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EXIT PROBLEMS FOR REFLECTED
MARKOV-MODULATED BROWNIAN MOTION

LOTHAR BREUER,∗ University of Kent

Abstract

Let (X,J) denote a Markov-modulated Brownian motion (MMBM) and denote its
supremum process by S. For some a > 0, let σ(a) denote the time when the reflected
process Y := S−X first surpasses the level a. Furthermore, let σ−(a) denote the last time
before σ(a) when X attains its current supremum. In this paper we shall derive the joint
distribution of Sσ(a), σ−(a), and σ(a), where the latter two will be given in terms of their
Laplace transforms. We also provide some remarks on scale matrices for MMBMs with
strictly positive variation parameters. This extends recent results for spectrally negative
Lévy processes to MMBMs. Due to well-known fluid embedding and state-dependent
killing techniques, the analysis applies to Markov additive processes with phase-type
jumps as well. The result is of interest to applications such as the dividend problem in
insurance mathematics and the buffer overflow problem in queueing theory. Examples
will be given for the former.
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1. Introduction

Markov additive processes are a powerful generalisation of Lévy processes, becoming
more and more popular in stochastic modelling. Based on an underlying finite-state Markov
process J, called the phase process, the level process X evolves like a Lévy process for which
the parameters change in time according to the phase process J. Furthermore, phase changes
(i.e. jumps of J) may induce jumps of the level process X. The joint process (X,J) is called
a Markov additive process (MAP).

A textbook introduction to MAPs is given in [2, Chapter XI]. First passage times (or the
one-sided exit problem) are derived via martingales in [3] and solved iteratively in [6]. The
two-sided exit problem is solved in [17] for MAPs with phase-type jumps (PH-MAPs). The
class of PH-MAPs is dense within the class of all MAPs; see [4, Proposition 1]. The Gerber–
Shiu function (which is quite popular in insurance mathematics) has been derived in [7] for the
same class of MAPs.

It is this class of MAPs for which we wish to solve the following problem. Denote the
supremum process of X by S. For some a > 0, let σ(a) denote the time when the reflected
process Y := S − X first surpasses the level a. Furthermore, let σ−(a) denote the last time
before σ(a) when X attains its current supremum. We shall derive the joint distribution of
Sσ(a), σ−(a), and σ(a), where the latter two will be given in terms of their Laplace transforms.
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This extends recent results for spectrally negative Lévy processes [20] to PH-MAPs. Even for
the common subset of Lévy processes with phase-type jumps, the approach in this paper may
be advantageous, since the scale functions (which are the main ingredients in the formulae) are
given explicitly.

The result is of interest to applications such as the dividend problem in insurance mathematics
and the buffer overflow problem in queueing theory. An algorithmic solution for the time to
buffer overflow in a Markov additive framework is given in [3, Section 6]; see also [5]. A partial
result of the present paper in the context of queueing theory is contained in [8]. An algorithmic
solution for the expectation of the total dividend payments before ruin is presented in [11].
Moments of dividend payments in a Markov additive risk model without Brownian component
are derived in [18].

The analysis is performed mainly by matrix-analytic methods using probabilistic arguments
wherever possible. This naturally results in formulae containing matrices which are to be
computed via fixed-point iterations. We shall present examples for the simple cases allowing
explicit scalar solutions. This restriction is due to the circumstance that only for these cases are
there solutions in the literature which can be compared with the results in the present paper.

It is well known that exit problems for PH-MAPs can be analysed via MMBMs due to the
so-called fluid embedding technique (see, e.g. [17]). Since the transformation of a PH-MAP to
an MMBM has been described extensively in other papers already (see, e.g. [7] and [17]), we
do not wish to repeat this here and perform the analysis starting from a given MMBM. This also
serves to simplify the notation. At suitable places we will remark on the relation to PH-MAPs.

The paper is structured as follows. Section 2 contains an exact definition of the problem to
be analysed. In Section 3, the necessary preparatory results from recent literature are presented.
Section 4 contains the main result, while examples and applications will be presented in the
last section.

