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Abstract

Multilayer networks are in the focus of the current complex network study. In such
networks multiple types of links may exist as well as many attributes for nodes. To fully
use multilayer — and other types of complex networks in applications, the merging of
various data with topological information renders a powerful analysis. First, we suggest
a simple way of representing network data in a data matrix where rows correspond to
the nodes, and columns correspond to the data items. The number of columns is allowed
to be arbitrary, so that the data matrix can be easily expanded by adding columns. The
data matrix can be chosen according to targets of the analysis, and may vary a lot from
case to case. Next, we partition the rows of the data matrix into communities using a
method which allows maximal compression of the data matrix. For compressing a data
matrix, we suggest to extend so called regular decomposition method for non-square
matrices. We illustrate our method for several types of data matrices, in particular,
distance matrices, and matrices obtained by augmenting a distance matrix by a column
of node degrees, or by concatenating several distances matrices corresponding to layers
of a multilayer network. We illustrate our method with synthetic power-law graphs and
two real networks: an Internet autonomous systems graph and a world airline graph.
We compare the outputs of different community recovery methods on these graphs,
and discuss how incorporating node degrees as a separate column to the data matrix
leads our method to identify community structures well-aligned with tiered hierarchical
structures commonly encountered in complex scale-free networks.

1 Introduction

Networks annotated with node attributes and link attributes form a rich class of data struc-
tures. For example, multilayer and multiplex networks are obtained when nodes and links
sharing a common attribute are identified as a layer (Kivelä et al., 2014; Interdonato et al.,
2019). This article presents a simple method for identifying communities in such networks.
The first step is to combine various relevant data sets into a single data matrix, denoted M ,
in which rows correspond to network nodes and columns to data items. The second step is
to arrange the rows of M into disjoint groups, called communities, using a regular decom-
position (RD) method adopted from (Reittu et al., 2014, 2018, 2019; Norros et al., 2022).

∗VTT Technical Research Centre, PO Box 1000, 02044, Finland
†Aalto University, Department of Mathematics and System Analysis, Otakaari 1, 02150 Espoo, Finland
‡Microsoft, One Microsoft Way, Redmond WA 98052, USA

1

ar
X

iv
:2

30
5.

13
01

2v
1 

 [
ph

ys
ic

s.
so

c-
ph

] 
 2

2 
M

ay
 2

02
3



RD determines communities by a partition of nodes which allows a maximal compression of
M . This is similar in spirit to nonparametric Bayesian methods associated with stochastic
block models (Peixoto, 2015). However, in our case we suggest to partition only the rows.
This can be seen as an extreme case of block modelling in which every column is considered
as a block. To determine the number of communities, we suggest using the Minimum De-
scription Length Principle (MDL) following the RD method (e.g. Reittu et al., 2014; Norros
et al., 2022). In this approach, each partition of the node set induces a certain probability
distribution on the space of data matrices. The rounded-up integer part of minus logarithm
of the probability of the observed data matrix M is the length of the Shannon code for M
(e.g. Cover and Thomas, 2006). Such a coding exists, provably, but there is no need to
know how it is constructed. The length of such a code is just used to measure the goodness
of fit of a model. According to the MDL principle, the full coding length of M is the sum
of the Shannon code length and the prefix code lengths of all parameters of the associated
probability distribution. For instance, one of such parameters is the number of communities
k; its approximate code length is log k. By minimising the full code length, MDL is capable
of optimising all parameters (see Peixoto, 2012; Grünwald, 2007; Norros et al., 2022). In our
sample cases we use graph distances as data items associated to nodes. The use of distance
matrix as a basis for spectral community detection was suggested in (Bhattacharyya and
Bickel, 2014), and as basis for RD in (Reittu et al., 2018). One benefit of such a choice
is that in a sparse connected network, every pair of nodes has a nonzero distance entry,
whereas most entries of the adjacency matrix are zero (Reittu et al., 2018). In multiplex
networks, one approach of constructing a data matrix is to concatenate distance matrices
associated with distinct layers so that M = [D1 . . . Dm] where Ds indicates the distance
matrix of layer s = 1, . . . ,m. In the case of directed networks, each distance matrix Ds

may be replaced by [Ds, D
T
s ] where the ij-entry of Ds equals the shortest directed path

length from i to j, and the transposed matrix, DT
s , gives the corresponding path lengths

in the reverse direction. In the aforementioned cases, the data matrix is determined by the
adjacency matrix. However, because our method makes no assumptions on the number of
columns of the data matrix, arbitrary type of node attributes can easily be incorporated as
auxiliary columns in the data matrix.

The performance of the proposed method is illustrated by analysing three cases, one
synthetic network and two real-world networks. First, we consider a synthetic power-law
random graph in which each node possesses a capacity characterising the propensity of
link formation with other nodes (Norros and Reittu, 2006; van der Hofstad, 2017). These
capacities are considered as extra data items forming one column in the data matrix M .
When the capacities follow a power-law distribution, a nontrivial asymptotic graph structure
emerges (Reittu and Norros, 2004; Norros and Reittu, 2008b) where nodes can be grouped
into tiers so that nodes with capacity inside a certain interval form a tier, and the tiers
characterise shortest path lengths in the network (van der Hofstad and Hooghiemstra, 2008).
Our aim is to identify network communities that can be related to the distribution of the
shortest path lengths and consequently to the tiers. Along with high degree variability,
another challenge is that the whole tier structure has a vanishing relative size in the large-
graph limit. Usual community detection algorithms are prone to ignore such small-scale
communities.

Second, as an example of a single-layer real network, we consider a snapshot of the
Internet topology in which the nodes are autonomous systems (AS) and the edges are
direct-peering relationships between them (Gastner and Newman, 2006). The data matrix
M equals the graph distance matrix with an extra column of node degrees added.
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Third, as an example of a multiplex real-life network, we investigate a world airline
graph, in which nodes are airports, links are airways, and layers correspond to carriers.
This graph is directed and has a skewed degree distribution, with few high-degree nodes
acting as hubs. We consider concatenated two-way distance matrices of the layers as the
data matrix. In this example, we also demonstrate how to deal with missing data values
which correspond to not fully connected layers.

Finally, we compare our method with some other widely used approaches in community
detection and data compression.

