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Average optimality for continuous-time Markov decision processes

under weak continuity conditions

Yi Zhang ∗

Abstract: This article considers the average optimality for a continuous-time Markov decision process with

Borel state and action spaces and an arbitrarily unbounded nonnegative cost rate. The existence of a deter-

ministic stationary optimal policy is proved under a different and general set of conditions as compared to the

previous literature; the controlled process can be explosive, the transition rates can be arbitrarily unbounded and

are weakly continuous, the multifunction defining the admissible action spaces can be neither compact-valued

nor upper semi-continuous, and the cost rate is not necessarily inf-compact.
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1 Introduction

In this article we establish the existence of a deterministic stationary average optimal policy for a possibly

explosive CTMDP (continuous-time Markov decision process) in Borel state and action spaces under the weak

continuity condition.

The average criterion for CTMDPs has been studied by many authors; for the recent developments, see

[13, 14, 15, 32] for the case of a countable state space, and [16, 19, 27, 34] for the case of a possibly uncountable

state space. Considering a nonnegative cost rate as in the present article, the standard approach of proving

the existence of a deterministic stationary optimal policy for an average CTMDP is through the optimality

inequality [13, 19]. If additional but less verifiable conditions are imposed, one can establish the optimality

equation [14, 34]. In general, it is known [13] that the optimality equation may not have a solution even if the

optimality inequality can be solved, see also [3].

In the present article, for the CTMDP with Borel state and action spaces and a nonnegative cost rate,

we also follow the optimality inequality approach, however, under the conditions different from the present

literature on CTMDPs with the average criterion. Below we explain that our conditions are rather general, in

which the contribution of the present article also lies.
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Firstly, all the aforementioned works on CTMDPs [13, 14, 15, 16, 19, 27, 32, 34] assume the underlying

process to be non-explosive; and most of them achieve this by assuming the existence of a Lyapunov function

bounding the growth of the transition rates. In the present article we remove this condition, and allow the

transition rates to be essentially arbitrarily unbounded, and the controlled process to be possibly explosive.

The development of the theory covering such CTMDPs was once regarded quite challenging in the survey [15];

for the discounted criteria it has been done in e.g., [7], see also [31].

Secondly, we assume the weak continuity on the underlying signed kernel defining the transition rates, while

all the previous literature on average CTMDPs in Borel spaces is based on the strong continuity condition, except

for [20], which establishes the existence of a randomized stationary optimal policy for the constrained CTMDPs.

It is relevant to point out that recently the developments of the theory of average DTMDPs (discrete-time

Markov decision processes) and SMDPs (semi-Markov decision processes) with weakly continuous (also called

Feller) transition probabilities have received much attention from the research community [5, 6, 8, 24, 25, 26].

In a nutshell, as compared to the strongly continuous case, the proofs with weakly continuous transition rates

are more technical, and the construction of the solution to the optimality inequality would involve the notion

of the generalized lower limit and the generalized Fatou’s lemma. Moreover, based on a neat generalization

of the Berge theorem [9], which is partially summarized in Lemma 5.1 below, and as in [8] for the average

DTMDP, we allow the multifunction defining the admissible action spaces to be neither compact-valued nor

upper semi-continuous.

If the state space is countable, then the concepts of weak and strong continuity coincide. However, in general,

meaningful applications of Markov control problems to, e.g., inventory management, have been noted, where

the weak continuity condition can be satisfied while the strong continuity condition is not, see the examples in

Section 6 of [26].

Since the solution to the optimality inequality is constructed following the vanishing discount factor approach,

some of the results about discounted CTMDPs are incidentally extended in the present paper as well.

Out of the current literature on CTMDPs, this paper is most closely related to [19], which is an extension

of [13], and also derives the average optimality inequality for a CTMDP. Nevertheless, it assumes the existence

of a Lyapunov function, and considers strongly continuous transition rates. A more detailed comparison of our

conditions with those of [19] is presented after Condition 3.4 below.

Finally, since we allow the transition rates to be essentially arbitrarily unbounded and not separated from

zero, the standard technique transforming the concerned average CTMDP to an equivalent DTMDP [33] remains

to be formally justified and is thus not directly applicable to our setup.

The rest of this paper is organized as follows. Section 2 describes the concerned CTMDP problem. The main

result is presented in Section 3. The proof of the main result is postponed to Section 4 with some auxiliary
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statements being presented therein. We finish this article with a conclusion in Section 5. To improve the

readability, the proofs of the auxiliary results and some definitions together with known lemmas are collected

in the appendix.

2 Optimal control problem statement

Notations and conventions. In what follows, I stands for the indicator function, δx(·) is the Dirac measure

concentrated at x, and B(X) is the Borel σ-algebra of the topological space X. Below, unless stated otherwise,

the term of measurability is always understood in the Borel sense, and a function can take values in [−∞,∞].

The convention of ∞−∞ := ∞ is in use.

The primitives of a CTMDP are the following elements {S,A, (A(x) ⊆ A, x ∈ S), q(·|x, a)}, where S is a

nonempty Borel state space, i.e., a measurable subset of some complete separable metric space, A is a nonempty

Borel action space, and the multifunction A(·) : x 7→ A(x) ⊆ A specifies the admissible action spaces, for which

we assume that A(x) ∈ B(A) for each x ∈ S, and its graph K := {(x, a) : x ∈ S, a ∈ A(x)} belongs to B(S ×A)

and contains the graph of at least one measurable mapping from S to A. This assumption guarantees the

existence of deterministic stationary policies defined below. The transition rates are given by q(·|x, a), a signed

kernel on B(S) given (x, a) ∈ K such that q(ΓS \ {x}|x, a) ≥ 0 for all ΓS ∈ B(S). Throughout this article

we assume that q(·|x, a) is conservative and stable, i.e., q(S|x, a) = 0 and q̄x = supa∈A(x) qx(a) < ∞, where

qx(a) := −q({x}|x, a).