2. The exit problem for reflected MMBMs

Let J = (Jt : t ≥ 0) denote an irreducible Markov process with a finite state space E =
{1, . . . , m} and infinitesimal generator matrix Q = (qij )i,j∈E . We call Jt the phase at time t
and J the phase process. Choosing parameters µi ∈ R and σi ≥ 0 for all i ∈ E, we define the
level process X = (Xt : t ≥ 0) by

Xt = X0 +
∫ t

0
µJs ds +

∫ t

0
σJs dWs

for all t ≥ 0, where W = (Wt : t ≥ 0) denotes a standard Wiener process that is independent
of J. Then (X,J) is called an MMBM. An MMBM is a MAP without jumps.

Some results for MMBMs go back to the 1990s, with Rogers [19] investigating Wiener–Hopf
factorisation and stationary distributions for the case that σi = ε is independent of the phase
process. Around the same time, Asmussen [1] determined hitting probabilities and, based on
these, expressions for the stationary distributions. More recent results are given in [10] and [14],
in which MMBMs with two reflecting barriers are analysed. Some properties of scale functions
for MMBMs are derived in [9] and [16]. Occupation times for MMBMs are investigated in [9].

Define the supremum process S = (St : t ≥ 0) by St := sups≤t Xs ∨ 0 for all t ≥ 0, and the
reflected process Y := S − X. For a fixed level a > 0, let

σ(a) := inf{t ≥ 0 : Yt ≥ a} and σ−(a) := sup{t ≤ σ(a) : Yt = 0}.

https://doi.org/10.1239/jap/1346955327 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1346955327


Exit problems for reflected MMBM 699

We shall seek to determine the joint distribution of σ(a), σ−(a), and Sσ(a) in the form of the
measure

E(e−α(σ(a)−σ−(a))e−γ σ−(a); Sσ(a) ∈ dx),

where α, γ, x ≥ 0. To be more precise, we shall obtain a finer result, namely an expression for

E

(
exp

[
−

∫ σ−(a)

0
rJs ds

]
exp

[
−

∫ σ(a)

σ−(a)
r ′Js ds

]
; Sσ(a) ∈ dx

)
,

where ri, r ′i ≥ 0 for all i ∈ E. The latter yields the joint distribution of the occupation times in
each phase during the time intervals [0, σ−(a)] and [σ−(a), σ (a)]; cf. [9] for occupation times
of MMBMs.

Remark 1. A MAP (X̃, J̃) with phase-type jumps (PH-MAP) can be transformed into an
MMBM as shown in detail in [7, Section 2.1]. The resulting MMBM has a phase space
E = E+ ∪ Ep ∪ Eσ ∪ En ∪ E−, where

Ep = {i ∈ Ẽ : µ̃i > 0, σ̃i = 0},
En = {i ∈ Ẽ : µ̃i < 0, σ̃i = 0},
Eσ = {i ∈ Ẽ : σ̃i > 0},

and phases in E± represent parts of the jumps (see [7, Section 2.1] for a precise definition).
This method is called fluid embedding and has been described in Section 3 of [17], Section 2.7
of [15], and Section 2.2 of [7].

Let S̃ be the supremum process of X̃. Furthermore, define the reflected process Ỹ := S̃ −X̃
and σ̃ (a) := inf{t ≥ 0 : Ỹt ≥ a} as well as σ̃−(a) := sup{t ≤ σ̃ (a) : Ỹt = 0} for a fixed level
a > 0. Define Ẽ := Ep ∪ Eσ ∪ En. Then

σ̃−(a) =
∫ σ−(a)

0
I{Js∈Ẽ} ds and σ̃ (a)− σ̃−(a) =

∫ σ(a)

σ−(a)
I{Js∈Ẽ} ds,

where IA denotes the indicator function of an event A. Furthermore, S̃σ̃ (a) = Sσ(a). Thus, we
obtain

E(e−α(σ̃ (a)−σ̃−(a))e−γ σ̃−(a); S̃σ̃ (a) ∈ dx)

= E

(
exp

[
−

∫ σ−(a)

0
rJs ds

]
exp

[
−

∫ σ(a)

σ−(a)
r ′Js ds

]
; Sσ(a) ∈ dx

)

by setting ri := γ , r ′i := α for i ∈ Ẽ, and ri = r ′i := 0 for i ∈ E±. Hence, the joint distribution
of σ̃−(a), σ̃ (a), and S̃σ̃ (a) can be obtained via the analysis of a suitable MMBM.