1.1 Related work and main new contributions

Community detection is by now a well-developed field having a literature covering lots of
efficient computational methods and deep theoretical treatments of consistency (Girvan
and Newman, 2002; Karrer and Newman, 2011; Fortunato, 2010; Peixoto, 2015; Zhao et al.,
2012; Lei and Rinaldo, 2015; Zhang and Zhou, 2016; Xu et al., 2020; Avrachenkov et al.,
2022; Bolla, 2013). Theoretically, for a given statistical generative model, the most accurate
community recovery is achieved by a maximum likelihood estimator (Zhao et al., 2012;
Zhang and Zhou, 2016) but implementing this is usually computationally infeasible for
large networks. Whereas popular adjacency matrix based spectral clustering methods seek
to cluster nodes by their expansion profiles (Lei and Rinaldo, 2015), an alternative approach
is to cluster nodes by their distance profiles (Reittu et al., 2018). The relevance of distances
in identifying network communities has not yet been much studied empirically. In many
cases expansion and distance profiles lead to similar results, but in certain cases distance
profiles might expose soft hierarchies which are not easy to detect directly from the adjacency
matrix.

In the present article we propose a general approach where nodes are clustered based
on generic data profiles with an arbitrary number of numerical data associated to every
node. Community recovery in our generalised approach is based on maximising a Poisson
likelihood. This is similar to the stochastic block model (SBM) in that both generate
random matrices with rows corresponding to nodes, and the probability distribution of each
row is determined by the community of the corresponding node. Nevertheless, there is one
crucial difference: whereas SBM generates samples of the full graph (adjacency matrix),
our model captures a user-specified set of features associated with each node. Choosing
adjacency indicator variables as features, we obtain the adjacency matrix as a special case.
When fitted to an adjacency matrix, our method becomes similar to a classical SBM-based
maximum likelihood estimator. SBM-based community recovery methods are known to
suffer from degree bias which can be avoided by employing a degree-corrected SBM method
(Karrer and Newman, 2011; Zhao et al., 2012). Instead of adjacency matrices, our model
can be fitted into arbitrary node features. Our examples focus on graph distances and
node degrees as data items. When fitted to distance data, our model does not implicitly
impose Poisson degree distributions, and therefore, our method applied to distance matrices
provides an alternative way to avoid degree bias in community detection.

There is no canonical definition of a community in networks. In the present article
we interpret communities from an information-theoretical viewpoint of the MDL principle
(Grünwald, 2007). As a result, an objective measure of the success of community detection
is the compression rate of the data at hand. In the current work we suggest to use this
method to generic data matrices describing a network. The novelty of our work comes
from suggesting a systematic way on finding graph communities which reflect a multitude
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of data items associated to the network by partitioning the rows of the corresponding data
matrix. We demonstrate our method using graph distances as a relation between the nodes,
augmented with node degrees as scalar data items. We also demonstrate how to deal with
a case when relations do not exist between all pairs of nodes, in the case of a directed
multiplex network.

Several complementary methods exist for identifying communities, say, in multilayer
networks. For instance, extending the concept of modularity (Newman, 2006) to multilayer
setting (Wilson et al., 2017) and identifying modularity flows with information-theoretic
tools (De Domenico et al., 2015). There are also many alternatives for extending graph
community detection which takes into account data which is not induced from the topology.
(Newman and Clauset, 2016; Hric et al., 2016) extend SBM in order to take into account
node metadata. Community detection in multilayer networks with node attributes has also
been proposed in (Contisciani et al., 2020), yielding promising results in interpreting the
communities and using node attribute for predicting unknown links etc. (Fajardo-Fontiveros
et al., 2022) develop SBM for multilayer networks in which node attributes are used for en-
hancing solving network inference problems. Ideas in these publications could be used to
enhance our method using more sophisticated treatment of the data items, which we leave
as a subject for further study. In an extended survey, a multitude of methods for community
detection are presented and evaluated for various use cases (Magnani et al., 2021). Devel-
opment of quantum computers may offer new ways of solving hard community detection
problems in the future. For instance, solving the modularity maximization problem can be
seen as an instance of quadratic binary optimization, which can be solved on so called quan-
tum annealer realized by the D-Wave with around 5 thousand quantum bits, (Negre et al.,
2020). Another idea is to use Szemerédi’s regularity lemma (Szemerédi, 1978; Tao, 2006) for
obtaining a quadratic binary cost function, minimum of which yields graph communities,
(Reittu et al., 2020).

2 Regular decomposition

In this section, we describe our method of analysing a network based on a generic data
matrix, which describes the network. Regular decomposition was originally developed in
(Nepusz et al., 2008; Reittu et al., 2017b; Pehkonen and Reittu, 2011; Reittu et al., 2014,
2017a, 2018, 2019; Norros et al., 2022). Regular decomposition is inspired by Szemerédi’s
regularity lemma (Szemerédi, 1978), information theory (Grünwald, 2007) and stochastic
block models (Abbe, 2017). In the publication (Reittu et al., 2018) the regular decomposition
method was used for community detection with a single graph distance matrix as a data
matrix. In (Haryo and Pulungan, 2022) the authors evaluated performance of the regular
decomposition method for a generic data clustering. In this work, we extend such methods by
exploiting more general, non-rectangular, data matrices as a basis for community detection.
In this way we get a flexible method that can find communities that highlight various
properties of the network, like degree distribution and distances in multiplex networks and
could be used in other cases that can be formulated in a similar way. In the next subsection
we expose such a method in more details following and adapting some ideas in the cited
works.
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2.1 Data matrix and partition matrix

Consider a set of nodes indexed by [n] = {1, . . . , n}, and an n-by-m data matrix M in which
row i represents data associated with node i, and entry Mij represents the value of the
j-th data item associated with node i. In a basic setting M equals the adjacency matrix A
(with m = n) of a single graph, and the rows correspond to adjacency profiles of the nodes.
Alternatively, network data could be summarised by a distance matrix D (with m = n), in
which case the rows of the data matrix correspond to distance profiles. Indeed, matrices D
and A provide equivalent representations of the network topology1. In this article we take a
more general approach and allow the number m of data items associated with a node to be
arbitrary. This flexibility allows to model multilayer networks by concatenating, say, several
adjacency or distance matrices side by side into a single data matrix. Furthermore, any
data associated with nodes can easily be concatenated to the data matrix as extra columns.
In this more general case, each row of M corresponds to a data profile of a node.

