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Abstract
This paper investigates the distributions of triangle counts per vertex and edge, as a means for network
description, analysis, model building, and other tasks. Themain interest is in estimating these distributions
through sampling, especially for large networks. A novel samplingmethod tailored for the estimation anal-
ysis is proposed, with three sampling designs motivated by several network access scenarios. An estimation
method based on inversion and an asymptotic method are developed to recover the entire distribution.
A single method to estimate the distribution using multiple samples is also considered. Algorithms are
presented to sample the network under the various access scenarios. Finally, the estimation methods on
synthetic and real-world networks are evaluated in a data study.

Keywords: triangles; random sampling; distribution estimation; inversion approach; asymptotic approach; multiple samples;
static and streaming graphs; power laws

1. Introduction
Triangles formed by edges are the most fundamental topological structures of networks. The
number of triangles enters network metrics, such as clustering coefficient or transitivity ratio
(Newman, 2018), and serves in network description, analysis, and model building. Applications
exploiting triangle counts include spam detection (Becchetti et al., 2008), discovering common
topics on the web (Eckmann & Moses, 2002), query plan optimization in databases (Bar-Yossef
et al., 2002), community detection (Palla et al., 2005), and others.

Triangle counting has also spurred much theoretical research on suitable counting algorithms
for various contexts and goals, for example, to scale well with increasing network size, to adapt to
streaming data of edges, to work on networks with restricted access, and many others. The recent
review paper (Al Hasan & Dave, 2018) describes well the many developments in this research
direction. Algorithms based on various sampling schemes have also been studied actively, espe-
cially for large networks, with the goal of estimating the number of triangles space efficiently, even
if not quite exactly. See, for example, Jha et al. (2015), Stefani et al. (2017), and the references in
Al Hasan & Dave (2018).

In this work, our focus is also on sampling methods and triangles in large networks. But we
go beyond the number of triangles as in much of the earlier literature and consider instead the
distributions of triangle counts, per both vertex (node) and edge. We are interested in estimating
these distributions through suitable sampling schemes. Note that our object of study involves a
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range of counts (i.e. the number of vertices or edges participating in 0, 1, ... triangles) and not just
a single count as the total number of triangles. For this reason perhaps, the considered distribu-
tions of triangle counts have thus far received relatively little attention in the literature. The few
related exceptions are the works of Stefani et al. (2017) and Lim et al. (2018), which estimate the
number of triangles for each vertex in streaming graphs. However, it is yet to be seen whether
these estimates translate successfully to obtain the distributions of triangle counts (see Section 2.3
below for further discussion). These distributions are nevertheless informative, showing how tri-
angles are distributed over the network (scattered or concentrated) with respect to vertices and
edges. For example, as we discuss below (Section 3.2.3), these distributions might have power-law
tails, suggesting the existence of multiple hub-like vertices/edges participating in large numbers
of triangles. For instance, in social networks, the number of triangles of a user is used to identify
its social role in the network, and provides a metric in assessing the content quality provided by
the user.

Our contributions are several fold.

• We propose a new sampling scheme tailored for estimating triangle count distributions per
vertex and edge, which we call vertex-induced edge (VIE) sampling. Some available classical
sampling schemes such as induced and incident subgraph sampling (e.g. Kolaczyk, 2009,
Chapter 5.3.1), often do not carry enough information for proper inference about triangle
count distributions; other sampling schemes that seem natural for these distributions can be
computationally over-expensive (see Section 2.3 below). VIE sampling balances these issues
and is also the scheme that is amenable to theoretical analysis.

• We consider three sampling designs of VIE sampling: without replacement, with replace-
ment, and Bernoulli sampling adapted to network access scenarios with full access, restricted
access, and streaming edges, respectively.

• We develop two estimation methods from a VIE sample: an inversion approach for the bulk
of the distribution that is based on a relationship between the true distribution and the sam-
pled distribution and an asymptotic approach for the tail of the distribution that involves an
asymptotic equivalence between the two distributions. This follows our and others’ earlier
work on similar problems in other sampling contexts.

• We consider an estimation method based on scaling the number of triangles of the sampled
vertices and edges with VIE usingmultiple samples. A similar approach was used to estimate
the numbers of triangles per nodes in streaming data for a unique sample (Lim et al., 2018).
The distributions of triangle counts per vertex and edge are then obtained from the empirical
distributions of the scaled values. The method will be used as a baseline for comparison with
the inversion and asymptotic methods.

• We discuss and present algorithms that implement the VIE sampling approach to the situ-
ations of full access, restricted access (where we use random walks), and streaming data of
edges (where we employ hashing).

• We examine our proposed sampling and estimation methods on simulated and real-world
networks.

The rest of the paper is organized as follows. Section 2 presents quantities of interest and our
sampling framework. Section 3 concerns estimation approaches based on inversion and asymp-
totics. Section 4 considers the case of multiple samples collected in parallel. Section 5 details
our sampling algorithms. Section 6 includes data applications. Finally, Section 7 concludes and
discusses directions for future work.

This work is an extended version of our conference paper (Antunes et al., 2020). We expand
here the previously proposed VIE sampling approach by allowing three sampling designs. As
alluded to above, these accommodate the main network access scenarios. The inversion and
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Table 1. Summary of notation

Notation Description

G= (V , E) Graph Gwith set of vertices V and set of edges E
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

N/M Number of vertices/edges in G
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tw/T(u,v) Number of triangles of vertex/edgew/(u, v)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tv (j)/Te(j) Total number of vertices/edges with j triangles
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

tv (j)/te(j) Proportion of vertices/edges with j triangles
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Nt/Mt Maximum number of triangles per vertex/edge
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

V∗/E∗ Set of sample vertices/edges with VIE sampling
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

tv /te Probability distribution vector of triangle counts per vertex/edge
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

s The superscript s denote the analogous sample quantity
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

^ The symbol ^ represents the estimator of the quantity

asymptotic estimationmethods have been derived for the three sampling designs. Estimation from
multiple samples is also presented here for the first time. The sampling algorithms to implement
VIE sampling in the several network access scenarios are presented according to the different
designs and estimation methods. Finally, we added several numerical results and provided more
details and explanation throughout the text.

2. Quantities of interest and sampling
For ease of reading, Table 1 lists the main mathematical notation used throughout the paper. The
rest of this section provides their definitions.

