c) RGG Graph
97 95 93 93 9z 90 9 93 95 90 971

v Low = L oom Y o0 =
CNN Train (Ours) 3.127 6.049 6.238 4.665 6.000 6.255 4.034 3.381 6.121 6.211 5.798
CNN Test (Ours) 0.026 0.027 0.024 0.026 0.026 0.025 0.028 0.025 0.025 0.025 0.024

MOSS-5 4858.6 3364  226.8 3364 15.1 15.1 3364  226.8 15.1 7.1 15.1

GRAFT 1485.7 993.6 5004 5004 833.7 668.3 500.4 169.1 833.7 833.7 500.4

ESCAPE 78.31 78.31 78.31 78.31 78.31 78.31 78.31 78.31 78.31 78.31 78.31
912 973 9?4 9%5 9%6 9%7 9?8 !]?9 930 931

v = Y A B A
CNN Train (Ours) 3.997 1.607 4.267 6.082 6.125 3.160 3.557 6.115 5.742 4.364
CNN Test (Ours) 0.026 0.028 0.025 0.026 0.026 0.026 0.027 0.024 0.026 0.030

MOSS-5 7.1 4858.6 15.1 7.1 7.1 3364  15.1 7.1 7.1 7.1
GRAFT 169.1 169.1 3364 9936 5004 5004 3364 9936 1321.6 169.1
ESCAPE 7831 7831 7831 7831 7831 7831 7831 7831 7831 7831

Note: Bold faces are the best results. Time for training are in minutes, others are in seconds.

e PGD EXACT [33]. PGD EXACT represents the Parallel Parameterized Graphlet Decomposition (PGD)
framework which counts 3,4-node graphlets by leveraging on the combinatorial relationships among these
graphlets.

o ESCAPE. [41]. ESCAPE is the state-of-the-art algorithmic framework that can be used to exactly count any
5-node graphlets. Similar to MOSS-5, ESCAPE provides a separate module for 4-node graphlets, which are
used when counting the 4-node graphlets. Fﬂ

Our comparison results are summarized in Table 4 and Figure [§|for 3,4-node graphlets, and Table [5|and Figure [9] for
5-node graphlets. For a fair comparison, we tune the number of iterations for all benchmarking sampling methods, so

8Note that PGD EXACT and ESCAPE gives the exact graphlet count, and thus their relative errors are always 0.
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Figure 8: Relative Errors of 1-D CNN and Competing Methods for 4-node graphlets
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Figure 9: Relative Errors of 1-D CNN and Competing Methods for 5-node graphlets

that they obtain as close relative errors to that of 1-D CNN as possible. Take counting 4-clique (g¢ $) on the ER graphs
as an example. Our 1-D CNN makes 2.8% relative error. In order to obtain similar accuracy, GRAFT samples 60% of
edges, GUISE runs random walk for 400K iterations, and LGE samples 13% of edges (and their neighborhoods) for
450 runs. For MOSS-5 and ApproxG, the accuracy is controllable and we can directly set the error bound. The relative
errors are shown in the Figure[8] where 1-D CNN and other competing methods achieve similar relative errors. For 3-4
node graphlets, Table 4] (a) shows that the running time (for total 300 testing graphs) used by estimation methods, i.e.,
GRAFT, CC2, GUISE, LGE, MOSS-5 and APPROXG, on random graphs are significantly more than that used by 1-D
CNN. The fastest sampling method (MOSS-5) still uses up to two orders of magnitudes longer than ours. Comparing
to exact counting methods, 1-D CNN also shows better running time, and provides at least two orders of magnitudes
speed-up. The BA graphs and RGG show the similar results, which are presented in Table 4] (b) and (c).

For 5-node graphlets, we do not show the results for CC2 and GUISE, because they can not produce accurate results
within reasonable time. The running time of 1-D CNN is almost the same as the 4-node graphlets’, while competing
methods requires longer running time. Thus, our 1-D CNN provides more speed-up for 5-node graphlets. These results
demonstrate that our CNN based graphlet count estimation approach offers remarkable speedup on predicting graphlet
counts on synthetic graphs while still maintaining high accuracy.
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4.4 Estimation on Different Graph Structures

We evaluate the effectiveness of our model on different graph structures by testing on three different random graphs, i.e.,
Barabasi-Albert (BA) graph, Erdos-Renyi (ER) graph, and random geometric graph (RGG), for 3,4-node graphlets. For
studying the performance of our model on sparse graphs and dense graphs, we experiment on different graph densities.
To show that our model can tolerate heterogeneity in dataset, we also test on datasets with different ranges of graph
densities.

4.4.1 Experiments on Different Graph Densities

We train models for different graph densities: for BA graph, we alter the edge attachment rate m from 3 to 7; for ER
graph with test on graphs with the edge existing probability q from 0.1 to 0.7; for RG graph, we experiment with the
radius r ranging from 0.25 to 0.5.

We record results for all 3, 4-node graphlets in Table[6] The results are summarized as follows. In Table[6] our model’s
mean absolute errors (MAE) of estimating 3, 4-node graphlet counts on three kinds of random graphs all maintain in a
small magnitude while the graph densities increase and the ground truth graphlet counts grow rapidly. Take estimating
open triangle count (g3 1) on Erdos-Renyi (ER) graph as an example. As indicated in Table (a), the mean of truth
count grows from 524.15 to 7328.57 as the edge existing probability grows from 0.1 to 0.5. Nevertheless, our MAE
rises from 10.31 to only 46.77. Looking at the results for 5-node graphlets in Figure[I0} we have similar trends for all
random graphs. In our experiments, we find existing graphlet counting methods generally take more time counting
denser graphs than sparse graphs of the same size. This experiment not only demonstrates that our framework learns on
different graph structures, but also shows that our model has advantage on dense graphs (with smaller relative error).

