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Abstract

The presence of unobserved node specific heterogeneity in Exponential Random
Graph Models (ERGM) is a general concern, both with respect to model validity
as well as estimation instability. We therefore include node specific random effects
in the ERGM that account for unobserved heterogeneity in the network. This
leads to a mixed model with parametric as well as random coefficients, labelled
as mixed ERGM. Estimation is carried out by iterating between approximate
pseudolikelihood estimation for the random effects and maximum likelihood
estimation for the remaining parameters in the model. This approach provides
a stable algorithm, which allows to fit nodal heterogeneity effects even for large
scale networks. We also propose model selection based on the AIC to check for

node specific heterogeneity.
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1 Introduction

The analysis of network data has become a challenging and emerging field in statistics in
the last years. |Goldenberg et al. (2010), [Hunter et al. (2012) and |Fienberg (2012) provide
comprehensive articles on statistical approaches, challenges and developments in network
data analysis. We also refer to Kolaczyk (2009) and |[Kolaczyk and Csardi| (2014)) for a
general introduction and the related routines for network data analysis in R. In this paper,
we concentrate on Exponential Random Graph Models (ERGM) originally introduced in
Frank and Strauss (1986) and more deeply discussed e.g. in |Lusher et al. (2013). Unless
node specific covariates are included in the ERGM, the probability for all possible edges
across the graph is assumed to be homogeneous, which also means that any permutation

of the node labels will yield the same probability. This is a questionable assumption,



in particular in large networks, which also contributes towards stability problems for es-
timation as discussed e.g. in [Schweinberger| (2011)) or [Schweinberger et al.| (2017). We
follow [Thiemichen et al.| (2016) and extend the ERGM by incorporating node specific
heterogeneity effects to overcome the homogeneity assumption of ERGM and capture the

unobserved heterogeneity in the network.

Consider a network of n actors for which some dyadic relationships have been recorded.
These relations can be represented in the form of an n x n adjacency matrix Y, with
elements Y;; = 1 if an edge from ¢ to j exists and Y;; = 0 otherwise. In undirected
networks we have Y;; = Y}; Vi # j, which we assume throughout this paper. We consider
the probability of observing a given network conditional on a set of (sufficient) network
statistics is given by the ERGM

exp{0” s(y)}

P(Y =y|0) = NG

(1)

Here, s(y) is the vector of network statistics and 6 is the vector of model coefficients.
Vector s(.) includes any structural characteristics of the network and we refer to Snijders
et al. (2006) for a general discussion on network statistics, see also Hunter and Handcock
(2006). The denominator ~(6) in represents the normalizing factor to ensure that
is a legitimate probability mass function. In general, £(0) is numerically intractable
unless for miniature networks. Estimation of 8 in model needs therefore to be carried
out simulation based. An early reference for estimation of ERGMs is |Snijders| (2002).
For a general discussion, we refer to Hunter et al. (2012)). A numerical stable routine has
been proposed in Hummel et al| (2012) using a so-called stepping algorithm. Bayesian
estimation is proposed in |(Caimo and Friel (2011). An important property resulting from
equation (|1)) is that s(y) is a vector of sufficient statistics for the network. This means, two
networks, which coincide in s(y), have the same probability. In particular, this means
that all possible node specific heterogeneity in the network is explained by exogenous
effects, which may also be included in model (I). This can be seen as questionable as-
sumption. For instance, in a friendship network we may believe that the formation of
friendships (edges) between individuals (nodes) is driven by many factors, observable as
well as unobservable. We may suspect that there are quantities, intangible factors spe-
cific to each individual (node) that are difficult if not impossible to measure. It seems
therefore, advisable to include node specific heterogeneity to capture possible unobserved

heterogeneity of the nodes.

An early model that incorporates node specific heterogeneity is the so-called p; model



proposed in |Holland and Leinhardt| (1981). The model includes parametric sender
and receiver effects but no network statistics (except of reciprocity). Random nodal
heterogeneity was proposed by Duijn et al. (2004) or Zijlstra et al.| (2006 which led to
the so-called py model. [Thiemichen et al. (2016) combined the approach with ERGMs
and proposed Bayesian estimation, which however is infeasible for large networks, i.e.
networks with more than about 100 actors. We follow the approach of Thiemichen et al.
(2016) and extended the ERGM towards

B(r = i, u) = O )

/ﬂ(@, u)

where s(y) = (so(v),s1(y),...) is, as above, the p dimensional vector of network
statistics with so(y) = >, 2,5 ¥i; as intercept and t(y) = (Z#l Yjs 2o jr2 Y2js - - ) is
the n dimensional vector of node degrees. The normalization now equals x(6,u) =

log 3=, cy exp (OTs(y) + uTt(y)>, where ) is the set of n by n networks. Conditional on
u, we obtain node specific heterogeneity, which can be seen as follows. We assume now
that @ € R? is a p dimensional parameter vector while w = (uq, us,...) is a n dimensional

vector of random node specific coefficients with

u~ N0, 02T,) (3)

with o2 as variance and Z,, as n dimensional identity matrix. This leads to a mixed model
with fixed and random coefficients, termed in the following as mixed ERGM, or in short
mERGM. The reasoning behind the model structure can be seen through the conditional

model for a single edge Y;; conditional on the rest of the network denoted as Y_;;. From

we obtain

P(Y;; = 1|y_i;, 0, )
1 Y AR ZOTAZ i i 4
Og{P(Yz‘j :O|y—z’j707u) JS(y) T ( )