2.1 Triangle counts per vertex and edge
We represent a network under study as a graph G= (V , E), where V is the set of vertices (nodes)
and E is the set of edges. The graph is assumed to be unweighted, undirected, and without loops
or multiple edges (simple). Let N = |V| and M= |E| denote the numbers of vertices and edges,
respectively, which are assumed to be known for simplicity. The numbers of triangles of a vertex
w ∈V and an edge (u, v) ∈ E are defined by

Tw = |{(u, v) ∈ E : (u,w), (v,w) ∈ E }|, w ∈V (1)

T(u,v) = |{w ∈V : (u,w), (v,w) ∈ E}|, (u, v) ∈ E (2)

Let

Tv(j)=
∑
w∈V

1{Tw=j}, j= 0, . . . ,Nt (3)

denote the total number of vertices with j triangles, referred to as triangle count per vertex, where
Nt =max{Tw} is the maximum number of triangles of a vertex in G. The proportion of vertices
participating in j triangles is

tv(j)= Tv(j)∑Nt
i=1 Tv(i)

= 1
N

∑
w∈V

1{Tw=j}, j= 0, . . . ,Nt (4)

Similarly, let

Te(j)=
∑

(u,v)∈E
1{T(u,v)=j}, j= 0, . . . ,Mt (5)
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Figure 1. Illustration of the number of tri-
angles for each vertex and edge in a small
network. The triangle counts per vertex
are Tv(0)= 1, Tv(1)= 2, Tv(2)= 2, Tv(3)= 1,
and per edge are Te(0)= 1, Te(1)= 5, and
Te(2)= 2. The values of tv (te, respectively)
are obtained by dividing those of Tv (Te,
respectively) by N (M, respectively).

denote the total number of edges with j triangles, referred to as triangle count per edge,
where Mt =max{T(u,v)} is the maximum number of triangles per edge. The proportion of edges
participating in j triangles is

te(j)= Te(j)∑Mt
j=1 Te(j)

= 1
M

∑
(u,v)∈E

1{T(u,v)=j}, j= 0, . . . ,Mt (6)

See Figure 1 for an illustration of the quantities defined.
We are interested in the distribution of triangle counts per vertex

tv = (tv(0), . . . , tv(Nt))′

and the distribution of triangle counts per edge

te = (te(0), . . . , te(Mt))′

In principle, the largest possible value forMt in a simple network is N − 2 and we assume that in
practice, Nt andMt may be known, or set large enough.

2.2 Sampling framework
Sampling has been used extensively for large complex networks in order to produce network
statistics from a portion of the network which, if computed for the full graph, would be pro-
hibitively expensive. When the only source of randomness in the network is the sampling design,
the estimation procedures constructed under this assumption are refereed to as design-based
procedures. In order to incorporate other sources of randomness into the network, such as the
topology of the graph G, one generally specifies a model, leading to the so-called model-based
procedures. We focus on design-based procedures in this work.

We introduce and focus on a general sampling framework for estimating the distributions of
triangle counts of interest. The basic idea follows the work of Buriol et al. (2006), where to estimate
the total number of triangles in the network, pairs consisting of a vertex and an edge are sampled
to check if they form a triangle.We suppose that there are two separate sets of units being sampled,
vertices and edges. Our sampling method can be characterized as having two stages: a selection
stage, followed by an observation stage. More precisely, a sample of vertices is selected from V ,
which yields the set of sampled vertices V∗, and a sample of edges is selected from E, resulting in
the set of sampled edges E∗. The manner in which vertices and edges are sampled can differ. Then,
for each sampled vertex w ∈V∗, we count the number of triangles of w formed with the sampled
edges (u, v) in E∗, by checking if the edges (w, u) and (w, v) exist in the graph. Similarly, for each
sampled edge (u, v) ∈ E∗, we count the number of triangles of (u, v) formed with the sampled
vertices w in V∗, by observing if the edges (w, u) and (w, v) belong to E. We call this sampling
method the VIE sampling.
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We shall consider three main sampling designs of the graph G to obtain V∗ and E∗. In the
first design, n vertices and m edges are sampled from V and E uniformly at random, but without
replacement. This situation arises naturally in static networks with full access and ensures that
all units in V∗ and E∗ are distinct. In other contexts, while units are sampled with equal proba-
bility, sampling is done with replacement. For example, in static networks with restricted access,
random walks are used to crawl the network. These random walks share important proprieties
with random sampling with replacement. The standard random walk on vertices (selecting any of
their neighbors with equal probabilities) samples (visits) edges uniformly at random with replace-
ment in its stationary regime. By employing the standard Metropolis–Hastings (MH) technique
to correct the bias in the standard random walk, vertices can also be sampled (visited) uniformly
at random with replacement in the stationary regime. In Bernoulli sampling, each unit, vertex
or edge, of the graph is subjected to an independent Bernoulli trial, with probabilities pv or pe,
respectively, which determines whether the unit becomes part of the sample sets V∗ and E∗.
Sampling conducted in this manner appears in the case of streaming graphs. A random sample
size is a potential drawback of Bernoulli sampling; however, this is counterbalanced by the ease
of Bernoulli sampling and the benefits of guaranteed bounds on the sample size. Finally, we will
also consider a mixed sampling of Bernoulli and with replacement samplings motivated by a ran-
dom walk algorithm proposed in Section 5. While the considered sampling designs are relatively
simple, they are by no means uncommon, and occur under a variety of scenarios described above.

For any of the considered sampling designs, the measured sample analogues of Equations (1)
and (2) are

Ts
w =

⎧⎨⎩ |{(u, v) ∈ E
∗ : (u,w), (v,w) ∈ E }|, w ∈V∗,

0, w /∈V∗
(7)

and

Ts
(u,v) =

⎧⎨⎩ |{w ∈V
∗ : (u,w), (v,w) ∈ E}|, (u, v) ∈ E∗,

0, (u, v) /∈ E∗
(8)

Note that the quantities (7) and (8) are not those in Equations (1) and (2) defined for the graph
resulting from the VIE sampled edges and vertices: for example, a triangle formed just by the edges
of E∗ (with no vertices in V∗) would not be counted in either Equation (7) or Equation (8).

The sample triangle count per vertex is

Ts
v(i)=

∑
w∈V

1{Ts
w=i}, i= 0, . . . ,Ns

t (9)

where Ns
t need not be the same as Nt and could even be larger as in sampling with replacement.

Similarly to Equation (4), let

tsv(i)=
Ts
v(i)∑Ns
t

j=1 Ts
v(j)
= 1

N
∑
w∈V

1{Ts
w=i}, i= 0, . . . ,Ns

t (10)

be the proportion of vertices participating in i triangles after sampling and set tsv = (tsv(0), . . . ,
tsv(Ns

t ))′.
The sample triangle count per edge is defined by

Ts
e(i)=

∑
(u,v)∈E

1{Ts
{(u,v)}=i}, i= 0, . . . ,Ms

t (11)
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Figure 2. Illustration of a sample with n= 2
vertices (in green) andm= 3 edges (in green)
selected at random from V and E, without
replacement, yielding the sets V∗ = {1, 4} and
E∗ = {(1, 3), (4, 5), (5, 6)}. The sample triangle
counts per vertex are Tvs(0)= 4, Tvs(1)= 1,
Tvs(2)= 1, and per edge Tse(0)= 5, Tse(1)= 3.
The values of tvs (tse, respectively) are obtained
by dividing those of Tvs (Tse, respectively) by N
(M, respectively).

whereMs
t depends on the sampling design. Finally, let

tse(i)=
Ts
e(i)∑Ms
t

j=1 Ts
e(j)
= 1

M
∑

(u,v)∈E
1{Ts

(u,v)=i} (12)

denote the proportion of edges participating in i triangles after sampling and set tse =
(tse(0), . . . , tse(Ms

t ))′. See Figure 2 for an illustration of the quantities defined. Our goal is to estimate
tv and te defined in Section 2.1 from the observed sample quantities (7)–(12).