Table 6: Estimation on Graphs of Different Random Graph Models with Different Densities

(a) ER Graph
Configu- g3 9 g1 95 93 94 95 96
ration I N b9 v 0 N N p2d
0.1 RE(%) 1.9+0.1 17.6£1.0 3.6+0.2 5.24+0.3 11.0+1.2 13.440.7 36.3£1.9 100.0+0.0
MEAN 524.15 19.23 1990.21 662.95 54.21 218.60 12.09 0.22
0.3 RE(%) 0.8+0.0 2.0+0.1 1.0+0.0 2.61+0.1 3.54+0.4 1.14+0.1 2.440.1 10.7+£1.1
MEAN 3731.11 535.22 25818.33 8591.37 2787.63 11104.68 2392.26 170.21
0.5 RE(%) 0.6+0.03 0.74+0.03 0.440.01 2.7+0.16 2.740.30 0.34+0.02 0.54+0.03 2.84+0.33
MEAN 7328.57 2433.45 43140.88 14377.56 10734.33 42973.66 21378.36 3554.31
(b) BA Graph
Configu- g g3 g1 % g3 g1 9 9
ration I N 9 A o N X )
3 RE(%) 1.340.1 6.7+0.4 3.0+0.2 4.6+0.2 12.0+£0.7 5.3+0.2 9.94+0.6 35.0+3.6
MEAN 875.33 55.07 3345.27 2464.36 123.19 1022.29 114.44 4.26
5 RE(%) 1.040.1 3.1+0.2 1.940.1 3.1+0.1 7.2+0.4 2.240.1 4.0+0.2 12.0£1.2
MEAN 1821.71 200.81 8884.61 5300.15 555.42 3968.82 732.81 58.06
7 RE(%) 0.8+0.0 1.740.1 1.44+0.1 2.3+0.1 5.3+0.3 1.240.1 1.9+0.1 6.0+0.7
MEAN 2841.96 442.12 15129.29 8534.06 1303.88 8865.07 2219.75 244.66
(c) RGG Graph
Configu- g 93 g1 95 93 91 95 96
ration I N b9 VA a N N b2

0.25 RE(%) 8.2+0.4 3.7£0.2 15.6+£09  22.6+23 42.11+4.1 8.8£0.4 5.6+0.2 11.6+1.2
MEAN 550.49 319.85 1701.14 186.89 15.09 1452.20 551.01 326.45

0.35 RE(%) 3.9£0.2 1.940.1 6.2+0.3 10.6+1.2 258+24  3.7+02 3.8£0.2 5.3£0.5
MEAN 1626.34 1057.27 7982.69 925.16 84.86 7857.52 3210.44 2051.50

0.45 RE(%) 2.540.1 1.0£0.1 4.0£0.2 72409 193£22  2.1+£0.1 3.1£0.2 2.8+0.3
MEAN 3291.14 2549.46 18538.42 2446.09 277.45 24321.43 11258.74 8125.60

4.4.2 Experiments on mixed graph configurations

To evaluate the generality of our models, we trained 1-D CNNs with mixed graph configuration (density) in the dataset:
for BA graph, we adjust the mixing edge attachment rate m range from 7 & 1 to 7 & 5; for ER graph, we alter the
mixing edge existing probability q range from 0.4 £ 0 to 0.4 & 0.2; for RGG, we experiment with the mixing radius r
range from 0.4 + 0.05 to 0.4 £ 0.25.

Table [/|records the results for all 3, 4-node graphlets Our model’s mean absolute errors (MAE) of estimating 3, 4-node
graphlet counts on three kinds of random graphs all maintain in a small magnitude while the graph diversity increase.
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Figure 10: Relative Errors for 5-node Graphlets with Different Densities

For example, for estimating triangle count in BA graph, our model’s MAE raises from 9.26 to 9.66 only, while the
standard deviation of ground truth counts in the testing dataset raises from 119.89 to 452.62. Similar results can be
found for 5-node graphlets in Figure[IT} This means our framework is accurate and has excellent generalization ability
on mixed graph configurations.

Table 7: Estimation on Datasets with Different Density Ranges

(a) ER Graph
g9 93 91 95 93 9i 95 9%
Configuration L. I b9 v a N N b

0.4+£0.0 RE(%) 0.7£0.0 1.1£0.0 0.6+£0.0 22+0.1  2.840.2 0.440.0 1.0£0.1 44403
MEAN  5636.8 1252.9 381439  12701.1 6348.3 25433.5 8472.6 944.1
STD 265.70 134.46 1467.43 573.45 631.39 2379.13 1322.36 214.73
04+£0.1 RE(%) 0.9+0.0 1.1+0.1 3.24+0.1 3.7+£02  3.0£0.2 0.5+£0.0 0.9+00 44402
MEAN 54722 1259.0 36314.1 12110.9 6185.0 24798.5 8891.1 1111.3
STD 1050.80 534.27 5476.89 1888.30 232341 9210.34 5348.80 926.91
04+£0.2 RE(%) 0.9+0.1 0.8+0.0 10.5£0.6 3.3+02  3.0£0.1 1.140.1 0.6+£0.0  2.6+0.1
MEAN  5641.7 1671.9 33977.3 11313.1 7153.2 28745.5 14100.9 2570.7
STD 2026.38  1225.85 9717.21  3227.68 441123  17768.77 1295535  3052.00

(b) BA Graph
9 95 91 93 93 91 95 96
Configuration I I 9 A bos N N X
T+-1 RE(%) 0.£0.0 2.0£01 15%0.0 29401 52402 1.6£0.1 2.6£0.1 7.1£04

MEAN  2879.2 462.5 15333.0 8598.3 1362.4 9222.7 2391.3 2717.6

STD 414.86 119.89  2615.75 1532.10 387.68 2371.10 846.62 129.45

7+-3 RE(%) 1.0+£0.1 2240.1 22+0.1 29402 6.1+03 1.5+£0.1 3.0£0.1 6.4+0.3
MEAN  2708.4 449.7 14107.8 8129.6 1303.2 8864.6 2468.4 316.9

STD 951.73 270.15 563295  3061.57 819.18 5243.69  1940.83  311.72

T+-5 RE(%) 0.8+0.0 1.840.1 2.8+0.2 3.0+0.1 494+03 1.2+0.1 22401 6.8+04
MEAN  2776.9 543.2 14375.8 8274.2 1594.3 10404.1 3455.0 522.8