3. Preliminaries: exit problems for free MMBMs

We shall call (X,J) the free MMBM. In order to derive the desired result on exit times
for the reflected process Y, we need some results from the literature on exit times for the free
MMBM. For ease of reference, they will be described in this section in a form that suits our
later use of them.
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3.1. The one-sided exit problem

Define the first passage times τ(x) := inf{t ≥ 0 : Xt > x} for all x ≥ 0, and assume that
X0 = 0. Consider an E-dimensional row vector r = (ri : i ∈ E) with nonnegative entries
ri ≥ 0 for all i ∈ E. Define

Eij

(
exp

[
−

∫ τ(x)

0
rJs ds

])
:= E

(
exp

[
−

∫ τ(x)

0
rJs ds

]
; Jτ(x) = j

∣∣∣∣ J0 = i, X0 = 0

)

for i, j ∈ E and E(exp[− ∫ τ(x)
0 rJs ds]) as the (E×E)-matrix with these entries. The values ri

may be interpreted as state-dependent killing rates; see Section 3 of [17]. We shall distinguish
the phases by the subspaces

Ea := {i ∈ E : σi > 0 or µi > 0} and Ed := E \ Ea,
where phases in Ea and Ed are respectively called ascending and descending. The same
arguments as in [6, Section 3] yield

E(d,d)

(
exp

[
−

∫ τ(x)

0
rJs ds

])
= 0 and E(a,d)

(
exp

[
−

∫ τ(x)

0
rJs ds

])
= 0,

where 0 denotes a zero matrix of suitable dimension. Furthermore,

E(d,a)

(
exp

[
−

∫ τ(x)

0
rJs ds

])
= A(r)eU(r)x

and E(a,a)

(
exp

[
−

∫ τ(x)

0
rJs ds

])
= eU(r)x,

(1)

where the matrices A(r) and U(r) can be computed as follows. For arguments β ≥ 0, define
the functions φi(β) := β/µi for i ∈ Ea with σi = 0 as well as

φi(β) = 1

σi

√
2β + µ2

i

σ 2
i

− µi

σ 2
i

and φ∗
i (β) = 1

σi

√
2β + µ2

i

σ 2
i

+ µi

σ 2
i

for i ∈ Ea with σi > 0. The iteration to determine A(r) and U(r) is slightly changed from
[7, Section 2.2] to the following form. We obtain (A(r), U(r)) = limn→∞(An,Un) for initial
values A0 := 0, U0 := −diag(φi(qi + ri))i∈Ea , and iterations

e′iUn+1 = −qi + ri

µi
e′i + 1

µi

∑
j∈E, j 
=i

qij e
′
j

(
Ia
An

)

for i ∈ Ea and σi = 0,

e′iUn+1 = −φi(qi + ri)e
′
i + 2

σ 2
i

∑
j∈E, j 
=i

qij e
′
j

(
Ia
An

)
(φ∗
i (qi + ri)I − Un)

−1

for σi > 0, and

e′iAn+1 =
∑

j∈E, j 
=i
qij e

′
j

(
Ia
An

)
((qi + ri)I + µiUn)

−1

for i ∈ Ed . Here e′i denotes the ith canonical row base vector, qi := −qii for all i ∈ E, and Ia
is the identity matrix on Ea . The case r = 0 has been analysed earlier in [1].
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3.2. The two-sided exit problem

Denote the exit time of X from the interval [l, u] by τ(l, u) := inf{t ≥ 0 : Xt /∈ [l, u]},
where l < u. Choose a positive vector r := (ri : i ∈ E), i.e. ri ≥ 0 for all i ∈ E and
‖r‖ := ∑

i∈E |ri | > 0. Define

�+
ij (l, u | x) := E

(
exp

[
−

∫ τ(l,u)

0
rJs ds

]
;Xτ(l,u) = u, Jτ(l,u) = j

∣∣∣∣ J0 = i, X0 = x

)
,

where x ∈ [l, u] and i, j ∈ E, and define the matrix �+
r (l, u | x) := (�+

ij (l, u | x))i,j∈E .
A formula for �+

r (l, u | x) has been derived in [17]. In order to state it, we need some
additional notation. In order to simplify this notation, we shall from now on exclude the case
of a phase i ∈ E with µi = σi = 0.

