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Abstract

We introduce a notion of kth order stochastic monotonicity and duality that
allows one to unify the notion used in insurance mathematics (sometimes refereed to
as Siegmund’s duality) for the study of ruin probability and the duality responsible
for the so-called put - call symmetries in option pricing. Our general kth order
duality can be financially interpreted as put - call symmetry for powered options.
The main objective of the present paper is to develop an effective analytic approach
to the analysis of duality leading to the full characterization of kth order duality of
Markov processes in terms of their generators, which is new even for the well-studied
case of put -call symmetries.
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1 Introduction

1.1 Main objectives

A real-valued Markov process Xx
t is called stochastically monotone if P(Xx

t ≥ y) is a
non-decreasing function of x for any y. Siegmund’s theorem (see [35]) states that if Xx

t

is stochastically monotone and P(Xx
t ≥ y) is a right continuous function of x for any y,

then there exists a Markov process Y y
t , called dual to Xx

t such that

P(Y y
t ≤ x) = P(Xx

t ≥ y) (1)

holds. This condition can be also rewritten as

E θ(x− Y y
t ) = E θ(Xx

t − y), (2)

where θ is the step function

θ(x) =

{

1, x ≥ 0

0, x < 0.
(3)
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In the theory of option pricing, Markov processes Xx
t , Y

y
t are said to satisfy the put-call

symmetry relation if
E(x− Y y

t )+ = E(Xx
t − y)+ (4)

holds. Looking at (4) and (2) suggests to introduce a general notion that includes these
two dualities as particular cases. Namely, let us say that a Markov process Y y

t is dual to
Xx

t of order k, k ∈ R, if
E(x− Y y

t )
k−1
+ = E(Xx

t − y)k−1
+ . (5)

The cases k = 2 and k = 1 correspond to (4) and (2) respectively (with a natural
convention that x0

+ = θ(x)). These dualities have also a clear financial interpretation
describing symmetries between powered European options, the case k = 1 standing for a
symmetry between digital options.

The aim of this paper is to fully characterize Markov processes satisfying (5) in terms
of their generators, paying special attention to processes that are martingales, as such
processes appear in risk-neutral evaluation. This characterization seems to be new even for
the standard put-call symmetry (4), though the important particular cases of underlying
price processes being Lévy processes or processes with price independent compensator
are well studied, see [1], [19]. We shall also extend the theory to time non-homogeneous
processes, related notion of duality being referred to in [1] as the put - call reversal.

We shall not pay attention to positivity of our martingales (which should be of course
the case for realistic price processes), as this problem can be handled separately from the
discussion of duality, either by insuring that the origin is not attainable, or by directly
working with exponents.

We shall also not address the issues arising at boundary points, as this development is
treated separately in [28], in connection with the problems from insurance mathematics,
where this question becomes crucial (ruin problem, see [2], [3], [4], [36], [14]), because
precisely the absorption rates for attainable origin becomes there the most important
quantity to study.

1.2 Plan of the paper

In Section 2 we introduce our analytic approach to the analysis of duality of Markov
processes via their generators. In Section 3 we present some simplest examples of duality
arising from our results. In Section 4 we extend the notion of stochastic monotonicity
to arbitrary orders and prove the corresponding extension of Siegmund’s theorem linking
stochastic monotonicity and duality. In Section 5 we obtain our main results on the char-
acterization of duality of one-dimensional Markov processes via their generators. The last
section is devoted to the extension of the theory to time-nonhomogeneous Markov pro-
cesses. In appendix we summarize in appropriate form some crucial facts about fractional
derivatives used in the main text.

1.3 Bibliographical comments

Duality of Markov processes is an important topic in probability, see e.g. [29] for an
extensive introduction to the subject, with special stress on interacting particles, see
also [12] for the related study of stochastic monotonicity. Paper [35] initiated systematic
research of the duality based on stochastic order. For crucial applications of duality in
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super-processes we can refer to [18] and [31]. The duality for general recursions and the
duality for discrete Markov chains are developed in [5] and [24] respectively. For stochastic
monotonicity and duality of birth and death processes we refer to [37].

For general introduction to intertwining and many examples related to Lévy processes
see [8], [9], [23], [32], [15] and references therein.

The subject of put - call symmetry was initiated in [7], [6] and attracted since then
lots of attention. We can refer to papers [11], [30], [17] for detailed reviews of recent
developments. Let us mention specifically papers [1], [19], where put - call symmetry was
analyzed for markets based on diffusions with price independent jumps and Lévy processes
respectively. Paper [10] developed the theory for American options and papers [22], [21]
for Asian options. Paper [17] characterizes the symmetry in terms of semimartingale char-
acteristics of general dual semimartingales related by the dual martingale measures. An
important recent development concerns the study of quasi self-dual process, which relates
the conditional symmetry properties of both their ordinary as well as their stochastic
logarithms, see [33], [34].

For the application to insurance mathematics we refer to [2], [3], [36], [14]) and refer-
ences therein.

The approach to the study of Siegmund’s duality via generators was initiated in [25]
and continued in [26], see also monograph [27].

2 Analytic approach to the analysis of duality

2.1 Definition of stochastic duality

Let us first recall the standard definition of duality of Markov processes.
Let Xx

t and Y y
t be two Markov processes (small x, y here and in what follows stand

for the initial points) with values in possibly different Borel spaces X and Y . Then Y is
called dual to X with respect to a Borel function f on X × Y , or shortly f -dual, if

Ef(x, Y y
t ) = Ef(Xx

t , y) (6)

for all x ∈ X, y ∈ Y , where E on the left hand side and the right hand side correspond to
the distributions of the processes Y y

t and Xx
t respectively.

An important example is given by the duality equation

P(Y y
t ≤ x) = P(Xx

t ≥ y), (7)

where ≥ is a partial order. This is a particular case of (6) with f(x, y) = 1{x≥y} (we
denote here and in what follows by 1M the indicator function of the set M).

From the point of view of the general definition of f -duality, duality of kth order given
by (5) corresponds to fk-duality for fk(x, y) = (x− y)k−1

+ , where x± = max(0,±x).

