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Abstract

Let {Zn}n≥0 be a random walk with a negative drift and i.i.d. increments with
heavy-tailed distribution and let M = supn≥0 Zn be its supremum. Asmussen &
Klüppelberg (1996) considered the behavior of the random walk given that M > x,
for x large, and obtained a limit theorem, as x → ∞, for the distribution of the
quadruple that includes the time τ = τ(x) to exceed level x, position Zτ at this
time, position Zτ−1 at the prior time, and the trajectory up to it (similar results
were obtained for the Cramér-Lundberg insurance risk process). We obtain here
several extensions of this result to various regenerative-type models and, in partic-
ular, to the case of a random walk with dependent increments. Particular attention
is given to describing the limiting conditional behavior of τ . The class of models
include Markov-modulated models as particular cases. We also study fluid models,
the Björk-Grandell risk process, give examples where the order of τ is genuinely dif-
ferent from the random walk case, and discuss which growth rates are possible. Our
proofs are purely probabilistic and are based on results and ideas from Asmussen,
Schmidli & Schmidt (1999), Foss & Zachary (2002), and Foss, Konstantopoulos &
Zachary (2007).
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1 Introduction

Let Z = {Z(t)}t≥0 be a stochastic process with increments having a regenerative structure
([2]): there exist random times T0 = 0, T1, T2, . . . splitting Z up into i.i.d. cycles
{
Z(t)− Z(0)

}
0≤t<R1

=
{
Z(t+ T0)− Z(T0)

}
0≤t<R1

,
{
Z(t+ Tk)− Z(Tk)

}
0≤t<Rk+1

, . . .

with lengths R0 = T0 = 0, R1 = T1 − T0, R2 = T2 − T1, . . . (traditionally as in [2], one
allows the first cycle to have a different distribution; we won’t do this since our results
are easily adapted to this setting). We will also assume Z(0) = 0. A main example we
have in mind is the claims surplus process of an insurance company (accumulated claims
minus premiums, cf. [3]). In this setting, τ = τ(x) = inf{t : Z(t) > x} is the ruin time
with initial surplus x, M = supt≥0 Z(t) is the maximal claims surplus, and

P(τ <∞) = P(M > x)

is the ruin probability, but τ and M are also of interest in many other contexts. For
example, M could be the stationary waiting time in a single-server queue with i.i.d.
service times whose input process is modulated by a Markov chain (say, this is an output
process from another stationary single-server queue, see e.g. [11]).

Inder suitable assumptions, the supremum

sup
0≤t≤Rk+1

(Z(t+ Tk)− Z(Tk))

over a typical regenerative cycle of the process increments has a heavy-tailed distribution,
say F , on [0,∞) with mean mF <∞ whose integrated tail distribution

F I(x) = min

(
1,

∫ ∞

x

F (y) dy

)

is subexponential. Then it has been proved in a variety of settings that

P(τ <∞) = P(M > x) ∼ bF I(x) , x→ ∞, (1.1)

where b > 0 is a constant, thereby extending a classical result for random walks and the
Cramér-Lundberg process due to (in alphabetical order) Borovkov, Cohen, Embrechts,
Pakes, Veraverbeke, von Bahr. In particular, Asmussen, Schmidli & Schmidt [8] proved
the following (for background on subexponential distributions, see, e.g., [18], [3, X.1], or
[23]):

Theorem 1.1. In the regenerative setting, let

ξk = Z(Tk+1)− Z(Tk) , ξ∗k = sup
Tk≤t<Tk+1

Z(t)− Z(Tk) .

Assume that
P(ξ1 > x) ∼ P(ξ∗1 > x) ∼ F (x) , x→ ∞, (1.2)

for some distribution F such that F I is a subexponential tail and that −a = Eξ1 < 0.
Then

P(M > x) ∼
1

a
F I(x), x→ ∞.
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As demonstrated by the examples in [8] (and later papers, of which Asmussen &
Biard [4] is a recent instance), this result covers a large number of examples. Foss &
Zachary [22] gave a similar result in the case of a modulated random walk.

The purpose of the present paper is to supplement Theorem 1.1 and the corresponding
result from [22] with a description of the asymptotic behavior of τ given M > x, but in a
more general setting that covers both scenarios (of regenerative structure and of modu-
lation). Results of this type were given for the first time in Asmussen & Klüppelberg [5],
assuming that Z is either the classical Cramér-Lundberg risk process, a Lévy process, or
a discrete time random walk Zn = ξ1 + · · ·+ ξn with the ξk i.i.d. and having common dis-
tribution F and mean −a < 0. Note that there is a discrete time random walk imbedded
in the regenerative setting: consider the process Z at times Tn.