Let (X+,J) denote the original MMBM, and define the process (X−,J) d= (−X+,J),
where ‘

d=’ denotes equality in distribution. The two processes have the same generator matrix
Q for J, but the drift parameters are different. Denoting variation and drift parameters for X±
by σ±

i and µ±
i , respectively, this means that σ−

i = σ+
i and µ−

i = −µ+
i for all i ∈ E. Since

we have excluded a phase i ∈ E with µi = σi = 0, the ascending phases of (X+,J) are
descending for (X−,J) and vice versa.

LetA±(r) andU±(r) denote the matrices that determine the first passage times of X± in (1).
We shall write A± = A±(r) and U± = U±(r) if we do not wish to underline the dependence
on r . Let Iσ denote the identity matrix on Eσ := {i ∈ E : σi > 0}, and define the matrices

C+ := C+(r) :=
(

0 Iσ
A+(r)

)
and C− := C−(r) :=

(
A−(r)
Iσ 0

)

of dimensions (Eσ ∪ Ed)× Ea and Ea × (Eσ ∪ Ed), respectively. Furthermore, define

W+ := W+(r) :=
(

Ia
A+(r)

)
and W− := W−(r) :=

⎛
⎝A−(r)
Iσ 0
0 Id

⎞
⎠ ,

which are matrices of dimensionsE×Ea andE× (Eσ ∪Ed). Finally, letZ± := C±eU
±·(u−l).

Then Equation (23) of [17] states that

�+
r (l, u | x) = (W+eU

+·(u−x) −W−eU
−·(x−l)C+eU

+·(u−l))(I − Z−Z+)−1 (2)

for l ≤ x ≤ u. By reflection at the initial level x, we obtain, from (2),

�−
r (l, u | x) := E

(
exp

[
−

∫ τ(l,u)

0
rJs ds

]
;Xτ(l,u) = l | X0 = x

)

= (W−eU
−·(x−l) −W+eU

+·(u−x)C−eU
−·(u−l))(I − Z+Z−)−1 (3)

for l ≤ x ≤ u. Note that the expressions in (2) and (3) depend on a choice of r .

Remark 2. Noting that ‖r‖ > 0 we first see thatZ− andZ+ have row sums strictly less than 1,
which implies that (I −Z−Z+) is invertible. Furthermore, (I − Z−Z+)−1 = ∑∞

n=0(Z
−Z+)n

and Z−Z+ represents a crossing of the interval [0, b] from b to 0 and back. Hence, (2) has a
clear probabilistic interpretation. The term W+eU

+·(b−x) simply yields the event that X exits
from b (before an exponential time of parameter γ ). The correction term W−eU

−·xZ+ refers
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to the event that X descends below 0 before exiting from b. Multiplication by (I −Z−Z+)−1

yields all possible combinations with any number of subsequent (down and up) crossings over
the complete interval [0, b].

Note that, for r = 0 and X having a zero-mean drift, the matrix I −Z−Z+ may be singular.
This is the reason why we postulate r to be strictly positive.

Remark 3. Since Z+ = C+eU
+·b, we can write �+

r (0, b | x) in the form

�+
r (0, b | x) = (W+e−U+·x −W−eU

−·xC+)(e−U+·b − C−eU
−·bC+)−1.

This comes closer to the usual expression of the exit time distribution in terms of scale functions.
For instance, let X be a Brownian motion with variation σ > 0 and drift µ ∈ R. Set r := γ ,
which is a real number as E = Eσ contains a single phase only. For the same reason, W± =
C± = 1 and A± are void. Furthermore,

U± = ±µ− √
µ2 + 2γ σ 2

σ 2 .

Define r := −U+ and s := U−. Then

�+
γ (0, b | x) = erx − esx

erb − esb

(cf. [13, Equations (2.12)–(2.15)], where the γ -scale function is given as g(x) = erx − esx .

4. Main result

Let r = (ri : i ∈ E) and r ′ = (r ′i : i ∈ E) with ri, r ′i ≥ 0 for all i ∈ E denote two exit rate
vectors. In light of Remark 2 we will from now on assume that ‖r‖ > 0 and ‖r ′‖ > 0.