2.2 Analytic counterpart of duality

For a metric space X we denote by B(X), C(X),M(X) the Banach spaces of bounded
measurable functions, bounded continuous functions and bounded signed Borel measures,
first two spaces equipped with the sup-norm and the last one with the total variation
norm. If X is locally compact, C∞(X) denotes the closed subspace of C(X) of functions
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vanishing at infinity. The standard duality between B(X) and M(X) is given by the
integration: (f, µ) =

∫

X
f(x)µ(dx).

By a signed (stochastic) kernel from X to Y we mean, as usual, a function of two
variables p(x,A), where x ∈ X and A are Borel subsets of Y such that p(x, .) is a bounded
signed measure on Y for any x and p(., A) is a Borel function for any Borel set A. We
say that this kernel is bounded if supx ‖p(x, .)‖ < ∞.

Any bounded kernel specifies an integral operator B(Y ) → B(X) via the formula

Ug(x) =

∫

Y

g(z)p(x, dz).

The standard dual operator U ′ is defined as the operator M(X) → M(Y ) specified by
the duality relation

(f, U ′µ) = (Uf, µ),

or explicitly as

U ′µ(dy) =

∫

X

p(x, dy)µ(dx).

A bounded linear operator UD(f) in B(Y ) (or C(Y ) or C∞(Y )) is said to be f -dual to
a bounded linear operator U in B(X) (or C(X) or C∞(X)) if, for any x, y,

(UD(f)f(x, .))(y) = (Uf(., y))(x). (8)

Let us say that a function f on X × Y separates measures on X if, for any Q1, Q2 ∈
M(X), there exists y ∈ Y such that

∫

f(x, y)Q1(dx) 6=
∫

f(x, y)Q2(dx). If this is the
case, the integral operator F = Ff : M(X) → B(Y ) given by

(FQ)(y) =

∫

f(x, y)Q(dx) (9)

is an injective bounded operator, so that the linear inverse F−1 is defined on the image
F (M(X)). Let us say that the function FQ is f -generated by Q.

Our analysis will be based on the following simple but crucial observation.

Proposition 2.1. Let f be a bounded measurable function separating measures on X and
U an integral operator in B(X) with a bounded signed kernel p.

(i) Suppose UD(f) is an integral operator with a bounded kernel pD(f)(y, dz) satisfying
(8). Then the action of UD(f) on F (M(X)) is given by the equation

UD(f) = F ◦ U ′ ◦ F−1, (10)

or, equivalently, UD(f) satisfies the intertwining relation

UD(f) ◦ F = F ◦ U ′. (11)

(ii) Let us define an operator UD(f) on F (M(X)) by the the linear extension of relation
(8), that is, by the equation

(UD(f)F (Q))(y) = (UD(f)

∫

X

f(x, .)Q(dx))(y) =

∫

X

(Uf(., y))(x)Q(dx). (12)

Then UD(f) is well defined on F (M(X)) and (10) holds.
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Proof. (i) Let g ∈ F (M(X)) be given by g(y) =
∫

f(x, y)Qg(dx). Then

UD(f)g(y) =

∫

Y

g(z)pD(f)(y, dz),

which by Fubini’s theorem rewrites as

UD(f)g(y) =

∫

X

(
∫

Y

f(x, z)pD(f)(y, dz)

)

Qg(dx),

and consequently as (12) with Q = Qg. Hence

UD(f)g(y) =

∫

X

∫

Y

f(z, y)p(x, dz)Qg(dx) =

∫

Y

f(z, y)Q̃(dz),

with

Q̃(dz) =

∫

p(x, dz)Qg(dx).

Thus UD(f)g is f -generated by Q̃ = U ′Qg, as required.
(ii) Instead of using Fubini’s theorem, we start with (12) by definition. The remaining

calculations are the same.

Remark 1. For discrete Markov chains, Proposition 2.1 was proved in [24].

2.3 Application to semigroups and Markov processes

Representation (10) has the following direct implication for the theory of semigroups.

Proposition 2.2. (i) Let f be a bounded measurable function separating measures on X
and Tt a semigroup of integral operators in B(X) (or C(X), or C∞(X)) specified by the

family of bounded signed kernel pt(x, dz) from X to X. Then the dual operators T
D(f)
t

(defined by (12) with U = Tt) in F (M(X)) also form a semigroup and

T
D(f)
t = F ◦ T ′

t ◦ F
−1. (13)

(ii) If the semigroup Tt is generated by an operator L in C(X) defined on some in-
variant (under all Tt) domain D, then

d

dt

∣

∣

∣

∣

t=0

T
D(f)
t g = F ◦

d

dt

∣

∣

∣

∣

t=0

T ′ ◦ F−1g = F ◦ L′ ◦ F−1g,

that is, the generator of the semigroup T
D(f)
t is

LD(f) = F ◦ L′ ◦ F−1, (14)

with domain containing the image (under F ) of the domain of L′.

Proof. (i) This is straightforward from (10) and the standard obvious fact that T ′
t form a

semigroup in M(X). (ii) Follows from (i).
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2.4 Duality for f depending on the difference of its arguments

The theory simplifies essentially if f is translation-invariant, that is, f depends only on
the difference of its arguments, f(x, y) = f(y − x), with some other function f that we
still denote by f (with some ambiguity). In this case, the operator F from (9), applied
to a measure Q with density q, takes the form

g(y) = (FQ)(y) =

∫

Rd

f(y − x)q(dx), (15)

i.e. it becomes a convolution operator. It is then well known that under appropriate
regularity assumptions, f is the fundamental solution of the pseudo-differential operator
Lf with the symbol

Lf (p) =
1

f̂(p)
, (16)

where

f̂(p) =

∫

e−ixpf(x)dx

is the Fourier transform of f .
Hence g(y) from (15) solves the equation Lfg = q, so that F−1 = Lf . Multidimensional

examples with differential operators Lf are given in [28].