Following the Kitaev construction of a CTMDP [27], we take the sample space Ω := S×((0,∞]×S∞)∞, where

S∞ := S
⋃

{x∞} with the isolated point x∞ /∈ S. We equip Ω with its Borel σ-algebra F . For each n ≥ 0, and

any element ω := (x0, θ1, x1, θ2, . . . ) ∈ Ω, let tn(ω) := tn−1(ω)+θn with t0(ω) := 0, and t∞(ω) := limn→∞ tn(ω).

Obviously, tn(ω) are measurable mappings on the sample space Ω. In what follows, we will omit the argument

ω ∈ Ω from the presentation for simplicity, and understand tn, xn, θn+1, and t∞ as the n-th jump moment,

jumpped-in state, holding time of xn, and the explosion moment. The pairs {tn, xn} form a marked point

process with the internal history {Ft}t≥0 (see Chapter 4 of [28]), which defines the stochastic process on (Ω,F)

of interest {ξt, t ≥ 0} by

ξt =
∑

n≥0

I{tn ≤ t < tn+1}xn + I{t∞ ≤ t}x∞, (1)

where x∞ is the cemetery point so that A(x∞) := {a∞} and qx∞
(a∞) := 0 with a∞ /∈ A being some isolated

point. Below we denote A∞ := A
⋃

{a∞}. As in [12] we formally put ξ∞ := x∞.

Definition 2.1 A (randomized history-dependent) policy π for the CTMDP is given by a sequence (πn) such
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that, for each n = 0, 1, . . . , πn(da|x0, θ1, . . . , xn, s) is a stochastic kernel on A concentrated on A(xn), and for

each ω = (x0, θ1, x1, θ2, . . . ) ∈ Ω, t > 0,

π(da|ω, t) := I{t ≥ t∞}δa∞
(da) +

∞
∑

n=0

I{tn < t ≤ tn+1}πn(da|x0, θ1, . . . , xn, t− tn).

In other words, a policy π is a predictable (with respect to {Ft}t≥0) stochastic kernel from Ω× (0,∞) to A∞,

see Theorem 4.19 in [28]. The class of all policies for the CTMDP is denoted by Π. A policy is called Markov if

it is in the form π(da|ω, t) = π(da|ξt−(ω), t), where, with conventional abuse of notations, π on the right hand

is a stochastic kernel. Denote by ΠM ⊂ Π the set of Markov policies.

Under a policy π := (πn) ∈ Π, we define the following random measure on S × (0,∞)

νπ(dt, dy) :=

∫

A

q(dy \ {ξt−(ω)}|ξt−(ω), a)π(da|ω, t)dt

=
∑

n≥0

∫

A

q(dy \ {xn}|xn, a)πn(da|x0, θ1, . . . , xn, t− tn)I{tn < t ≤ tn+1}dt

with q(dy|x∞, a∞) := 0. Suppose that an initial distribution γ on S is given. Then by Theorem 4.27 in [28],

there exists a unique probability measure P π
γ such that

P π
γ (ξ0 ∈ dx) = γ(dx),

and with respect to P π
γ , ν

π is the dual predictable projection of the random measure of the marked point process

{tn, xn}. The process {ξt} defined by (1) under the probability measure P π
γ is called a CTMDP. Below, when γ(·)

is a Dirac measure concentrated at x ∈ S, we use the denotation P π
x . Expectations with respect to P π

γ and P π
x

are denoted as Eπ
γ and Eπ

x , respectively. In fact, in what follows, we often write P π instead of P π
γ when there is

no confusion. Under the probability measure P π
γ , the system dynamics of a CTMDP can be described as follows.

The initial state x0 has the distribution given by γ. Given the current state xn, the sojourn time θn+1 has the tail

function given by P π(θn+1 ≥ t|x0, θ1, . . . , xn) = e−
∫

t

0

∫
A
qxn

(a)πn(da|x0,θ1,...,xn,s)ds, and upon a jump, the distribu-

tion of the next state xn+1 is given by P π(xn+1 ∈ Γ|x0, θ1, . . . , xn, θn+1) =
∫
A
q(Γ\{xn}|xn,a)πn(da|x0,θ1,...,xn,θn+1)∫

A
qxn

(a)πn(da|x0,θ1,...,xn,θn+1)

for each Γ ∈ B(S), where and below we quite formally put
∫

A
q(Γ \ {xn}|a)πn(da|x0, θ1, . . . , xn,∞) := 0 for

each Γ ∈ B(S) and use the convention of 0
0 := 0, so that P π(xn+1 = x∞|x0, θ1, . . . , xn, θn+1) = 1− P π(xn+1 ∈

S|x0, θ1, . . . , xn, θn+1). According to [11], under each Markov policy π, the process ξt is a Markov jump process

in the sense of [12] with respect to (Ω,F , {Ft}t≥0, P
π
x ) for each x ∈ S.

We are also interested in policies in more specific forms.

Definition 2.2 With slight but conventional abuse of denotations, a policy π = (πn)n=0,1,... ∈ Π is called
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(randomized) stationary if each of the stochastic kernels πn reads πn(da|x0, θ1, . . . , xn, t − tn) = π(da|xn). A

stationary policy is further called deterministic if πn(da|x0, θ1, . . . , xn, t− tn) = δϕ(xn)(da) for some measurable

mapping ϕ from S to A such that ϕ(x) ∈ A(x) for each x ∈ S; the existence of such a mapping is guaranteed

by the assumption imposed on the multifunction A(·), which also implies the set Π being nonempty.

Let c(x, a), a measurable function on K that takes values in [0,∞), represent the cost rate at the present

state x ∈ S and action a ∈ A(x). Quite formally, for any measurable function f on K, we put f(x∞, a∞) = 0.