Here A;;s(y) = s(yi; = 1,y—;) — s(yi; = 0,y_;;) is the so-called change statistics where
y_i; is the network except of edge y;;. The terms u; and u; are the random node spe-
cific coefficients accounting for heterogeneity not captured with A;;s(y). If we assume
normality for coefficients wu;, formula resembles a mixed logistic regression model as
extensively discussed e.g. in Breslow and Clayton| (1993). A similar model to has
been proposed by [Box-Steffensmeier et al. (2018) taking the coefficients u in as ran-
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dom normal variable with mean zero and unknown variance. For estimation they apply a
pseudolikelihood approach. Though this circumvents the numerical burden of estimation
in ERGM, it comes for the price of biased estimation of the paramteric coefficients 6. In
other words, their estimation approach is biased even if the random node effects are close
or equal to zero. We refer to [Schmid and Desmarais (2017) for a general discussion on
pseudolikelihood estimation in ERGMs, see also |Strauss and lkeda| (1990) or |Desmarais
and Cranmer| (2012).

Model combined with the probability model can also be seen as special case of the
Exponential-family Random Network Model as proposed in |Fellows and Handcock| (2012).
They propose simulation based estimation, which is restricted to small network sizes. The
restriction to small networks is also pointed out in Thiemichen et al.| (2016|). Hence, even
though model can be considered as ERGM with some prior structure on coefficients
given in (2), estimation based on simulation based methods (see [Snijders/[2002) becomes
infeasible for larger networks. We therefore, propose a different estimation strategy, which
is motivated in the next paragraph. At this point, we also note that several approaches to
capture unobserved heterogeneity were introduced in network data analysis, for instance,
Koskinen| (2009) introduced binary latent class indicators, Schweinberger and Handcock
(2015)) examined local dependence using a Bayesian framework in random graph models
and Henry et al. (2020) developed a modeling framework to capture unobserved hetero-

geneity in the effects of nodal covariates.

The first goal of this paper is to provide an iterative estimation strategy, combining both
maximum likelihood and pseudolikelihood estimation techniques. To be more specific, we
take model as starting point and make use of pseudolikelihood estimation for the ran-
dom coefficients u while for estimation of 8 we use the steplength MCMC-MLE approach
proposed in Hummel et al| (2012) and the corresponding stepping algorithm Hummel
et al.| (2012), implemented in the ergm package in R (see Hunter et al.2008). These two
steps are used iteratively, leading to feasible estimation. Our estimation strategy allows
us to fit large scale networks, and we observe that the inclusion of the nodal effects works
towards numerical estimation stability, as demonstrated through examples and simula-
tions. Moreover, as the second goal of this paper, we propose a simple model selection
strategy to evaluate nodal heterogeneity. To be specific, we use Akaike’s Information
Criterion (see Akaike |1974)) to select a model with or without nodal effects. The latter is

calculated numerically by employing a Laplace approximation.

This paper is organized as follows. In Section [2| we discuss the estimation for the

underlying model in detail and introduce our algorithm. Furthermore, in Section [3] we



present a simulation based method for evaluating our model, which allows us to calculate
the AIC value for the mERGM and compare it with the AIC value of a corresponding
ERGM. In Section [ we present a simulation based study with the corresponding results,
in Section b we then apply our approach to three data examples. Finally, Section [f] closes

with a discussion.

2 Model and Estimation

We consider model where the nodal heterogeneity effects uq, ..., u, are assumed to be
random with o2 as variance and Z,, as n dimensional identity matrix. The aim is to fit
parameter @ taking nodal heterogeneity into account. Moreover, we need to estimate o2,

which in fact quantifies the amount of nodal heterogeneity.

In principle, we need to maximize the marginal log-likelihood

exp +uTt(y)} 1 1 ulu\ &
"o log/ ) ' (2mo2)2 -exp<—2 o2 )g dus
= 0"s(y) — B log(27r) - glog(JZ) + log/exp (g(u, 0,0 )) 1 du (5)
i=1

where

g(u.0,07) = u't(y) —log(k(6,u)) - (6)

[\DM—\
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We may approximate the integral in using a Laplace approximation. Let therefore G
be the maximizer of g(u, 8, 02), which apparently depends on both, 8 and 2. This leads
to the approximate log-likelihood

1(6,0%) = 0" s(y) + @7 t(y) — los(s(0, &) — 5 "~ log(2m) — 5 los(o?) —  log

Note that the likelihood can be considered as profile likelihood, where u is "estimated'
through maximizing @ If we now treat @ as given, then maximization of [(0, 02) with

respect to 8 corresponds to maximizing the likelihood of the probability model




H(e, u)

where 4" t(y) is fixed as given offset. The terminology offset means here that the quantity
'&Tt(y) is treated as fixed. In other words, setting the random coefficients to @ simplifies
the estimation of  to Maximum Likelihood estimation in an ERGM with offset 4" ¢(y).
This is numerically available with standard software packages (e.g. [Hunter et al.2008)
and the stepping algorithm proposed in [Hummel et al. (2012)). Let us therefore first look

in more detail how to obtain @ if we keep @ as fixed. Note that @ results by solving

dg(u,8,02)

=0.
ou

Apparently, this is numerically problematic, since x(€,w) is numerically intractable.