3 Simplest examples

Let Xx
t be the stable-like Markov process with the Feller semigroup generated by the

operator

Lg(x) = ∓a(x)
dk

dxk
, k ∈ (0, 2], (17)

with a nonnegative continuously differentiable function a(x) (see Appendix for the defini-
tion of fractional derivatives and integral operators used here and in what follows), where
the signs ∓ correspond to the cases k ∈ (0, 1) and k ∈ (1, 2] respectively (for the trivial
case k = 1 the sign is non-essential). Then, by (14), the dual generator of order k is given
by

LDk = ∓I+k
dk

d(−x)k
a(x)

dk

d(−x)k
= ∓a(x)

dk

d(−x)k

(where we used definition (68) and the properties of Ik discussed before (69)), so that the
dual process to Xx

t of order k is the process Y y
t generated by

LDkg(x) = ∓a(x)
dk

d(−x)k
, (18)

leading to the following result.

Proposition 3.1. Let Xx
t , Y

y
t be Markov processes generated by (17) and (18) respec-

tively, with k ∈ (0, 2]. Then

E(x− Y y
t )

k−1
+ = E(Xx

t − y)k−1
+ . (19)
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In financial terms this means that the price of the European powered call option for
the initial stock price x and the strike y equals the price of the European powered put
option for the initial stock price y and the strike x (discounting is supposed to be already
included in the definition of processes Xx

t and Y y
t ).

The most important cases are with k ∈ (1, 2), since then the corresponding Markov
processes Xx

t , Y
y
t are martingales, and thus the expectation corresponds to a risk-neutral

evaluation.
The case of the diffusions, that is k = 2, is well known, see e.g. [1].
Similarly, if Xx

t is generated by

Lg(x) = −a(x)

∣

∣

∣

∣

d

dx

∣

∣

∣

∣

k

, (20)

with k ∈ (0, 2], then the dual with respect to the function f(x, y) = |x − y|k has the
generator

LD = −

∣

∣

∣

∣

d

dx

∣

∣

∣

∣

−k ∣
∣

∣

∣

d

dx

∣

∣

∣

∣

k

a(x)

∣

∣

∣

∣

d

dx

∣

∣

∣

∣

k

= −a(x)

∣

∣

∣

∣

d

dx

∣

∣

∣

∣

k

,

which coincides with L. Consequently, Xx
t is self-dual in this sense, leading to the follow-

ing.

Proposition 3.2. Let Xx
t be the Markov process generated by (20) with k ∈ (0, 2]. Then

E|y −Xx
t |

k−1 = E|Xy
t − x|k−1. (21)

In the financial interpretation this means the self-symmetry of powered straddle spreads.
Similarly one can analyze symmetries linking various option spreads, though the con-

ditions for underlying Markov processes can become rather restrictive. For instance, let
us consider a symmetry related to the so-called bull put spread, whose premium has the
form (up to a linear equivalence)

fα,β(x, y) = (x− y + α)+ − (x− y + β)+ (22)

(powered version can be analyzed analogously). The corresponding operator F from (9)
can be taken as F = (Tα − Tβ)I

+
2 , where Tcf(x) = f(x+ c) denotes the shift, so that

F−1 =
∞
∑

m=0

Tm
β−αT

−1
α

d2

dx2
.

Hence, for L = a(x)d2/dx2, we get

LDg(x) = a(x+ α)

∞
∑

m=0

Tm
β−α − a(x+ β)

∞
∑

m=1

Tm
β−α,

which equals L if a(x) is a (β − α)-periodic function. In this case we get the duality
relation

Efα,β(x,X
y
t ) = Efα,β(X

x
t , y). (23)
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4 Stochastic monotonicity and duality

Let us say that a Markov processXx
t with transition probabilities pt(x, dz) is stochastically

monotone of order k > 0, if for any t > 0, y ∈ R, the derivative

∂k

∂xk
E(Xx

t − y)k−1
+ =

∂k

∂xk

∫

z≥y

(z − y)k−1
+ pt(x, dz) (24)

exists in the sense of distribution and is a positive measure (this includes the assumption
that E(Xx

t − y)k−1
+ is finite for all y). If k ≥ 1, then an equivalent requirement is that, for

any t > 0, y ∈ R, the derivative

∂k−1

∂xk−1
E(Xx

t − y)k−1
+ =

∂k−1

∂xk−1

∫

z≥y

(z − y)k−1
+ pt(x, dz) (25)

exists in the sense of distribution and is a non-decreasing function of x.

Remark 2. (i) If k ≥ 2, this can be reformulated avoiding generalized functions by saying
that the derivative

∂k−2

∂xk−2

∫

z≥y

(z − y)k−1
+ pt(x, dz)

exists as an absolutely continuous function such that its first derivative (defined almost
surely) is a non-decreasing function of x. (ii) One can also formulate the notion of
stochastic monotonicity of arbitrary order, avoiding generalized derivatives, in terms of
the positivity of the increments of kth order of the function E(Xx

t − y)k−1
+ (as a function

of y).

Usual stochastic monotonicity corresponds to k = 1. The following result extends
Siegmund’s theorem to monotonicity of higher orders.

Theorem 4.1. A real-valued Markov process Xx
t with transition probabilities pt(x, dz)

and semigroup Tt has a Markov dual of order k ≥ 1 if and only if it is stochastically
monotone of order k, satisfies the limiting relation

∂k−1

∂xk−1

∫

z≥y

(z − y)k−1
+

Γ(k)
pt(x, dz) →

{

1, x → ∞,

0, x → −∞,
(26)

for all y and, if k = 1, the function
∫

z≥y
pt(x, dz) = P(Xx

t ≥ y) is right continuous.