Using the data matrix, we partition the node set into k disjoint sets called communities.
Such a partition can be represented as an n-by-k partition matrix R with entries

Riu =

{
1 if node i is in community u,

0 else.

In applications some entries of the data matrix M may be undefined or unobserved. These
situations are handled by equipping M with an n-by-m indicator matrix C in which Cij = 1
indicated a valid entry, and Cij = 0 indicates an undefined or unobserved entry. The
corresponding matrix elements of M , which are not defined or are missing, are replaced by
dummy values, which is chosen to be 0 in all our sample cases. We demonstrate how this
works in Section 5.

Our aim is to group nodes into few communities in such a way that description length
of M is minimised based on a probabilistic model for the matrix elements of M . In other
words, we try to find an optimal number of communities k and corresponding optimal
partitioning Uk = {U1, U2, . . . , Uk} of [n] to achieve this. In case of non negative integer-
valuedM , rows in a community s ∈ [k] are modelled by a sequence ofm independent Poisson-
distributed random variables denoted as (Xs

1 , X
s
2 , · · · , Xs

m). As a result the probabilistic
model constitutes of n×m independent Poisson random variables with k ×m parameters,
the expectations of the corresponding variables. Such a choice is adopted from (Reittu et al.,
2014). Communities are selected in order to minimise the magnitude

L(Uk) := −
∑
s∈[k]

∑
d∈Us

∑
j∈[m]

log2(P(Xs
j = Mdj).

According to classical information theory (e.g. Cover and Thomas, 2006) there exists a
binary code, the Shannon code, for encoding M with code length = dLe. We use L as a cost
function of the partition Uk. The quality of the found communities is the compression ratio

r(Uk) =
L(M)

L(Uk)
,

in which L(M) =
∑
i,j:Mij>0 logMij is the number of bits needed to represent data matrix

M as a string of integers.

1The shortest-path distance matrix D for a graph can be computed from the adjacency matrix A using
a standard algorithm, e.g. breadth-first search. Conversely, the adjacency matrix A may be recovered from
the distance matrix D by noting that Aij = 1 if and only if Dij = 1.
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2.2 Likelihood function

We employ a statistical latent-variable model in which all observable entries (those with
Cji = 1) of the data matrix M are conditionally independent and Poisson-distributed ran-
dom variables given the community structure. Furthermore, all rows of M corresponding
to the same community are identically distributed. This statistical model is parameterised
by an n-by-k partition matrix R and an m-by-k expectation matrix Λ of Poisson variables,
and corresponds to likelihood function

f(M |Λ, R) =

n∏
j=1

m∏
i=1

k∏
u=1

Poi(Mji|Λiu)CjiRju , (1)

where Poi(x|λ) = e−λ λ
x

x! is the probability mass function of a Poisson distribution with
mean λ. The corresponding log-likelihood can be written as

log f(M |Λ, R) =

m∑
i=1

n∑
j=1

k∑
u=1

RjuCji

(
Mji log Λiu − Λiu

)
− const(M),

where const(M) =
∑n
j=1

∑m
i=1 Cji log(Mji!) does not depend on the model parameters and

can be ignored. The above model is structurally similar to the stochastic block model in
which the data matrix has m = n columns and corresponds to the adjacency matrix, and the
Poisson distributions are replaced by Bernoulli distributions (Holland et al., 1983; Zhang
and Zhou, 2016). In contrast to stochastic block models, the above model allows more
flexibility in choosing data matrices with an arbitrary number of columns m. Note also that
only the rows are grouped in blocks, all columns are treated as separate. In this sense the
model has maximal number of variables with respect to the number of columns.

2.3 Maximum likelihood estimation

Having observed a data matrix M , maximum likelihood estimation searches for a partition
matrix R of [n] for which the function in Eq. 2.2 is maximised. For any fixed R, the
Λ-parameters are set equal to

Λ̂iv(R) =

∑n
j=1MjiRjvCji∑n
j=1RjvCji

, (2)

which is the observed average of the i-th data item in community v. As a consequence,
a maximum likelihood estimate of R is obtained by maximising the profile log-likelihood
f(M | Λ̂(R), R), or equivalently minimising

L(R) =
m∑
i=1

n∑
j=1

k∑
v=1

RjvCji

(
Λ̂iv(R)−Mji log Λ̂iv(R)

)
(3)

subject to n-by-k partition matrices R, in which Λ̂iv(R) is given by (2). We note that the
above function can be written as L(R) =

∑n
j=1 `jZj

(R), in which

`jv(R) =

m∑
i=1

Cji

(
Λ̂iv(R)−Mji log Λ̂iv(R)

)
(4)
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is a normalised minus log-likelihood of the data vector of node j, given that j is placed
in community v and the rate parameters are equal to Λ̂(R). We note that L(R), up to
an additive constant, equal to the description length of the data matrix M in the sense of
Shannon coding.

The same algorithm can be used also in case of data matrix with positive real values,
which was already shown in (Reittu et al., 2014). In this case, each matrix element Mij

is treated as a parameter (the expectation) of a Poisson distribution. The Λ-matrix is
computed according to Eq. 2 for each partition R. Eq. 3 also remains intact, and L equals
to Kullback–Leibler divergence between the corresponding Poisson distributions, the original
with parameters from data matrix M and those with parameters from Eq. 2. The task is
to minimise L which can be done with the same algorithm as in the integer case.

2.4 Regular decomposition algorithm

Minimising the cost function in Eq. 3 with respect to R is a hard nonlinear discrete opti-
misation problem with an exponentially large input space of the order of Θ(kn), making
exhaustive search computationally infeasible. This is why we suggest solving the problem
using a greedy Algorithm 1 which is an EM (expectation maximisation) type algorithm
which alternates between updating Λ according to Eq. 2 for a fixed R (E-step) and up-
dating the partition R by greedily updating the community of each node, one by one, to
minimise `jv(R) in Eq. 4 for a fixed Λ̂ (M-step). Starting from a uniformly random initial
assignment R0, the algorithm finds a local optimum as a limit of the greedy algorithm. Run-
ning the greedy algorithm for several initial random states R0, and selecting the community
assignment with smallest cost in Eq. 3 as the final output.