In the random walk setting, the basic assumption of [5] is that there exists a function
e(x) ↑ ∞ such that, for any t > 0,

lim
x→∞

F I
(
x+ te(x)

)

F I(x)
= G(t) (1.3)

for some distribution G. We assume in addition that the function e(x) is what could be
called weakly self-neglecting, i.e.

lim sup
x→∞

e
(
x+ e(x)

)

e(x)
<∞. (1.4)

Both assumptions (1.3) and (1.4) hold in the standard examples of subexponential dis-
tributions, see e.g. [19] and [9] for further details. In the regularly varying case F (x) =
L(x)/xα, a natural scaling is e(x) = x; then (1.4) is automatic and G is Pareto with
G(t) = (1 + t)−α. For other subexponential distributions such as the lognormal and the
heavy-tailed Weibull, one may take e(x) = F I(x)/F (x) and then G is standard exponen-
tial. Let W be a r.v. with distribution G. Then, with τ rw(x) = inf{n : Zn > x}, it is
shown in [5] (for later contributions in the same direction, see [24], [7]) that:

Theorem 1.2. Given in the random walk setting that F I is a subexponential distribution
and that (1.3) holds, as x→ ∞, the conditional distribution of τ rw(x)/e(x) given M > x
converges to the distribution of W/a.

Our first main result is the following extension. For a stochastic process with regen-
erative structure introduced earlier, for cycle i, let

ti = ti(x) = inf{t ≤ Ri : Z(t+ Ti−1)− Z(Ti−1) > x}

if ξ∗i > x, and ti = Ri, otherwise.

Theorem 1.3. In the regenerative setting, assume in addition to the conditions of The-
orem 1.1 and to conditions (1.3)-(1.4) that for any y > 0

P
(
t1 > ye(x)

∣∣ ξ1 > x
)

= o(1) , x→ ∞. (1.5)

Then the conditional distribution of τ/e(x) given M > x converges to the distribution of
µW/a where µ = ER.
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The intuition behind Theorem 1.3 is the following. In [5], a number of supplementary
results are given supporting the folklore that exceedance of level x occurs as result of one
big ξk and that all the other ξk are ‘typical’. In the regenerative setting, it is shown in [8]
that the events τ < ∞ and τ rw < ∞ (where the random walk is the process observed at
times Tn) essentially are equivalent, and that exceedance asymptotically occurs in cycle
τ rw(x). Thus one expects by the LLN, by the ‘typical’ behavior before τ rw and by (1.5)
(which ensures that the length of the cycle in which ruin occurs can be neglected), that
conditionally on M > x, τ/τ rw → µ. Given this, Theorem 1.2 then gives the desired
conclusion.

The technical problem is to make this intuition precise in this and in more general
settings. A difficulty is that conditioning on τ introduces some (presumably) small de-
pendence between cycles 1, . . . , τ rw−1 as well as some bias in their distribution (expected
to be small as well); this was realized in [4], with the consequence that some results
there are heuristic. To overcome this difficulty, we present an approach to results of type
Theorem 1.2 which is novel and combines the ideas from [5] and a sample-path analysis
developed in [11, 20, 22]. The new approach is developed in Section 3 in the setting of
random walks modulated by a regenerative process Y . For such a process, the asymp-
totics for P(M > x) is given in [20] (note that the setting allows Y to be a Markov process
with a general state space, whereas [8] only can deal with the finite case). We supplement
here with our second main result, Theorem 3.5, giving the conditional behaviour of τ .
Compared to Theorem 1.3, it has the advantage that no conditions like (1.2) or (1.5) have
to be verified, but it is also somewhat less general.

It is easy to construct examples where (1.5) fails as well as the conclusion of Theo-
rem 1.3, see Section 7. The order of τ may remain e(x) (then with a larger multiplier
than µW/a) or be effectively larger. It is tempting to conjecture that any rate ϕ(x) with
ϕ(x)/e(x) → ∞ may be attained. However, we shall show that 1/F (x) is a critical upper
bound.

2 Preliminaries

We need some notation.

Definition 2.1. Let F be a distribution function and F (x) = 1− F (x) its tail. Let h(x)
be a positive non-decreasing function. We say that F is h-insensitive if

F
(
x+ h(x)

)
∼ F (x), x→ ∞.

If (1.3) holds for F , one can take h as any function with h(x) = o
(
e(x)

)
. One can find

more about the h-insensitivity property in [23], Chapter 2. The term h-flat is also used
by some authors, see e.g. [10].

Remark 2.2. Any subexponential distribution F is long-tailed, i.e. F (x+C) ∼ F (x), for
any constant C. Therefore, by the diagonal argument, one can choose a positive function
h ↑ ∞ such that F is also h-insensitive (clearly, the choice of h depends on F ). If F is
h-insensitive and if 0 ≤ g ≤ h, then F is also g-insensitive.

Definition 2.3. We say that two families of events Ax and Bx of positive probabilities,
indexed by x > 0, are equivalent and write Ax ∼ Bx, if P

(
Ax∆Bx) = o

(
P(Ax)

)
, x→ ∞,

where A∆B = A\B ∪ B\A is the symmetric difference.
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Note that if Ax ∼ Bx, then also P(Ax) ∼ P(Bx).

3 Modulated random walk

Consider a discrete-time regenerative process Y = {Yn, n ≥ 1} such that, for each n, Yn
takes values in some measurable space (Y ,BY). We say that a random walk {Zn, n ≥ 0}
defined by Z0 = 0 and Zn = ξ1 + · · ·+ ξn for n ≥ 1, is modulated by the process Y if

(i) conditionally on Y , the random variables ξn, n ≥ 1, are independent;

(ii) for some family {Fy, y ∈ Y} of distribution functions such that, for each x, Fy(x) is
a measurable function of y, we have, for n = 1, 2, . . .,

P(ξn ≤ x | Y ) = P(ξn ≤ x | Yn) = FYn
(x) a.s. (3.1)

Let M rw = supn≥0 Zn. Under the conditions we give below, Zn → −∞ a.s. as n → ∞,
and so the random variable M rw is finite a.s.