Proof. Let us first analyze Siegmund’s case k = 1 from our point of view. Then the
mapping F : M(R) → B(R) given by the corresponding equation (9) becomes the usual
integration, that is

FQ(y) =

∫

θ(x− y)Q(dx) =

∫

x≥y

Q(dx),

whose image consists of the left continuous functions (because we defined θ to be right
continuous) of uniformly bounded variation (the total variation of FQ being equal to the
total variation norm of Q) tending to zero at +∞. By (13), for a g = FQ with a finite
measure Q = −dg, the corresponding dual semigroup becomes

TD
t g(y) = F ◦ T ′

t ◦ F
−1g(y) = −

∫
(
∫

z≥y

pt(w, dz)

)

dg(w).
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Integrating by parts (notice that here it is crucial that the functions
∫

z≥y
pt(x, dz) and g

are right continuous and left continuous respectively, see (71) with k = 1), this rewrites
as

TD
t g(y) =

∫

g(w)dw

∫

z≥y

pt(w, dz), (27)

where dw
∫

z≥y
pt(w, dz) = dwP(Xw

t ≥ y) is the Stiltjes measure of the increasing function

P(Xw
t ≥ y). Equation (27) defines an integral operator with a positive stochastic kernel,

which, taking into account assumption (26), is in fact a probability kernel. Hence this
operator extends naturally to a positivity preserving conservative contraction in B(R)
thus defining a Markov transition operator. Finally the Markov property (which is now
equivalent to the Chapman-Kolmogorov equation or to the semigroup property of the
operators T

D(f)
t ) follows from Proposition 2.2.

Now let k > 1. Then the corresponding operator F , given by (9), becomes (up to
a constant multiplier) the integration operator I+k (see (68) from Appendix) and the
corresponding function f specifying duality is (x − y)k−1

+ . Assuming g belongs to the
image I+

k of I+k (see discussion after (68)), so that

(I+k )
−1g(y) =

dkg(w)

d(−w)k
= Q(dw)

is a measure from M+
k , one can integrate by parts (using (71)) in the formula

TDk

t g(y) = I+k ◦ T ′
t ◦ (I

+
k )

−1g(y)

=

∫

z≥y

(z − y)k−1
+

Γ(k)

(
∫

w∈R

pt(w, dz)
dkg(w)

d(−w)k

)

=

∫
(
∫

z≥y

(z − y)k−1
+

Γ(k)
pt(w, dz)

)

dkg(w)

d(−w)k

(where the corresponding dual operators are marked by the subscript Dk) leading to

TDk

t g(y) =

∫

g(w)
∂k

∂wk

(
∫

z≥y

(z − y)k−1
+

Γ(k)
pt(w, dz)

)

. (28)

This formula can be used to define a natural extension of (27) (initially defined as a
mapping I+

k → B(R)) as a positive integral operator. The proof is now completed as in
case k = 1.

For k ∈ (0, 1) we assume a bit more regularity on the initial process Xx
t , which, on

the one hand, is enough for most of the application and, on the other hand, allows one to
avoid rather subtle measure-theoretic problems. Consequently, the next result is obtained
by literally the same proof as for k > 1 above.

Theorem 4.2. Suppose a real-valued Markov process Xx
t has bounded transition proba-

bility densities pt(x, z) for t > 0. Then Xx
t has a Markov dual of order k ∈ (0, 1) if and

only if it is stochastically monotone of order k and measure (24) has the total mass one.

5 Characterization of duality in terms of generators

In this section we obtain our main results. Namely, using the formula for f -dual generators
(14) we explicitly calculate the dual for an arbitrary Feller process. Let us first consider
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diffusions. Moreover, for clarity, we shall consider separately the cases of integer and real
k.

For an integer k, we shall denote by Ck the space of k times continuously differential
functions on R (with bounded derivatives). In what follows we are not aiming at the
weakest possible assumption on the coefficients a, b, but assume as much regularity as
needed to get the most transparent formulas for dual operators. Also the convenient as-
sumption of boundedness can be relaxed by using the theory of diffusions with unbounded
coefficients.

Let us consider a Feller diffusion Xx
t with the Feller semigroup Tt is generated by the

operator

Lg(x) = a(x)
d2

dx2
+ b(x)

d

dx
(29)

with a nonnegative function a(x).
The following fact is a particular case of a more general multi-dimensional result from

[28]. If a, b ∈ C1, then the Markov dual process Y x
t of order k = 1 exists and is a diffusion

generated by the operator

LDkg(x) = a(x)
d2

dx2
+ [a′(x)− b(x)]

d

dx
.

This allows us to exclude k = 1 from the following arguments.

Theorem 5.1. Suppose k > 1 is an integer and a, b ∈ Ck. The diffusion Xx
t generated

by (31) is stochastically monotone of order k if and only if the function

ωy(x) =
∂k−1

∂xk−1

[

(x− y)k−2

Γ(k − 1)
b(x) +

(x− y)k−3

Γ(k − 2)
a(x)1k 6=2

]

is a non-decreasing function of x ≥ y for any y. If this is the case and additionally

lim
x→+∞

ωy(x) = −(k − 1)b′(y)−
1

2
(k − 1)(k − 2)a′′(y) (30)

for all y, then the kth order Markov dual process Y y
t exists and is generated by the operator

LDkg(y) = a(y)
d2

dy2
− [b(y) + (k − 2)a′(y)]

d

dy

+

∫ ∞

y

(g(x)− g(y))
∂k

∂xk

[

(x− y)k−2

Γ(k − 1)
b(x) +

(x− y)k−3

Γ(k − 2)
a(x)1k 6=2

]

dx. (31)

Remark 3. If one has the inequality ≤ rather than the equality in (30), then the dual Y y
t

exists as a sub-Markov process.

Proof. Let us do the calculations separately for the drift and diffusion parts of L starting
with the drift part. By (14) and (69) we have

(

b(y)
d

dy

)Dk

g(y) = −I+k

(

d

dy
◦ b(y)

)

◦
dk

d(−y)k
g(y) =

∫ ∞

y

(x− y)k−2

Γ(k − 1)
b(x)

dk

d(−x)k
g(x) dx.