The runtime of Algorithm 1 is O(smaxtmaxk(n+m)), where smax is the number of random
initialisations and tmax is the number of iterations per optimisation round. Especially, the
runtime is linear in n and m for bounded k, smax, tmax, and is hence scalable for large data
sets.

2.5 Boosted regular decomposition

Setting up the data matrix for Algorithm 1 may require costly preprocessing, e.g. computing
distances between node pairs (see Sec. 2.7). The matrix M may also be simply too large to
be treated as a whole, a situation frequently encountered in the realm of so-called big data.
In such cases the algorithm can be boosted by replacing the data matrix M by a submatrix
MVW with a row set V ⊂ [n] of size n0 and a column set W ⊂ [m] of size m0, and running
Algorithm 1 with the submatrix MVW as input. This results in a partition matrix R∗ of
the node set V . A community assignment of the remaining node set is then computed in
a subsequent classification phase where the community index of each node j ∈ [n] \ V is
chosen to be v(j) ∈ [k]:

v(j) = arg min
v′∈[k]

`jv′(R
∗), `jv′(R

∗) =
∑
i∈W

Cji

(
Λ̂iv′(R

∗)−Mji log Λ̂iv′(R
∗)
)
, (5)

where

Λ̂iv(R
∗) =

∑
j∈V MjiR

∗
jvCji∑

j∈V R
∗
jvCji

is the observed average value of data item i ∈ W among the nodes of V classified into
community v ∈ [k] according to R∗.
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Figure 1: Pseudo code for the Regular decomposition algorithm according to Reittu et al.
(2018).
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The runtime of Algorithm 1 applied to the submatrix MVW is O(smaxtmaxk(n0 +m0)),
and the runtime of the subsequent classification phase is O(km0n). Hence, the boosted
regular decomposition algorithm has complexity O(smaxtmaxk(n0 +m0) + km0n). The fea-
sibility of this boosting approach requires that the row set V is large enough to contain
nodes from all communities, and the column set W is a sufficiently informative collection
of data items. A simple way of selecting V and W is by random sampling. This approach
was developed in (Reittu et al., 2018, 2019) in which sufficient sample sizes were estimated
and convergence proved in some model cases.

2.6 Estimating the number of communities

Algorithm 1 requires the number of communities k as an input parameter. However, in
most situations this parameter is not a priori known and needs to be estimated from the
observed data. The problem of estimating the number of communities can be approached
by recasting the maximum likelihood problem in terms of the minimum description length
(MDL) principle (Rissanen, 1983; Grünwald, 2007) where the goal is to select a model
which allows a minimum coding length for both the data and the model. MDL adheres to
the principle of Occam’s razor in which the best hypothesis follows the best compression of
data, hence justifying the selection of MDL for this task.

When restricting to the model described in Sec. 2.2, then the R-dependent part of the
coding length equals L(R) given by (3), and an MDL-optimal partition R∗ for a given k
corresponds to the minimal coding length

R∗ = arg min
R

L(R).

It is not hard to see that L(R∗) is monotonously decreasing as a function of k, and a
balancing term, the model complexity, is added to select the model that best explains the
observed data. The model complexity is the length of a code that uniquely describes the
mode itself. In all of our experiments, L(R∗) (the negative log-likelihood) as a function of
k becomes essentially a constant above some value k∗. Such an elbow point k∗ is used as
an estimate of k in the experiments in this article, see also (Ketchen and Shook, 1996). In
general it might be necessary to have a more sophisticated method using a model complexity
term (Reittu et al., 2017a; Norros et al., 2022; Peixoto, 2012). However, in examples we are
using it suffices to use a simplified version of the MDL principle based on the elbow point.

2.7 Using distances as data items in multiplex networks

In a multiplex network consisting of s directed graphs with a common node set, each graph
represents one layer. The distance matrices of the layers are denoted by D1, · · · , Ds. If layer
r contains no path from node i to node j, we declare the corresponding entry as missing by
setting (Cr)ij = 0, and we may define (Dr)ij = 0 without loss of generality. As a result,
we obtain s indicator matrices C1, . . . , Cs. When layers are undirected, data about path
lengths is encoded in a concatenated data matrix

M = [D1, D2, . . . , Ds], (6)

and the corresponding indicator matrix is C = [C1, C2, . . . , Cs]. In case of directed layers,
data about directed path lengths is encoded in matrix

M = [D1, D
T
1 , D2, D

T
2 , . . . , Ds, D

T
s ], (7)

9



where row i of matrix Dr (resp. DT
r ) contains the shortest directed path lengths from i to

other nodes (resp. from other nodes to i). The corresponding indicator matrix is denoted
C = [C1, C

T
1 , C2, C

T
2 , . . . , Cs, C

T
s ]. The data matrix M and the indicator matrix C are then

given as input to Algorithm 1, and the optimal number of communities is determined as in
Sec. 2.6.

Computing the distance matrix in an unweighted directed graph with n nodes and e links
has complexity O(n(n+ e)) using breadth-first search (Bang-Jensen and Gutin, 2009). The
regular decomposition algorithm based on distances can be boosted by computing distances
only for a restricted set of reference nodes W ⊂ [n] of size m0, resulting in an n-by-m0

distance matrix D in which Dij equals the distance from node i ∈ [n] to node j ∈ W , and
D can be computed using breadth-first search in O(m0(n+ e)) time. The same complexity
bound is valid for concatenated data matrices of form (6)–(7) in multilayer networks with a
bounded number of layers. Then we may apply the boosted regular decomposition algorithm
(Sec. 2.5) with V = [n] and W as above. The total complexity of the preprocessing step
(restricted distance matrix computations) and boosted regular decomposition algorithm
then equals O(smaxtmaxk(n+m0)+km0n+m0(n+e)). For bounded number of communities
k and bounded iteration parameters smax, tmax, this bound is O(m0(n+ e)). Especially, by
selecting m0 constant, we obtain a scalable algorithm for sparse massive networks with
e = O(n), capable of identifying communities in linear time with respect to the number of
nodes n.