2.3 Comparison with other sampling approaches
When sampling without replacement or with Bernoulli sampling, a subgraph Gs = (Vs, Es) can be
constructed from the sampled vertices w ∈V∗ and edges (u, v) ∈ E∗, along with the edges (w, u)
and (w, v) if they belong both to E. We would like to contrast this subgraph with other classical
approaches like induced or incident subgraph sampling (e.g. Kolaczyk, 2009, Chapter 5.3.1).

For example, with Bernoulli sampling when pv = 0 and pe > 0, observe that only edges are sam-
pled and that Gs is the so-called incident subgraph sampling. But we note again that the quantities
Ts
w and Ts

(u,v) of interest are not triangle counts in the resulting subgraph (since no vertices are
sampled when pv = 0, Ts

w = 0 and Ts
(u,v) = 0 for all vertices w and edges (u, v) in Gs). In fact, for

incident or induced subgraph sampling, if we considered the triangle counts per vertex (in the
resulting subgraph), this setting would not be amenable to theoretical analysis, in the sense that
we could not relate the count distributions per vertex in the subgraph to those in the original
graph (as in Section 3 for the VIE sampling).

We comment here further on our choice of the sampling schemes. For example, for estimating
tv, a natural and simple sampling scheme could consist of sampling vertices and then for each
sampled vertex, calculating the exact number of triangles (by checking all pairs of its neighbors
and seeing howmany of these also connect) and then just using the empirical distribution of these
as an estimate of tv. This sampling scheme, however, may not be practical, especially for large
networks with heavy-tailed degree distributions, since checking all pairs of neighbors becomes
prohibitively expensive for vertices with large degrees. Furthermore, this scheme would not work
for sampling a streaming graph in one pass which is also an aim of this work. In contrast, with VIE
sampling, only the sampled edges in E∗ with incident vertices neighboring a sampled vertex, are
used to count the number of triangles, mitigating the aforementioned computational issue. On the
other hand, for estimating te, note that sampling an edge and then calculating the exact number
of triangles is not as big of an issue, particularly in networks showing disassortative mixing, since
for each sampled edge, it is less likely that both of its vertices have large degrees. We will see that
this case can be emulated with VIE sampling (see Section 3.1.2).

Another possibility, as noted in Section 1, would be to estimate triangle counts for sampled
vertices and then translating these to triangle count distributions. This is the basis for the method
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proposed in Section 4 below, using VIE sampling with multiples samples, which also serves as a
baseline that other estimators are compared to (Section 3). We compared our approach with the
work (Lim et al., 2018, algorithm Mascot-C, p. 7), where edges are sampled with constant prob-
ability and the number of local triangles for each vertex are estimated from the sampled graph.
However, the estimation of triangle count distribution per vertex was worse than for VIE sam-
pling using multiple samples (and, in fact, even when using a single sample). This is due in part to
the estimation of the local triangles for all vertices in the sampled graph, while in our case, we fixed
the sampled vertices and repeat the sampling of the edges reducing the variability (see Section 4).

3. Estimation from a single sample
It seems natural to estimate simply tv(j) by a “plug-in” value tsv(j). This estimation, however, is
biased. This line of reasoning is the focus of research on representative sampling (see e.g. Leskovec
& Faloutsos, 2006), that studies how the topological properties of samples differ from those of
the original network. Unfortunately, in estimation of the characteristics of our interest, many
properties of the network are not captured from samples (unless standard assumptions of samples
with i.i.d. observations are possible).

One possible estimation strategy can be based on appropriate adjustments of the “plug-in”
estimators to correct the bias. Deriving such corrections for network total counts (e.g. total num-
ber of triangles) is often relatively straightforward but this is more challenging for distributions.
Furthermore, the performance of the correction depends on the topology of the network, the
distribution of interest, the sampling design, and their interactions. In this section, we propose
two estimation approaches to correct the bias of the observed quantities using one sample from
VIE sampling. The first approach is based on the inversion of an exact relation and the second
approach on the asymptotic equivalence between the (expected) sample and true quantities.

3.1 Inversion estimation
In this section, we present an approach to estimate tv and te from sample distributions tsv and tse.
The approach is based on inversion and is common in similar problems (e.g. Antunes & Pipiras,
2016; Tune & Veitch, 2011; Zhang et al., 2015).

3.1.1 Distribution of triangle counts per vertex
Under the considered sampling designs, let Pv(i, j) be the probability that a vertex with j triangles
in G is observed to have i sampled triangles. If w∗ is a vertex selected at random after a VIE
sampling realization, then conditioning on its number of triangles in G leads to the relation

P(Ts
w∗ = i)=

Nt∑
j=0

Pv(i, j)tv(j), i= 0, . . . ,Ns
t (13)

Note also that

P(Ts
w∗ = i)=E1{Ts

w∗=i} =E
1
N

∑
w∈V

1{Ts
w=i} =E(tsv(i)) (14)

where the last expectation E is with respect to the randomness in the sampling. The relations
(13)–(14) can be combined into a matrix form as

E(tsv)= Pvtv (15)
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where Pv = (Pv(i, j)) is a (Ns
t + 1)× (Nt + 1) matrix specific to the sampling design defined below.

This suggests that an estimator of the triangle count distribution per vertex can be defined as

t̂v = P+v tsv (16)

where P+v = (P′vPv)−1P
′
v is the left generalized inverse of Pv. The estimator (16) is unbiased, that

is, E(t̂v)= P+v Etsv = P+v Pvtv = tv by Equation (15) and its variance(-covariance) matrix is

V(t̂v)=E((t̂v −E(t̂v))(t̂v −E(t̂v))′)=E[(P+v tsv − tv)(P+v tsv − tv)′]
= P+v E(tsv(tsv)′)(P+v )′ − tv(tv)′ = P+v (V(tsv)+E(tsv)E(tsv)′)(P+v )′ − tv(tv)′

= P+v V(tsv)(P+v )′ (17)

Sampling without replacement
If n vertices and m edges are sampled uniformly, without replacement, then Pv is a (Ns

t + 1)×
(Nt + 1) matrix, with Ns

t =min (Nt ,m) and entries

Pv(i, j)=

⎧⎪⎨⎪⎩
(
1− n

N
)
1{i=0} + n

N
(ji)(

M−j
m−i)

(Mm)
, j= 0, . . . ,Nt , i= 0, . . . , j,

0, otherwise,
(18)

with the convention that
(a
b
)
equals to 0 when either a< 0 or a> b. The representation (18) can

be explained as follows. Since there are
(N
n
)
possible samples of size n and

(N−1
n−1

)
samples may be

chosen to include a given vertex, it follows that the probability of a vertex being sampled is n/N.
Note that the term

(j
i
)(M−j

m−i
)
/
(M
m
)
corresponds to the probability of sampling i triangles out of j

(or, equivalently, sampling i edges out of j that form triangles with a vertex in question), which
is given by the hypergeometric distribution with parameters j, m, and M. Similarly, 1− n/N is
the probability of not sampling a vertex, for which the number of sample triangles will be 0 with
probability 1 and hence the term 1{i=0}.