Differentiation yields

Jlog k(0,u)

25 B(t(y) )

which in principle can be approximated using simulation based approaches (see Snijders
2002). However, this is a numerically challenging task, since w is high dimensional,
namely n dimensional. We therefore propose to approximate the estimation step of u by
pseudolikelihood estimation. To do so we look at the model for a single edge given the
rest of the network. That is to say we take model , but now we fix 0;; = o7 Ay s(y)
as offset and ignore the dependence on y. This leads to a pseudolikelihood approach as

discussed for instance in [van Duijn et al.| (2009). The pseudo-log-likelihood thereby equals

lpseudo(u) = Z Z yij{oij + u; + Uj} — log{l + exp(oij + u; + U])} (8)

i J>i

where a priori coefficient u follows a normal distribution as given in . The pseudo-log-
likelihood (8)) together with (3] leads to (pseudo) Generalized Linear Mixed Effects Model,
so that we can borrow estimation strategies from this field. In particular we make use of
Breslow and Clayton| (1993) who propose to approximate the resulting marginal likelihood
using a Laplace approximation, similar to above. This allows to estimate the a priori
variance o2 and predict the random coefficients uw. Note, if 0;; is independent of y_;;,
then the Laplace approach @ is equal to the estimation proposed in Breslow and Clayton
(1993). Apparently, this is the case for the so-called p, model (see Duijn et al.|2004). To

be specific, the Laplace approximated pseudolikelihood with 0;; = (012,013, ...,0,-15) as



offset and constant terms omitted results through

where 11 is the maximizer of

ulu

N | —

Ju,020) =u"t(y) — > log{l +exp(o;; + u; + u;)} —

2
i g Oy

We call @4 an estimate subsequently, even though of course it is a predictor given that u

is considered as random. This is implemented in multiple R packages, see e.g. |Faraway

(2016). To be specific, for estimation of u we use the mgcv package (see [Wood, [2011)).

Denoting with @ = (iy,...,%U,) the resulting estimates, we set @’ t(y) in as offset

and estimate parameter @ using simulation based techniques. For this step we use the

ergm package (see Hunter et al|2008). Both estimation steps are used iteratively until

convergence. That is we take the current estimate é(t) and update @ with pseudolikelihood

leading to (;11y. This in turn allows to update 6 after replacing the offset by 116 )ty

Our algorithmic steps work in detail as follows:

Algorithm: Fit ERGM with nodal random effect components

Step 0: Obtain a prediction for u and estimate o2

i) Fit the model logit P(y;; = 1|y_;;,0,u) = 09y +u; +u; to the data, where
g J J (0) J

1<i<j<n

(ii) extract the vector of the predicted random effects 1) as offset and set

t=20

Step 1: Estimate 8 with ERGM and take dg)t(y) as an offset parameter:

(i) Fit the model P(Y = y|0) eXp{O%;H)s(y) + ﬁa)t(y)} using maximum

——
offset

likelihood and simulation based methods

(ii) extract o;; = Bgﬂ)Azjs(y) as new offset for 1 <i<j<n

Step 2: Update (1) and 630 +1) how taking o;; as offset parameter:

i) Fit the model logit P(y;; = 1|ly_;:, 0, u) = 0;;+u;+u,; with priori structure
g Yij Y—ij, Y, J j p

to the data

(ii) extract the vector of the predicted random effects @41y as new offset




Set t = ¢ + 1 and iterate between step 1 and 2 until 6 converges. Convergence is
achieved if |0 — 011y < e =0.05.

We need to mention that pseudolikelihood estimation in network data analysis is biased, in
particular, if dyadic statistics are involved. Our setting here, however, is slightly different
since we use pseudolikelihood estimation only for the degree statistics ¢(y). Moreover, we
consider the coefficients u not to be fixed but random so that in general, we are more
interested in the variance of coefficients u; and less interested in their true value. We refer
to Schmid and Desmarais (2017) or Cranmer and Desmarais| (2011]) for further discussion

on pseudolikelihood estimation in network data analysis.

3 Inference through Model Selection and Variance

Estimation

The central question in network data analysis is to explain the dominating factors in the
network, i.e. the sufficient statistics describing the network structure. If we allow for node
specific heterogeneity, we are additionally faced with the problem of model selection. In
other words, we need to describe whether the network data at hand shows evidence with
respect to heterogeneous nodes or whether the homogeneity assumption of ERGM seems
valid. We tackle this question by approximate calculation of the Akaike Information
Criterion (AIC). To do so, we assume for simplicity that the determinant component in
depends only weakly on 0 so that we can ignore it subsequently. This is in line with
the arguments proposed in |Breslow and Clayton (1993)) who suggest the use of Laplace

approximation in generalized linear mixed models. Note that

9 g(u,0,02) 1

Hence, ignoring the determinant component in is justified if we assume that the
variance matrix of the degree vector ¢(Y') depends only weakly on 8. We refer to Breslow
and Clayton| (1993)) for a deeper discussion and motivation which justifies to pursue this
simplification. Generally, the variance is difficult to calculate or even infeasible for large
networks, so that we make use of simulations to estimate . To do so, we simulate
networks in order to obtain a simulation based approximation for /—c(é,'&). We make

further use of the simulated networks to obtain a simulation based approximation of
Var(t(y)|0,%). To be specific, let y*®, .. y*™) be a set of (independent) network



simulations derived from model with @ set to @ and u set to %. We estimate
Var(t(y)| 6, &) through

]' al *(7 'S *(7 2(,.% T
N ") — )] [ty ) — i)
where t(y*) is the arithmetic mean of the simulated values.

With these prerequisites, we can now approximate all quantities in (7). This also holds

for the normalization constant, which is estimated through

1 & , .
il *(J) 5T (0<(3)
(0, =5 E: Xp(H s(y™) + 4 t(y ))
Model comparison can now be carried out with the AIC. Setting p as the number of

parameters in @ the AIC results to

A

AIC,prem = —21(0,62) + 2- (p+1) (11)

Note that resembles the marginal AIC, that is after integrating out w. We refer to
Greven and Kneib| (2010) or [Vaida and Blanchard (2005) for a deeper discussion of ap-
plying AIC in random effects models. In our case, formula serves as approximation,

relying on the pseudolikelihood estimation for u.