3 Power-law graphs

Most real networks are inhomogeneous. In particular, this is true for graphs where nodes
posses features that correlate with graph topology. Furthermore, sparsity is commonplace,
because links are expensive to maintain. Many real networks have highly varying degrees,
with most nodes having a small number of neighbours, and very few nodes having a huge
number of neighbours as was pointed out in (Barabási and Albert, 1999). The high-degree
nodes usually play an important role as hubs in the network. Already two decades ago, a
highly influential study by (Faloutsos et al., 1999) revealed that the Internet has this kind
of topology.

In this section we summarise a simple generative model for sparse random graphs with
a power-law degree distribution (Sec. 3.1), and apply the regular decomposition algorithm
to a synthetic graph sampled from the model, first using distances (Sec. 3.2), and then
using distances and degrees (Sec. 3.3). Our aim is to show that the used data matrix has a
profound effect on the community structure.

3.1 Poissonian power-law graph

A simple random graph model can be induced from a random graph process described
in (Norros and Reittu, 2006; van der Hofstad, 2017) which we call a Poissonian power-
law graph. We first sample node attributes λ1, . . . , λn independently at random from a
probability distribution on the nonnegative reals, and thereafter connect each unordered
node pair ij by a link with probability 1 − exp{−λiλj/λ}, independently of other node
pairs, where λ =

∑
i λi. When the node attributes are distributed according to a power-law

with density exponent τ ∈ (2, 3), we obtain a generator of a sparse random graph where the
degree distribution has a finite mean and infinite variance.
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In such power-law graphs, quite a rich topological structure spontaneously arises in the
limit of large graph size and with probability tending to one. The nodes are categorised
into sets called tiers according to their degree, such groping we call ’soft-hierarchy’ (Norros
and Reittu, 2006; Reittu and Norros, 2004; Norros and Reittu, 2008b,a). The top tier V0 is
formed, asymptotically as n → ∞, by nodes with degrees in the range (n1/2,∞), and the
other tiers Vk are formed by nodes with degrees in range (nβk , nβk−1 ], in which β0 = 1/2
and βk = (τ − 2)k/(τ − 1) + o(1) for k ≥ 1. For large values of n, it is known that with high
probability, the top tier V0 is fully connected, and further, every node in Vk has a link to Vk−1
for all k up to order log log n (Norros and Reittu, 2006; van der Hofstad and Hooghiemstra,
2008; Reittu and Norros, 2002). The subgraph induced by the union of the tiers Vk for
0 ≤ k ≤ log log n is called the core network. Most of the nodes have small degrees and, as
a result, are outside the core. However, any node is at a very short distance, compared to
log log n, from the bottom tier. This explains ultra-short distances in the graph.

Our aim is to show, through experiments on synthetic and real data, that our version
of the regular decomposition algorithm can identify soft hierarchical structures by using
network distances and node degrees together as a data matrix. The soft hierarchy is a
compact description of the organisation of shortest paths between most of the nodes in
power-law graphs of the type we are interested in. Regular decomposition compresses the
distance matrix, and that is why it is likely that a soft hierarchy shows up in the resulting
short description of the matrix. Degrees are also essential in describing the soft hierarchy,
and that is why their inclusion in data matrix should help. This is why we argue that
a degree-augmented and distance-based community structure matches qualitatively with a
kind of rough soft hierarchy in synthetic and real power-law graphs. Notably, in expectation
E|∪kVk|/n → 0, see (Norros and Reittu, 2006; Reittu and Norros, 2002) as n → ∞, which
means that communities associated with the layers are very small and which means that
such communities are undetectable for typical community-detection algorithms assuming
comparable community sizes.

This illustrates how our method should be used. At first there should be an intuitive
understanding which data is essential for the problem to be solved. In the current example,
the problem is to find the soft hierarchy as a community structure. In other problems the
data matrix could be completely different.

3.2 Regular decomposition using distances

We generated a power-law graph with ten thousand nodes using the model in Sec. 3.1 with
node attributes drawn from a power-law distribution with density exponent τ = 2.5, and
we extracted its largest connected component as input for subsequent analysis. As a result,
we have a graph with n = 7775 nodes and adjacency matrix shown in Fig. 2:(a). Next we
computed the distance matrix of this graph. We identified communities of the graph by
applying Algorithm 1 using the distance matrix as data matrix. By experimenting with
different values of the number of communities k, we found that the cost function in Sec. 2.6
saturates at k = 5. This value is identified as the most informative number of communities.

The block structure of the adjacency matrix induced by the identified communities is
shown in Fig. 2:(b). A clear block structure is revealed with one large block with relatively
high density. All five identified communities are rather large. Hence the identified commu-
nity structure differs remarkably from the theoretical tier structure (Sec. 3.1) where the top
layers are dense and small. This is a natural consequence of partitioning the graph using
distance profiles because the small-degree neighbours of high-degree nodes are likely to have
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similar distance profiles with each other.

(a) (b) (c)

Figure 2: The adjacency matrix of a synthetic power-law graph (n = 7775) with rows and
columns organised according to: (a) random order of nodes, (b) communities identified by
distance matrix, (c) communities identified by distance matrix and degrees (right).

The degrees of the graph are plotted in the Fig. 3:(a). The linear shape in the log-log
plot on the left is typical for power-law graphs. The degrees of nodes in the five identified
communities are shown in Fig. 3:(b). We see that all high-degree nodes are in the same
community, but this community also contains nodes of smaller degree, and is quite large.
Furthermore, Fig. 4:(a) displays the graph with the five identified communities, plotted
using Mathematica’s CommunityGraphPlot tool. We see that nodes in the red community
are central for connecting nodes in the graph. The ringlike communities around the center
appear to roughly play a role similar to tiers in a soft hierarchy, in that most shortest paths
between peripheral nodes use the rings to reach the red center.

(a) (b) (c)

Figure 3: Degrees of nodes in a synthetic power-law graph (n = 7775) sorted from largest
to smallest within each community (indicated by colour). (a) Full graph viewed as one
community. (b) Nodes organised into communities identified by distance matrix. (c) Nodes
organised into communities identified by distance matrix and degrees.
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(a) (b)

Figure 4: Topology of a synthetic power-law graph (n = 7775) coloured according to the
community structure identified by the regular decomposition algorithm with: (a) distance
matrix, (b) distance matrix and degrees.