This agreement, together with (1) and that q({x∞}|x∞, a∞) = 0 = qx∞
(a∞), allows one to define formally the

long-run average cost by

W (x, π) := lim
T→∞

1

T
Eπ

x

[

∫ T

0

∫

A

c(ξt, a)π(da|ω, t)dt

]

= lim
T→∞

1

T
Eπ

x

[

∫ min{T, t∞}

0

∫

A

c(ξt, a)π(da|ω, t)dt

]

.

We are interested in the following optimal control problem

W (x, π) → min
π∈Π

, x ∈ S, (2)

for which a policy π∗ is called optimal if W (x, π∗) = infπ∈Π W (x, π) for each x ∈ S.

The objective of the present article is to show the existence of a deterministic stationary optimal policy

under the weak continuity conditions on the transition rates, which can be essentially arbitrarily unbounded.

3 Main result

Condition 3.1 infx∈S infπ∈ΠW (x, π) < ∞.

For each real constant α > 0, we define the expected total discounted cost under each policy π ∈ Π by

Wα(x, π) := Eπ
x

[
∫ ∞

0

e−αt

∫

A

c(ξt, a)π(da|ω, t)dt

]

= Eπ
x

[

∫ min{t∞,∞}

0

e−αt

∫

A

c(ξt, a)π(da|ω, t)dt

]

,

and the value function for the corresponding discounted problem by Wα(x) := infπ∈Π Wα(x, π). Let

mα := inf
x∈S

Wα(x) and hα(x) := Wα(x)−mα ≥ 0,

where the regulation of ∞−∞ := ∞ is in use. The function hα on S is sometimes called the relative difference

or normalized value function for the discounted problem, on which we impose the following condition, where ρ

denotes the predetermined metric on S consistent with its topology.
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Condition 3.2 lim0<α↓0,y→x hα(y) := supδ>0, ∆>0

{

inf0<α≤δ, ρ(x,y)<∆ hα(y)
}

< ∞ for each x ∈ S.

What was defined in the above condition is the generalized lower limit of the function hα(y) as 0 < α ↓ 0 and

y → x. Condition 3.2 is equivalent to that for each x ∈ S, there exist sequences 0 < αn ↓ 0 and yn → x such

that {hαn
(yn)} is bounded. Condition 3.2 and its synonyms are widely assumed in the current literature on

average CTMDPs. We provide more insights on Condition 3.2 after we introduce Condition 3.3 below.

Finally, we assume the following weak continuity condition. To this end, we recall that a function c on

the space K is called K-inf-compact if it is lower semi-continuous on K, and satisfies the following; for each

S ∋ xn → x ∈ S as n → ∞, each sequence an ∈ A(xn) such that c(xn, an) is bounded from the above, admits

a limit point a ∈ A(x) [9]. The function c is called inf-compact on K if the set {(x, a) ∈ K : c(x, a) ≤ λ} is

compact in K for each λ ∈ (−∞,∞). By the way, the inf-compactness on K is defined in a weaker sense in [22].

It is known that the inf-compactness of a function implies its K-inf-compactness [9].

Condition 3.3 (a) For each bounded continuous function f on S,
∫

S
f(y)q(dy|x, a) is continuous in (x, a) ∈ K.

(b) The cost rate c is K-inf-compact.

(c) There exists a continuous function w on S taking values in (0,∞) such that qx ≤ w(x) for each x ∈ S.

The rather weak part (c) of the previous condition is for technical convenience, and essentially allows the

transition rates to be arbitrarily unbounded, since so can be the function w. Part (a) of Condition 3.3 reads

that the transition rates are weakly continuous. Condition 3.3 does not require the multifunction A(x) to be

either compact-valued or upper semi-continuous.

Some comments on Condition 3.2 are in position now. Suppose Conditions 3.1 and 3.3 are satisfied, so

that for any α > 0, there exists a deterministic stationary optimal policy ϕ∗
α for the discounted problem,

i.e., Wα(x) = Wα(x, ϕ
∗
α) for each x ∈ S; and for all sufficiently small α > 0, mα < ∞ (as explained in

the proof of Theorem 3.1 below). Assume that there exists some z ∈ S such that for all sufficiently small

α > 0, mα = Wα(z). (In fact, if S = {0, 1, 2, . . .} or S = [a, b) with a ∈ R and b ∈ R
⋃

{+∞}, then

this assumption is satisfied when A(x) is decreasing in x ∈ S, and for all sufficiently small α > 0, c(x,a)
α+w(x)

and w(x)
α+w(x)

∫

S
u(y)

(

q(dy|x,a)
w(x) + I{x ∈ dy}

)

are increasing in x ∈ S for each fixed a ∈ A(x) and increasing

nonnegative function u on S. This follows from the fact that Wα(x) = limn↑∞ vn(x) with vn being defined in

the proof of Lemma 4.2 below.) Consider the stopping time τz = inf{t ≥ 0 : ξt = z} (with respect to {Ft}t≥0).