We compare the AIC in the mERGM to the resulting AIC in the case of node homogeneity,
that is by setting o2 = 0. This is carried out in a similar way, but we set u = 0.

In other words we use the likelihood in by calculating (@) simulation based from N
draws y*@ ..., y*™) from model with @ set to the ML estimate in model . We call
this

A]CERGM = _QZERGM(é) + 2]? (12)

where lgraas is the log-likelihood in the ERGM resulting when w = 0.

Though the focus of the paper lies on model comparison, we shortly discuss how to

calculate the variance of the estimate if the algorithm above is used. In the ERGM, we



obtain the Fisher information matrix

1(0) = Var(s(Y)|0). (13)

This can be estimated simulation based, that is we simulate from model and calculate
Var(s(Y)) based on the simulated values. For the mERGM we need to take into account
that coefficients u are considered to be random so that in principle, we need to calculate
the (inverse) Fisher information of the log-likelihood. Assuming that the determinant in
does depend only weekly on @ and ignoring for simplicity the dependence of @ on 0 we
obtain again . This is, of course, an approximation since we ignored the dependence of
% and 6 as well as estimation variability of o2. In other words, exact variance calculation
in the mERGM is complicated and we here provide a rough approximation only. However,
inference can be carried out by model selection via the AIC, which is what we pursue in
simulations and data examples below. Still, we can make use of the simulations from
above to obtain an estimate of the Fisher information and hence a variance estimate for

the estimates.

4 Simulation Study

In our simulation study we want to explore the estimation results of the model parameters
and the model selection step based on two network sizes. Small networks with 50

nodes, and large networks with 500 nodes. For each network size we use network
2

settings with different levels of nodal heterogeneity o;. For each network setting and
network size we simulate 50 networks using the simulation routines from the ergm
package (Hunter et all |2008). FEach network setting has the same structural effects
0, where 6 = (Ocages; Ogwesps Bo2—stars) = (—1, 0.2, —=0.3), but the nodal heterogeneity
takes six different levels 02 = (0, 0.1, 0.2, 0.5, 0.8, 1), where u is randomly drawn for
each simulated network and setting from a normal distribution following . For each
network size of these six heterogeneity levels we fit an ERGM and a mERGM to the 50
simulated networks. Note that the tuning parameters for the 6,5, term are the same
for both ERGMs and mERGMs with (decay = 0.8, fixed = TRUE). Additionally, we
provide the results of two more simulation studies as supplementary material, where we
perturb the parameter vector @ with different configurations for both small and large
networks. Furthermore, we also provide supplementary material illustrations of how well

o2 is recovered in the simulation study.

Our first focus is on the performance of the estimates. In Table [I] and [2] we summarize
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the results of our simulation study for small (50 nodes) and large (500 nodes) networks
respectively, distinguishing all six different levels of nodal heterogeneity. Let us first look
at the case 02 = 0, the fitted parametric coefficients of the ERGMs in both cases, small
and large networks, show a stable estimation performance; however, this stability is more
evident in large networks. The mERGMs, on the other hand, show some estimation
variability and are outperformed by ERGMs concerning parameter estimation. The
trend changes increasingly in favour of mERGMs, with increasing heterogeneity. At a
heterogeneity of o2 = 0.8, the mERGMs excel with better results in small and large
networks than the ERGMs, which show substantial variability in the results. At a
heterogeneity of o2 = 1, the results indicate severe stability problems of the ERGM
estimates, especially in the small networks, but the more the size of the network increases,
the less unstable the estimates of the ERGMs become. This fact is not surprising since a
heterogeneity of 02 = 1 in a network with 50 nodes is a different claim than in a network
with 500 nodes. Nevertheless, the mERGMs in both cases, small and large networks,
show an appropriate and stable performance. Hence, including nodal heterogeneity in the
model increases the stability of the mERGM fit. This is a welcome effect of the model
extension from ERGM to mERGM.

As a second point, we consider the performance of the model selection based on the Akaike
information criterion. To do so, we calculate for each of the 50 simulations in each setting

the log ratio

AIChEreM,
log | ZE/mERGMy | g1 5
g( AICERrGM,

If the log ratio is positive, it speaks in favour of a model without nodal heterogeneity. In
contrast, if the log ratio is negative, there is an indication of model heterogeneity. Figure
visualizes the log AIC ratio for different strengths of nodal heterogeneity and both network

sizes. In small (50 nodes) and large (500 nodes) networks, the ERGM was correctly

2
u

preferred in the case of missing nodal heterogeneity, that is o2 = 0. With increasing
nodal heterogeneity level in the network, the mERGM becomes more appropriate, and
from a heterogeneity level of 02 = 0.5 and 2 = 0.8 for small networks and large networks,
respectively, the mERGM gets clearly selected based on the AIC. We, therefore, can

conclude that the AIC allows for model selection in case of node specific heterogeneity.