The regenerative epochs of the modulating process Y are denoted by 0 = T0 < T1 <
. . ., with Rk = Tk − Tk−1. By definition, the cycles

(
Rk, (Yn, 0 < n ≤ Tk − Tk−1)

)
, k ≥ 1,

are i.i.d. We assume that
µ = ER1 <∞. (3.2)

Let

π(B) =
E
∑R1

1 1(Yn ∈ B)

µ
, B ∈ BY

be the stationary probability measure. We assume that each distribution Fy, y ∈ Y has a
finite mean

ay = E[ξn | Yn = y] =

∫ ∞

−∞

xFy(dx) ∈ (−∞,∞), (3.3)

and that

the family of distributions {Fy, y ∈ Y} is uniformly integrable. (3.4)

In addition, we assume that this family of distributions satisfies the following additional
assumptions with respect to some reference distribution F with finite mean and some
measurable function c : Y → [0, 1]:

(C1) Fy(x) ≤ F (x), for all x ∈ R, y ∈ Y ,

(C2) Fy(x) ∼ c(y)F (x) as x→ ∞, for all y ∈ Y ,

(C3) κ = supy∈Y ay is finite and a = −
∫
Y
ayπ(dy) is finite and strictly positive,

(C4) for some nonnegative b > κ,

P(bR1 > n) = o
(
F (n)

)
, n→ ∞.
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Note that condition (C4) is redundant if κ < 0 — then one can take b = 0.
The following result is known (see Theorem 2.2 from [20] for a slightly more general

version and also for discussion on importance of conditions; see also Proposition 3.2 of
[24]).

Theorem 3.1. Suppose that conditions (3.1)–(3.4) and (C1)–(C4) hold and that the dis-
tribution F I is subexponential. Then Zn/n → −a a.s. as n → ∞; in particular, M rw is
an a.s. finite random variable. Furthermore,

lim
x→∞

P(M rw > x)

F I(x)
=
C

a
(3.5)

where C =

∫

Y

c(y)π(dy) ∈ [0, 1] .

The main idea in the proof of Theorem 3.1 is that the supremum of the modulated
random walk, M rw, may be closely approximated by a sum of two independent random
variables where one of them has a light-tailed distribution and the other is the supre-
mum of an ordinary random walk with i.i.d. heavy-tailed increments with integrated tail

distribution proportional to F
I
.

We also note that, by the strong law of large numbers (SLLN) and by the diagonal
argument, one can choose a sequence εn ↓ 0 such that

P
(
|Zm +ma| ≤ mεm ∀m ≥ n

)
→ 1, n→ ∞. (3.6)

Then
P
(
|Zm +ma| ≤ mεm + h(x) ∀m

)
→ 1, x→ ∞. (3.7)

Based on Theorem 3.1 and on (3.7), we obtain the following auxiliary result (see, e.g.,
Corollary 5 in [22] for an analogous statement in the case of an ordinary random walk).

Proposition 3.2. Assume that the conditions of Theorem 3.1 hold. Assume that C > 0.
Let the function h(x) ↑ ∞, h(x) = o(x) be such that F I is h-insensitive, and introduce
the events:

Kn,x =
⋂

m≤n−1

{
|Zm +ma| ≤ mεm + h(x)

}
;

An,x = {ξn > x+ na}; Aε,h
n,x =

{
ξn > x+ na+ nεn + h(x)

}
.

Then the following equivalences hold:

{M rw > x} ∼
⋃

n≥1

{M rw > x} ∩ An,x ∩Kn,x ∼
⋃

n≥1

{M rw > x} ∩ Aε,h
n,x ∩Kn,x

∼
⋃

n≥1

{M rw > x} ∩ An,x ∼
⋃

n≥1

{M rw > x} ∩ Aε,h
n,x

∼
⋃

n≥1

An,x ∼
⋃

n≥1

Aε,h
n,x (3.8)
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and, therefore,

P(M rw > x) ∼
∑

n≥1

P
(
Aε,h

n,x ∩Kn,x

)
∼

∑

n≥1

P(Aε,h
n,x) ∼

∑

n≥1

P(An,x) ∼
C

a
F I(x). (3.9)

Finally there exists a function N = N(x) → ∞ such that F
I
(x + aN) ∼ F

I
(x) and

equivalences (3.8) continue to hold if one replaces n ≥ 1 by n ≥ N .

Proof. One can easily verify that
⋃

n≥1

Kn,x ∩A
ε,h
n,x ⊆ {M rw > x}.

The events Kn,x ∩A
ε,h
n,x are disjoint and

∑
n≥1 P(A

ε,h
n,x \ An,x) = o(F I(x)), so by (3.7),

P
(⋃

n≥1

Kn,x ∩A
ε,h
n,x

)
=

∑

n≥1

P(Kn,x ∩ A
ε,h
n,x) ∼

∑

n≥1

P(Kn,x ∩An,x) ∼
∑

n≥1

P(An,x).