As usual, the infimum taken over the empty set is put as +∞. It is known [28] that min{τz, t∞} is also a

stopping time. Then for all sufficiently small α > 0,

hα(x) = E
ϕ∗

α

x

[

∫ min{τz,t∞}

0

e−αtc(ξt, ϕ
∗(ξt))dt

]

+ E
ϕ∗

α

x

[

E
ϕ∗

α

x

[

∫ t∞

min{τz,t∞}

e−αtc(ξt, ϕ
∗(ξt))dt

∣

∣

∣

∣

∣

Fmin{τz,t∞}

]]

−Wα(z).
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Furthermore, by Theorem 4 on p.197 of [12] the process ξt is a strong Markov one with respect to {Ft}t≥0. So

by applying the strong Markov property to the second summand on the right hand side of the previous equality,

we see

hα(x) ≤ E
ϕ∗

α

x

[

∫ min{τz,t∞}

0

e−αtc(ξt, ϕ
∗(ξt))dt

]

+ E
ϕ∗

α

x

[

e−αmin{τz,t∞}Wα(z)
]

−Wα(z)

≤ E
ϕ∗

α

x

[

∫ min{τz,t∞}

0

e−αtc(ξt, ϕ
∗
α(ξt))dt

]

≤ sup
π

Eπ
x

[

∫ min{τz,t∞}

0

∫

A

c(ξt, a)π(da|ω, t))dt

]

where the first inequality further follows from the fact that ξt is right-continuous and Wα(x∞) = 0. It can be

shown [2, 21] that if there is some constant ǫ > 0 such that qx(a) > ǫ for all x 6= z and a ∈ A(x), then

sup
π

Eπ
x

[

∫ min{τz,t∞}

0

∫

A

c(ξt, a)π(da|ω, t))dt

]

< ∞ (3)

for each x ∈ S if there exists a real-valued upper semi-analytic function v on S such that

0 ≥ c(x, a) +

∫

S\{z}

q(dy|x, a)v(y)

for each x 6= z and a ∈ A(x). This thus provides a sufficient condition imposed on the primitives of the CTMDP

model for verifying Condition 3.2, which does not refer to the existence of a Lyapunov function as in Condition

3.4 below (cf. [19]). By the way, if the process ξt is non-explosive as prevailingly assumed in the current

literature, then (3) is satisfied when, for example, the process ξt exhibits some version of the ergodic property.

Similar versions of Conditions 3.1, 3.2 and parts (a,b) of the previous condition are assumed in [8] but for

discrete-time problems, see Assumptions G, W* and B therein.

Theorem 3.1 Suppose Conditions 3.1, 3.2 and 3.3 are satisfied. Then there exist a constant g, a nonnegative

real-valued lower semi-continuous function h on S and a deterministic stationary policy ϕ∗ such that

(a) the following optimality inequality is satisfied for each x ∈ S

g + w(x)h(x) ≥ inf
a∈A(x)

{

c(x, a) + w(x)

∫

S

h(y)

(

q(dy|x, a)

w(x)
+ I{x ∈ dy}

)}

= c(x, ϕ∗(x)) + w(x)

∫

S

h(y)

(

q(dy|x, ϕ∗(x))

w(x)
+ I{x ∈ dy}

)

; (4)

(b) the deterministic stationary policy ϕ∗ is optimal for the average CTMDP problem (2); and

(c) g = infπ∈ΠW (x, π) < ∞ for each x ∈ S.

The proof of this theorem is postponed to the next section, by inspecting which one can see that any deterministic

stationary policy that satisfies (4) is optimal. Furthermore, it follows from Lemma 4.1 below that infπ W (x, π)
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is given by the smallest constant g satisfying the inequality (4).

The statement of Theorem 3.1 is obtained in [19] under the following Condition 3.4, see Assumptions A, B

and C therein.

Condition 3.4 (a) There exists a measurable function w ≥ 1 on S and constants c0 ∈ (−∞,∞), b0 ≥ 0 and

M0 > 0 such that

(i)
∫

S
w(y)q(dy|x, a) ≤ c0w(x) + b0 for each (x, a) ∈ K; and

(ii) qx ≤ M0w(x) for all x ∈ S.

(b) For some sequence αn ↓ 0 as n ↑ ∞ and some fixed x0 ∈ S, there exist a real constant L∗ and a finitely

valued nonnegative measurable function U on S such that

(i) supn=1,2,... {αnWαn
(x)} < ∞ for each x ∈ S; and

(ii) L∗ ≤ Wαn
(x)−Wαn

(x0) ≤ U(x) < ∞ for each x ∈ S.

(c) The following compactness-continuity condition is satisfied.

(i) The set A(x) is compact for each x ∈ S;

(ii) the cost rate c(x, a) is lower semi-continuous in a ∈ A(x) for each x ∈ S; and

(iii) for each bounded measurable function f on S,
∫

S
f(y)q(dy|x, a) is continuous in a ∈ A(x) for each x ∈ S.

The function w in part (a) of the above condition is called a Lyapunov function or a bounding function, whose

existence guarantees the process ξt to be non-explosive, i.e., P π
x (t∞ = ∞) = 1 for each x ∈ S [19], which

is also prevailingly assumed in the previous literature on CTMDPs with possibly unbounded transition rates

[14, 15, 16, 17, 18, 20, 30, 32, 34]. In comparison, the existence of a Lyapunov function is not needed in the

present paper; Condition 3.3(c) allows essentially arbitrarily unbounded transition rates, and thus the underlying

process to be explosive. Part (iii) of Condition 3.4(c) states the strong continuity of q(dy|x, a); accordingly,

the lower semi-continuity of the cost rate c(x, a) is only required in a ∈ A(x), but the multifunction A(·) needs

be compact-valued, which is not required in the present paper. Finally, one notes that Condition 3.4 implies

Condition 3.1.

4 Proof of Theorem 3.1

In this section, before proving Theorem 3.1, we firstly present some auxiliary statements.

Under each Markov policy π ∈ ΠM , the process ξt is a Markov jump process [11], and there exists a transition

(sub-probability, in general) function pπ(u, x, t, dy) such that P π(ξt ∈ dy|ξu) = pπ(u, ξu, t, dy) with t ≥ u ≥ 0

almost surely with respect to P π [29]. So we formally define for each x ∈ S, u ≤ t and Markov policy π ∈ ΠM

Wπ(u, x, t) :=

∫ t

u

∫

S

∫

A

c(y, a)π(da|y, s)pπ(u, x, s, dy)ds (5)

8



The next result is a generalization of Theorem 3.4 in [19], which was proved for deterministic stationary

policies only and additionally under Condition 3.4(a). Since Condition 3.4(a) is not required in the present

article, to be self-contained and for its potential independent interest, we include this result here, and present

its complete proof in the appendix.