STD 1569.41  452.62  8864.47  4857.48 134540  8452.05  3441.41 603.70

(b) RGG Graph
9 95 91 9 95 9i 95 %
Configuration I. N b9 v a N I R

0.4£0.05 RE(%) 3.84£0.2 1.4£0.1 57+03 84+04 20.8423 3.3%0.1 3.4£0.2 4.0+0.4
MEAN  2433.7 1753.8 13282.8 1643.5 173.1 15323.7 6758.0 4668.1

STD 665.18 592.16 4119.02  690.95 92.10 6520.78 3403.68 2717.33

0.4+£0.15 RE(%) 3.6£0.2  1.3%+0.1 51£03 94+£04 2234£2.0 2.84+0.2 3.4£0.2 3.1£0.3
MEAN  2403.3 1853.2 12356.5 1690.6 196.8 16797.0 8076.9 5982.6

STD 1387.38 1393.33  7556.02  1285.88 192.68 14378.81 8281.93 6999.81

0.4+£0.25 RE(%) 0.3+£0.0 09+0.0 39+02 9.0£0.4 20.6%2.1 2.440.1 2.7£0.1 2240.2
MEAN  2568.6 2310.7 12084.4 1781.3 284.8 20793.9 11645.3 9695.2

STD 1987.53 225741  9347.08 1593.88  332.00 20840.74  13613.36  12868.71

4.4.3 Experiments on mixed graph distributions

In section .4.2] we train three separate 1-D CNNis for three synthetic datasets with mixed graph configurations. In
this section, we study whether training a single 1-D CNN with these three datasets mixed together can get accurate
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Figure 11: Relative Errors for 5-node Graphlets with Different Density Ranges

Table 8: Estimation on Mixed Graph Distributions

g 93 g1 95 93 g1 g2 96
L. N 1 v o N S R
Relative Brror(%) 698 282 647 958 1290 287 334 727

STD of the Relative Error (%)  0.67 0.25 0.55 0.11 1.72 0.17 0.10  0.08

predictions for graphs generated from this mixed graph distribution. We randomly generate 3000 graphs as training
data, including 1000 ER graphs with p ranges from 0.05 to 0.7, 1000 BA graphs with m ranges from 1 to 13 and 1000
RGG with r ranges from 0.15 to 0.65. We randomly generate another 450 graphs from the above mixed distribution for
testing. As shown in the Table[8] our model can adapt itself to this mixed distribution setting and predict unseen graphs
generated from this mixed distribution with fairly acceptable accuracy (all below 10% except for 4-cycle). As for the
5-node graphlets, Figure shows more than half of the relative errors are below 10% and 18/21 are below 15%. This
shows our model has the potential to be applicable to different underlying distributions with a single trained model.

4.5 Estimation on Large Random Graphs

To demonstrate the scalability of our framework and how our CNN with RNS behave on large graphs, we do experiments
on 10K-node random graphs. We randomly generate two 10k-node random ER graphs with edge existing probability
q = 0.1, two 10k-node random BA graphs with edge attachment rate m = 200 and two 10k-node random RGG graphs
with radius » = 0.15. For ER graphs, we apply RNS with node preserving probability p = 0.015 for one graph to
generate 3000 training graphs and 3000 for the other graph with the same p for testing. For BA graphs, we apply RNS
with node preserving probability p = 0.035 for one graph to generate 5000 training graphs and 2000 testing graphs
with the same p for the other graph. For RGG, we apply RNS with p = 0.015 to generate 3000 graphs for training
and 10000 graphs for testing. Figure[T3|shows the results of our experiment for 3,4-node graphlets, where blue lines
denote the ground truth graphlet counts (note that there is no blue bars as the relative error of ground truth is 0); green
lines present the graphlet count estimation for large random graphs by RNS with exact counting on RNS samples and
green bars denote the relative error incurred by RNS; red lines and bars represent the result by applying RNS with our
CNN framework on RNS samples. In Figure[I3] our estimations are accurate as they (red lines) almost coincide with
the ground truths (blue lines) and the relative errors of RNS with CNN are close to RNS with exact counting on all
random graphs. We also provide the training time and testing time for RNS + CNN, the running time for RNS + Exact
Count and the running time for PGD exact to calculate the ground truth of all 10k graphs in Table[9] For ER and BA
graphs, we can finish testing in less than 0.62 seconds. For RGG, we spend more time (less than 1.21 seconds) because
we sample more RNS samples than ER and BA graphs. We show results for 5-node graplets on the relative error in
Figure[I4] Again, RNS+CNN shows consistent accuracy (around 6-8% relative error) for most 5-node graphlets as
4-node graphlets’, except for g74-g5, for BA graphs. For these 5-node graphlets, the large error suggests we may need
more RNS samples to produce more accurate results. For the running time shown in Table {10} our RNS+CNN shows
clear advantage over the ESCAPE methods and can finish within 1.2 seconds.

4.6 Preprocessing Techniques Evaluation

We conduct experiments to analyze the effects of our proposed preprocessing techniques.
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Figure 13: 3-4 node Graphlet Counts on Large Random Graphs

4.6.1 Node Ordering

We evaluate four kinds of node ordering methods: betweenness centrality, closeness centrality, Weisfeiler-Lehman
algorithm [43], and degree centrality on all 3,4-node graphlets. We show the results in Table [[T]and mark the most
accurate results with bold faces. In our experiments, we observe that betweenness centrality and closeness centrality are
not very effective. Among all the evaluated ordering methods, degree centrality provides the biggest improvements
on estimating almost all 3 and 4-node graphlet counts on Erdos-Renyi (ER) graphs, Barabasi-Albert (BA) graphs.
For estimating 4-clique count on RGGs, the degree centrality ordering reduces 5.73% on the relative error. The
Weisfeiler-Lehman ordering achieves the best performance on random geometric graphs (RGG) and is also shown to be
effective on ER graphs and BA graphs. However, given that the complexity of Weisfeiler-Lehman ordering is much
higher than degree centrality, it is more suitable to use degree centrality as the first choice. We also validate the above
observation for 5-node graphlets. Figure [[5]shows degree centrality almost always outperforms other node orderings in

all graphs.
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Table 9: Running Time of 3,4-node Graphlets for Large Random Graphs