Sampling with replacement
In the case when n vertices and m edges are sampled with replacement, the matrix Pv has
dimension (m+ 1)× (Nt + 1), with entries

Pv(i, j)=

⎧⎪⎪⎨⎪⎪⎩
(
1− 1

M
)n 1{i=0} + (1− (

1− 1
M

)n )(mi ) (
j
M

)i (
1− j

M

)m−i
, j= 0, . . . ,Nt ,

i= 0, . . . ,m,
0, otherwise

(19)

Indeed, arguing as for Equation (18), the probability of sampling a vertex is 1− (
1− 1

M
)n. The

part containing this term in Equation (19) also includes the probability of sampling i triangles
which is given by the binomial distribution with parametersm and j/M.

Bernoulli sampling
If each vertex and edge are sampled with probabilities pv and pe, respectively, then Pv is a square
(Nt + 1)× (Nt + 1) matrix, with entries

Pv(i, j)=
{
(1− pv)1{i=0} + pv

(j
i
)
pie(1− pe)j−i, j= 0, . . . ,Nt , i= 0, . . . , j,

0, otherwise
(20)

which follows by similar arguments as for the other designs.
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3.1.2 Distribution of triangle counts per edge
For any of the considered sampling designs, if (u, v)∗ is an edge selected at random after a VIE
sampling realization, the same arguments as for Equations (13)–(14) lead to

P(Ts
(u,v)∗ = i)=E(tse(i))=

Mt∑
j=0

Pe(i, j)te(j), i= 0, . . . ,Ms
t (21)

where Pe(i, j) is the probability that an edge with j triangles participates in i sampled triangles.
Then, the relation

E(tse)= Pete (22)

holds, similarly to Equation (15), where Pe = (Pe(i, j)) is a matrix with dimensions (Ms
t + 1)×

(Mt + 1) whose entries depend on the sampling design. The estimator of te is obtained simply by
replacing the expected value by the observed value in Equation (22) and inverting, that is,

t̂e = P+e tse (23)

where P+e = (P′ePe)−1P
′
e. Following the same reasoning around (16)–(17), the estimator in

Equation (23) is unbiased with variance matrix,

V(t̂e)= P+e V(tse)(P+e )
′

(24)

Sampling without replacement
In this design, Pe is a ( min (Mt , n)+ 1)× (Mt + 1) matrix that can be obtained from Equation
(18) by replacing N, n,M,m by M,m,N, n, respectively. This form of Pe can be argued in the
same way as Equation (18) for Pv.

Sampling with replacement
The matrix Pe has dimensions (n+ 1)× (Mt + 1) and the form (19) by replacing N, n,M,m by
M,m,N, n, respectively.

Bernoulli sampling
The matrix Pe is (Mt + 1)× (Mt + 1) and has the form (20) by replacing pv, pe by pe, pv,
respectively.

Mixed sampling
We will propose an algorithm in Section 5, which emulates the case of Bernoulli sampling of ver-
tices with pv = 1 and edges with replacement. The correspondingmatrixPe is (Mt + 1)× (Mt + 1)
and has nonzero entries

Pe(i, i)=
(
1− m

M

)
1{i=0} + m

M
, Pe(0, j)= 1− m

M
, j≥ 1 (25)

This could be seen from Equation (20) with pv and pe replaced by pe =m/M and pv = 1, respec-
tively, or just by arguing directly. It can also be checked that P−1e has a closed form with the
nonzero entries

P−1e (0, 0)= 1, P−1e (0, j)= 1− M
m
, P−1e (i, i)= M

m
(26)

In this case, since only P−1e (i, i) is nonzero for the ith row of P−1e (i �= 0), the resulting estimator
(23) (except t̂e(0)) is just a (scaled) empirical distribution of the true triangle counts per sampled
edges.
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Remark 1. Our distinction between samplings with and without replacement might appear some-
what restrictive in the following sense. Note that a sampling procedure with replacement can be
carried out (e.g. for distribution of triangle counts per vertex) but then only distinct sampled
edges be kept for inference under “sampling without replacement,” with the latter referring rather
to how collected information is used. In fact, one could develop an analogous inversion approach
for such sampling schemes as well, with their own probability matrices Pv and Pe. But we found
the “sampling without replacement” inference for these sampling schemes to be slightly inferior to
that with replacement when all sampled information collected without replacement is used. This
probably should not be too surprising but might also go against some of the current practices (e.g.
Zhang et al., 2015) where inference is made on sample subgraph even if vertices/edges repeat in
sampling with replacement as when using a random walk. For the above reason and for simplicity
sake, we decided not to include sampling schemes with replacement where only distinct sampled
units are kept for inference.

3.1.3 Regularization approach
The performance of the inversion estimators in Equations (16) and (23) can be viewed through
the matrix Pv and Pe condition numbers (i.e. the ratio of the largest to smallest singular values).
For instance, the numerical inversion of P′vPv in Equations (16) and (17) is governed by its con-
dition number, which is the square of the condition number of Pv. If the condition number is
small, the matrix is well-conditioned and its inverse can be computed accurately. If the condi-
tion number is large, then the matrix is said to be ill-conditioned. The matrices Pv and Pe are
ill-conditioned for smaller values of n and m or pv and pe. This means that computation of the
inverse of P′vPv is prone to large numerical errors that will produce estimates (16) with an oscil-
lating behavior. Regularization is a common method used to solve ill-posed problems. Since the
use of this technique is analogous for both cases, we consider only the triangle count distribution
per vertex.

We solve our linear inverse problem from a penalized weighted least squares perspective with
nonnegative constraints, where a regularization (penalty) term is added to the objective func-
tion and a penalization parameter controls the degree of the regularization. More specifically, the
penalized estimator t̂v is defined as the solution of the optimization problem

argmin
t

(tsv − Pvt)′W−1(tsv − Pvt)+ λφ(t) (27)

subject to t(i)≥ 0, i= 0, 1, . . . ,Nt ,
∑Nt

i=0 t(i)= 1, where W is a matrix representing suitable
weights taken here to be a diagonal matrix with entries tsv, φ(t) refers to the function regularizing
t, and λ > 0 is a scalar penalty, that sets the degree of regularization, to be determined separately.
When λ= 0, W= I and the constraints are ignored, the minimization (27) yields the inversion
estimator (16). For the inversion problems considered in this work, however, regularization with
λ > 0 is critical; the inversion estimator with λ= 0 is usually impractical due to a large variance.
The regularization with λ > 0 reduces the variance but also introduces some bias, with λ chosen
to balance the variance–bias trade-off. The triangle count distributions encountered in practice
are usually smooth (i.e. tv(i)≈ tv(j) for i and j close)—see Section 6. A convenient regularization
is the use of the quadratic function

φquad(t)=
Nt−1∑
i=0

(t(i+ 1)− t(i))2 (28)

that forces estimates to be smooth and significantly reduces their variance. The optimization prob-
lem (27)–(28) can be written as a quadratic program and solved for t using standard software. For
the implementation details, we refer the reader to Zhang et al. (2015), where regularization is
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used in a similar context to estimate the degree distribution when sampling vertices and edges.
The parameter λ is chosen based on Stein’s unbiased risk estimation (SURE) method proposed by
Eldar (2009). The use of this method is explained in Section 3.2 of Zhang et al. (2015). The choice
of tsv for the diagonal ofW also follows Zhang et al. (2015).