Since P(M rw > x) ∼ C
a
F I(x) by Theorem 3.1 and since, by direct computations,

∑
n≥1 P(An,x) ∼

C
a
F I(x), equivalences (3.9) follow. The last fact follows directly from Remark 2.2 and

equivalences (3.8) and (3.9). �

A special case of a modulated random walk is an ordinary random walk with i.i.d.
increments. Consider an auxiliary i.i.d. sequence {ξ♯n} with distribution F and introduce
the events

A♯
n,x = {ξ♯n > x+ na} and D♯

x =
⋃

n≥1

A♯
n,x.

Assume there exists a function e(x) ↑ ∞ such that, for any t > 0, there exists a limit

lim
x→∞

P(D♯
x+te(x))

P(D♯
x)

= G(t) (3.10)

with limt→∞G(t) = 0. Remark that condition (3.10) is nothing else than condition (1.3)

since P(D♯
x) ∼

∑
n≥1 P(A

♯
n,x) ∼

1
a
F

I
(x).

On the event D♯
x, introduce the random variable

τ ♯ ≡ τ ♯(x) = min{n ≥ 1 : 1(A♯
n,x = 1)}.

Then the following result holds:

Lemma 3.3. Assume that the distribution F I is subexponential and that (1.3) holds.
Then the conditional distribution of τ ♯/e(x) given D♯

x converges to the distribution G
(say, of the random variable W ).

Indeed,

P(aτ ♯/e(x) > t | τ ♯ <∞) = P(τ ♯ >
t

a
e(x) | τ ♯ <∞)

∼

∑
n> t

a
e(x) P(ξ

♯
n > x+ na)

P(D♯
x)

∼
P(D♯

x+te(x))

P(D♯
x)

→ G(t).

7
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We now return to the modulated random walk. On the event {M rw > x}, we similarly
introduce the random variable

τ rw = τ rw(x) = min{n ≥ 1 : Zn > x}.

Recall from Proposition 3.2 that

{M rw > x} ∼ Dx =
⋃

n≥1

An,x.

Then, by Lemma 3.3, we obtain:

Lemma 3.4. Under the assumptions of Theorem 3.1 with C > 0 and (1.3), the conditional
distribution of aτ rw/e(x), conditioned on {M rw > x}, converges to the distribution G.

Indeed, the equivalence

P(aτ ♯ > te(x) | τ ♯ <∞) ∼ P(aτ rw > te(x) | τ rw <∞)

holds since we may represent conditional probabilities as ratios of probabilities where
both numerators and both denominators are pairwise asymptotically proportional, with
the same coefficient C.

Further, by Proposition 3.2 and Lemma 3.4, one may deduce the following result.

Theorem 3.5. Assume (1.3) to hold. Then, under the conditions of Theorem 3.1 and
the assumption C > 0, the distribution of

(
aτ rw

e(x)
,
Zτrw−1

e(x)
, max
0≤m≤τrw−1

|Zm +ma|

τ rw
,
Zτrw − x

e(x)

)
, (3.11)

conditioned on {M rw > x}, converges to the distribution of (W,−W, 0,W
′

) where W and
W

′

have the same distribution G and, for any positive u and v,

P(W > u,W
′

> v) = P(W > u+ v). (3.12)

This result is a complete analogue of Theorem 1.1 from Asmussen & Klüppelberg (1996)
which was obtained in the case of an ordinary random walk.

Proof. We have already proved the convergence of the first component in (3.11). From
that and from (3.7), one may conclude that

P
(
|Zm +ma| ≤ mεm + h(x) ∀m < τ rw | τ rw <∞

)
→ 1, as x→ ∞.

Then the convergence of the second and third components in (3.11) follows if we take
h(x) → ∞ such that h(x) = o

(
e(x)

)
.

It remains to show the convergence of the last component in (3.11). Since

{
Zτrw − x > ve(x)

}
∼

⋃

n≥1

{
ξn − x− na > ve(x)

}
,

8



we get

P
(
Zτw − x > ve(x)

)
∼ P

(⋃

n≥1

{
ξn − x− na > ve(x)

})

∼
∑

n≥1

P
(
ξn − x− na > ve(x)

)
=

∑

n≥1

P
(
ξn > x+ ve(x) + na

)
∼ P(Dx+ve(x))

(here we assume that Zτrw = −∞ if τ rw = ∞). Similarly, equality (3.12) follows since

{
aτ rw > ue(x), Zτrw − x > ve(x)

}
∼

⋃

n>ue(x)

{
ξn > x+ na, ξn − na− x > ve(x)

}

=
⋃

n>ue(x)

{
ξn > x+ na + ve(x)

}
,

and then

P
(
aτ rw > ue(x), Zτrw − x > ve(x)

)
∼

∑

n>ue(x)

P
(
ξn > x+ na+ ve(x)

)

∼ C
∑

n>ue(x)

P
(
ξ♯n > x+ na+ ve(x)

)
= C

∑

n≥1

P
(
ξ♯n > x+ na + (v + u)e(x)

)

∼ C P(D♯
x+(u+v)e(x)) ∼ P(Dx+(u+v)e(x)).