Additionally, we compare our approach with the approach proposed by [Box-Steffensmeier
et al| (2018) (FERGM) to illustrate the point of biased estimation of the parametric
coefficients @ we mentioned in Section . We apply the same simulation approach as
above, distinguishing the size of the networks and compare the results of the mERGM
with them of FERGM fitted to the 50 simulated networks with setting o2 = 1. The results

of our comparison are given in Table [3, As we can conclude from Table , regardless
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Network Size: 50 Nodes

02 Model type Parameter Real Value  Mean SD Q0.1 Median Q 0.9
Oedges -1 -0.71 0.79 -1.65 -0.74 0.37

0 ERGM Ogwesp 0.2 0.06 0.78 -0.06 0.17 0.38

O2—stars -0.3 -0.35 0.13 -0.50 -0.34 -0.20

Oedges -1 0.52 1.18 -0.89 0.39 0.31

0 mERGM Bgwesp 0.2 0.06 0.81 -0.06 0.17 0.38

02— stars -0.3 -0.58 0.19 -0.86 -0.57 -0.35

Oedges -1 -1.11 0.77 -2.13 -1.12 -0.15

0.1 ERGM O gwesp 0.2 0.16 0.16 0.03 0.19 0.34
02— stars -0.3 -0.25 0.12 -0.39 -0.24 -0.10

Oedges -1 0.06 0.89 -0.96 -0.03 0.98

0.1 mERGM O gwesp 0.2 0.16 0.16 -0.02 0.19 0.34
02— stars -0.3 -0.45 0.14 -0.60 -0.44 -0.28

Oedges -1 -1.63 0.52 -2.21 -1.72 -0.88

0.2 ERGM O gwesp 0.2 0.17 0.21 -0.06 0.17 0.39
02— stars -0.3 -0.17 0.08 -0.31 -0.16 -0.06

Oedges -1 -0.73 0.61 -1.44 -0.85 0.21

0.2 mERGM Ogwesp 0.2 0.18 0.21 -0.07 0.19 0.40
02— stars -0.3 -0.33 0.11 -0.49 -0.31 -0.20

Oedges -1 -2.05 0.43 -2.51 -2.10 -1.47

0.5 ERGM Ogwesp 0.2 0.21 0.12 0.03 0.21 0.37
02— stars -0.3 -0.07 0.06 -0.13 -0.06 -0.01

Oedges -1 -0.71 0.62 -1.35 -0.77 0.03

0.5 mERGM Ogwesp 0.2 0.21 0.12 0.03 0.22 0.36
02— stars -0.3 -0.26 0.08 -0.38 -0.26 -0.17

Ocdges -1 -2.90 0.27 -3.17 -2.93 -2.58

0.8 ERGM O gwesp 0.2 0.21 0.14 -0.01 0.21 0.34
02— stars -0.3 0.02 0.04 -0.04 0.03 0.07

Ocdges -1 -1.02 0.22 -1.33 -1.04 -0.74

0.8 mERGM O gwesp 0.2 0.20 0.16 -0.03 0.23 0.37
02— stars -0.3 -0.39 0.14 -0.49 -0.33 -0.29

Oedges -1 1123.83  9739.40 -186.45  -12.76 4.27

1 ERGM Ogwesp 0.2 -1112.36  4651.95 -737.19  -15.23 0.36

02— stars -0.3 785.38  10336.06 -2118.73  -3.77  104.20

Oedges -1 -1.23 0.40 -1.68 -1.23 -0.74

1 mERGM Ogwesp 0.2 0.26 0.18 0.01 0.30 0.49

02— stars -0.3 -0.37 0.10 -0.49 -0.35 -0.26

Table 1 Resulting means, standard deviations, the medians, 0.1 and 0.9 quantiles of the

estimated coefficients of network size 50 nodes and for all siz o2 levels.

of the network size, the performance of FERGM is worse. Nevertheless, we have to note

that Box-Steffensmeier et al. (2018) also points out that their approach might only be

suitable for certain research questions or certain network types.
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Network Size: 500 Nodes

02  Model type Parameter Real Value Mean SD Q0.1 Median Q 0.9

Ocdges 1 096 029 -1.31 -0.98 -0.55
0 ERGM 0 gwesp 0.2 0.19 0.05 012 020  0.27
09— stars 0.3 030 0.03 -0.34 -0.30 -0.27
Ocdges 1 0.18 051 -053 027  0.81
0 mERGM  Oguesp 0.2 019 005 013 020  0.27
09— stars 0.3 0.16 0.04 -021 -0.16 -0.11
Ocdges 1 1.99 024 -234 -1.99 -1.73
0.1 ERGM 0 gwesp 0.2 019 0.05 013 020  0.25
0 stars 0.3 022 0.02 -023 -021 -0.18
Ocdges 1 0.13 007 -022 -0.14 -0.04
0.1 mERGM  Oguesp 0.2 0.19 0.05 014 020  0.25
05— stars 0.3 0.16 0.09 -0.28 -0.17  -0.03
Ocdges 1 259 029 -2.93 -2.63 -2.16
0.2 ERGM O guwesp 0.2 019 0.06 012 020  0.26
0 stars 0.3 0.16 0.02 -0.19 -0.15 -0.13
Ocdges 1 057 026 -0.92 -054 -0.22
0.2 mERGM  Oguesp 0.2 019 0.07 012 019  0.27
09— stars 0.3 045 0.04 -049 -0.45  -0.42
Ocdges 1 3.65 0.16 -3.82 -3.68 -3.45
0.5 ERGM 0 gwesp 0.2 019 0.04 014 020  0.25
0 stars 0.3 0.06 0.01 -0.08 -0.06 -0.05
Ocdges 1 048 028 -0.79 -048  -0.19
0.5 mERGM  Oguesp 0.2 019 0.05 014 018  0.25
0 stars 0.3 034 0.02 -037 -0.35 -0.32
Ocdges 1 429 011 -441 -429 -4.15
0.8 ERGM Oguwesp 0.2 0.19 0.04 014 020 024
0 stars 0.3 0.0l 001 -0.02 -0.01 -0.001
Ocdges 1 145 024 -1.77 -145 -1.16
0.8 mERGM  Oguesp 0.2 0.20 0.04 015 020  0.24
O stars 0.3 0.26 0.02 -028 -026 -0.23
Ocdges 1 458 0.08 -4.67 457 -4.48
1 ERGM O guwesp 0.2 019 0.04 015 019  0.23
02— stars 0.3 0.0l 0.01 001 001  0.02
Ocdges 1 122 021 -1.84 -1.41 -1.29
1 mERGM  Oguesp 0.2 019 0.05 014 019 024
0 stars 0.3 0.26 0.02 -026 -0.25 -0.23