(32)
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Integrating by parts first k − 2 times (where boundary terms cancel) and then two times
more yields

(

b(y)
d

dy

)Dk

g(y) =

∫ ∞

y

dk−2

dxk−2

[

(x− y)k−2

Γ(k − 1)
b(x)

]

d2g(x)

dx2
dx

= −b(y)g′(y) + (k − 1)b′(y)g(y) +

∫ ∞

y

g(x)
∂k

∂xk

[

(x− y)k−2

Γ(k − 1)
b(x)

]

dx,

which rewrites as

(

b(y)
d

dy

)Dk

g(y) = −b(y)g′(y) +

∫ ∞

y

(g(x)− g(y))
∂k

∂xk

[

(x− y)k−2

Γ(k − 1)
b(x)

]

dx

+g(y)

[

(k − 1)b′(y) + lim
x→∞

∂k−1

∂xk−1

[

(x− y)k−2

Γ(k − 1)
b(x)

]]

,

if the last limit is finite.
Similarly, if k 6= 2, we have

(

a(y)
d2

dy2

)Dk

g(y) = I+k

(

d2

dy2
◦ a(y)

)

◦
dk

d(−y)k
g(y) =

∫ ∞

y

(x− y)k−3

Γ(k − 2)
a(x)

dk

d(−x)k
g(x) dx,

(33)
which by the integration by parts rewrites as

−

∫ ∞

y

dk−3

dxk−3

[

(x− y)k−3

Γ(k − 2)
a(x)

]

d3g(x)

dx3
dx

= a(y)g′′(y)−(k−2)a′(y)g′(y)+
1

2
(k−1)(k−2)a′′(y)g(y)+

∫ ∞

y

g(x)
∂k

∂xk

[

(x− y)k−3

Γ(k − 2)
a(x)

]

dx,

or finally as

= a(y)g′′(y)− (k − 2)a′(y)g′(y) +

∫ ∞

y

(g(x)− g(y))
∂k

∂xk
Ak(x, y) dx

+g(y)

[

1

2
(k − 1)(k − 2)a′′(y) + lim

x→∞

∂k−1

∂xk−1

[

(x− y)k−3

Γ(k − 2)
a(x)

]]

,

if the limit on the r.h.s. exists. Summing up the formulas for the dual operators to the
drift and diffusive parts leads to (31) under the condition (30).

The extension to non-integer k goes as follows.

Theorem 5.2. Suppose k > 0 and k 6= 1, 2, and a ∈ C [k]+2(R), b ∈ C [k]+1(R) (here [k]
denotes the integer part of a number k). Let us define, for x ≥ y, the functions

Bk(x, y) =
1

Γ(k − 1)
[b(x)− b(y)− b′(y)(x− y)](x− y)k−2,

Ak(x, y) =
1

Γ(k − 2)
[a(x)− a(y)− a′(y)(x− y)−

1

2
a′′(y)(x− y)2](x− y)k−3.

11



The diffusion Xx
t generated by (31) is stochastically monotone of order k if and only if

the function
∂k−1

∂xk−1
(Bk(x, y) + Ak(x, y))

is a non-decreasing function of x ≥ y for any y. If this is the case and additionally

lim
x→+∞

∂k−1

∂xk−1
(Bk(x, y) + Ak(x, y)) = −(k − 1)b′(y)−

1

2
(k − 1)(k − 2)a′′(y) (34)

for all y, then the kth order Markov dual process Y y
t exists and is generated by the operator

LDkg(y) = a(y)
d2

dy2
− [b(y) + (k − 2)a′(y)]

d

dy

+

∫ ∞

y

(g(x)− g(y))
∂k

∂xk
(Bk(x, y) + Ak(x, y)) dx. (35)

Proof. If k > 1, formula (32) remains valid, but we rewrite it now as

∫ ∞

y

[

(x− y)k−2

Γ(k − 1)
(b(y) + b′(y)(x− y)) +Bk(x, y)

]

dk

d(−x)k
g(x) dx.

Using fractional integration-by-parts formulas (71) and (70) yields

(

b(y)
d

dy

)Dk

g(y) = −b(y)g′(y) + (k − 1)b′(y)g(y) +

∫ ∞

y

g(x)
∂k

∂xk
Bk(x, y) dx. (36)

Notice that the measure in the last integral does not have an atom at y (in fact the function
Bk(x, y) was introduced specifically in order to be able to single out such a measure,
corresponding boundary terms being written explicitly). This can also be rewritten as

(

b(y)
d

dy

)Dk

g(y) = −b(y)g′(y) +

∫ ∞

y

(g(x)− g(y))
∂k

∂xk
Bk(x, y) dx

+ g(y)

[

(k − 1)b′(y) + lim
x→∞

dk−1

dxk−1
Bk(x, y)

]

, (37)

if the last limit is finite.
If k ∈ (0, 1), a small modification is required. Namely, in this case, instead of (32),

we get
(

b(y)
d

dy

)Dk

g(y) = −

∫ ∞

y

(x− y)k−1

Γ(k)

∂

∂x

(

b(x)
dk

d(−x)k
g(x)

)

dx.

Before integration by parts we have to add and subtract b(y) from b(x) leading to

(

b(y)
d

dy

)Dk

g(y) = −b(y)g′(y)−

∫ ∞

y

(x− y)k−1

Γ(k)

∂

∂x

[

(b(x)− b(y))
dk

d(−x)k
g(x)

]

dx.

Now we can integrate by parts yielding

(

b(y)
d

dy

)Dk

g(y) = −b(y)g′(y) +

∫ ∞

y

(x− y)k−2

Γ(k − 1)

[

(b(x)− b(y))
dk

d(−x)k
g(x)

]

dx,

12



which again turns to (36) and consequently to (37).
Similarly (33) remains valid for k > 2, and we rewrite it now as

∫ ∞

y

[

(x− y)k−3

Γ(k − 2)
(a(y) + a′(y)(x− y) +

1

2
a′′(y)(x− y)2) + Ak(x, y)

]

dk

d(−x)k
g(x) dx,

or using fractional integration-by-parts formulas (71) and (70) as

a(y)g′′(y)− (k − 2)a′(y)g′(y) +
1

2
(k − 1)(k − 2)a′′(y)g(y) +

∫ ∞

y

g(x)
∂k

∂xk
Ak(x, y) dx

= a(y)g′′(y)− (k − 2)a′(y)g′(y) +

∫ ∞

y

(g(x)− g(y))
∂k

∂xk
Ak(x, y) dx

+g(y)

[

1

2
(k − 1)(k − 2)a′′(y) + lim

x→∞

∂k−1

∂xk−1
Ak(x, y)

]

,

if the last limit is finite. The modifications needed for k < 2 are similar to those used
above when dealing with the drift term. The remaining part is the same as in Theorem
5.1.