�

4 Continuous-timemodulated regenerative processes

We consider now a continuous-time process Z(t) introduced in Section 1 and assume
that, more generally, it is a regenerative process which is modulated by a discrete-time
regenerative process Y . This means that (compare with the previous Section!)

(i) conditionally on Y , the random elements Vk+1 = {Z(t) − Z(Tk), 0 ≤ t ≤ Rk+1} are
independent;
(ii) for any n,

P(Vn ∈ · | Y ) = P(Vn ∈ · | Yn) a.s. (4.1)

Let further, as in Theorem 1.1,

ξk = Z(Tk+1)− Z(Tk) , ξ∗k = sup
Tk≤t<Tk+1

Z(t)− Z(Tk)

and assume the conditions of Theorem 3.1 and (1.3) to hold. Then the statements of
Theorems 3.1 and 3.5 hold too.

Note thatM ≡ supt≥0 Z(t) may be also represented asM = supn≥0(ξ1+· · ·+ξn+ξ
∗
n+1).

Then we have the following result:

Theorem 4.1. Assume that the conditions of Theorem 3.1 and (1.3) hold, and that C > 0
in Theorem 3.1. Assume further that, for all y ∈ Y,

P(ξ∗n > x | Y = y) ∼ F y(x) a.s.

9



and that
P(ξ∗n > x) ≤ cF (x),

for some c ≥ 1 and all x. Then, as x→ ∞,

{M > x} ∼ {M rw > x} ∼
⋂

n≥1

Kn,x ∩ An,x (4.2)

and, for τ̂ rw ≡ τ̂ rw(x) = min{n ≥ 1 : Zn−1 + ξ∗n > x},

P(τ rw = τ̂ rw | M > x) → 1, x→ ∞ (4.3)

and
P(τ rw = τ̂ rw | M rw > x) → 1, x→ ∞. (4.4)

Therefore the statement of Theorem 3.5 continues to hold if one replaces in (3.11) τ rw

by τ̂ rw and then Zτrw by Zτ̂rw−1 + ξ∗τ̂rw.

The proof of Theorem 4.1 follows from routine minor modification of calculations from
the previous Section.

5 Proof of Theorem 1.3

Now we assume that the process Z(t) is regenerative. This means that Y is a constant
and, as a corollary, that conditions (3.1)-(3.4) and (C1)-(C4) are redundant. Also, the ξn
are i.i.d. in this case and, therefore, we may take τ ♯ = min{n : ξn > x+ na}.

Let P
(x) denote the conditional probability given τ < ∞, write Tn = R1 + · · · + Rn

and recall the definition of τ̂ rw from Theorem 4.1. Note that since the events τ <∞ and
τ̂ rw < ∞ coincide, and are equivalent to each of the events τ rw < ∞ and τ ♯ < ∞ (see
Lemma 3.4), we may use either of the four in conditioning arguments.

The proof of Theorem 1.3 is a straightforward combination of Theorem 3.5, Theo-
rem 4.1 and of the following two lemmas. Both use the fact, implicit in [8] and also a
consequence of (4.3) and (4.4) of Theorem 4.1, that

P
(x)
(
τ ∈ [Tτ rw−1, Tτ rw)

)
→ 1 , x→ ∞ (5.1)

since asymptotically
{τ ∈ [Tτ rw−1, Tτ rw)} ⊆ {τ rw = τ̂ rw}.

Lemma 5.1. Tτ rw−1/e(x) → µW/a in P
(x)-distribution.

Proof. We use the representation

Tτ rw−1

e(x)
=
Tτ rw−1

τ rw
·
τ rw

e(x)
. (5.2)

Choose N = N(x) → ∞ from Proposition 3.2. The first fraction in the LHS of (5.2)
converges to µ in P

(x) probability since, by the independence of An,x and Tn−1 and by the
SLLN,

{∣∣Tτ rw−1/τ
rw − µ

∣∣ ≤ ε, τ rw <∞
}

∼
⋃

n≥1

{∣∣Tn−1/n− µ
∣∣ ≤ ε

}
∩An,x

∼
⋃

n≥N

{∣∣Tn−1/n− µ
∣∣ ≤ ε

}
∩An,x ∼

⋃

n≥N

An,x ∼
⋃

n≥1

An,x ∼ {τ rw <∞}.

10



Then the second fraction converges to W/a by Theorem 3.5, and the result follows. �

Recall that τ =
∑τ̂rw−1

1 Ri + tτ̂rw .

Lemma 5.2. Under the conditions of Theorem 1.3, tτ̂rw/e(x) → 0 in P
(x)-probability.

Proof. By Theorem 3.5 and Theorem 4.1, for any δ > 0, one can choose K > 0 such that

P
(
τ̂ rw/e(x) > K

)
≤ δ/2,

for all x large enough. Then, for any y > 0,

P
(x)
(
tτ̂rw/e(x) > y

)
≤

(
1 + o(1)

)
∑

n≤Ke(x) P
(
tn > ye(x), ξn > x+ na

)

F
I
(x)/a

+ δ

If (1.4) holds, then also lim supx→∞ e
(
x + ke(x)

)
/e(x) < ∞, for any k > 0. Therefore,

the latter sum in the numerator is equivalent to
∑

n≤Ke(x)

P
(
tn > ye(x+ na)

∣∣ ξn > x+ na
)
P(ξn > x+ na) = o(1)F

I
(x)

since the (tn, ξn) are i.i.d. Then we complete the proof by letting first x → ∞ and then
δ → 0. �

Combining this with the statements of Theorem 4.1 and Lemma 5.1 completes the
proof of Theorem 1.3.