Theorem 1. The joint distribution of σ(a), σ−(a), and Sσ(a) is given by

E

(
exp

[
−

∫ σ−(a)

0
rJs ds

]
exp

[
−

∫ σ(a)

σ−(a)
r ′Js ds

]
; Sσ(a) ∈ dx

∣∣∣∣ X0 = 0

)

= �+
r (0, a | a)eGr (a)xHr ′(a) dx

for x > 0, where

Gr(a) = (U+(r)e−U+(r)a + C−(r)eU−(r)aU−(r)C+(r))

× (e−U+(r)a − C−(r)eU−(r)aC+(r))−1

and

Hr ′(a) = (C−(r ′)U−(r ′)+ U+(r ′)C−(r ′))(C+(r ′)eU+(r ′)aC−(r ′)− e−U−(r ′)a)−1.

There is further (for J0 ∈ Ed ) an atom at Sσ(a) = 0 with

E

(
exp

[
−

∫ σ(a)

0
rJs ds

]
; Sσ(a) = 0, σ−(a) = 0

∣∣∣∣ X0 = 0

)
= �−

r (0, a | a).
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Proof. Assume that X0 = 0, i.e. S0 = 0. We consider the sequence (Tn(ε) : n ∈ N0) of
stopping times defined by T0(ε) := 0 and

Tn(ε) := inf
{
t ≥ Tn−1(ε) : St = nε, min

Tn−1(ε)≤s≤t
Xs > (n− 1)ε − a

}
,

where inf ∅ := ∞. The times Tn+1(ε)− Tn(ε), n ∈ N0, are conditionally independent given
the phase process J. On the set {Tn(ε) < ∞}, we observe that XTn(ε) = STn(ε) = nε for any
n ∈ N0. Thus, the (generalised) Laplace transform of Tn+1(ε) − Tn(ε) with argument r is
given by �+

r (0, a + ε | a) and, hence, independent of n ∈ N0. Furthermore, JTn(ε) ∈ Ea for
all n ∈ N. Thus,

E

(
exp

[
−

∫ Tn(ε)

0
rJs ds

]
; Tn(ε) < ∞

)
= �+

r (0, a + ε | a)(�+
r (0, a + ε | a)(a,a))n−1

for n ∈ N and r = (ri : i ∈ E) ≥ 0 (entrywise), where�+
r (0, a+ ε | a)(a,a) denotes the upper

Ea × Ea block of the matrix

�+
r (0, a + ε | a) =

(
�+

r (0, a + ε | a)(a,a)
�+

r (0, a + ε | a)(d,a)
)
,

referring to ascending initial phases. Thus,

�+
r (0, a + ε | a)(a,a) = (eU

+(r)ε − C−(r)eU−(r)aC+(r)eU+(r)(a+ε))

× (Ia − C−(r)eU−(r)(a+ε)C+(r)eU+(r)(a+ε))−1,

according to (2). The probabilities of failure for this matrix-geometric distribution are again
independent of n ∈ N and given by P(Xτ(0,a+ε) = 0 | X0 = a). The respective generalised
Laplace transform with argument r ′ is the upper block of

E

(
exp

[
−

∫ τ(0,a+ε)

0
r ′Js ds

]
;Xτ(0,a+ε) = 0

∣∣∣∣ X0 = a

)
= �−

r ′ (0, a + ε | a)

=
(
�−

r ′ (0, a + ε | a)(a,σ∪d)
�−

r ′ (0, a + ε | a)(d,σ∪d)

)
.

According to (3),

�−
r ′ (0, a + ε | a)(a,σ∪d) = (C−(r ′)eU−(r ′)a − eU

+(r ′)εC−(r ′)eU−(r ′)(a+ε))

× (Iσ∪d − C+(r ′)eU+(r ′)(a+ε)C−(r ′)eU−(r ′)(a+ε))−1

= (C−(r ′)e−U−(r ′)ε − eU
+(r ′)εC−(r ′))

× (e−U−(r ′)(a+ε) − C+(r ′)eU+(r ′)(a+ε)C−(r ′))−1,

where Iσ∪d denotes the identity matrix on Eσ ∪Ed . Let N := max{n ∈ N0 : Tn(ε) < ∞} and
S(ε) := inf{t > TN(ε) : Xt < Nε − a}. Then we can write

E

(
exp

[
−

∫ Tn(ε)

0
rJs ds

]
exp

[
−

∫ S(ε)

Tn(ε)

r ′Js ds

]
;N = n

)