(a) ER Graph
g7 g3 g1 95 93 g1 93 96
1. N 1 v 1 N S b2
Training (in Minutes) CNN 1.25 1.63 6.35 4.20 1.72 2.48 1.28 0.55
Testing (in Seconds)  RNS+ CNN 0285 0355 0355 0349 0349 0269 0294 0424
RNS + EXACT 1802 1802 1802 1802 1802 1802 1802  180.2
PGDEXACT 4569 4569 4569 4569 4569 4569 4569  456.9
ESCAPE 881.01 881.01 881.01 881.01 881.01 881.01 881.01 881.01
(b) BA Graph
g3 g3 g1 95 93 91 93 96
1. N 11 v 11 N S b3
Training (in Minutes) CNN 693 628 1213 1203 586 3223 1745 955
Testing (in Seconds)  RNS+CNN 0770 0.759  0.620 _ 0.630 _ 0.770 _ 0.640 _ 0.640  0.629
RNS + EXACT 1802 1802 1802 1802 1802 1802 1802  180.2
PGDEXACT 1319 1319 1319 1319 1319 1319 1319 1319
ESCAPE 310.89 310.89 310.89 310.89 310.89 310.89 310.89 310.89
() RGG
g3 93 g1 95 93 9i 95 96
1. ~ 11 v 11 N N P
Training (in Minutes) CNN 1.50 1.26 1.80 1.03 078 1.73 1.85 1.80
Testing (in Seconds)  RNS + CNN 0934 0890 1170  1.165 0894  1.164 1195 1210
RNS + EXACT 2594 2594 2594 2594 2594 2594 2594 2594
PGD EXACT 2287 2287 2287 2287 2287 2287 2287 2287
ESCAPE 237220 237220 237220 237220 237220 237220 237220 237220
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Figure 14: Relative Errors for 5-node Graphlets for Large Random Graphs

4.7 Estimation on Real World Graph

In this subsection, we demonstrate that our framework can be applied to real world scenarios by experimenting on three
categories of real world graphs: biochemistry graphs, collaboration graphs and social network graphs.

4.7.1 Biochemistry Dataset

We train our 1-D CNN models for estimating non-zero graphlet counts, including, g7 (), g5 (4%), g7 (I27), g5 (>=), on
three biochemistry datasets: MUTAG, NCI1, and NCI109. Table Q] gives the detailed information of these datasets.

Because the graph samples in these real world datasets have different number of nodes, we preprocess the input graph
adjacency matrices with adjacency matrix zero padding technique as stated in Section [3.2.1} For NCI1 and NCI109,
since the size of their graph samples vary over a large range, e.g., the average number of nodes in a graph is around
30 but the biggest graph has 111 nodes, padding the graph adjacency matrices to size (111, 111) adds many useless
information to the inputs. Hence, we further apply node ordering to obtain more consistent representation of the graph
samples. We summarize our results in Table|12|as follows. Our model performs well on MUTAG dataset. The relative
error (MAE over Mean) of all estimations are below 6.3%, and for estimating open-triangle (g5 1..), our model achieves
0.9% relative error. On NCI1 and NCI109, the relative error 1 of our estimations are all less than 7.7%. Our model
performs better on estimating open-triangle (g3 1) on both NCI1 and NCI109, making only 0.09% and 1% relative
error respectively. This experiment shows that our framework is effective on real world biochemistry datasets.
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Table 10: Running Time for Large Random Graphs for 5-node graphlets

(a) ER Graph
% 9 93 a3 9 9% 7 9 95 o 9h

o S S = N R o SR
CNN Train (Ours)  3.441 3.889 3.981 3.888 3.795 3.700 3.574 4951 3.668 4.042 3.581
RNS + CNN (Ours)  0.170 0.185 0.170 0.190 0.175 0.190 0.170 0.195 0.210 0.195 0.165
RNS + EXACT 208.04 298.04 298.04 298.04 298.04 298.04 298.04 298.04 298.04 298.04 298.04
ESCAPE 242820 242820 242820 242820 242820 242820 242820 242820 242820 242820 242820
5 5 5 5 5 5 5 5 5 5
912 913 914 915 916 917 918 919 920 921

ol N Y A i » o Y & ®
CNN Train (Ours) 3.744 4.140 3.513 3.782 3.734 3.605 3.500 4.295 3.797 2.188
RNS + CNN (Ours)  0.165 0.175 0.185 0.180 0.170 0.200 0.195 0.180 0.200 0.180
RNS + EXACT 298.04 298.04 298.04 298.04 298.04 298.04 298.04 298.04 298.04 298.04

ESCAPE 242820 242820 242820 242820 242820 242820 242820 242820 242820 242820
(b) BA Graph
97 95 9 g3 7 9% 9 7 9 970 gh

< A x < X M oo o=
CNN Train (Ours) 6.390 7.229 6.970 6.766 5.393 6.033 6.419 6.116 5.654 6.194 6.263
RNS + CNN (Ours)  0.615 0.640 0.670 0.655 0.575 0.620 0.595 0.645 0.630 0.710 0.670
RNS + EXACT 258.69 258.69 258.69 258.69 258.69 258.69 258.69 258.69 258.69 258.69 258.69

ESCAPE 36255 36255 36255 36255 36255 36255 36255 36255 36255 36255 36255

5 5 5 5 5 5 5 5 5 5
912 913 914 915 916 917 918 919 920 921

o N Y A i ¥ X Y & ®
CNN Train (Ours) 5.715 5.559 5.966 5.949 5.644 5.998 5.496 6.073 6.022 5.446