3.2 Asymptotic estimation
The regularization approach tends to perform poorly at the distribution tail (especially when the
latter is heavy-tailed). Estimation in the tail is addressed in this section. We relate the tails of
the distributions of triangle counts per vertex and edge with the respective tails of sample distri-
butions. Since the latter is observable, the relation can be used to estimate the former. We also
consider the case when the original distribution has a power-law tail.

3.2.1 Distribution of triangle counts per vertex
The sample triangle count of a sampled vertexw∗ chosen at random fromV∗ after a VIE sampling
realization, can be expressed as

Ts
w∗ =

∑
(u,v)∈E∗

1{(u,w∗),(v,w∗)∈E} =
∑

(u,v),(u,w∗),(v,w∗)∈E
1{(u,v)∈E∗}, w∗ ∈V∗ (29)

Note thatE1{(u,v)∈E∗} = πe, where πe is the probability of sampling an edge under a given sampling
design. Furthermore, since the second sum in Equation (29) is over the triangles including the
vertex w∗, it has Tw∗ terms. It follows that

Ts
w∗ = πeTw∗ +

∑
(u,v),(u,w∗),(v,w∗)∈E

(1{(u,v)∈E∗} − πe), w∗ ∈V∗ (30)

Since the second term in Equation (30) can be thought as approximately Gaussian with standard
deviation of the order

√
Tw∗ 	 Tw∗ for large Tw∗ , we expect that

P(Tw∗ ≤ i)∼ P(Ts
w∗ ≤ iπe), w∗ ∈V∗ (31)

for large i. Viewing Equation (31) as a relation for continuous random variables, by differentiation
we have

P(Tw∗ = i)∼ πeP(Ts
w∗ = iπe), w ∈V∗ (32)

Since w∗ is a sampled vertex, P(Tw∗ = i)= tv(i)πv, where πv is the probability that a vertex is
included in the sample for a given sampling design. On the other hand, by Equation (14), P(Ts

w∗ =
iπe)=E(tsv(iπe)). Then, we can write the asymptotic relation (32) as

tv(i)∼ πeπ
−1
v E(tsv(iπe)) (33)

for large i. Therefore, for large i,

t̂v(i)= πeπ
−1
v tsv(iπe) (34)

is a natural estimator of the original distribution tail obtained through the scaling of the empirical
sample distribution tsv.

If the distribution of triangle counts per vertex has a power-law tail with parameter β , that is,

tv(i)∼ cβi−β−1 (35)
for large i, where β > 0 and c> 0, then Equation (33) implies

E(tsv(i))∼ π−1v π−β
e cβi−β−1 (36)

This means that the sample distribution tsv is expected to have a power-law tail as well with the
same parameter β , which can be estimated directly from the empirical sample distribution.
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Sampling designs
When random sets of n vertices and m edges are selected from V and E with or without
replacement, πv = n/N and πe =m/M. With Bernoulli sampling, we have πv = pv and πe = pe.

3.2.2 Distribution of triangle counts per edge
The sample triangle count of a sampled vertex (u, v)∗ chosen at random from E∗ after a VIE
sampling realization, is given by

Ts
(u,v)∗ =

∑
v∈V∗

1{(u,w),(v,w)∈E}, (u, v)∗ ∈ E∗ (37)

Following similar arguments as for Equations (30)–(32), we get
P(T(u,v)∗ = i)∼ πvP(Ts

(u,v)∗ = πvi), (u, v)∗ ∈ E∗ (38)
for large i. Therefore, we have the relation

te(i)∼ πvπ
−1
e E(tse(πvi)) (39)

and an estimator for the distribution tail
t̂e(i)= πvπ

−1
e tse(πvi) (40)

for large i, through the scaling of the empirical distribution of tse(i). The probabilitiesπv, πe depend
on the sampling design as discussed at the end of Section 3.2.1.

Additionally, if

te(i)∼ cγ i−γ−1 (41)
for large i, where γ > 0 and c> 0, then

E(tse(i))∼ π−1e π
−γ
v cCγ t−γ−1 (42)

which also has the same power-law exponent.

3.2.3 Relations between power-law exponents
The reference to and relevance of power-law tails above should not surprise the reader. On one
hand, examples of such real networks appear in Section 6 below. On the other hand, such tails are
also expected for the following reason. It is well known (e.g. Newman, 2018, Chapter 10) that the
degree distributions of real networks can have power-law tails. That is, if Dw∗ denotes the degree
of a randomly selected vertex w∗, then

P(Dw∗ = k)∼ c0αk−α−1 (43)
for large k, where c0 > 0, α > 1. Furthermore, one commonly finds the clustering coefficient of a
vertex w∗, that is, Tw∗/

(Dw∗
2

)
or Tw∗/D2

w∗ to be roughly ξw∗ where ξw∗ varies over a limited range.
Then, Tw∗ ∼ ξw∗D2

w∗ and, by conditioning on ξw∗ and using Equation (43),

tv(i)∼ P

(
Dw∗ = i1/2

ξ 1/2

)
∼ c0α(Eξ−α/2−1

v )i−α/2−1 (44)

for large i. In particular, note that the tail exponent β of the distribution of triangle counts per
vertex relates to α as

β = α/2. (45)
This is also what we typically observe for real networks. Relationship between the tail exponent γ
of the distribution of triangle counts per edge and the tail exponent α appears to be more delicate,
and will not be discussed here.
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4. Estimation frommultiple samples
In this section, we study the feasibility of a single approach to estimate the bulk and the tail of
the distribution of triangle counts per vertex and edge, at the cost of using several VIE samples
collected in parallel. The main idea is to correct the bias of the sample quantities Ts

w and Ts
(u,v)

through the use of standard weighted averaging techniques, and then form the empirical distri-
butions using the scaled numbers of triangles of the vertices and edges sampled. Since this can be
applied to a more general sampling scenario, we consider that each unit w ∈V and (u, v) ∈ E can
have unequal probability of being included in the sample.

4.1 Distribution of triangle counts per vertex
We shall first define estimators of interest for a single sample and then consider their averages
from multiple samples. Suppose that, under a given sampling design (without replacement), each
edge (u, v) ∈ E has probability πe(u, v) of being included in the sample E∗. Then, the Horvitz–
Thompson (HT) estimator (see e.g. Thompson, 2012; Tillé, 2006) of the total number of triangles
of a sampled vertex w takes the form

T̂w =
∑

(u,v)∈E∗
1{(u,w),(v,w)∈E}

πe(u, v)
=

∑
(u,v),(u,w),(v,w)∈E

1{(u,v)∈E∗}
πe(u, v)

, w ∈V∗ (46)

The estimator (46) is an unbiased estimator of Tw, since E1{(u,v)∈E∗} = πe(u, v) and hence

E(T̂w)=E

⎛⎝ ∑
(u,v),(u,w),(v,w)∈E

1{(u,v)∈E∗}
πe(u, v)

⎞⎠= Tw (47)

If πe((u, v), (u′, v′)) denotes the probability that edges (u, v) and (u′, v′) are both in the sample E∗,
then the variance of the HT estimator T̂w can be expressed as

V(T̂w)=
∑

(u,v),(u,w),(v,w)∈E

∑
(u′,v′),(u′,w),(v′,w)∈E

πe((u, v), (u′, v′))− πe(u, v)πe(u′, v′)
πe((u, v))πe(u′, v′)

(48)

with πe((u, v), (u′, v′))= πe(u, v) for convenience when (u, v)= (u′, v′).