Let us now turn to processes with jumps starting with the generator

Lg(x) =

∫

(g(y)− g(x))ν(x, dy) (38)

with a finite stochastic kernel ν(x, dy). Since

L′φ(dy) =

∫

z∈R

φ(dy)ν(y, dz)− φ(dy)

∫

z∈R

ν(y, dz)

we find, for the dual of order k > 0, the expression

LDkg(y) = I+k ◦ L′ ◦
dk

d(−y)k
g(y)

=

∫ ∞

y

(z − y)k−1

Γ(k)

[
∫

dw
dk

d(−w)k
g(w)ν(w, dz)−

dk

d(−z)k
g(z)dz

∫

ν(z, dw)

]

,

=

∫ ∫

dk

d(−z)k
g(z)ν(z, dw)

[

1w≥y
(w − y)k−1

Γ(k)
− 1z≥y

(z − y)k−1

Γ(k)

]

dz.

We shall now use the same trick, as when analyzing diffusion, by separating the part of
the expression in the square brackets that would contributed to boundary terms after the
kth order differentiation (everything is of course simpler for integer k). Thus we write

LDkg(y) =

∫ ∫

dk

d(−z)k
g(z)

×

[

ν(z, dw)1w≥y
(w − y)k−1

Γ(k)
+ (ν(y, dw)− ν(z, dw))1z≥y

(z − y)k−1

Γ(k)
− ν(y, dw)1z≥y

(z − y)k−1

Γ(k)

]

dz.

13



Integration by parts using (71), assuming that the kernel ν(x, dy) is k times differentiable
with respect to x as a measure, yields

LDkg(y) = −g(y)

∫

ν(y, dw)

+

∫

g(z)
∂k

∂zk

∫
[

ν(z, dw)1w≥y
(w − y)k−1

Γ(k)
+ (ν(y, dw)− ν(z, dw))1z≥y

(z − y)k−1

Γ(k)

]

dz.

(39)
For integer k, the term containing ν(y, dw) in the square brackets becomes superfluous.

In particular, for k = 1 and k = 2 this simplifies to

LD1g(y) =

∫

g(z)

[

1z<y

∫

w≥y

∂ν

∂z
(z, dw)− 1z≥y

∫

w<y

∂ν

∂z
(z, dw)

]

dz − g(y)

∫

ν(y, dw),

(40)
and

LD2g(y) =

∫

g(z)dz
[

1z<y

∫

w≥y

(w − y)
∂2ν

∂z2
(z, dw)

+ 1z≥y

(
∫

w<y

(y − w)
∂2ν

∂z2
(z, dw) +

∂2

∂z2

∫

(z − w)ν(z, dw)

)

]

− g(y)

∫

ν(y, dw) (41)

respectively.
For operator (39) to be conservative and conditionally positive, the function

L(z, y) =
∂k−1

∂zk−1

∫
[

ν(z, dw)1w≥y
(w − y)k−1

Γ(k)
+ (ν(y, dw)− ν(z, dw))1z≥y

(z − y)k−1

Γ(k)

]

(42)
has to be positive non-decreasing and has to satisfy the boundary conditions

L(z, y)|∞z=−∞ =

∫

ν(y, dw).

Simplest natural conditions ensuring the latter can be taken as follows:

lim
z→−∞

∂k−1

∂zk−1

∫ ∞

y

(w − y)k−1ν(z, dw) = 0, (43)

lim
z→+∞

∂k−1

∂zk−1

∫

(

1w≥y(w − y)k−1 − (z − y)k−1
)

ν(z, dw) = 0. (44)

Summarizing, we get the following.

Theorem 5.3. Suppose a Feller process Xx
t is generated by operator (38) with a bounded

positive kernel ν(x, dy) such that its derivatives with respect to x up to and including order
k exists as (possibly signed) stochastic kernels and (43) holds. Then Markov dual of order
k exists if and only if function (42) is nondecreasing and condition (44) holds. If this is
the case the generator of the dual process is given by

LDkg(y) =
1

Γ(k)

∫

(g(z)− g(y))
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×
∂k

∂zk

∫

[

ν(z, dw)1w≥y(w − y)k−1 + (ν(y, dw)− ν(z, dw))1z≥y(z − y)k−1
]

dz. (45)

If one has inequality ≤ in (44), rather than equality, then the dual exists as a sub-Markov
process, the generator being given by (39).

Remark 4. As we assumed maximum regularity, the measure of jumps of the dual process
turns out to be absolutely continuous with respect to Lebesgue measure. More generally,
the dual generator would look like

LDkg(y) =
1

Γ(k)

∫

(g(z)− g(y))

× dz
∂k−1

∂zk−1

∫

[

ν(z, dw)1w≥y(w − y)k−1 + (ν(y, dw)− ν(z, dw))1z≥y(z − y)k−1
]

. (46)

We have built dual generators separately for diffusive and jump parts of the original
generators. For an arbitrary Feller process with a pseudo-differential generator the dual
is constructed by putting these parts together. As an example let us consider Markov
processes that are martingales, that is, they have generators of the form

Lg(x) = a(x)
d2

dx2
+

∫

[g(y)− g(x)− g′(x)(y − x)]ν(x, dy) (47)

with
∫

min(|y − x|, (y − x)2)ν(x, dy) < ∞.

As the duality of all orders reverses the sign of the drift, for self-duality one has necessarily
the condition

∫

(y − x)ν(x, dy) = 0, (48)

where the integral can be understood in the sense of the main value. Taking these into
account and looking at formulas (40) and (40) we arrive at the following.

Theorem 5.4. Let k = 1 or k = 2 and let a Feller process Xx
t be generated by an operator

of type (47) with a continuously differentiable nonnegative function a(x) and continuously
differentiable in x Lévy kernel ν. Then the process Xx

t is self-dual of order 1 or 2, if (48)
holds and

ν(y, dz) = 1z<ydz

∫

w≥y

ν(z, dw)− 1z≥ydz

∫

w<y

ν(z, dw), (49)

or

ν(y, dz) = 1z<ydz

∫

w≥y

(w − y)
∂ν

∂z
(z, dw) + 1z≥ydz

∫

w<y

(y − w)
∂ν

∂z
(z, dw) (50)

respectively.