6 Examples

Example 6.1. In the setting of Section 3, we may assume that Z(t) is a right-continuous
piecewise constant process with Z(n) = Zn. We shall show here that, under a natural
extra assumption, Theorem 1.3 holds for this model as well. Note that because of the
result of [20], we need not verify the conditions of Theorem 1.1 (which may be messy);
all that is needed is to establish (1.5).

Assume in addition that the distribution of the cycle length, R, has a lighter tail than
F (x), in the following strong sense: there exists constant c > 1 such that

P(cR > x) = o
(
F (x)

)
, x→ ∞. (6.1)

Let ξ be the increment over the cycle, ξ =
∑R

1 ξi. For (1.5) to hold, it suffices to show
that, for any y > 0,

P(R > yx, ξ > x) = o
(
F (x)

)
, x→ ∞, (6.2)

where F is the reference distribution. For any fixed x0 and for x ≥ x0, as x→ ∞,

P(R > yx, ξ > x) = E(P(ξ > x | R, Y0, . . . , YR)1(Y > yx))

≤
∑

k≥xy

F k(x)P(R = k) (by property (C2))

≤
∑

k≥x0y

F k(x)P(R = k) ∼ F (x)E[R; R > x0y]

where, under assumption (6.1), the last equivalence follows from [16], Theorem 1. By
letting x0 → ∞, we obtain (6.2). �
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Example 6.2. The Björk-Grandell model ([13]) is a regenerative risk process, such that
in addition to the cycle length R also the rate Λ of claims arrivals within a cycle is random.
All claims are i.i.d. with distribution H , with mean m, and independent of (R,Λ), and
there is a constant rate 1 of premium inflow. The infinite horizon ruin probabilities are
discussed in [13] for the light-tailed case and in [8] for the heavy-tailed case. As noted
in [8], heavy tails of ξ may occur in at least three ways: (i) F is heavy-tailed; (ii) Λ
is heavy-tailed; (iii) R is heavy-tailed for sufficiently large values of Λ. Under some
(not necessarily minimal) assumptions, we shall give arguments to identify the limiting
conditional behavior of τ .

For the following estimates, one may keep in mind that

ξ = X1 + · · ·+XMRΛ
− R (6.3)

with M an independent Poisson process at unit rate. For the tail asymptotics of ξ, the
−R term may often be neglected (see [4] for some preliminary discussion and [1] for a
more complete picture). Also, with light-tailed claims one may frequently approximate
X1 + · · ·+XMRΛ

by mRΛ; the relevant large deviations arguments are given in detail in
[8] and will not be repeated here.

Consider first case (i) with R,Λ both light-tailed. Using (6.3) and an independence
result from [4], it is standard that

P(ξ > x) ∼ E(RΛ)F (x) .

By a classical inequality due to Kesten (see e.g. [12], p.429), to each δ > 0 there is a
Cδ <∞ such that P(X1 + · · ·+Xn > x) ≤ Cδe

nδF (x) for all n. With

p = P(MRΛ = 1) > 0 , q = pP(X1 > x+R) ∼ pF (x) ,

we get

E[esR | ξ > x] =
E[esR; ξ > x]

P(ξ > x)
≤

1

q
E
[
esR; X1 + · · ·+XMRΛ

> x
]

≤
1

q
E
[
esRCδe

δMRΛF (x)
]

∼
Cδ

p
E
[
esReRΛ(eδ−1)

]
.

Taking s, δ small enough, this expression is finite, and its independence of x together with
e(x) → ∞ then gives (1.5) and the conclusion of Theorem 1.3.

Consider next case (ii) with F light-tailed and (R,Λ) satisfying P(Λ > x) ∼ x−α with
α > 1 and ERα′

< ∞ for some α′ > α. Then by Breiman’s theorem ([14], [15], [17]),
P(mRΛ > x) ∼ cx−α where c = mα

ERα. By a large deviations argument,

P(MRΛ > x) = P(RΛ > x) + O(e−ε1x)

for some ε1 > 0. A further large deviations argument given in [6] then shows that
{
X1 + · · ·+XMRΛ

> x
}
∆{mRΛ > x} = A(x)

where PA(x) = O(e−εx) for some ε > 0 . In particular X1 + · · ·+XMRΛ
has asymptotic

tail cx−α. Hence so has ξ = X1 + · · · + XMRΛ
− R (see [4]; note that this is non-trivial

due to dependence). Let α < α′′ < α′ and let R∗ be a r.v. with distribution

P(R∗ ∈ dt) = E
[
Rα′′

; R ∈ dt
]
/E(Rα′′

) .
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Then

E[Rα′′

| ξ > x] ∼
E[Rα′′

; ξ > x]

cx−α
≤

1

cx−α
E
[
Rα′′

; X1 + · · ·+XMRΛ
> x

]

=
1

cx−α
E
[
Rα′′

; mRΛ > x
]
+ O(e−εx)

=
1

cx−α
ERα′′

P(R∗Λ > x/m) + O(e−εx).