3.3 Regular decomposition using distances and degrees

We continue experimenting with partitioning the same graph sample as in the previous
section. Instead of using the distance matrix with 7775 columns as in Sec. 3.2, we will
now use a data matrix with only 101 columns, consisting of 100 randomly sampled columns
of the distance matrix and 1 additional column containing the node degrees. The aim of
this experiment is twofold. First, we wish to investigate how adding the degrees to the
data matrix affects the inferred community structure. Second, we will demonstrate that
computing distances to a relatively small set of reference nodes suffices to well characterise
the distance profiles of most nodes.

The adjacency matrix organised according to five identified communities using the mod-
ified data matrix is shown in Fig. 2:(c). The main difference from the previous case shown in
the middle of the same plot, is a small central community with high-degree nodes only. This
can be seen in Fig. 3:(c) which presents the node degrees grouped by communities. The blue
community contains all high-degree nodes, and its degree sequence does not overlap with
other communities. Nodes in the blue community may hence be thought as tier-1 nodes.
As a result, the community structure is qualitatively closer to the theoretical tiers of the
power-law graph. According to the theory, there are only Θ(log log n) tiers, we may expect
only a couple of layers in our sample with log log n = 2.19.

Fig. 4:(b) visualises the identified communities from a topological point of view. The
small and dense red community in the center corresponds qualitatively to the top tier of the
theoretical power-law graph structure in Sec. 3.1. The second and third largest communi-
ties can be seen as tier-2 and tier-3 communities, and the remaining communities form the
periphery of low-degree nodes. Incorporating degrees in the data matrix can hence substan-
tially change the community structure, and in our case align the communities better with a
soft hierarchy of nodes.
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4 Internet autonomous systems graph

We analyse the topology of the Internet by investigating a snapshot of the autonomous
systems (AS) graph in 2006, reconstructed by Mark Newman from data collected by Uni-
versity of Oregon’s Route Views Project2. The graph has 22963 nodes (AS) and 48436 edges
(neighbouring AS pairs). The adjacency matrix and the degrees are plotted in Fig. 5:(a)
and Fig. 6:(a), respectively. The latter demonstrates an approximate power-law structure:
six nodes have degree larger than 1000, whereas most nodes have degree less than 10. The
graph has a soft hierarchical structure3 with the most important nodes contained in tier 1,
the second most important nodes in tier 2, and so on.

(a) (b) (c)

Figure 5: The adjacency matrix of the AS graph (n = 22963) with rows and columns
organised according to: (a) raw data, (b) communities identified by distance matrix, (c)
communities identified by distance matrix and degrees.

4.1 Regular decomposition using distances

We partition the AS graph into communities by Algorithm 1 using 100 randomly sampled
columns of the distance matrix as data matrix. This appears sufficient for this type of
network where we expect that the distances from a typical reference node depend heavily
on the position of the node in the network hierarchy. Using the method in Sec. 2.6, we
found that the most informative number of communities is k = 10. Fig. 5:(b) displays the
adjacency matrix of the AS graph organised by the identified community structure, showing
that the communities are all rather large and of comparable size. The link densities inside
and between communities are all low, and comparable to the overall link density. The
degrees of nodes grouped into communities are displayed in Fig. 6:(b).

The results for the AS graph have similarities with the synthetic power-law graph in
Sec. 3.2. For instance, although all high-degree nodes are in the same community, this
community also contains many low-degree nodes and thus has a low internal density. This

2https://github.com/gephi/gephi/wiki/Datasets
3https://en.wikipedia.org/wiki/Tier_1_network
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(a) (b) (c)

Figure 6: Degrees of nodes in the AS graph (n = 22963) sorted from largest to smallest
within each community (indicated by colour). (a) Full graph viewed as one community. (b)
Nodes organised into communities identified by distance matrix. (c) Nodes organised into
communities identified by distance matrix and degrees.

can be seen in Fig. 6:(b) where the degree sequences of different communities overlap. As a
result, using only graph distances as the data matrix, we were not able to identify the tiers
of the AS graph. For instance, the smallest community has much more nodes than there
are tier-1 nodes3.

4.2 Regular decomposition using distances and degrees

We repeat the community identification experiment of the AS graph by augmenting the
100-column data matrix used in Sec. 4.1 with 1 column containing the node degrees. Again,
k = 10 is identified as the most informative number of communities. Fig. 5:(c) displays
the adjacency matrix of the graph organised according to the identified communities. The
resulting community structure substantially differs from the one in the previous section. The
smallest two communities in Fig. 5:(c) are dense and approximately correspond to tier 1
and tier 2 subnetworks of the AS graph. The degree sequences of the communities are
shown in Fig. 6:(c). There are three rather small and dense communities which contain all
high-degree nodes, but no low-degree nodes.

To assess the quality of the identified communities, we determined the AS identities
in the three smallest and densest communities using a list of AS networks3 and an AS
lookup tool4. Our aim is to verify that the three identified communities are close to tier 1–3
subnetworks and contain the most important autonomous systems. The smallest identified
community (Fig. 7) contains 36 nodes, out of which 23 are tier 1 and the rest are tier 2. The
members of tier 2 are important telecom carriers. For example, ”Hurricane Electric”3 has a
very high degree (7061), which explains why it is included in the smallest community by the
regular decomposition algorithm. The discrepancy between tier 1 and the smallest identified
community may be due to the that the AS graph topology deviates from a simple power-
law graph (e.g. Chen et al., 2002). The second smallest identified community is shown in
Fig. 8:(a). The largest degrees are around 200. In this community, the ten nodes of highest
overall degree do not belong to tier 1, but nevertheless correspond to networks operated

4https://www.bigdatacloud.com/asn-lookup
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by major companies such as British Telecom (UK) and Microsoft (US). The third smallest
community, displayed in Fig. 8:(b), is much sparser and its highest degrees are around 20.
Top-degree members are Telefonica Data S.A. (BR), Orano (US), and Harvard University
(US).

Figure 7: Subgraph of the AS graph induced by the smallest community identified by
regular decomposition using distances and degrees.