Let us note finally that the relation between dual generators become more transparent
in differential form (even though in this way some information of boundary behavior is
lost). For instance, differentiating equations (49) and (50) with respect to y once or twice
respectively, yields the differential relations

dyν(y, dz) = dzν(z, dy), (51)
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and

dy
∂ν

∂y
(y, dz) = dz

∂ν

∂z
ν(z, dy), (52)

respectively. These equations take specially simple form

∂ν

∂y
ν(y, z) =

∂ν

∂z
ν(z, y),

∂2ν

∂y2
ν(y, z) =

∂2ν

∂z2
ν(z, y) (53)

respectively, if ν(x, dy) has a density, ν(x, y), with respect to Lebesgue measure.

6 Time-nonhomogeneous extension

Equation (13) suggests the necessity to include time reversion when studying time-non-
homogeneous situation. We mean just a simple time reversion around a deterministic
time, not a more sophisticated general time reversion, as developed, say, in [16] or [13].

Let us recall that a family Us,t, 0 ≤ s ≤ t, of transformations in B(X) (or C(X) or
C∞(X)) for locally compact spaces X, Y is called a (backward) propagator if Ut,t is the
identity operator and the chain rule, or the propagator equation, holds for t ≤ s ≤ r:
U t,sUs,r = U t,r.

Suppose U t,r is a strongly continuous backward propagator of bounded linear operators
in C∞(X) with a common dense invariant domain D. Let At, t ≥ 0, be a family of linear
operatorsD 7→ B that are strongly continuous in t. Let us say that the family At generates
U t,r on D if, for any f ∈ D, the equations

d

ds
U t,sf = U t,sAsf,

d

ds
Us,rf = −AsU

s,rf, 0 ≤ t ≤ s ≤ r, (54)

hold for all s with the derivatives taken in the topology of B, where for s = t (resp. s = r)
it is assumed to be only a right (resp. left) derivative. The second equation (which in
fact follows from the first one under mild natural conditions) implies by duality that, for
any T ,

d

ds
U ′
T−t,T−s = −A′

T−sU
′
T−t,T−s, 0 ≤ s ≤ t ≤ T, (55)

in the weak sense.
The time-nonhomogeneous counterpart of Proposition 2.2 (with the literally the same

proof) reads as follows.

Proposition 6.1. (i) Let f be a bounded measurable function separating measures on
X and Us,t, s ≤ t, a (backward) propagator of integral operators in B(X) specified by
the family of bounded signed kernel ps,t(x, dz) from X to X. Then, for any T > 0, the

operators U
D(f,T )
s,t in F (M(X)), f -dual to UT−t,T−s, also form a propagator and

U
D(f,T )
s,t = F ◦ U ′

T−t,T−s ◦ F
−1. (56)

(ii) If the propagator {Us,t} is strongly continuous in C∞(X) with an invariant domain
D and is generated by a family of operator At : D → C∞, then

d

ds
U

D(f,T )
s,t g = −F ◦ A′

T−s ◦ F
−1U

D(f,T )
s,t g,
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that is, the generator of the propagator {U
D(f,T )
s,t } is

AD(f,T )
s = F ◦ A′

T−s ◦ F
−1. (57)

The propagator {U
D(f,T )
s,t } will be called (f, T )-dual to {Us,t}.

Let us describe the probabilistic analog of this duality. We shall write Xx,s
t for a

Markov process at time t > s with initial position x at time s. For a function f on X×Y
with two metric (or measurable) spaces X, Y and a number T , we say that the Markov
processes Y y,s

t in Y is (f, T )-dual to the Markov process Xx,s
t in X , if

Ef(x, Y y,s
t ) = Ef(Xx,T−t

T−s , y) (58)

for all x ∈ X, y ∈ Y and s ≤ t ≤ T , where E on the left hand side and the right hand side
correspond to the distributions of processes Yt and Xt respectively. In particular case of
X = Y and f(x, y) = 1x≥y (where ≥ is any measurable partial order on X) this reduces
to

P(Y y,s
t ≤ x) = P(Xx,T−t

T−s ≥ y). (59)

Thus the duality of Markov processes is equivalent to the duality of their propagators.
Proposition 6.1 implies that dual distributions to a Markov process automatically form
a Markov family, as their transition operators form a propagator and hence satisfy the
chain rule (or Chapman-Kolmogorov equation).

It is now clear that all our results have a natural counterpart for time-dependent
generators. Namely, let us say that a Markov process Y y

t is dual to Xx
t of order k, k ∈ R,

if
E(x− Y y,s

t )k−1
+ = E(Xx,T−t

T−s − y)k−1
+ . (60)

The characterization in terms of generators or stochastic monotonicity remains the same,
once the time dependence is adjusted appropriately, that is via (56) and (57).

Appendix

For completeness, we deduce here the fundamental solutions of the generators of Lévy
stable motions and fractional derivative operators, as well as the related integration by
parts formulas.

Recall that the characteristic function of a β-stable Lévy motion for β ∈ (0, 1)∪ (1, 2)
equals

exp{−tσ|p|βeiπγ sgn p/2}

where σ > 0 is the scale and γ is the skewness parameter satisfying the conditions |γ| ≤ β
or |γ| ≤ 2 − β for β ∈ (0, 1) or β ∈ (1, 2) respectively. For simplicity, we omit the
discussion of a more complicated general case β = 1, and for this case will deal only with
the symmetric case γ = 0, for which the above formulas remain valid.

Thus the generator Lβ,γ,σ of this Lévy motion is the pseudo-differential operator with
the symbol (denoted with some abuse of notation by the same letter)

Lβ,γ,σ(p) = −σ|p|βeiπγ sgn p/2

meaning that Lβ,γ,σ acts on the Fourier transform F(f)(p) = f̂(p) =
∫

e−ixpf(x) dx of a
function f as the multiplication by Lβ,γ,σ(p).
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The fundamental solution of the operator Lβ,γ,σ equals

f(x) =

[

F−1 1

Lβ,γ,σ(p)

]

(x) = −
1

2π

∫ ∞

∞

eipxdp

σ|p|βeiπγ sgn p/2
.