= �+
r (0, a + ε | a)(�+

r (0, a + ε | a)(a,a))n−1�−
r ′ (0, a + ε | a)(a,σ∪d).
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Now letting ε → 0 and n → ∞ such that nε → x, we obtain

E

(
exp

[
−

∫ Tn(ε)

0
rJs ds

]
exp

[
−

∫ S(ε)

Tn(ε)

r ′Js ds

]
;N = n

)

→ E

(
exp

[
−

∫ σ−(a)

0
rJs ds

]
exp

[
−

∫ σ(a)

σ−(a)
r ′Js ds

]
; Sσ(a) ∈ dx

)
.

The latter has a defective matrix-exponential distribution with parameters

Gr(a) = lim
ε↓0

1

ε
(�+

r (0, a + ε | a)(a,a) − Ia)

and

Hr ′(a) = lim
ε↓0

1

ε
(�−

r ′ (0, a + ε | a)(a,σ∪d) − 0).

For the first parameter, we obtain, from (2),

Gr(a) = lim
ε↓0

1

ε
((eU

+(r)ε − C−(r)eU−(r)aC+(r)eU+(r)(a+ε))

− (Ia − C−(r)eU−(r)(a+ε)C+(r)eU+(r)(a+ε)))

× (Ia − C−(r)eU−(r)(a+ε)C+(r)eU+(r)(a+ε))−1

= lim
ε↓0

1

ε
(eU

+(r)ε − Ia + C−(r)eU−(r)a(eU
−(r)ε − Iσ∪d)C+(r)eU+(r)(a+ε))

× (Ia − C−(r)eU−(r)aC+(r)eU+(r)a)−1

= (U+(r)+ C−(r)eU−(r)aU−(r)C+(r)eU+(r)a)

× (Ia − C−(r)eU−(r)aC+(r)eU+(r)a)−1

= (U+(r)e−U+(r)a + C−(r)eU−(r)aU−(r)C+(r))

× (e−U+(r)a − C−(r)eU−(r)aC+(r))−1,

while the second parameter is determined from (3) as

Hr ′(a) = lim
ε↓0

1

ε
(C−(r ′)e−U−(r ′)ε − eU

+(r ′)εC−(r ′))

× (e−U−(r ′)(a+ε) − C+(r ′)eU+(r ′)(a+ε)C−(r ′))−1

= (C−(r ′)U−(r ′)+ U+(r ′)C−(r ′))(C+(r ′)eU+(r ′)aC−(r ′)− e−U−(r ′)a)−1.

This proves the first statement. The statement about the atom Sσ(a) = 0 is immediate.

5. Examples and applications

Example 1. The example given in Remark 3 of a Brownian motion fluid flow is explicated in
Section 6 of [20]. There it is stated that

E(e−ασ(a)−βSσ(a)−γ σ−(a)) = 2e−2amW(α+γ )(a)
W(α)(a)(W(α+γ )′(a)+ βW(α+γ )(a))

(4)

for σ 2 = 1 and µ = m, noting that the notation σ(a) and σ−(a) are replaced in [20] by τ(a)
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and τ−(a), respectively. The scale function is therein defined as

W(α)(a) = e−a(m−√
m2+2α) − e−a(m+√

m2+2α)

√
m2 + 2α

. (5)

We now wish to arrive at the same expression via Theorem 1. Since there is only one phase and
E = Eσ , we find thatW± = C± = 1 and A± are void. Set r ′ := α and r := α+ γ , which are
positive real numbers now. For any β > 0, we obtain �+

β (a, a) = 1 and

U±(β) = ±m−
√
m2 + 2β (6)

for σ 2 = 1 and µ = m, i.e. the U±(β) are negative real numbers. This implies that

Gα+γ (a) = U+(α + γ )e−U+(α+γ )a + eU
−(α+γ )aU−(α + γ )

e−U+(α+γ )a − eU−(α+γ )a

and

Hα(a) = U−(α)+ U+(α)
eU+(α)a − e−U−(α)a .

We begin by observing that

E(e−ασ(a)−βSσ(a)−γ σ−(a)) =
∫ ∞

0
eGα+γ (a)xe−βx dxHα(a) = (β −Gα+γ (a))−1Hα(a).