RNS + CNN (Ours)  0.595 0575 0.665 0.645 0.610 0.680 0.530  0.700  0.705 0.575
RNS + EXACT 258.69 258.69 258.69 258.69 258.69 258.69 258.69 258.69 258.69 258.69

ESCAPE 36255 36255 36255 36255 36255 36255 36255 36255 36255 36255
(c) RGG Graph
97 95 93 A 93 90 g 93 9 970 9

= A « = A M T 0 o=
CNN Train (Ours) 2.833 1.593 2.612 2.481 1.581 2.550 2.581 2.438 2.414 2.605 2.402
RNS + CNN (Ours) 0.875 1.120 1.120 1.125 1.140 0.960 1.040 1.050 0.875 0.915 0.920
RNS + EXACT 12894 12894 12894 12894 12894 12894 12894 12894 12894 12894 12894
ESCAPE 273810 273810 273810 273810 273810 273810 273810 273810 273810 273810 273810
912 913 974 915 9is 977 Jis 979 930 931
M N Y A i » X Y o
CNN Train (Ours) 2.607 1.554 3.068 2.626 1.555 2.557 2.523 2.551 2.756 2.520
RNS + CNN (Ours) 1.110 1.124 1.110 0.925 1.124 1.035 1.110 0.925 0.875 0.875

RNS + EXACT 1289.4 1289.4 1289.4 12894 1289.4 12894 12894 1289.4 12894 1289.4
ESCAPE 273810 273810 273810 273810 273810 273810 273810 273810 273810 273810

Note: Bold faces are the best results. Time for training are in minutes, others are in seconds.

4.7.2 Collaboration Dataset

To demonstrate our framework’s capability of handling large real world graph, we evaluate our framework using two
collaboration networks: ca-hep-ph and ca-hep-th. Table[3|gives details about these two graphs. Following the problem
formulation in Section [2.3]to generate a dataset G, we use the ca-hep-ph graph to generate 4000 training/validation
graphs as G to train our model. Then we generate 900 (unseen) testing graphs from the ca-hep-th as Gs. Specifically,
we apply the random node sketching approach introduced in Section [3.2.4]to sample 4000 graphs from ca-hep-ph with
the node preserving probability p = 0.01 to form a training set with size 4000 (among them 400 graphs are reserved for
validation) ; and sample 900 graphs for testing from ca-hep-th with the node preserving probability p = 0.009. Since
the sizes of the sampled small graphs vary, we further apply adjacency matrix zero padding to pad adjacency matrices
to the same size, i.e., (280, 280) for both training graphs and testing graphs. Also, we apply degree centrality based
Node Ordering technique to preprocess the training and testing graphs. Finally, as introduced in Section [3.2.4] we first
take the CNN model’s estimation on 900 testing graphs as inputs and reconstruct the global graphlet count estimation
for ca-hep-th by using the RNS estimator described by Equation (7). We denote the results as "RNS + CNN" (red bars
in Figure [T6]a)).
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Table 11: Relative Error for Different Node Orderings

(a) ER Graph
9 % g1 9 93 9i 9% 9%
Relative Error(%) L N ot v o N N X
No ordering 1.42 3.51 2.98 4.88 5.84 1.59 4.00 13.21
Betweenness 1.41 3.68 2.82 5.21 5.97 1.74 3.99 13.34
Closeness 1.44 3.46 2.82 4.94 5.77 1.69 4.22 12.27
WL 1.43 3.65 2.45 4.61 5.20 1.65 4.29 11.52
Degree 1.35 3.27 2.33 4.24 5.19 1.65 3.57 11.01
(b) BA Graph
9 % g9 9 93 9i 9% 9%
Relative Error(%) L. I bt v ot N N X
No ordering 1.53 3.15 5.05 8.19 10.63 1.59 4.74 14.02
Betweenness 1.52 2.86 4.86 8.63 10.70 1.64 3.74 11.29
Closeness 1.66 2.82 4.50 8.00 10.00 1.97 3.66 11.45
WL 1.41 2.54 3.20 4.73 9.02 1.65 4.07 10.14
Degree 1.31 2.31 2.36 3.26 7.13 1.83 2.71 8.29
(b) RGG
9 9 91 9 95 gi 95 96
Relative Error(%) L. N ot v ot N N )
No ordering 9.35 5.80 18.90 29.00 54.90 11.56 7.68 19.25
Betweenness 9.76 5.74 18.92 30.89 50.62 11.09 7.62 18.65
Closeness 9.50 5.69 19.17 29.73 50.14 10.60 7.66 19.35
WL 8.17 4.33 16.47 27.19 50.24 9.08 7.81 13.80
Degree 8.91 4.53 17.71 28.03 51.16 9.61 6.88 14.85
Note: Bold faces are the best results.
Relative Error for ER graphs Relative Error for BA graphs Relative Error for RG graphs
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Figure 15: Relative Errors for 5-node Graphlets with Different Node Orderings

For 3,4-node graphlets, we first calculate the results by reconstructing the global count estimation using the ground
truth count on 900 testing graphs, which is denoted as "RNS + Exact Count" (green bars) . Also, we use LGE with
660 edges (including its 2-hop egonets) for 7 runs and denote the result as "LGE" (purple bars). We also run MOSS-5
and ApproxG with controlled accuracy close to the RNS+CNN, which are denoted as "MOSS-5" (black bars) and
"AprroxG" (orange bars). Note that we tried GRAFT, GUISE and CC2 on ca-hep-th graph as well, but we do not
present them because they did not terminate within 72 hours even with very low sampling ratio.