Table 2 Resulting means, standard deviations, the medians, 0.1 and 0.9 quantiles of the
estimated coefficients of network size 500 nodes and for all siz o2 levels.
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o

0_2

Network Size: E3 small E3 large

Figure 1  Resulting log AIC Ratios of mERGM and ERGM for each network setting and size.
Orange bozplots indicate small networks (50 nodes), blue boxplots large networks (500 nodes).

Network Size Model type Parameter Real Value Mean SD Q0.1 Median Q 0.9

Ocdges -1 -1.23  0.40 -1.68 -1.23 -0.74
50 Nodes mERGM Ogwesp 0.2 0.26 0.18 0.01 0.30 0.49
02— stars -0.3 -0.37  0.10 -0.49 -0.35 -0.26
Ocdges -1 3799 6.51 3529 3889  42.06
50 Nodes FERGM Ogwesp 0.2 0.12 019 -0.11 0.10 0.38
02— stars -0.3 -7.58 1.23 -843 -7.65 -7.08
Ocdges -1 -1.22 021 -1.84 -1.41 -1.29
500 Nodes mERGM Ogwesp 0.2 0.19 0.05 0.14 0.19 0.24
O2—stars -0.3 -0.26  0.02 -0.26 -0.25 -0.23
Ocdges -1 -5.18 0.04 -5.24 -5.18 -5.12
500 Nodes FERGM Ogwesp 0.2 0.18 0.04 0.14 0.19 0.23
02— stars -0.3 0.06 0.01 0.05 0.06 0.06

Table 3 Resulting estimated means, standard deviations, the medians, 0.1 and 0.9 quantiles of
the parameters for network setting with nodal heterogeneity o2 = 1.

14



5 Examples

5.1 Facebook Network

As a first data example, we look at Facebook (undirected) network data, which is publicly
accessible (McAuley and Leskovec, 2012)). The entire network comprises 4039 nodes. We
analyze a subset of 250 nodes to demonstrate the performance of our routine, e.g. we
take the first 251 nodes of the network and remove the "center' node (the "ego"). Figure
gives a visual impression of the network. Just by looking at the network we can easily
conclude that an ERGM which assumes nodal homogeneity is more than questionable.
The mERGM, therefore, appears as a possible alternative. The aim of our analysis is to
evaluate and compare the two models: the mERGM and the standard ERGM, with the
intention to quantify the evidence for the presumed favour of the mERGM.

We fitted four models to the data, two mERGMs and two ERGMs. Table [4] describes
the models by listing the sufficient network statistics. As network statistics, we included
the number of edges, the number of two-stars and two weighted statistics, i.e. geometri-
cally weighted edgewise shared partners (gwesp) and geometrically weighted nonedgewise
shared partners (gwnsp). For the exact definitions of the weighted statistics, we refer to
Snijders et al. (2006)). The number of iterations for the mERGMs was set at 50 to ensure

convergence.

Figure 2 Facebook Network Data. Large nodes indicate nodes with high degrees.
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Model type Model Oeqges  Ogwesp  O2—stars  Oguwnsp Nodal Effects

1 v v v
ERGM 5 v v v

3 v v v v
mERGM 4 v Y v v

Table 4 Models with sufficient network statistics for the Facebook network data.

Table [5 shows the resulting estimates for the models. Note that the standard deviations
given for the mERGM estimates result from the ERGM fit taking the random effects as
fixed. Asnoted above, these estimates are not reliable as they ignore the uncertainty of the
estimated random effects. We, therefore, give these values for completeness only but do
not interpret them. We see that the gwesp coefficient is always positive, indicating that the
probability for an edge between two partners increases with the number of shared partners
for the considered edge. The effect is however generally smaller in the mERGM, that is,
if node specific heterogeneity is taken into account. To make the models comparable
we calculated the AIC values for both the ERGMs and the mERGMs according to the
proposed approach as described in Section [3] For the calculation of the AIC values, we
used 1000 simulations for both ERGMs and mERGMs, respectively.

Model type Model Parameter Estimate SE AlIC

Gedges -7.178 0.091
ERGM 1 Ogwesp 1.875 0.046  6049.086
02— stars 0.052 0.094
Ocdges -5.973 1.698
ERGM 2 Ogwesp 2.076 0.881  70977.08
O gumsp 0.034 1211
Ocdges -6.021 0.468
mERGM 3 Ogwesp 1.186 0.192 4260.723
O stars -0.008 0.001
Ocdges -3.943 0.698
mERGM 4 Ogwesp 0.486 0.305 2867.874
Oguwnsp -0.053 0.008

Table 5  Model fitting results for the Facebook network data. Standard errors listed in the
mERGM are not accurate since they ignore the variability resulting through node heterogeneity.