Equations (5) and (6) yield

W(α)(a) = e−U+(α)a − eU
−(α)a

√
m2 + 2α

and Gα+γ (a) = −W
(α+γ )′(a)

W(α+γ )(a)
,

as well as

Hα(a) = 2
√
m2 + 2αe−2ma

e−U+(α)a − eU−(α)a = 2e−2ma

W(α)(a)
.

Hence, we obtain

E(e−ασ(a)−βSσ(a)−γ σ−(a)) = W(α+γ )(a)
W(α+γ )′(a)+ βW(α+γ )(a)

2e−2ma

W(α)(a)
,

which is the same expression as (4).

Remark 4. Defining an r-scale function for MMBMs by

Wr(x) := e−U+(r)x − C−(r)eU−(r)xC+(r)

for x > 0, we see first that Gr(a) = −W ′
r(a)[Wr(a)]−1, where W ′

r(a) denotes the derivative
of the function Wr(x) at x = a.

In applications to insurance risk, a popular goal is to determine the expected amount of
r-discounted dividends paid before ruin. If the initial risk reserve is u ≥ 0 and dividends are
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paid above a constant barrier of a ≥ u, then the mean discounted dividends paid out before
ruin can be computed as

Vr(a | u) := �+
r (0, a | u)E

(
Sσ(a) exp

[
−

∫ σ−(a)

0
rJs ds

])

= �+
r (0, a | u)

∫ ∞

0
eGr (a)x dx

= �+
r (0, a | u)[−Gr(a)]−1

= (W+(r)e−U+(r)u −W−(r)eU−(r)uC+(r))

× (−U+(r)e−U+(r)a − C−(r)U−(r)eU−(r)aC+(r))−1.

The term�+
r (0, a | u) in the first equality includes the probability that the risk reserve reaches

the barrier before ruin occurs. The probability of receiving no dividends before ruin is given by
�−

0 (0, a | u). Since the time σ−(a) of the last dividend payment before ruin is a good time for
stakeholders to pull out their investment, the discounting of the dividends is computed towards
this time, which explains the term exp[− ∫ σ−(a)

0 rJs ds] in the expectation.

Example 2. We continue the example given in Remark 3 of a Brownian motion fluid flow.
Recalling the notation r := −U+ and s := U− from [13] and setting r := γ as well as a := b,
we obtain

Vγ (b | u) = eru − esu

rerb − sesb
,

which is Equation (2.11) of [13]. Note that, for γ = 0, we obtain

(s, r) =

⎧⎪⎪⎨
⎪⎪⎩

(
−2

µ

σ 2 , 0

)
, µ > 0,(

0,−2
µ

σ 2

)
, µ < 0.

This implies that

V0(b | u) =

⎧⎪⎪⎨
⎪⎪⎩
σ 2

2µ
(e2µb/σ 2 − e2µ(b−u)/σ 2

), µ > 0,

− σ
2

2µ
(e2µ(b−u)/σ 2 − e2µb/σ 2

), µ < 0;

cf. Equation (2.22) of [13] for the case µ > 0.

Example 3. Another example for insurance risk that allows explicit solutions is the compound
Poisson model with exponential claim sizes. Interclaim times and claim sizes are assumed to
be independent and exponentially distributed with parameters λ > 0 and β > 0, respectively.
The rate of premium income is c > 0. Denote the initial risk reserve by u ≥ 0. This model
has been examined in [12]. Keeping the tilde notation as in Remark 1, the risk reserve at time
t ≥ 0 is given by

X̃t = u+ ct −
Nt∑
n=1

Cn,

where (Nt : t ≥ 0) is a Poisson process with intensity λ and theCn, n ∈ N, are independent and
identically distributed (i.i.d.) random variables with exponential distribution of parameter β.
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We obtain the MMBM (X,J) as follows. The phase space is partitioned into the subspaces
Ep = {1}, E− = {2}, and E+ = Eσ = En = ∅. The parameters are σ1 = σ2 = 0, µ1 = c,
µ2 = −1, and

Q =
(−λ λ

β −β
)
.

The initial state is (X0, J0) = (u, 1).
Choose an exit vector r := (γ, 0)with γ > 0, and note that U+(r) andA+(r) are numbers.