In Figure a), we have larger error on 3-star (g3 %) count, we analyze the reason as follows. First, as the results
recovered from sample ground truth (green bars in Figure [I6{a)) also have rather big error on 3-star, the 900 small
testing graphs we sample seem to be less statistically representative for 3-star count in ca-hep-th. Second, we observe,
in the testing set, the variance of 3-star graphlet count is large, i.e., a small number of graph samples with significantly
larger 3-star counts than most of the graph samples in the set. The error mainly comes from the underestimation on
these outlying samples with large count. This is also the reason why LGE does not perform well in estimation 3-star
graphlet count. Except for 3-star, Figure[I6|a) shows that, for all other 3-node and 4-node graphlets, the relative error
of our estimations are all below 8.7%. These results are close to the best results we can achieve theoretically (the green
line and bars) given that we only sample 900 graphs. The results can be further improved by taking more samples from
ca-hep-th. Compared with competing methods, RNS+CNN is superior in the accuracy for graphlet g3 (), g1 (¢3), g2
() and g (32) and on par or slightly worse for g3 (1), g3 (12) and g7 (}). As for the running time shown in Table[13|(a),
RNS+CNN spends less than 0.31 seconds for all 3 and 4-node graphlets and is the fastest among competing methods.
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Table 12: Graphlet Count Estimation Results on Real World Biochemistry Datasets
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(a) MUTAG
g g1 93 g5 9
1. 1 v - pes
MAE 0.29 137 041 2.62 2.05
Mean 30.75 4325 7.8 587 322
STD 9.62 16.10 273 27.49 13.92
Relative Error  0.009-£0.0012 0.03140.0030  0.052+0.0028  0.045+£0.0017  0.063+0.0014
(b) NCI1
g g1 93 g5 9
1. I v o pos
MAE 051 227 037 6.97 4.20
Mean 51.26 70.27 13.84 90.94 54.32
STD 24.46 35.53 8.53 50.76 36.10
Relative Error ~ 0.0094+0.0006  0.03240.0010  0.027-+0.0029 0.0764+0.0038  0.07740.0018
(c) NCI109
g3 g7 93 9 95
1. I v fon pos
MAE 048 2.17 0.42 651 384
Mean 48.04 65.56 13.01 85.01 50.81
STD 25.08 36.48 8.39 51.66 34.48
Relative Error  0.01040.00097  0.03240.00048  0.032+0.0016  0.076+0.0032  0.07540.0031

MOSS-5 is the closest to ours and the PGD exact method even consumes 199.92 seconds, and ours is about 318 times
faster than theirs.

For 5-node graphlets, we compare our 1-D CNN with MOSS-5 and ESCAPE. Note that results for GRAFT, CC2 and
GUISE are not shown because they can not finish within reasonable time. Look at the relative error shown on the left in
Figure[I7] most 5-node graphlets have relative error less than 7.5%. As for the running time shown in Table[T4] (a),
our RNS+CNN achieves at least 3.4 times speed-up compared with MOSS-5, and five orders of magnitude faster than
ESCAPE. More importantly, the running time remains almost the same as the 3,4-node graphlets’, while exact counting
methods (i.e., ESCAPE) grows exponentially with the graphlet size. This experiment demonstrates that our framework

is effective in real world scenario for large collaboration graphs.

Relative Error

Relative Error

IERNS+CNN [IRNS+Exact Count UILGE [9ApproxG [IMOSS-5

(a) Errors on Collaboration Networks

0.3

Figure 16: 3,4-node Graphlet Count Estimation Results on Real World Graphs
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Table 13: Running Time for 3,4-node Graphlet Count Estimation on Real World Graphs

(a) Collaboration Networks

A PREPRINT - SEPTEMBER 17, 2020

g9 93 g1 95 93 9i 96
. N bt v o N b4
Training (in Minutes) RNS+CNN (Ours) 3.46 5.20 2.98 5.93 2.23 6.73 3.86 2.75
Testing (in Seconds) ~ RNS+CNN (Ours) 0.23 0.31 0.31 0.25 0.31 0.31 0.23 0.28
RNS + EXACT 167.7 167.7 167.7 167.7 167.7 167.7 167.7 167.7
GRAFT - - - - - - -
cc2 - - - - - - -
GUISE - - - - - - - -
LGE 12.53 11.75 12.72 13.55 12.72 12.72 12.72 12.72
ApproxG 0.98 0.98 1.02 1.02 1.25 1.02 1.25 1.02
MOSS-5 0.55 0.55 0.63 0.62 0.78 0.62 0.62 0.88
PGD EXACT 199.92  199.92 199.92 199.92 199.92 199.92 199.92 199.92
ESCAPE 87292 87292 87292 87292 87292 87292 87292 87292
(b) Social Networks
% 95 g1 93 93 91 95 96
. N i v o N M R
Time (in Minutes) RNS+CNN (Ours) 3.96 2.72 4.13 2.88 5.20 6.07 3.51 4.45
Testing (in Seconds) RNS+CNN (Ours) 0.487 0.476 0.440 0.456 0.564 0310 0.445 0.483
RNS + EXACT 18.25 1825 1825 1825 18.25 18.25 18.25 1825
GRAFT - - - - - - - -
cC2 - - - - - - - -
GUISE - - - - - - - -
LGE 0.865 0.827 0.865 0.865 0.865 0.865 0.827 0.865
ApproxG 0.49 0.49 0.56 0.56 0.49 0.56 0.49 0.49
MOSS-5 2.19 2.23 2.60 2.22 5.21 2.75 5.35 4.99
PGD EXACT 342 342 342 342 342 342 342 342
ESCAPE 10.82 10.82 10.82 10.82 10.82 10.82 10.82 10.82

Note: a hyphen (-) indicates that the method did not terminate within 4 hours. Bold faces are the best results.
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Figure 17: 5-node Graphlet Count Estimation Results on Real World Graphs

4.7.3 Social Network Dataset

We also evaluate our framework using two sparse social networks: socfb-MSU24 and socfb-FSUS3. Similar to
Section we first use RNS to generate 3300 graphs (3000 for training, 300 for validation) with node preserving
probability p = 0.02 from socfb-MSU24. Then 500 testing graphs are generated using socfb-FSU53 with the same
node preserving probability. Next, we pad training, validation and testing graphs to (560, 560) and apply the degree
centrality based node ordering technique. Finally, we use Equation (7)) to calculate the estimated graphlet counts for

socfb-FSUS3.