Lemma 4.1 (a) Let a Markov policy π ∈ ΠM be fixed. Then the function Wπ(u, x, t) is the minimal nonnegative

measurable solution to the following inequality

v(u, x, t) ≥

∫ t

u

∫

A

c(x, a)π(da|x, θ)dθ e−
∫

t

u

∫
A

qx(a)π(da|x,θ)dθ

+

∫ t

u

e−
∫

s

u

∫
A

qx(a)π(da|x,θ)dθ

{
∫

A

qx(a)π(da|x, s)

∫ s

u

∫

A

c(x, a)π(da|x, θ)dθ

+

∫

S\{x}

∫

A

q(dy|x, a)π(da|x, s)v(s, y, t)

}

ds. (6)

(b) Let a stationary policy π be fixed, and suppose there exist a constant g ∈ [0,∞] and a nonnegative measurable

function h on S satisfying the following inequality

g + h(x)

∫

A

qx(a)π(da|x) ≥

∫

A

c(x, a)π(da|x) +

∫

S\{x}

h(y)

∫

A

q(dy|x, a)π(da|x)

for each x ∈ S. Then g ≥ W (x, π) for each x ∈ S such that h(x) < ∞.

Proof. See the appendix. ✷

The next lemma, to be used in the proof of Theorem 3.1 below, extends some known results for discounted

CTMDPs in the literature [7, 17] to weaker conditions.

Lemma 4.2 Suppose Condition 3.3(c) is satisfied. For each α > 0, Wα is the minimal nonnegative lower

semi-analytic solution to the equation

v(x) = inf
a∈A(x)

{

c(x, a)

α+ w(x)
+

w(x)

w(x) + α

∫

S

v(y)

(

q(dy|x, a)

w(x)
+ I{x ∈ dy}

)}

. (7)

If additionally Condition 3.3(a,b) also holds, then Wα is lower semi-continuous on S, and there exists a deter-

ministic stationary for the discounted CTMDP problem.

Proof. See the appendix. ✷

Proof of Theorem 3.1. Note that under Condition 3.1, mα < ∞ by Proposition A.5 of [18] for all sufficiently

small α > 0, say, to be specific, for all 0 < α ≤ α0 < ∞. Indeed, Condition 3.1 asserts the existence of some z ∈ S

and policy π ∈ Π such that W (z, π) = limt↑∞
1
t
Eπ

z

[

∫ t

0

∫

A
c(ξs, a)π(da|ω, s)ds

]

< ∞. Thus, for all sufficiently

large t > 0,
∫ t

0 Eπ
z

[∫

A
c(ξs, a)π(da|ω, s)

]

ds = Eπ
z

[

∫ t

0

∫

A
c(ξs, a)π(da|ω, s)ds

]

< ∞. Due to the nonnegativity of

9



the cost rate c, this implies Eπ
z

[∫

A
c(ξt, a)π(da|ω, t)

]

< ∞ for t > 0 almost everywhere. Thus the condition of

Proposition A.5 in [18] is verified, and we infer from it for that

lim
0<α↓0

αWα(z, π) ≤ W (z, π) < ∞, (8)

and consequently, there exists some 0 < α0 < ∞ such that mα ≤ Wα(z, π) < ∞ for all 0 < α ≤ α0 as required.

Let gα := αmα. For each 0 < α ≤ α0, we write Wα(x) = hα(x) +mα in (7) with Wα in lieu of v, and obtain

hα(x) +mα = inf
a∈A(x)

{

c(x, a)

α+ w(x)
+

w(x)

w(x) + α

∫

S

(hα(y) +mα)

(

q(dy|x, a)

w(x)
+ I{x ∈ dy}

)}

= inf
a∈A(x)

{

c(x, a)

α+ w(x)
+

w(x)

w(x) + α

∫

S

hα(y)

(

q(dy|x, a)

w(x)
+ I{x ∈ dy}

)

+
w(x)mα

α+ w(x)

}

. (9)

It follows from (9) that

(w(x) + α)hα(x) + gα = inf
a∈A(x)

{

c(x, a) + w(x)

∫

S

hα(y)

(

q(dy|x, a)

w(x)
+ I{x ∈ dy}

)}

. (10)

Define now

g := lim
0<α↓0

gα ≥ 0, (11)

which is finite because of (8), and

h(x) := lim
0<α↓0, y→x

hα(y), (12)

which is finite under Condition 3.2. It is known that for each convergent sequence 0 < αn ↓ 0 as n → ∞,

sup
α∈(0,∞)

hα(x) = h(x) = lim
n→∞,y→x

hαn
(y), (13)

where hαn
(x) := limy→x Hαn

(y) with Hαn
(y) := infα∈(0,αn] hα(y), see (24) of [8] for the first equality in (13)

and Corollary 1 of [8] for the other. The above three functions are all measurable; in fact, the functions hα and

h are lower semi-continuous on S, see Lemma 5.13.4 of [1] and Lemma 4.2 of [4], respectively. Note that by

their definitions

hβ(x) ≥ Hβ(x) ≥ Hα(x) ≥ hα(x) (14)

for each x ∈ S and α ≥ β > 0.