We conclude that augmenting the graph distance matrix by a column containing the node
degrees allows to identify much more meaningful communities, compared to only using the
distance matrix. The regular decomposition method was able to identify central carriers in
the top tiers with good accuracy from a large data set. In particular, we discovered a dense
tier 1-rich subnetwork. The suggested method could be used even for extremely large graphs
encountered in areas such as biology and social networks, where it might be impossible to
acquire the entire graph for analysis. Our methods need only a limited sample of shortest
paths between a set of sampled nodes, and node degrees. Community detection on such a
sample results in a model which can be used to classify any other node outside the sample.
It has the potential to rapidly detect soft hierarchies in massive networks.

5 World airline graph

We demonstrate how the regular decomposition method can be applied to a directed mul-
tilayer graph defined as a collection of s graphs with a common set of n nodes, each graph
representing one layer. As a concrete example, we used a world airline graph5 consisting
of 3321 nodes (airports), 67663 links (flights), and 548 layers (airlines) displayed in Fig. 9.
We extracted the three largest airlines (American Airlines, United Airlines, Air France) in

5https://openflights.org/data.html
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(a) (b)

Figure 8: Subgraphs of the AS graph induced by the second (a) and third (b) smallest
communities identified by regular decomposition using distances and degrees. Ten nodes
of highest overall degree in the second smallest community are highlighted in red: 1. Net
Access Corporation, 2. Microsoft, 3. LondonInterconnectionPoint, 4. BT, 5. Internet
Initiative Japan, 6. FrontierCommunicationsofAmerica, 7. MCICommunicationsServices,
8. INAP, 9. TransTeleCom, and 10. Telstra.
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June 2014, resulting in a directed multilayer graph with n = 691 nodes and s = 3 layers.
Fig. 10 displays the data matrix corresponding to the concatenation of three directed graph
distance matrices and their transposes (see Eq. 7).

Figure 9: Geographic projection of the world airline graph.

Figure 10: Top: Grey-scale visualisation of the data matrix of the world airline graph.
The white elements correspond to undefined distances. The matrix has 691 rows (airports)
and 4146 columns (directed graph distances in three layers). Each layer occupies a band
of columns of equal width and is roughly visible in the picture. Bottom: The same data
matrix with rows reorganised into 6 communities identified by regular decomposition using
layerwise distances
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5.1 Regular decomposition using layerwise distances

Using Algorithm 1 and the method in Sec. 2.6, we discovered k = 6 as the most informative
number of communities, and identified the corresponding communities. The resulting data
matrix, organised by the identified communities is shown at the bottom of Fig. 10. The
smallest community has 9 nodes consisting of airports in the Middle East (4), Europe
(2), East Asia (1), and South America (1). The second smallest community has 13 nodes
consisting of airports in East Asia (5), Africa (3), South-East Asia (2), Pacific (2), North-
America (1). The remaining four communities are of comparable size: One of them has 27
airports in France and 85 in USA, and the other three have most airports located in the
USA.

(a) (b)

Figure 11: Communities of the world airline graph identified by (a) regular decomposition
using layerwise distances, (b) SBM fitting with a layer-aggregated adjacency matrix.

6 Comparison with other community detection and data
compression methods

In this Section we make a quantitative assessment of communities found by regular decom-
position with respect to some other community detection and data analysis methods. As
the test cases we use the real-life networks analysed in the previous Sections.

6.1 Community detection

6.1.1 Internet autonomous systems graph

As stated in the introduction, our aim is to have a community detection method which
identifies communities which reflect various aspects of data associated with the network, and
their role in the graph topology. There are of course many existing powerful community
detection methods which can do this in some particular cases. We illustrate this point
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by finding communities in the AS graph (Sec. 4) using two popular methods: modularity
maximisation and stochastic block model fitting.

Modularity maximisation (Newman, 2006) aims to find densely connected communities
which have as little as possible links between the communities. Fig. 12:(a) displays the ad-
jacency matrix organised according to the 25 identified communities, and Fig. 13 illustrates
the subgraphs induced by the communities. As expected, the community structure deter-
mined by modularity maximisation is substantially different from the community structures
identified by regular decomposition in Fig. 5:(b–c). The subgraphs in Fig. 13 do not respect
the tiered structure found with regular decomposition. For instance, the high-degree nodes
forming tier 1 are embedded in very large communities, which can be inferred from Fig. 13.

(a) (b)

Figure 12: Adjacency matrix of the AS graph organised according to (a) 25 communities
identified by modularity maximisation, (b) 10 communities identified by SBM fitting.

Stochastic block model (SBM) fitting (Zhao et al., 2012) uses the adjacency matrix to find
communities in which relations inside and between the communities are like those in classical
random graphs. Information-theoretic model fitting can be used to find the communities.
We used the regular decomposition method for this. For computational tractability, instead
of the full adjacency matrix we restricted to the largest connected component of the subgraph
induced by a uniform random sample of 10000 nodes. After identifying the communities
of the restricted graph, the parameters of the model were used to classify all nodes of the
graph. A smaller sample is not feasible, because the resulting induced subgraph would hardly
have any links. This is in stark contrast to regular decomposition using graph distances,
where a sample of 100 nodes suffices. Fig. 12:(b) shows the resulting community structure,
where a dense tier-1-like community appears, but a deeper tier hierarchy seems quite weakly
represented, as manifested by a large unstructured block of low-degree nodes. In contrast,
a much finer community structure is identified by regular decomposition based on distances
and degrees in Fig. 5:(c). A typical subgraph induced by a pair of communities identified by
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Figure 13: Subgraphs of the AS graph induced by the 25 communities identified by mod-
ularity maximisation.

SBM fitting is a well-connected graph in which one part is like a neighbourhood of the other
community, see Fig. 14. On the other hand, in a community structure identified by distance
profiles, such pairs are typically not connected — this is simply because many distances are
larger than one.

For a more quantitative comparison, we computed the PageRank centrality of the net-
work nodes (with damping factor 0.8), and plotted in Fig. 15 the PageRank distributions
within communities identified by three methods: modularity maximisation, RD using dis-
tances, and RD using distances and degrees. We see that the latter is the only method able
to separate nodes of high PageRank into a common community. This illustrates the ability
of our method in identifying community structures associated with the topological roles of
nodes in the network.