For 3,4-node graphlets, we show the relative error results for our method and competing methods in Figure [I6[b). The
RNS+Exact Count method achieves the best accuracy among competing methods and our RNS+CNN method gets
fairly accurate estimations, expect for 3-triangle () and 4-clique (]). The reason is that 3-triangle and 4-clique counts
are much less than other graphlets in sparse graphs. With inadequate samples, our CNN model can not learn well
on structural patterns of the 3-triangle and 4-clique. For the running time (shown in Table[I3{b)), our method is still
the fastest for most 3, 4-node graphlets. But this time, we provide less than 10 times speed up compared to the PGD
exact method, and the ApproxG, MOSS-5 are also very close to RNS+CNN. In our experiments, we find most existing

25



A PREPRINT - SEPTEMBER 17, 2020

Table 14: Running time for 5-node Graphlet Count Estimation on Real World Graphs

(a) Collaboration Networks

5

g 9 93 g3 9 9% g 98 95 9o 9h
v L x o= L o= Y 0 =
CNN Train (Ours)  3.675  3.604 3450 3714 3435 3739 3.679 3262 3729 3712 3449
RNS + CNN (Ours)  0.232 0248 0190 0243 0210 0237 0248 0258 0238 0240 0207
RNS +EXACT 1533 1533 1533 1533 1533 1533 1533 1533 1533 1533 1533

MOSS-5 0.800 0.790 0.660 0.800 0.800 0.940 1.030 1.030 1.030 0.670 0.800
ESCAPE 130733 130733 130733 130733 130733 130733 130733 130733 130733 130733 130733
gia 913 974 9%5 Elir)e 9157 9?8 9%9 930 95

M N Y A k » X Y &
CNN Train (Ours) 3.427 3.285 3.456 3.730 3.748 3.390 3.158 3.495 3.705 3.465
RNS + CNN (Ours) 0.243 0.245 0.203 0.235 0.242 0.240 0.195 0.205 0.240 0.202
RNS + EXACT 153.3 153.3 153.3 153.3 153.3 153.3 153.3 153.3 153.3 153.3

MOSS-5 0940 1750 0800 0670 0.660 1750 0790 0670 0800  0.940
ESCAPE 130733 130733 130733 130733 130733 130733 130733 130733 130733 130733
(b) Social Networks
91 % 9 i % % 9 7 % 9 gh

x A = e A M O
CNN Train (Ours) 6.269 5.513 5.250 6.279 8.470 5.311 6.288 10.416 5.286 10.556 5.342
RNS + CNN (Ours) 0.525 0.435 0.475 0.550 0.805 1.160 0.548 1.138 0.480 0.780 1.202
RNS + EXACT 125.2 125.2 125.2 125.2 125.2 125.2 125.2 125.2 125.2 125.2 125.2
MOSS-5 1.370 0.330 0.310 0.610 0.310 13.740 1.730 13.740 1.370 13.740 1.370

ESCAPE 584.5 584.5 584.5 584.5 584.5 584.5 584.5 584.5 584.5 584.5 584.5
gia 913 974 915 976 giz 9is i) 930 921

M N Y A B » X Y % w
CNN Train (Ours) 5.371 9912 6.296 10.614 6.375 5.309 6.485 6.579 6.683 6.803
RNS + CNN (Ours) 0.518 0.817 0.625 0.457 0.565 0.463 0.527 0.605 0.558 0.418
RNS + EXACT 125.2 125.2 125.2 125.2 125.2 125.2 125.2 125.2 125.2 125.2
MOSS-5 1.370 4.620 55.790 0.620 1.370 0.610 55.790 0.610 0.620 0.520
ESCAPE 584.5 584.5 584.5 584.5 584.5 584.5 584.5 584.5 584.5 584.5

Note: Bold faces are the best results. Time for training are in minutes, others are in seconds.

methods are more efficient for sparser graphs than denser ones given their graph sizes do not vary too much. So for
sparse graphs, the competing methods are more competitive.

For 5-node graphlets, we show the relative error in the right hand side of Figure[I7] We have less than 5% error for
half of the graphlets, and the largest error are clique-like graphlets, i.e., 39, g5 and g5;. The reason is also due to the
inadequate samples for these graphlets. As for the running time, we show the results in Table For most graphlets,
our RNS+CNN method are superior than the competing methods. Again, the running time This experiment shows our
method is effective and competitive against state-of-the-art methods for sparse social networks.

Interestingly, we find the relative error curve of the social network is very similar to large random BA graphs in
Figure[T4] and the collaboration network are very similar to large RG graphs. This further demonstrates the performance
of our model are related to the underlying distribution. Moreover, we find the results for real-world networks are slightly
worse than random graphs shown in Figure[T4] We believe the reason is related to the generalizability of our CNN
model. For random graphs, we generate training and testing graphs from exactly the same distribution, i.e., using the
same or similar configurations. For real-world networks, the training and testing graph do not come from the same
distribution, so our CNN model has larger error. To solve this problem, we can train a mixture model using more
networks, as what we do in the section 4.4.3, to enhance the generalizability of our model.

5 Related Work

5.1 Existing Graphlet Counting Framework

Existing techniques can be roughly categorized into two groups. One aims at obtaining the exact graphlet counts; the
other utilizes sampling techniques and focuses more on graphlet frequency distribution (GFD).

For exact graphlet counts, the most straightforward approach is to traverse through the graph, pick any & nodes, check
the edge connectivity between them and count every occurrence of a specific graphlet. Many existing works propose to
accelerate this exhaustive enumeration process by leveraging on parallelism, distributed systems and combinatorial
relationships among graphlets. For example, Schank et al.’s work [44] gives a MapReduce based algorithm to count
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triangle on distributed systems. Ahmed et al. [33] propose the Parallel Parameterized Graphlet Decomposition (PGD)
framework which counts 3-node graphlets, 4-clique, and 4-cycle first, and then derive the counts of the rest of 4-node
graphlets directly from the combinatorial relationships between 3-node and 4-node graphlets. Pinar et al. [41] build
upon Ahmed et al’s idea and propose the ESCAPE framework for counting all 5-node graphlets.