Another application of Breiman’s theorem justified by the choice of α′′ shows that R∗Λ
has a distribution tail asymptotically proportional to x−α. Hence E[Rα′′

| ξ > x] stays
bounded as x→ ∞, and arguing as above gives (1.5) and the conclusion of Theorem 1.3.

In contrast, the behavior in case (iii) is different, see Section 7. �

Example 6.3. Let Z be a two-stage fluid model, where a cycle R is composed of two
stages such that the first has deterministic length a1 and the second a random length
R2 with a subexponential distribution F with mean a2 < a1. In stage 1, Z decreases
deterministically at rate 1 and in stage 2, Z increases deterministically at rate 1 (thus
−a = a2 − a1 < 0). Clearly, ξ > x occurs if and only R2 > x + a1. Thus P(ξ > x) =
F (x + a1) ∼ F (x) and given ξ > x, R is at least x. Since e(x) = O(x) in all examples,
condition (1.5) can not hold and more precisely, given ξ > x, R is of order x + e(x).
Therefore τ is of order e(x) in the regularly varying case but with a larger multiplier than
µW , and of order x >> e(x) for other subexponential distributions.

Note that this example shows that the regenerative setting is more flexible than the
Markov additive one: if one considers the discrete time analogue, the increments in each
Markov stage are bounded and there is thus no version of condition (C2) of Section 3
with F heavy-tailed. On the other hand, conditions may be easier to verify in the Markov
additive setting.

�

7 Different growth rates

The following result is straightforward given Lemma 5.1 and the proof of Theorem 1.3.
For simplicity (to avoid distinction between x and e(x)) we state it only for the regularly
varying case where the r.v. W in Theorem 1.2 is Pareto:

Corollary 7.1. Assume that F in (1.2) is regularly varying and that instead of Condi-
tion (1.5) we have

P
(
t1/e

∗(x) > y
∣∣ ξ > x) → P(W ∗ > y) for all y, (7.1)

some function e∗(x) with lim inf e∗(x)/x > 0 and some r.v. W ∗.
(i) If e∗(x) ∼ dx for some d, then

τ

x
→ Wµ/a+ d(1 +W )W ∗ in P

(x) − distribution;

(ii) if e∗(x)/x→ ∞, then

τ

e∗
(
x(1 +W )

) → W ∗ in P
(x) − distribution

13



with W,W ∗ independent in both (i) and (ii), and W independent of τ in (ii). In particular,
if e∗(x) ∼ dxβ with β > 1, then τ/xβ → d(1 +W )βW ∗ in P

(x)-distribution.

Proof. The asymptotic P
(x)-distribution of τ is the same as the asymptotic distribution

of
∑τ̂ rw−1

1 Ri + tτ̂ rw . Here
∑τ̂ rw−1

1 Ri/x → µW/a in P
(x)-distribution (Lemma 5.1). More

generally,

1

x

(τ̂ rw−1∑

1

Ri,

τ̂ rw−1∑

1

ξi

)
→ (µW/a,W ) .

GivenW = w, ξτ̂ rw will asymptotically have to exceed xw+x, implying tt̂rw/e
∗
(
x(w+1)

)
→

W ∗ and the conclusion of (i) since the limit W ∗ does not depend of w. For (ii), just note

that in this case
∑τ̂ rw−1

1 Ri may be neglected. �

We next first give an example of e∗(x) ∼ dx and thereafter some discussion of what
may happen if e∗(x)/x→ ∞.

Example 7.2. We return to the Björk-Grandell model in case (iii). Here one expects

that given Λ = λ, the surplus process
∑N(t)

1 Ui − t can be approximated by λmt− t, and
this is confirmed by the large deviations bounds in [8]. Therefore the behavior should be
like a fluid model with heavy-tailed on periods, so that the exceedance time of x within
a cycle should be of order x and accordingly makes a genuine contribution to τ .

We next verify this statement and and make it more precise, assuming as in [8] that
claims are light-tailed and independent of (R,Λ), that for some λ0 > 1/µ

P
(
R > t

∣∣Λ = λ
)

= F (t) , λ > λ0 ,

P
(
R > t

∣∣Λ = λ
)

≤ G(t) , λ ≤ λ0,

for some regularly varying F with F (t) = L(t)/tα (L slowly varying), some G satisfying
G(t) = o

(
F (t)

)
, and the following regularity condition:

sup
x≥x0

L(x/y)

L(x)
≤ g(y) (7.2)

for all y > 0, some x0 > 0 and some function g(y) with E
[
Λαg(Λ)

]
<∞.

It is then shown in [8] that the conditions of Theorem 1.1 are satisfied and that

ψ(x) ∼ c1F (x) where c1 =
c

(α− 1)
[
ER −mE(ΛR)

] , c = E
[
(Λm− 1)α; Λ > λ0

]
.