In other words,

f = −
1

σ
F−1

[

e−iπγ/2p−β
+ + eiπγ/2p−β

−

]

.

Using known formulas for the Fourier transforms (in the sense of distributions) of one-
sided powers (see e.g. [20], p. 176), that is

(F−1pλ±)(x) =
±i

2π
e±iλπ/2Γ(λ+ 1)(x± i0)−λ−1

(slight deviations in our notation from the Fourier transform used in [20] are taken into
account), where

(x± i0)λ = xλ
+ + e±iλπxλ

−,

we find that

f(x) = −
Γ(1 − β)

2πσ

[

ie−i(β+γ)π/2(x+ i0)β−1 − iei(β+γ)π/2(x− i0)β−1
]

leading to

f(x) = −
Γ(1− β)

σπ

[

sin(π(β + γ)/2)xβ−1
+ + sin(π(β − γ)/2)xβ−1

−

]

. (61)

The most important cases are the fully skewed motions with γ = ±β or γ = ±(2− β)
for β ∈ (0, 1) or β ∈ (1, 2) respectively, and the symmetric motions with γ = 0. In these
cases for β ∈ (0, 1) the generators are negations of fractional derivatives, that is

Lβ,±β,1f = −
dβ

d(±x)β
f(x) = −

1

Γ(−β)

∫ ∞

0

(f(x∓ y)− f(x))
dy

y1+β
, (62)

and

Lβ,0,1f = −

∣

∣

∣

∣

d

dx

∣

∣

∣

∣

β

= −
1

2 cos(πβ/2)

(

dβ

dxβ
+

dβ

d(−x)β

)

, (63)

see e.g. Sect 1.8 in [27], where the fractional derivatives can be defined either by the
corresponding expressions on the r.h.s. of these formulas, or equivalently via the following
Fourier transforms:

F(
dβ

d(±x)β
f)(p) = exp{±iπβ sgn p/2}|p|βF(f)(p), (64)

F(
dβ

dxβ
+

dβ

d(−x)β
)(p) = 2 cos(πβ/2)|p|βF(f)(p). (65)

The processes generated by − dβ

d(±x)β
with β ∈ (0, 1) are called the stable Lévy subor-

dinators.
From (61) it follows that the functions

Γ(1− β)

π
sin(πβ)xβ−1

± =
xβ−1
±

Γ(β)
(66)
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(where the equation Γ(β)Γ(1−β) = π/ sin(πβ) was used), represent fundamental solutions
for the operators dβ/d(±x)β.

Fractional derivatives of order higher than 1 can be defined by the compositions of
the derivatives of order β ∈ (0, 1) with the derivatives of an integer order. Namely, for
β ∈ (n, n+ 1), n ∈ N, one defines

dβ

d(±x)β
=

dn

d(±x)n
dβ−n

d(±x)β−n

with the second component given by (62). It is then easy to check that formulas (66)
for the fundamental solutions remain valid for all β = k + 1 > 0, β /∈ N. Formula (63)
remains valid for β ∈ (1, 2), but in (62) the sign has to be changed leading to

Lβ,±(2−β),1f =
dβ

d(±x)β
f(x) =

1

Γ(1− β)

∫ ∞

0

((±f ′)(x∓ y)− (±f)′(x))
dy

yβ
. (67)

Turning to the integration by parts, let us define, for k ≥ 1, the fractional integration
operator I±k : M±

k (R) → B(R), by the equation

(I±k Q)(y) =

∫

(x− y)k−1
±

Γ(k)
Q(dx), (68)

where

M±
k = {Q ∈ M(R) :

∫

xk−1
± |Q|(dx) < ∞},

and

xk
+ =

{

xk, x ≥ 0

0, x < 0.
, xk

−(x) = (−x)k+.

The image I±
1 of I±1 (defined on M±

1 = M(R)) is the set of right- (respectively left-)
continuous functions of finite total variation, tending to zero at ±∞. Moreover, (I±1 Q)′ =
∓Q in the sense of distributions. The image I±

k of I±k , k > 1, consists of continuous
functions g tending to zero at ±∞ and such that

dk

d(∓x)k
g ∈ M±

k (R)

in the sense of distributions. Moreover,

dk

d(∓x)k
◦ I±k , I±k ◦

dk

d(∓x)k

are the identity operators in M±
k (R) and I±

k respectively. Other simple formulas worth
mentioning are

I±k ◦
d

d(∓x)
=

{

I±k−1, k > 1,

d1−k/d(∓x)1−k, k < 1,
(69)

dk

dxk

(x− a)k−1
+

Γ(k)
= δa(x), k > 1. (70)
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Let now φ± = I±k Q± with some Q± ∈ M±
k . By Fubini’s theorem

∫

R2

(x− y)k−1
+

Γ(k)
Q+(dx)Q−(dy) =

∫

(I+k Q+)(y)Q−(dy) =

∫

(I−k Q−)(x)Q+(dx).

The last equation can be called the integration-by-parts formula, as it rewrites as

∫

φ+(y)
dk

dyk
φ−(dy) =

∫

φ−(x)
dk

d(−x)k
φ+(dx) (71)

(where the derivatives are defined, generally speaking, in the sense of distributions and
represent measures, not necessarily functions).

It is important to stress that this formula holds not only for the integration over R,
but also for the integration over an interval or a half-line, the corresponding boundary
terms being taken into account automatically by the measures dkφ±(x)/d(∓x)k.

Finally, for k ∈ (0, 1) we can define fractional integration (68) on functions g ∈
B(R) ∩ L1(R), that is as

(I±k g)(y) =

∫

(x− y)k−1
±

Γ(k)
g(x) dx, (72)

in which case the image belongs to the set of continuous functions with the sup-norm
bounded by ‖g‖/k + ‖g‖L1 and (71) still holds by the same reasoning.
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