The second group of works aim at a less ambitious but more practical goal: estimate graphlet count or GFD with high
accuracy. They utilize various sampling techniques and provide fast and accurate algorithms with statistically provable
error bounds. For example, Rahman et al. propose an edge sampling based framework called GRAFT [L1]. Seshadhri
et al. [12] propose a wedge sampling technique and Jha et al. [13] extend this idea by introducing path sampling with a
special pruning schema to estimate all 4-node graphlets. Rossi et al. [29] extend the PGD framework and develop
a Localized Graphlet estimation (LGE) Framework by computing graphlets on sampled localized neighborhoods.
Mawhirter et al. [39] propose the distributed ApproxG framework to count 3, 4-node graphlets by the cost-aware task
sampling with controllable accuracy. For estimating k-node graphlets (for any k), Bhuiyan et al. [38]] first apply the
Markov Chain Monte Carlo (MCMC) sampling method, and Chen et al. [14] adapt the MCMC sampling and estimate
the ratio between the occurrence of different k-node graphlets. Wang et al. [40] divide 5-node graphlets into two
groups, propose T-5 and Path-5 sampling methods for each group and develop the MOSS-5 framework to estimate
3.4,5-node graphlets. Bressan et al. [15] point out the long mixing time of MCMC methods and propose a Color Coding
based method to estimate up to 7-node graphlet counts. For special graphlets, such as k-cliques, Jain and Seshadhri’s
work [[16] incorporates Chiba and Nishizaki’s subgraph listing algorithm [[L0] and Turan’s Theorem for approximating
the number of k-clique (for any k).

However, existing exact counting and sampling methods only take graphs as input and mechanically output their graphlet
counts, while ignoring the information from the results they just computed for previous graphs. As we discussed in
Section[2.3] failing to utilize the information of historical graphs, these methods suffer loss in accuracy or efficiency or
even both when estimating graphlet counts in new-coming graphs.

5.2 Learning on Graphs

Graphs are natural representations for a variety of real-world applications, including social analysis [45], traffic
prediction [46], recommendation systems [47]] and computer vision [48]. By representing data as graphs, on one hand,
we can encode relationships among entities and give more insights in the underlying data. On the other hand, the
complex structures of graphs pose a challenge to learning the true insights and extracting useful information [49]. Many
traditional techniques such as graph kernel [34,!4] and graph embedding [50, 51]] methods are proposed to deal with
the learning problem on graphs. Graph kernel method, in general, can be used to measure similarity among graphs by
computing shortest paths, subtrees or cycles [4]. However, it is often hard to priorly know which graph kernel captures
key structural property better [52]. Graph embedding method, which learns a graph representation in a low dimensional
space, is more task-specific. This technique has been adopted to address graph learning problems such as link prediction
and node classification [S0]. But its learning ability is always limited for discovering intricate network patterns because
of its shallow learning mechanism.

Lately, convolutional neural networks (CNNs) have arisen in many fields and yielded promising empirical results. CNNs
have demonstrated their significant representation ability, impressive learning capacity, and efficiency in space compared
with traditional kernel or embedding approaches. However, most prevailing CNN models are originally developed for
regular 1-D, 2-D, 3-D grid data such as text, image or video; while graph is generally of high dimensional and irregular.
CNN’s key components such as convolutions and filtering cannot be generalized to the graph domain in a trivial manner.
Thus, a variety of recent works were proposed to solve this problem. These works can be further divided into two
categories: the spectral models and the spatial models. Spectral methods [53, 1541 55! 156]] are based on the spectral graph
theory: they define parameter filters and convolution operators by the graph Fourier transform. As the spectral methods
relies on specific eigenfunctions of Laplacian matrix, the learned parameters on one graph are difficult to be transferred
to another graph with different eigenvalues. The spatial models [57, 58}, 48], which focus on generalizing CNN concepts
on spatial domain of graphs, are more flexible. For example, Hamilton et al. [57]] propose the GraphSAGE framework
to learn node embeddings by aggregating feature information from nodes’ local neighborhoods. Velickovic et al. [58]
follow Hamilton et al.’s idea and propose a novel attention layer which gives different learnable importance weights on
aggregating local neighbors of a node. Besides, Monti et al. [48]] also introduce a generic graph convolution network,
Monet, by designing a general patch operator which integrates the neighborhood information.

The objective of our work is different from the existing graph learning frameworks. Existing frameworks focus on
learning representations of data points, i.e., node embeddings, network embeddings. For these representation learning
frameworks, node or edge attributes are their main learning subjects; the underlying graph structure is viewed as an
auxiliary information. For our work, however, the underlying graph structure is the key to solve the GCL problem.
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We aim to apply learning model to learn the mapping from underlying graph structure to the structural attributes, i.e.
graphlet counts.

6 Conclusion

In this paper, we point out that, for existing graphlet counting and estimation framework, the cost for repeated
computation in testing can be further reduced, if we learn from previously studied graphs and leverage on the correlation
between the graph structural information and graphlet counts. we abstract the above finding, and formulate it as a novel
Graphlet Count Learning (GCL) problem, which bridges the graphlet counting and the learning paradigm. We then
propose a convolutional neural network (CNN) based framework with a series of data preprocessing methods to solve
the GCL problem. To show the effectiveness of our CNN framework, we conduct extensive experiments on three kinds
of random graphs and three categories of real world graphs, namely, biochemistry graphs, collaboration graphs and
social network graphs for 3,4,5-node graphlet counting. The results demonstrates that our framework has great potential
to compete with state-of-the-art methods, and is accurate, efficient, general and can achieve consistent results to handle
any sized graphlets (i.e., 6-node graphlets) without changing the model.

For the furture work, extending the framework to local graphlet count on directed graph is a natural next step. Also, it
will be interesting to further improve the accuracy and scalability of our method to handle larger graphs (e.g. graphs
with millions of nodes and edges). Finally, generalizability is an important issue for learning methods. Our Graphlet
Count Learning problem assumes graph data comes from the same (or similar) distribution. Later extensions can
eventually relax this assumption, and learn a more general model which allows us to handle graphs from totally different
distributions.
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