10



Let ǫ > 0 be arbitrarily fixed. Then by the definition of the constant g (see (11)), there exists 0 < α1 ≤ α0

such that for each α ∈ (0, α1], g ≥ gα − ǫ. It follows from this and (10) that for each 0 < α ≤ α1,

(w(x) + α)hα(x) + g + ǫ ≥ inf
a∈A(x)

{

c(x, a) + w(x)

∫

S

hα(y)

(

q(dy|x, a)

w(x)
+ I{x ∈ dy}

)}

,

which, together with (14), leads to that for each 0 < β ≤ α ≤ α1,

(w(x) + β)hβ(x) + g + ǫ ≥ inf
a∈A(x)

{

c(x, a) + w(x)

∫

S

Hα(y)

(

q(dy|x, a)

w(x)
+ I{x ∈ dy}

)}

,

and thus by the definition of Hα, the above relation and (14) again,

(w(x) + α)Hα(x) + g + ǫ ≥ inf
a∈A(x)

{

c(x, a) + w(x)

∫

S

Hα(y)

(

q(dy|x, a)

w(x)
+ I{x ∈ dy}

)}

≥ inf
a∈A(x)

{

c(x, a) + w(x)

∫

S

hα(y)

(

q(dy|x, a)

w(x)
+ I{x ∈ dy}

)}

(15)

for each 0 < α ≤ α1. Under Condition 3.3, the stochastic kernel q(dy|x,a)
w(x) + I{x ∈ dy} is weakly continuous,

which, together with the lower semi-continuity of hα (as explained earlier), implies that

w(x)

∫

S

hα(y)

(

q(dy|x, a)

w(x)
+ I{x ∈ dy}

)

defines a lower semi-continuous function on S. As a result, c(x, a) + w(x)
∫

S
hα(y)

(

q(dy|x,a)
w(x) + I{x ∈ dy}

)

is

K-inf-compact because so is the cost rate c and that hα(x) ≥ 0 for each x ∈ S, see Lemma 5.2 in the appendix.

Therefore, one can infer from Lemma 5.1 in the appendix for the lower semi-continuity on S of the expression

in the second line of (15). Following from this and upon taking the corresponding lower limit on the both sides

of (15), one obtains

(w(x) + α)hα(x) + g + ǫ ≥ inf
a∈A(x)

{

c(x, a) + w(x)

∫

S

hα(y)

(

q(dy|x, a)

w(x)
+ I{x ∈ dy}

)}

for each 0 < α ≤ α1. Now the first equality of (13) and the above inequality imply

(w(x) + α)h(x) + g + ǫ ≥ inf
a∈A(x)

{

c(x, a) + w(x)

∫

S

hα(y)

(

q(dy|x, a)

w(x)
+ I{x ∈ dy}

)}

(16)

for each 0 < α ≤ α1. By the K-inf-compactness of the expression inside the parenthesis on the right side of (16)

11



(as explained earlier) and Lemma 5.1, for each 0 < α ≤ α1, there exists some aα ∈ A(x) such that

(w(x) + α)h(x) + g + ǫ ≥ inf
a∈A(x)

{

c(x, a) + w(x)

∫

S

hα(y)

(

q(dy|x, a)

w(x)
+ I{x ∈ dy}

)}

= c(x, aα) + w(x)

∫

S

hα(y)

(

q(dy|x, aα)

w(x)
+ I{x ∈ dy}

)

. (17)

Now let x ∈ S be arbitrarily fixed, and take α1 ≥ αn ↓ 0 (αn > 0). Under Condition 3.2 the expression on the

left side of inequality (17) is finite (recall (12) for the definition of the function h). Considering (17) with αn

replacing α therein, it follows from the definition of the K-inf-compactness that the sequence {aαn
} admits a

limit point a∗ ∈ A(x). Taking the lower limit on the both sides of (17) along the specified sequence α1 ≥ αn ↓ 0

(αn > 0), we see

w(x)h(x) + g + ǫ ≥ c(x, a∗) + w(x) lim
n→∞

∫

S

hαn
(y)

(

q(dy|x, aαn
)

w(x)
+ I{x ∈ dy}

)

≥ c(x, a∗) + w(x)

∫

S

h(y)

(

q(dy|x, a∗)

w(x)
+ I{x ∈ dy}

)

≥ inf
a∈A(x)

{

c(x, a) + w(x)

∫

S

h(y)

(

q(dy|x, a)

w(x)
+ I{x ∈ dy}

)}

, (18)

where for the first inequality the finiteness of h(x) and the lower semi-continuity of the term inside the parenthesis

on the right side of (16) are used; and the second inequality follows from (13), the weak continuity of the

underlying stochastic kernel, and the generalized Fatou’s lemma, see Lemma 5.3 in the appendix or Lemma

4.2 of [4]. That the inequality in (4) is satisfied by the constant g and the nonnegative real-valued lower semi-

continuous function h follows from (18) and the arbitrariness of ǫ > 0. Regarding the existence of a measurable

selector ϕ∗ satisfying the equality in (4), one can refer to Lemma 5.1; recall that the term in the parenthesis

in (4) is K-inf-compact. We prove the rest of this statement as follows. Let ϕ∗ be any measurable selector

satisfying the equality in (4). By the finiteness of h(x), (4) and Lemma 4.1,

g ≥ W (x, ϕ∗) ≥ inf
π∈Π

W (x, π). (19)

For the opposite direction, let x ∈ S be arbitrarily fixed. Since g < ∞, we see infπ∈Π W (x, π) < ∞. Fix

arbitrarily some (possibly x-dependent) policy π such that W (x, π) < ∞. Now as in the argument for (8) with z

being replaced by x in the beginning of this proof, we see lim0<α↓0 αWα(x) ≤ W (x, π) < ∞, which together with

the arbitrariness of the policy π and the fact that g = lim0<α↓0 α infx∈S Wα(x) ≤ lim0<α↓0 αWα(x) (recalling

here the definition of g given by (11)), leads to infπ∈Π W (x, π) ≥ g. Thus, we see the validity of (19) with

inequalities being replaced by equalities. It follows from the arbitrariness of x ∈ S that the policy ϕ∗ is optimal.