(7.3)
This depends on the estimate

P(ξ > x) ∼ cF (x) . (7.4)

As preparation for the study of the ruin time, we first recall the proof of (7.4). That
the event ξ > x occurs is by the LD arguments equivalent to R(Λm− 1) > x, and so

P(ξ > x) ∼

∫ ∞

λ0

fΛ(λ)F
(
x/(λm− 1)

)
dλ

=

∫ ∞

λ0

fΛ(λ)(λm− 1)α
L
(
x/(λm− 1)

)

xα
dλ

∼

∫ ∞

λ0

fΛ(λ)(λm− 1)α
L(x)

xα
dλ = cF (x) , (7.5)
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where the last ∼ follows by dominated convergence justified by (7.2). If ξ > x, τ ≤ xt is to
occur, we need in addition x/(λm− 1) ≤ xt, and so by the same dominated convergence
argument

P(ξ > x, τ ≤ xt) ∼

∫ ∞

λ0∨(1/t+1)/m

fΛ(λ)F
(
x/(λm− 1)

)
dλ

∼

∫ ∞

λ0∨(1/t+1)/m

fΛ(λ)(λm− 1)α
L(x)

xα
dλ = cF (x)W ∗(t) , (7.6)

where W ∗ is the distribution with c.d.f.

P(W ∗ ≤ t) =

{ 1

c

∫ ∞

(1/t+1)/m

fΛ(λ)(Λm− 1)α dλ, t ≤ 1/(λ0m− 1)

1, t > 1/(λ0m− 1)
.

From Corollary 7.1 we therefore conclude that τ(x)/x → W ∗(1+W ) in P
(x)-distribution.

�

We proceed to discussing when τ may grow at larger rates than e(x) and how fast
the rate may be. If tx = E[R | ξ = x] → ∞ faster than e(x), one expects R given ξ > x
(and hence often τ) to grow at a faster rate than e(x). At first sight, one could conjecture
that any rate is possible. This is, however, not possible because of the requirement
ER < ∞. Suppose, for example, that F is a discrete subexponential distribution with
point probabilities fx = P(ξ = x) ∼ c1/x

α+1. Assuming tx ∼ c2x
β, we then get

∞ > ER =

∞∑

0

txfx ≈

∞∑

0

c2x
β c1/x

α+1 ,

implying β < α. The following result gives the more precise upper bound c/F (x) and is
more satisfying by being in terms of the growth rate of τ rather than expected values:

Theorem 7.3. Let F (x) = P(ξ ≤ x) be a discrete subexponential distribution with point
probabilities f0, f1, . . . and ϕ a function with ϕ(x)/e(x) → ∞. Assume that P

(
R >

εϕ(x)
∣∣ ξ > x) ≥ δ for some ε, δ > 0 and all large x. Then ϕ(x) ≤ c/F (x) for some

constant c.

Proof. Define t(x) as above and let

k(x) = E[R | ξ > x] =
1

F (x)

(
tx+1fx+1 + tx+2fx+2 + · · ·

)
(7.7)

Multiplying by F (x) and subtracting the resulting equation with x replaced by x+ 1, it
follows that

tx+1 =
1

fx+1

(
k(x)F (x)− k(x+ 1)F (x+ 1)

)
.

This expression needs to be positive which gives k(x + 1)/k(x) < F (x)/F (x + 1) and,
multiplying from x = 1 to y − 1,

k(y) < k(1)F (1)
1

F (y)
. (7.8)
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However, clearly k(x) = E[R | ξ > x] ≥ εδh(x) , from which we conclude

ϕ(x) ≤
k(x)

εδ
<

k(1)F (1)

εδ

1

F (x)
�

That the upper bound of order 1/F (x) is attainable follows from the following example:

Example 7.4. Let F be a discrete subexponential distribution with point probabilities
f0 > 0, f1, f2, . . . A discrete-time regenerative process Z is constructed as follows. At the
start of a cycle, a r.v. X with distribution F is drawn. If X = 0, one takes R = 1, ξ = −b.
If X = x > 0, one takes R = ϕ(x) for some suitable ϕ(x) ↑ ∞, Z0 = . . . Zϕ(x)−2 = 0,
ξ = Zϕ(x)−1 = x (one then needs to choose b such that Eξ < 0).

The question is whether all rates are attainable. To discuss this point, let ϕ(x) ↑ ∞.
By Theorem 7.3, ϕ must satisfy ϕ(x) = O

(
1/F (x)

)
. Conversely, the construction works

if (7.8) holds and gives a risk process such that τ grows at rate at least ϕ(x).
For example, if F is regularly varying with index α > 1, this allows for growth rates

ϕ(x) of order xβ with 1 < β < α, whereas e(x) only is of order x.
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[6] S. Asmussen, C. Klüppelberg & K. Sigman (1999) Sampling at a subexponential time, with
applications to queues and insurance risk. Stoch. Proc. Appl. 79, 265–286.

[7] S. Asmussen & D. Kortschak (2011) Second order approximations for normalized ruin times
in the presence of heavy tails. Submitted

[8] S. Asmussen, H. Schmidli & V. Schmidt (1999) Tail approximations for non-standard risk
and queueing processes with subexponential tails. Adv. Appl. Probab. 31, 422–447.

[9] G. Balkema & L. de Haan (1974) Residual life-time at great age. Ann. Probab. 2, 792–804.
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