Sampling without replacement
In this sampling design, we have πe(u, v)=m/M and πe((u, v), (u′, v′))=m(m− 1)/(M(M− 1)).
It can be shown that Equation (48) reduces to

V(T̂w)= M
m

(
1− m

M

)
Tw

(
1− Tw − 1

M− 1

)
(49)

Bernoulli sampling
For this sampling design, πe(u, v)= pe and πe((u, v), (u′, v′))= p2e . It follows from Equation
(48) that

V(T̂w)= 1− pe
pe

Tw (50)

Designs with replacement
The HT estimator can also be applied to random sampling with replacement. In this case,
the sum in Equation (46) is over the distinct edges in E∗ and πe(u, v) is the probability of
(u, v) being included in the sample E∗, which is equal to 1− (1− 1/M)m. Similarly, the prob-
ability πe((u, v), (u′, v′)) that both (u, v) and (u′, v′) are included in the sample E∗ is given by
πe(u, v)+ πe(u′, v′)− (1− (1− πe(u, v)− πe(u′, v′))m). However, in designs with replacement,
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the so-called Hansen–Hurwitz (HH) estimation (see e.g. Thompson, 2012; Tillé, 2006) is often
employed that includes all the sample collected. This is also in line with the analysis conducted in
Section 3, where repetitions of sampling units are taken into account. The HH estimator for Tw is
defined as

T̂w = 1
m

∑
(ui,vi)∈E∗

1{(ui,w),(vi,w)∈E}
πe(ui, vi)

= 1
m

∑
(ui,vi),(ui,w),(vi,w)∈E

1{(ui,vi)∈E∗}
πe(ui, vi)

, w ∈V∗ (51)

where πe(ui, vi) is the probability of edge (ui, vi) being sampled on the ith draw. Since
E1{(ui,vi)∈E∗} = πe(ui, vi), the estimator is unbiased as in Equation (47) and its variance can be
shown to be

V(T̂w)= 1
m

∑
(u,v)∈E

πe(u, v)
(
1{(u,w),(v,w)∈E}

πe(u, v)
− Tw

)2
(52)

In the case of random sampling with replacement, we have πe(u, v)= 1/M which yields

V(T̂w)= Tw
m

(M− Tw) (53)

The comparison of the variances in Equations (49), (50), and (53) shows that sampling with-
out replacement has the lowest variance for m> 1, followed by Bernoulli sampling if Tw >m
assuming pe =m/M.

For a vertex w ∈V∗, the variance of the estimator T̂w tends to increase with Tw. However,
the performance of T̂w will also be poor for small values of Tw. The reason is twofold. First, for
small probabilities of sampling edges or when the total number of triangles of a vertex is small,
the observed triangles of a sampled vertex will likely be zero and thus so its estimate in Equation
(46). On the other hand, when we scale the number of triangles observed by the probability of
sampling an edge in Equation (46), there will be gaps between the possible values of the estimates.
To improve estimation, we repeat the sampling of edges r times in parallel, increasing the sampling
cost, and let

T̂r
w =

1
r

r∑
k=1

T̂(k)
w (54)

It is then natural to set

T̂v(i)=
∑
w∈V∗

1{�T̂r
w
=i}

πv(w)
(55)

as an estimator for the count Tv(i) of vertices with i triangles, where �.
 denotes the “floor” integer
part and πv(w) are the vertex inclusion probabilities corresponding to the underlying network
sampling design. These will be qual to n/N, for sampling with and without replacement, and pv
for Bernoulli sampling. The presence of πv(w) in Equation (55) is to compensate for the fact that
the sum in Equation (55) is over w ∈V∗ and hence only sampled vertices are included. The final
probability estimator in this context takes the form

t̂v(i)= T̂v(i)/N (56)

4.2 Distribution of triangle counts per edge
The analysis developed in the previous section holds for the distribution of triangle counts per
edge. For instance, the HT estimator of the total number of triangles of a sampled edge (u, v) is

T̂(u,v) =
∑
w∈V∗

1{(u,w),(v,w)∈E}
πv(w)

, (u, v) ∈ E∗ (57)
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By averaging through r samples of vertices obtained in parallel, let T̂r
(u,v) = 1

r
∑r

k=1 T̂
(k)
(u,v) and

T̂e(i)=
∑

(u,v)∈E∗

1{�T̂r
(u,v)
=i}

πe(u, v)
(58)

from which the estimator is defined as t̂e(i)= T̂e(i)/M. Similar expressions for the HH estimator
with a replacement design can be derived.

Remark 2. The HT or HH estimation developed above is quite general in its applicability. In fact,
it is not limited to VIE sampling and applies when sampling probabilities πv(w) and πe(u, v) are
different across w and (u, v). The latter occurs with other common network sampling designs,
such as induced or incident subgraph sampling (see Kolaczyk, 2009, Chapter 5.3). However, we
note again that these sampling methods are not amenable to the analysis developed in Section 3.

5. Algorithms
In this section, we show how to implement VIE sampling for several network access scenarios
corresponding to the considered sampling designs. For restricted access and streaming graphs,
the implementation is described through formal algorithms.

5.1 Case of a single sample
Sampling static graphs with full access
When any vertex or edge can be accessed directly in a static network, VIE sampling can be carried
out through a simple algorithm that samples vertices and edges at random without replacement,
and then for each sampled vertex in V∗ counts the number of triangles formed with the sampled
edges in E∗ (and vice versa). Such full access to the network, however, may not be available in
other scenarios, for example, when networks can only be crawled or when dealing with streaming
edges.

Sampling static graphs with restricted access
Many real-world networks can only be crawled, i.e. one can only explore the neighbors of the
visited vertices. In this context, sampling procedures are commonly based on random walks. It is
assumed that access to one initial vertex is available and the network is connected or the largest
giant connected component covers the majority of the network so that the disconnected parts can
be ignored. Two independent randomwalks could be used to carry out VIE sampling with replace-
ment: for instance, first performing a standard version of random walk sampling (i.e. selecting a
vertex uniformly at random among the neighbors of the visited vertex) to sample edges uniformly
at random (E∗); and then a random walk to sample vertices uniformly at random (V∗) using the
MH algorithm. The number of triangles of each sampled vertex w formed with the sampled edges
in E∗ (and vice versa) can be incremented in each step of the MH algorithm by checking the
neighborhood of w.