The proof is now completed. ✷
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5 Conclusion

To sum up, for a CTMDP in Borel state and action spaces with a nonnegative cost rate, the existence of a

deterministic stationary average optimal policy is proved with weakly continuous transition rates. Our conditions

allow the controlled process to be explosive (i.e., the transition rates are essentially arbitrarily unbounded). In

addition, following the neat generalization of the Berge theorem [9], the condition on the admissible action

spaces has been further relaxed as compared with the previous literature.

Appendix

Definition 5.1 The collection of analytic subsets of a nonempty Borel space S is the collection of images of

measurable subsets of Y under all measurable mappings from Y into S, where Y is an uncountable Borel space.

A function f on the nonempty Borel space S is called lower semi-analytic if for each ǫ ∈ (−∞,∞), the set

{x ∈ S : f(x) < ǫ} is analytic. A function f is called upper semi-analytic if −f is lower semi-analytic.

See more details about the above definition in Chapter 7 of [2].

The next lemma comes from [9], see Theorems 1.2 and 3.3 therein, where the more general statements are

established.

Lemma 5.1 Suppose a function g on the nonempty Borel space K = {(x, a) : x ∈ S, a ∈ A(x)} is K-inf-

compact. Then infa∈A(x) g(x, a) defines a lower semi-continuous function in x ∈ S. Furthermore, there is a

measurable mapping ϕ∗ from S to A, whose graph is contained in K, such that infa∈A(x) g(x, a) = g(x, ϕ∗(x))

for each x ∈ S.

The following lemma summarizes some facts about K-inf-compact functions, which are used frequently in

the proofs in this paper.

Lemma 5.2 Let c be a K-inf-compact function on K. If v is a nonnegative lower semi-continuous function on

K, then c+ v is also K-inf-compact on K. If u is a continuous real-valued function on S such that u(x) > 0 for

each x ∈ S, then c(x,a)
u(x) defines a K-inf-compact function on K.

Proof. We only verify the second part. Clearly c(x,a)
u(x) is lower semi-continuous onK. Now suppose S ∋ xn → x ∈

S and an ∈ A(xn) such that there is some real constant M > 0 such that c(xn,an)
u(xn)

≤ M, i.e., c(xn, an) ≤ Mu(xn)

for all n. Since u is continuous and the set X :=
⋃∞

n=0{xn}
⋃

{x} is compact in S, we further infer from the

previous inequality for that c(xn, an) ≤ M supy∈X u(y) < ∞ for all n. Now it follows from the K-inf-compactness

of the function c that there exists a limit point a ∈ A(x) for the sequence {an}, as required. ✷

The following statement is known as the generalized Fatou’s lemma [4, 5, 10]. A detailed proof with more

general statements is available at [10].
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Lemma 5.3 Suppose a sequence of probability measures Qn on the nonempty Borel space B(S) is weakly con-

vergent to the probability measure Q on B(S). Then for each sequence of nonnegative functions gn on S, it holds

that
∫

S
(limn→∞,x→y gn(x))Q(dy) ≤ limn→∞

∫

S
gn(y)Qn(dy).

Proof of Lemma 4.1. (a) For simplicity, throughout the proof of this lemma, we omit the fixed policy π from

indications, and introduce the following notations

c(x, s) :=

∫

A

c(x, a)π(da|x, s), qx(s) :=

∫

A

qx(a)π(da|x, s), q(dy|x, s) :=

∫

A

q(dy|x, a)π(da|x, s).

Furthermore, if c(x, s), qx(s) and q(dy|x, s) in the above are s-independent, as in the case of a stationary policy,

we omit s from the arguments.

It is known [11] that the transition function p(u, x, t, dy) can be constructed iteratively by
∑n

k=0 pk(u, x, t, dy) ↑

p(u, x, t, dy) as n ↑ ∞, where the convergence is set-wise, and for each Γ ∈ B(S)

p0(u, x, t,Γ) := I{x ∈ Γ}e−
∫

t

u
qx(s)ds;

pk(u, x, t,Γ) :=

∫ t

u

∫

S\{x}

e−
∫

s

u
qx(θ)dθq(dy|x, s)pk−1(s, y, t,Γ)ds.

It follows from this, the nonnegativity of the cost rate c and the monotone convergence theorem, see Theorem

2.1 in [23], that mn(u, x, t) :=
∫ t

u

∫

S
c(y, s)

∑n
k=0 pn(u, x, s, dy)ds ↑ W (u, x, t) as n ↑ ∞, see (5).

We verify firstly that W (u, x, t) satisfies (6) with equality as follows. By the iterative definitions of the

transition functions pn,

mn(u, x, t) :=

∫ t

u

∫

S

c(y, s)

n
∑

k=0

pk(u, x, s, dy)ds

= m0(u, x, t) +

∫ t

u

∫

S

c(y, s)

n
∑

k=1

pk(u, x, s, dy)ds

= m0(u, x, t) +

∫ t

u

∫

S

c(y, s)

n
∑

k=1

∫ s

u

∫

S\{x}

e−
∫

r

u
qx(θ)dθq(dz|x, r)pk−1(r, z, s, dy)dr ds

= m0(u, x, t) +

∫ t

u

∫

S

c(y, s)

n−1
∑

k−1=0

∫ t

r

∫

S\{x}

e−
∫

r

u
qx(θ)dθq(dz|x, r)pk−1(r, z, s, dy)ds dr

= m0(u, x, t) +

∫ t

u

e−
∫

r

u
qx(θ)dθ

∫

S\{x}

q(dz|x, r)mn−1(r, z, t)dr,
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where the last two inequalities follow from the legal interchange of the order of integrations. Integration by

parts gives m0(u, x, t) = e−
∫

t

u
qx(θ)dθ

∫ t

u
c(x, θ)dθ +

∫ t

u

∫ s

u
c(x, θ)dθe−

∫
s

u
qx(θ)dθqx(s)ds. It thus follows that

mn(u, x, t) =

∫ t

u

c(x, θ)dθe−
∫

t

u
qx(θ)dθ

+

∫ t

u

e−
∫

s

u
qx(θ)dθ

{

qx(s)

∫ s

u

c(x, θ)dθ +

∫

S\{x}

q(dy|x, s)mn−1(s, y, t)

}

ds. (20)

By the standard monotone convergence theorem, passing to the limit as n ↑ ∞ on the both sides of the above

equality gives

W (u, x, t) =

∫ t

u

c(x, θ)dθe−
∫

t

u
qx(θ)dθ

+

∫ t

u

e−
∫

s

u
qx(θ)dθ

{

qx(s)

∫ s

u

c(x, θ)dθ +

∫

S\{x}

q(dy|x, s)W (s, y, t)

}

ds.