6.1.2 World airline graph

We compare the community structure of the world airline graph determined in Sec. 5.1 with
a more customary SBM fitting applied to the adjacency matrix of the undirected graph
obtained by collapsing the layers and ignoring link directions. We impose the same number
k = 6 of communities as previously. The resulting community structure, visualised in
Fig. 11:(b), bears some similarity with the one in Fig. 11:(a), but mostly in the periphery of
the network which forms the largest community in both cases. The peripheral communities
are highlighted in Fig. 16. Furthermore, Fig. 17 displays the overlap matrix of communities.
The overlap is weak and the community structures are quite different. If the community
structures were similar, there should be at each row exactly one strong element in this
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Figure 14: A subgraph of the AS graph induced by two distinct communities (red, blue)
identified by SBM fitting. The nodes of the blue community are almost entirely low-degree
neighbours of the nodes in the red community.

(a) (b) (c)

Figure 15: PageRank centrality of AS graph nodes in communities identified using three
alternative methods, and sorted from smallest to largest within each community (indicated
by colour). (a) Modularity maximisation, (b) RD using distances, (c) RD using distances and
degrees. Only the last method can group the most central nodes into separate communities,
indicated by blue and orange circles in (c).
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matrix and those strong elements would be all in different columns.

(a) (b)

Figure 16: Largest community (highlighted in red) of the world airline graph identified
using (a) regular decomposition using layerwise distances, (b) SBM fitting with a layer-
aggregated adjacency matrix.

Figure 17: Overlap of communities determined by SBM fitting using layer-aggregated graph
(row index) and by regular decomposition using layerwise distances (column index). The
(i, j)-entry is computed as the number of common nodes in community pair (i, j) divided
by the number of nodes in the larger community in the pair. Only the pair (3, 6) indi-
cates a substantial value around 0.5. This pair corresponds to the peripheral communities
highlighted in Fig.16.
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6.2 Data compression

A natural measure of our method is the compression rate of the data matrix used in com-
munity detection. This experiment is done on the distance matrix for the AS graph. As the
uncompressed description length, we used Mathematica’s internal memory requirement for
storing a distance matrix (ByteCount), which for the AS graph equals L0 ≈ 1.7× 1010 bits.
First, as a standard compression, we applied Mathematica’s built-in implementation of the
zlib6 algorithm. Second, we computed the description length L for the distance matrix by
applying RD. This consists of the Shannon code length, which is minus base-2 logarithm of
the probability of the distance matrix in the probabilistic model induced by the community
structure, and the code lengths of the parameters. We used the leading part of the prefix
code lengths of integers (Grünwald, 2007). For a positive integer m, the code length of
the integer is dlog2me + dlog2 log2me + · · · , in which log2 is iterated as long as the result
remains positive, after which the sum is truncated. The parameters we need to encode
are the expectations of k × n Poisson variables, k = 10, and n = 22963, and the partition
into communities which can be represented as an n-vector with coordinates in {1, . . . , 10}.
Third, we computed similar code length for community structure found using node degrees
along with the distance matrix. The compression ratio L/L0 is displayed in Table 1. We
see that zlib compresses the original data by around 9 times while RD using distances does
a better job with around 12 times compression. Augmenting the RD by also using degrees
leads to a slight further improvement.

We also repeated this experiment for the world airline graph for which the uncompressed
layerwise distance matrix requires L0 ≈ 5.5× 108 bits. The zlib algorithm compresses this
data by around 80 times, while regular decomposition on the layerwise distance matrix is
able to compress 235 times, almost three times more than zlib, see Table 1.

Table 1: Compression ratio for the AS graph and the world airline graph using three meth-
ods: zlib compression algorithm, RD using distances, and RD using distances and degrees.

AS graph Airline graph
zlib 9.2 80.4
RD using distances 12.3 235.6
RD using distances and degrees 12.6 –

7 Conclusion

We demonstrated a unified approach of finding network communities in large and sparse
multilayer graphs, based on extending the regular decomposition method to handle data
matrices with an arbitrary number of columns representing various types of data associated
with nodes. We demonstrated our method by analysing graph distance matrices augmented
with a column of node degrees. Our method has a low computational complexity allowing
to handle massive input graphs, and it also tolerates missing data entries. We illustrated the
method with a synthetic power-law graph and two real graphs: a snapshot of the Internet
topology and a directed multilayer graph describing the world airline topology. In the latter
case, as data matrix we used a concatenation of graph distance matrices from different layers,
which allowed to find meaningful communities despite massive amounts of missing data. In

6https://zlib.net
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contrast to popular community detection methods, such as modularity maximisation and
stochastic block model fitting, our method appears better suited for identifying community
structures aligned with tiered hierarchies often encountered in scale-free complex networks.
When applied to distance matrices, our method implicitly assumes that graph distances
are Poisson distributed and mutually independent. This assumption was motivated by
computational tractability instead of a good fit to data. However, because graph distances
in scale-free networks are known to be highly concentrated around their mean even for heavy-
tailed degree distributions (van der Hofstad et al., 2007; van der Hoorn and Olvera-Cravioto,
2018), the Poisson assumption may not be overly unrealistic. For carrying out a theoretical
analysis of consistency of our method applied to distance matrices, an important future
problem is to first analyse joint distributions of distances in degree-corrected stochastic block
models, extending state-of-the-art result obtained for random graphs without communities
(Bhamidi et al., 2017; Jorritsma and Komjáthy, 2020). Although the experiments carried
out in this work were restricted to topological data matrices that can be deduced from
the graph adjacency matrix, the regular decomposition method allows to incorporate an
arbitrary number of auxiliary columns to the data matrix. This opens up ways to analyse and
model network problems in which nontopological node-associated data plays an important
role in forming graph communities, and remains an important problem of further study.
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Jorritsma, J. and Komjáthy, J. (2020). Weighted distances in scale-free preferential attach-
ment models. Random Structures & Algorithms, 57(3):823–859.

Karrer, B. and Newman, M. E. J. (2011). Stochastic blockmodels and community structure
in networks. Physical Review E, 83:016107.

26



Ketchen, D. J. and Shook, C. L. (1996). The application of cluster analysis in strategic man-
agement research: An analysis and critique. Strategic Management Journal, 17(6):441–
458.
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Norros, I., Reittu, H., and Bazsó, F. (2022). On model selection for dense stochastic block
models. Advances in Applied Probability, 54(1):202–226.
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