Alternatively, we propose here a scheme with a single random walk on edges, that implements
mixedVIE sampling, that samplesm edges at random with replacement and emulates pv = 1—see
Algorithm 1. Initially, an edge is selected at random and the sample sets V∗, E∗ are empty (line 1).
Then, for each sampled edge (u, v) in E∗, the number of common neighbors of u and v provides
the number of triangles of that edge (line 5). Additionally, each common neighbor of u and v
is added to V∗ and the triangle that forms with the edge (u, v) is increased by one (lines 6–10).
Finally, the current vertex is set to v and the next vertex is chosen at random among its neighbors
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Algorithm 1:Mixed VIE sampling (pv = 1,m) with random walk
Data: static graph G; Result: E∗,V∗, Ts

w and Ts
(u,v)

1 Initialization: (u, v)← rand(E), V∗ ←∅, E∗ ←∅;
2 While |E∗|<=m do
3 E∗ ← E∗ ∪ {(u, v)};
4 If (u, v) /∈ E∗ then
5 Ts

(u,v)←|Neighbor(u)∩Neighbor(v)|;
6 ForEach k ∈ (Neighbor(u)∩Neighbor(v)) do
7 If k /∈V∗ then
8 V∗ ←V∗ ∪ {k};
9 Ts

k← 0;
10 Ts

k← Ts
k + 1;

11 u← v;
12 v← rand(Neighbor(u));

representing the next sample edge (lines 11–12), until m edges have been sampled (line 2). After
the algorithm is finished, the quantities Ts

w and Ts
(u,v) are used to compute Equations (10) and (12),

respectively, which then enter into the estimators developed in Sections 3 and 4.
We also analyze Algorithm 1 concerning its processing time per edge and total running time.

The main time-intensive operation is to compute the set of common neighbors for two incident
nodes of each sampled edge (u, v) (line 5). LetDu denote the degree of node u ∈V . Assuming that
Du ≤Dv, to compute the set Neighbor(u)∩Neighbor(v), each element of Neighbor(u) is checked.
If Neighbor(v) contains the element, it is added to the set. Thus, the running time for process-
ing a sampled edge is of the order O(min(Du,Dv))). The total running time of the algorithm is
O(D∗maxm), where D∗max =max(u,v)∈E∗ (min(Du,Dv)). The algorithm requires memory space to
store the sets |V∗| and |E∗| =m and the respective vertex and edge triangle counts. The value of
|V∗| depends on the network structure and cannot be computed explicitly.

Sampling streaming graphs
Many real-world networks naturally evolve over time, as new edges/vertices are added to the net-
work. A natural representation of such networks (or streaming graphs) is in the form of a stream of
edges.We shall describe how to performVIE Bernoulli sampling to select a subgraphGs = (Vs, Es)
fromG, which includes E∗ and V∗, in one pass whenG is presented as a stream of edges in no par-
ticular order. Two uniform random hash functions (hashv and hashe) on [0, 1] are used to sample
vertices and edges at random with probabilities pv and pe, respectively, which are then added to
the sample sets E∗ and V∗—see Algorithm 2 (lines 3–4 and lines 5–6). Additionally, the sampled
vertices are also added toVs and edges toGs = (Vs, Es) (lines 7–10). We note that in the streaming
scenario if a vertex is sampled, its edges have to be added to the subgraph Gs (line 10). This is the
cost of having a one pass algorithm over the input stream, in order to able to count the number of
triangles of each sampled vertex in V∗ formed with the sampled edges in E∗ and vice versa (lines
11–12). The additional edges that do not enter into the VIE sampling can be deleted at the end
of the stream but we omit this step in the algorithm. If two passes over the stream of edges are
possible, these additional edges need not to be stored. The algorithm also applies to the case of a
static graph with full access, as a one pass algorithm through the list of edges.

For Algorithm 2, the processing time per edge of the stream graph is not a time-consuming
operation (lines 3–10). Another factor is the triangle count of vertices and edges (lines 11–12);
however, compared with Algorithm 1, this is now done on the subgraph Gs with lower running
time. The algorithm requires memory space to store Gs where the expectation of |Es| is given by
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Table 2. Properties of the networks used in the experiments

Data set Vertices (N) Edges (M) Triangles (total)

Synthetic network 20,000 350,000 643,711
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Arxiv HEP-TH 8,638 24,806 27,869
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gemsec-Facebook 50,515 819,090 2,273,700
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

com-Amazon 334,863 925,872 667,129

Algorithm 2: VIE sampling—Bernoulli (pv, pe) for streaming graphs
Data: streaming graph G; Result: Ts

w and Ts
(u,v) from Gs = (Es,Vs), E∗,V∗.

1 Initialization: Vs, Es,V∗, E∗ ←∅;
2 ForEach edge (u, v) from G do
3 If hashv(u) (resp. hashv(v)) < pv and u (resp. v) /∈V∗ then
4 V∗ ←V∗ ∪ {u} (resp. {v});
5 If hashe(u, v)< pe then
6 E∗ ← E∗ ∪ {(u, v)};
7 If hashv(u)< pv or hashv(v)< pv or hashe(u, v)< pe then
8 If u /∈Vs(resp. v /∈Vs) then
9 Vs←Vs ∪ {u}(resp. {v});

10 Es← Es ∪ {(u, v)};
11 Ts

w ←|{(u, v) ∈ E∗:(u,w), (v,w) ∈ Es}|, w ∈V∗
12 Ts

(u,v)←|{w ∈V∗:(u,w), (v,w) ∈ Es}|, (u, v) ∈ E∗

M times the probability of adding an edge (1− (1− pe)(1− pv)2) (the expectation of |Vs| cannot
be computed explicitly).

If we are interested to guarantee a bounded sample size of n vertices and m edges selected at
random without replacement from a streaming graph, we could use reservoir sampling (Vitter,
1985) by keeping n vertices and m edges with the minimum hash values in the reservoir to con-
structed the subgraph. However, additional edges need also to be added to reservoir to count the
triangles for Ts

w, Ts
(u,v). This is more involved and cumbersome to implement, and for simplicity,

is not considered here.

5.2 Case of multiple samples
The algorithms described above can be adapted easily to obtain multiple samples of vertices
or edges in parallel, by using independent random walks or multi-hashing functions for the
estimation strategy developed in Section 4.

6. Data study
In this section, we assess the performance of proposed sampling and estimation methods for the
triangle count distributions on synthetic and real networks. These are summarized in Table 2.

6.1 A single sample
We first consider the Chung-Lu model (e.g. Newman, 2018, Chapter 10), which has the power-
law degree distribution P(Dw∗ = k)∼ ck−2.5, with N = 20, 000 vertices and M= 350, 000 edges.
In Figure 3(a)–(b), it is assumed that the network has restricted access. For Figure 3(a), vertices are
sampled with a random walk using the MH version and edges through a standard random walk



Network Science S151

Figure 3. Power-law network: (a) Metropolis–Hastings and standard randomwalks, (b) Algorithm 1, and (c)–(d) Algorithm 2.
The total variation distances are: (a) 0.21, (b) 0.01, (c) 0.19, and (d) 0.23.