Looking at the AIC values of the four models in Table [5| we see that both mERGMs
outperform the ERGMs. This gives clear evidence of existing node specific heterogeneity,
and hence the proposed models with nodal random effects are preferable. This is also

apparent in the goodness-of-fit plots. For instance, in Figure [3] we can see that model 3
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fitted with mERGM gives a better fit compared to model 1 fitted with ERGM, which is in
line with the corresponding AIC values. Furthermore, the AIC value of model 2 in Table
fitted with ERGM is exceptionally huge compared to model 4 fitted with mERGM, and
we observe this issue well reflected in the goodness-of-fit plots in Figure 4] where model 2
struggles with huge convergence issues. Overall, model 4 appears to be the most suitable

among the four fitted models to describe the data.
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Figure 3  Goodness-of-fit diagnostics for model 1 fitted with ERGM (top row) and for model 3
fitted with mERGM (bottom row) for the Facebook network data.
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Figure 4  Goodness-of-fit diagnostics for model 2 fitted with ERGM (top row) and for model }
fitted with mERGM (bottom row) for the Facebook network data.
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5.2 Zachary’s Karate Club Network

As a second data example, we look at a well known dataset, the Zachary’s karate club
(Zachary, 1977). This undirected network data represents the friendship among 34
members of a university karate club. Figure [5| shows the network graph of Zachary’s
Karate Club. One can easily see that in this network, there are few nodes with high
degree, while the remaining nodes have only few edges, so again, we assume that the
mERGM should be a suitable approach to capture the unobserved nodal-heterogeneity
in the network. We fitted three different ERGMs and three mERGMs to this data. To
make the models comparable, we included the same network statistics. Table [6] gives
an overview of the different models. In Table [ we summarize the results of our models
including the AIC values. The iteration steps for the mERGMs was set to 50. For the
calculation of the AIC values, we used 1000 simulations for both ERGMs and mERGMs.

We can see that model 1 fitted with ERGM struggles with convergence issues. This is
mirrored in invalid variance estimates, resulting from a badly conditioned Fisher matrix.
We, therefore, indicate this as 7 x 7 in Table which also means, of course, that
the estimate itself is not reliable at all. We refer to Hunter et al. (2008) for further
explanations. On the other hand, model 4 fitted with mERGM with the same model
parameters as model 1 does not show any convergence issues, which also means that
the mERGM can deal with estimation degeneracy issues. The inclusion of node specific
heterogeneity works towards numerical stabilization. To explore this in more depth, we
look in Figure [0] at the goodness-of-fit plots for model 1 fitted with ERGM. Figure [
shows the same diagnostics results for model 4 fitted with mERGM. Remember that these
two models include the same sufficient network statistics. Boxplots of the distributions
of degree, edge-wise shared partners and minimum geodesic distance for the resulting
simulated networks are shown in the plots where the bold line indicates the values of the
original karate club dataset. In the diagnostics plots of model 1 in Figure [6] we can clearly
see that ERGM fails to fit the model, whereas the diagnostics plots of model 4 in Figure

[0] gives a good evidence of an appropriate fit.

Model type Model  fedges  Ogwesp  O2—stars  Oguwnsp  Ogwdegree Nodal Effects

1 v v v
ERGM 2 v v v
3 v v v
4 v v v v
mERGM 5 v v v v
6 v v v v

Table 6  Models with sufficient network statistics for the Zachary network data.
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Figure 5 Zachary’s Karate Club Network Data. Large nodes indicate nodes with high degrees.

Model type Model Parameter Estimate SE AIC
Ocdges -4.893 * K K

ERGM 1 Ogwesp 0.642 * % K * % %
O2—stars 0.689 * % %
Ocdges -3.635 0.241

ERGM 2 Ogwesp 0.596 0.117  496.351
Ogwnsp 0.153 0.026
Ocdges -3.183 0.513

ERGM 3 Ogwesp 0.716 0.181  442.883

egwdegree -0.519 0.8990

Ocdges 1.214 0.386

mERGM 4 Ogpesp 0.236 0.174  311.304
02—stars -0.159 0. 042
Ocdges -1.776 0.366

mERGM 5 Ogwesp -0.144 0.109  337.894
Ogunsp -0.089 0.043
Ocdges -4.464 0.724

mERGM 6 Ogwesp 0.213 0.176  303.217
Oguwdegree 4427 1.341

Table 7  Model fitting results for the Zachary network data. Standard errors listed in the
mERGM are not accurate since they ignore the variability resulting through node heterogeneity.

We extend the model exploration to the other models. Figure [7]shows the goodness-of-fit
diagnostics plots of both model 2 fitted with ERGM and model 5 fitted with mERGM,
respectively. For model 2, we see some problems in Figure [7] concerning all the three
diagnostics, the degree distribution, the edgewise-shared partners distribution and the
minimum geodesic distance, which indicate the poorness of the model. For model 4, in

contrast, we can see in Figure [7] again a much better performance of the fit.
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Figure 6 Goodness-of-fit diagnostics for model 1 fitted with ERGM (top row) and for model }
fitted with mERGM (bottom row) for the karate club data.
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Figure 7 Goodness-of-fit diagnostics for model 2 fitted with ERGM (top row) and for model 5
fitted with mERGM (bottom row) for the karate club data.

Finally, Figure [§shows the diagnostics plots of model 3 fitted with the ERGM, this model
is the best ERGM fitted to this data according to the AIC value and also the diagnostics
plots are reasonable. On the other hand, model 6 fitted with mERGM, including the same
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sufficient network statistics as model 3, is the best mERGM fitted to this data according
to the AIC value. However, the goodness-of-fit of model 6 shown in Figure [§] visually

looks better than of model 3, which also justifies with a smaller AIC value.
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Figure 8 Goodness-of-fit diagnostics for model 3 fitted with ERGM (top row) and for model 6
fitted with mERGM (bottom row) for the karate club data.