The Laplace transform of the first passage time τ̃ (x) := {t ≥ 0 : X̃t > x} to a level x > u is
given by E(e−γ τ̃ (x) | X̃0 = u, J̃0 = 1) = eU

+(r)(x−u), where

U+(r) = −λ+ γ

c
+ λ

c
A+(r) and A+(r) = β

β − U+(r)
.

Noting that U+(r) must be negative, this resolves as

U+(r) = 1

2c

(
cβ − γ − λ−

√
(cβ − γ − λ)2 + 4cβγ

);
cf. Equation (3.12) of [12], noting that γ is denoted as δ therein. We further obtain

A−(r) = β + U−(r)
β

and U−(r) = 1

2c

(
λ+ γ − cβ −

√
(cβ − γ − λ)2 + 4cβγ

)
.

Hence,

�+
r (0, a | x) = (e−U+(r)·x − A−(r)eU−(r)·xA+(r))(e−U+(r)·b − A−(r)eU−(r)·bA+(r))−1

=
(

eρx − β − R

β
e−Rx β

β + ρ

)(
eρa − β − R

β
e−Ra β

β + ρ

)−1

= eρx − ψ(x)

eρa − ψ(a)
,

if we write R := −U−(r), ρ := −U+(r), and ψ(x) := e−Rx(β − R)/(β + ρ); cf. [12,
Equation (6.37)]. This coincides with Formula (6.25) of [12], where �+

r (0, a | x) is denoted
by B(0, a | x).

Starting in the ascending phase (collecting premiums), we obtain, for the mean discounted
dividends paid before ruin,

Vr(a | u) = (e−U+(r)u − A−(r)eU−(r)uA+(r))

× (−U+(r)e−U+(r)a + A−(r)eU−(r)a(−U−(r))A+(r))−1

=
(

eρu − β − R

β + ρ
e−Ru

)(
ρeρa + R

β − R

β + ρ
e−Ra

)−1

= (β + ρ)eρu − (β − R)e−Ru

ρ(β + ρ)eρa + R(β − R)e−Ra ,

which is Formula (7.8) of [12].

Example 4. With the two exceptions of Examples 1 and 3, there are no explicit closed form
solutions to dividend payments available in the literature. We shall, however, shortly sketch
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how to analyse another model of a risk reserve process. Assume that the premium income is
given by a Brownian motion (Bt : t ≥ 0)with parametersµ > 0 for the drift and σ 2 > 0 for the
infinitesimal variance. Claims arrive according to a Poisson process (Nt : t ≥ 0) with intensity
λ > 0, and the claim sizes Cn, n ∈ N, are i.i.d. with a phase-type distribution of order m ∈ N

and parameters (α, T ). Using the tilde notation of Remark 1, the risk reserve at time t is then
given as

X̃t = u+ Bt −
Nt∑
n=1

Cn,

where u = X̃0 denotes the initial risk reserve. Assume that there is a constant dividend barrier
at a > u, i.e. all the risk reserves exceeding level a will be paid out immediately. Thus, we
consider

X̃at := X̃t −
(

sup
s≤t

X̃s − a
)+

for all t ≥ 0, where (x)+ := max(x, 0). The time of ruin under this barrier strategy is defined
as τR := inf{t ≥ 0 : X̃at ≤ 0}. Let

S̃(t) :=
(

sup
s≤t

X̃s − a
)+

denote the dividends paid out until time t . Then D := S̃(τR) is the total amount of dividends
paid before ruin.

The MMBM resulting from the fluid embedding mentioned in Remark 1 has phase space
E = Eσ ∪E− with Eσ = {1} and E− = {2, . . . , m+ 1}. The parameters are given by σ1 = σ

and µ1 = µ, as well as σn = 0 and µn = −1 for n ∈ E−. The generator matrix for J is given
by

Q =
(−λ λα

η T

)
,

where η = −T 1 and 1 denotes the column vector with all entries being 1. Set the exit vectors
r = r ′ := (γ, 0, . . . , 0). Then the joint distribution of the time until ruin and the dividends
paid before ruin is given by

E(e−γ τR ;D ∈ dx) = �+
r (0, a | u)eGr (a)xHr(a) dx

for all x > 0. We further obtain the singular mass point E(e−γ τR ;D = 0) = �−
r (0, a | u),

caused by the event that ruin will occur before the dividend barrier is hit for the first time.
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