(as discussed in Section 5). The sample sizes n and m are equal to 20% of the total numbers of
vertices and edges, respectively. We note that typical sampling rates to estimate network distribu-
tions, e.g. the degree distribution, are in the range of 10%–30% (Zhang et al., 2015). Figure 3(a)
shows the true distribution of triangle counts per vertex and its estimate based on the inversion
and asymptotic estimationmethods developed in Section 3.With the inversion, the penalized esti-
mator (27) allows to recover well only the bulk of the distribution. The penalization has the effect
of shrinking the estimates leading to the reduction of the variance and forces some of the estimates
in the tail to be zero. However, the estimation in the tail can be recovered through the asymptotic
estimation that scales the sample distribution tsv as in Equation (34).
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To compare the estimate with the true triangle count distribution, we use the total variation
(distance), which has been previously used in graph sampling (e.g. Mohaisen et al., 2012). It is
defined as half of the sum of the absolute differences between two probability mass functions, that
is, dTV (t̂v, tv)= 1

2
∑

i |t̂v(i)− tv(i)| in our case, and ranges from zero to one. For values of i≤ k,
the bulk of the distribution t̂(i) is given by the inversion estimation and for i> k by the asymptotic
estimation (say, k= 40 in Figure 3(a), where the inversion estimation is worse than the asymptotic
one). The values of the total variation are given in the captions of the figures.

We have evaluated the impact on the results when the total numbers of vertices and edges
are estimated. Assuming the network and access scenario above, where vertices are sampled at
random with replacement (in stationary regime), estimators for N andM are given in Katzir et al.
(2011) (Section 4) and Kolaczyk (2009) (Section 5.4.2, Equation (5.27)), respectively. We have run
the MH algorithm 10,000 times. The average values of the estimates for the numbers of vertices
and edges were 20,035.24 and 350,700.60, while the standard errors were 966.50 and 27,128.67,
respectively. The averages of the relative errors were 4% (vertices) and 6% (edges). This shows that
the estimates are in fact reasonably close to the true underlying values. We checked the estimation
of the distribution of triangle count per vertex assuming an error of 10% in the estimates ofN and
M, such that N̂ = 1.1N and M̂= 1.1M. The comparison with Figure 3(a) showed still an accurate
estimation of the bulk and tail of the distribution. The total variation between the estimate and
true distribution was 0.24.

For Figure 3(b), the network is sampled using Algorithm 1 (mixed sampling (pv = 1,m)) where
m is equal to 20% of the total number of edges. Since the algorithm emulates pv = 1, the matrix
Pe is not ill-conditioned with the inverse given by Equation (26). In this case, the estimator (23)
can be used. Figure 3(b) depicts the estimation of the triangle count distribution per edge when
using this inversion. We omit the asymptotic estimation (40) in the plot since it coincides with the
inversion estimation from the discussion below Equation (26).

For Figure 3(c)–(d), it assumed that the network is a streaming graph. The synthetic power-law
network defined above is converted into a stream of edges taken in random order. The network is
then sampled through Algorithm 2 with pv = pe = 0.2. The subgraph Gs selected by the algorithm
has 48% of edges and 98% of vertices from the original network. If a two pass algorithm is possible
to avoid adding unnecessary edges to obtain the VIE sampling quantities, the sampled graph has
29% and 96% of edges and vertices, respectively. There is a cost in this case of storing more 19%
of edges with only one pass of the stream of edges which can not be avoided. The higher number
of vertices in Gs is mainly due to the network propertyM�N and pe = 0.2.

The estimation of the distribution per vertex (plot (c)) using the penalized estimator (27) is
slightlymore accurate when compared to that in plot (a). The asymptotic estimation (34) performs
similar in the tail in plot (c). This is due to the fact that with Algorithm 2, edges and vertices are
effectively sampled at random (without replacement), while in Figure 3(a) the random walks used
to sample vertices and edges at random (with replacement) do so only in the stationary regime.
The estimation of the distribution per edge is given in Figure 3(d) using the penalized estimator
(27), since now the matrix Pe is ill-conditioned for small values of pv and pe.

We also consider several real-world networks from SNAP database:1 a collaboration network
from the e-print high-energy physics theory (Arxiv HEP-TH) with N = 8, 638 andM= 24, 806; a
Facebook social network (gemsec-Facebook) withN = 50, 515 andM= 819, 090; and an Amazon
product co-purchasing network (com-Amazon) with N = 334, 863 and M= 925, 872. Figure 4
shows the estimation of the triangle count distributions per vertex and edge for several sampling
algorithms dependent on the network access scenario considered, with sampling rates of 20%.
The two estimation methods show that the true triangle count distributions can be recovered
quite accurately which agrees with the results for synthetic networks.

Finally, we comment on the relations between power-law exponents (Section 3.2.3). For the
synthetic network, the estimated exponent of the triangle count distribution per vertex is β = 0.73
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Figure 4. (a) Arxiv HEP-TH (Metropolis–Hastings and standard random walks), (b) gemsec-Facebook (Algorithm 2), (c), and
(d) com-Amazon (Algorithms 1 and 2, respectively). The total variation distances are: (a) 0.26, (b) 0.24, (c) 0.18, and (d) 0.29.

(using the maximum likelihood estimation in the formula (10.9) of Newman, 2018) while for
the degree distribution, the exponent is α = 1.5 which agrees with Equation (45). For the com-
Amazon network, we found β = 1.24 and α = 2.28.

6.2 Multiple samples
For the com-Amazon network in a restricted access scenario, we evaluate the estimation method
of Section 4. Vertices are sampled using the MH random walk and edges with r independent
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Figure 5. Com-Amazon: Metropolis–Hastings and standard random walks. The total variation distances are: (r= 1) 0.68,
(r= 2) 0.53, and (r= 3) 0.32.

standard random walks in parallel. Figure 5 shows the estimation of the distribution of triangle
counts per vertex for r= 1, 2, 3. The size of each sample is 20% of the total number of the units.
With only one sample of edges (r= 1), the distribution is overestimated when using the estima-
tor (56). Increasing the number of samples of edges obtained in parallel, the bias of the estimation
decreases, however, at higher sampling cost (with r= 3 effectively corresponding to sampling 60%
of the edges). For r= 3, the performance is still worse than when using the inversion and asymp-
totic estimation with just one sample (Figure 4(c)). Similar findings hold for the estimation of the
distribution of triangle counts per edges (Section 4.2).
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7. Conclusions
In this paper, we focused on the triangle count distributions of vertices and edges in networks, and
their estimation through a newly introduced sampling method (VIE sampling). Three sampling
designs of VIE scheme were proposed motivated by common network access scenarios. We devel-
oped an estimation method based on inversion for the bulk of the distribution and an asymptotic
method for the tail. We also proposed a single approach to estimate the entire distribution using
multiple VIE samples collected in parallel. For the several network access scenarios, algorithms
were presented to sample the network using random walks in the restricted access network sce-
nario and using hashing in the setting of streaming edges. The proposed estimation methods were
evaluated on several synthetic and real-world networks, showing a satisfactory performance for
the inversion and asymptotic approach with a single sample, with a higher cost for the multiple
samples approach.

Several open questions were already raised for future work. For example, one open problem
concerns the relation between the power-law exponents of the degree distribution and the triangle
count distribution per edge (see Section 3.2.3). In other directions, one could possibly consider
graphs with repeated edges (multigraphs) or directed graphs, and count distributions per vertex
and edge for higher order graphical structures other than triangles such as k-cliques.
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