5.3 High School Friendship Network

As a third data example, we investigate a real-world dataset, a high school friendship
network in Marseilles, France, provided by |Mastrandrea et al.| (2015). This network data
represents the friendship among 134 high school students of specific classes. These specific
classes, unique to the French educational system, gather students for studies that last two
years after completing the usual high school studies. These classes are in a different
part of the building, so the students are somehow isolated from the "regular" high school
students. As a result, they form an almost closed population with little contact with the
outside world, at least during schooldays. At the end of these two years, these students
take competitive exams to gain admission to various higher educational institutions.
The classes have different specializations: "MP" classes focus more on mathematics and
physics, "PC" classes on physics and chemistry, "PSI" classes on engineering, and "BIO"
classes on biology. Furthermore, there are three classes of type "MP", two of type "PC",
one of type "PSI" and three of type "BIO". Due to the class sizes in the dataset, as
demonstrated in Table [§] we decided to merge the types of classes to get an appropriate

fit for our models, e.g., we do not distinguish between the types of the classes.
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Classes MP | MP*1 | MP*2 | PC | PC* | PSI* | 2BIO1 | 2BIO2 | 2BIO3
No. of Students | 21 3 7 21 10 15 10 19 28

Table 8  Number of students according to the types of the classes in the data.

Additionally, we also have the gender information of the students in the data, with 79
female and 55 male students. Figure [9] shows the friendship network graph, the colour
of the nodes represents the different classes, where the shape of the nodes the gender of
the students. Assuming that there might be unobserved nodal heterogeneity, which can
not be captured exclusively by the nodal covariates, the mERGM could be a reasonable

approach.

(=

Gender ¢ F A M Class ® BIO @ MP @ PC ® PSI

Figure 9 High School Friendship Network Data. The Colour of the nodes represents the
different classes. The shape of the nodes describes the gender of the students.

We fit an ERGM and a mERGM to this data, including dyad-dependent network statistics
such as the GWESP (geometrically weighted edgewise shared partner distribution) with a
fixed decay parameter equal to 0.25 and dyad-independent terms such as the nodefactor
and nodematch parameters. The nodematch is the homophily parameter in ERGM, where
we also allow for each class to have a unique propensity for within-class ties, we refer to
Morris et al.| (2008) for instance, for more details regarding the ERGM terms and their
specifications. The iteration steps for the mERGMs was set to 50. For the calculation
of the AIC values, we used 1000 simulations for both ERGMs and mERGMs. In Table

9] we summarize the results of the fitted models. Comparing the AIC values of the two

models, the model fitted with mERGM is preferred, which is not very surprising since the
mERGM additionally takes the "unobserved" nodal-heterogeneity into account, which is

not captured by dyad-dependent or independent terms, aka network statistics. For the
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sake of interpretation, we look, for instance, at the log-odds of a hypothetical tie between
two male students attending the MP class that does not close a triangle. In ERGM the
log-odds of such a tie would be —4.264; in mERGM, the interpretation is slightly different
since it should be only in the conditional sense. This means, given two male students that
attend the MP class, the conditional log-odds of such a tie is —1.671. In Figure [L0| we

show the diagnostic plots of the two models, we can clearly see that the model fitted with

the mERGM performs much better, which is also clear evidence to the corresponding AIC

values.
Model type Parameter Estimate SE Model type Parameter Estimate SE
Edges -7.606 0.403 Edges -9.021 0.415
GWESP (0.25) 2.026 0.165 GWESP (0.25) 0.538 0.215
Male 0.157 0.052 Male -0.494 0.068
Gender match 0.226 0.089 Gender match 0.813 0.099
MP 0.627 0.272 MP 2.355 0.238
ERGM PC 0.309 0.272 mERGM PC 1.253 0.238
PSI 1.054 0.276 PSI 3.042 0.221
BIO class match 2.562 0.402 BIO class match  4.403 0.295
MP class match ~ 1.547 0.337 MP class match  2.814 0.349
PC class match ~ 2.279 0.393 PC class match ~ 3.572 0.379
PSI class match ~ 1.504 0.379 PSI class match  2.047 0.355
AIC 3880.681 AIC 1097.836
Table 9  Model estimates for the high school friendship network. Standard errors listed in the

mERGM are not accurate since they ignore the variability resulting through node heterogeneity.
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Figure 10 Goodness-of-fit diagnostics for the model fitted with ERGM (top row) and for the
model fitted with mERGM (bottom row) for the high school friendship network data.
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6 Discussion

In most cases, nodal heterogeneity in the network is explained by including known or
well-studied nodal covariates, see e.g. [Robins et al.| (2001). However, the node-specific
covariates cannot fully or sufficiently account for unobserved heterogeneity in the net-
work. Our extensions towards Mixed Exponential Random Graph Models can therefore
be a meaningful approach to model network data by just adding nodal random effects to

the model to capture the unobserved nodal heterogeneity.

Our proposed model can in principle also be extended to directed networks, where ugs)
and ug-r) would be treated as random sender and random receiver node specific coefficients,

respectively. We consider it beyond the scope of the current paper.

Though the calculation of the AIC value is computationally intensive, our proposed
method of estimating and calculating the AIC values allows us to compare the mERGM
with the conventional ERGM. Furthermore, as we can see in our simulation study, the
mERGM can always be a reasonable approach for modelling networks even if we observe
small nodal heterogeneity in the network. Overall, the mERGM works towards stabilizing

the fitting routine without adding too much numerical effort.

In this manuscript, neither in the simulation study nor in the examples, we investigate
assortative mixing parameters. Therefore, a more thorough investigation in this regard is

worth pursuing in future work.
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