For the minimality of W (u, x, t) as a nonnegative measurable solution to inequality (6), suppose that there

is another nonnegative measurable solution v(u, x, t) to inequality (6). Thus, v(u, x, t) ≥ m0(u, x, t). Now

an inductive argument based on (20) and the fact that v satisfies (6) implies v(u, x, t) ≥ mn(u, x, t) for each

n = 0, 1, . . . , which, together with the fact that mn ↑ W point-wise as n ↑ ∞, leads to that v(u, x, t) ≥ W (u, x, t)

as desired.

(b) Suppose a stationary policy π is fixed, and there exist a constant g and a nonnegative measurable function

h on S as in the statement. Without loss of generality, we assume that g < ∞ for otherwise the statement holds

automatically. It is well known, or otherwise follows from the construction of the transition function p(u, x, t, dy)

above that under the stationary policy, p(u, x, t, dy) depends on u and t only through the time increment t−u, and

the underlying Markov jump process ξt is homogeneous, and thus W (u, x, t) = Ex

[

∫ t−u

0 c(ξs)ds
]

=: W̃ (x, t−u),

see Theorem 2.2 of [11]; recall the agreement that the (stationary) policy π is omitted from indication in this

proof. It follows from this and part (a) specialized to a stationary policy and u = 0, that W̃ (x, t) is the minimal

nonnegative measurable solution to the inequality

W̃ (x, t) ≥ c(x)te−qxt +

∫ t

0

e−qxs

{

qx c(x)s+

∫

S\{x}

q(dy|x)W̃ (y, t− s)

}

ds.

Now it can be verified, based on the definitions of the constant g and the function h, that the above inequality

is satisfied with h(x) + gt in lieu of W̃ (x, t). Consequently, h(x) + gt ≥ W̃ (x, t) by part (a) of this lemma. At

x ∈ S such that h(x) < ∞, dividing the both sides of the previous inequality and then passing to the upper

limit as t → ∞ yields the statement. ✷
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Proof of Lemma 4.2. Let α > 0 be arbitrarily fixed. It is known that the value function Wα for the discounted

CTMDP problem is the minimal nonnegative lower semi-analytic solution to the equation

v(x) = inf
a∈A(x)

{

c(x, a)

α+ qx(a)
+

∫

S\{x}

v(y)
q(dy|x, a)

α+ qx(a)

}

=: T̃ ◦ v(x), (21)

see Theorem 5.5.5 in [7]. For the first part of this lemma, it remains to recognize that the two equations (7) and

(21) admit the same minimal nonnegative solution. Below, in spite that the argument is trivial, we briefly verify

this relation because first, a similar relation between equation (7) and another equation similar to (21) was falsely

claimed without proofs in [31], see equation (8) therein, and second, it is easy to construct examples to show that

equations (7) and (21) are not equivalent; indeed, there can be solutions to (7), which do not satisfy (21). For

brevity, we write (7) as v = T ◦v with T ◦v(x) := infa∈A(x)

{

c(x,a)
α+w(x) +

w(x)
w(x)+α

∫

S
v(y)

(

q(dy|x,a)
w(x) + I{x ∈ dy}

)}

.

Firstly, consider the minimal nonnegative solution u to (21), and let x ∈ S be arbitrarily fixed. If u(x) = ∞,

then T ◦ u(x) = ∞ = u(x) (recalling the convention of ∞−∞ := ∞). Now suppose u(x) < ∞. Then it follows

that u(x) ≤ c(x,a)
α+w(x) +

w(x)
w(x)+α

∫

S
u(y)

(

q(dy|x,a)
w(x) + I{x ∈ dy}

)

for each a ∈ A(x). Let δ > 0 be arbitrarily fixed,

and take any 0 < ǫ < δ. Then there exists some aδ ∈ A(x) such that u(x)+ǫ ≥ c(x,aδ)
α+qx(aδ)

+
∫

S\{x}
u(y) q(dy|x,aδ)

α+qx(aδ)
so

that u(x)+ δ > u(x)+ ǫ(α+qx(aδ))
α+w(x) ≥ c(x,aδ)

α+w(x) +
w(x)

w(x)+α

∫

S
u(y)

(

q(dy|x,aδ)
w(x) + I{x ∈ dy}

)

. Since δ > 0 is arbitrarily

fixed, we see that u(x) = T ◦ u(x). Thus, u ≥ v with v being the minimal nonnegative solution to (7). For

the opposite direction, note that if v(x) = ∞, then v(x) ≥ T̃ ◦ v(x). Suppose now v(x) < ∞. Then for each

a ∈ A(x), v(x) ≤ c(x,a)
α+w(x) +

w(x)
w(x)+α

∫

S
v(y)

(

q(dy|x,a)
w(x) + I{x ∈ dy}

)

, and so v(x) ≤ c(x,a)
α+qx(a)

+
∫

S\{x} v(y)
q(dy|x,a)
qx(a)+α

.

Let δ > 0 be arbitrarily fixed, and choose ǫ > 0 such that ǫ(α+w(x))
α

< δ. Since v satisfies (7), there exists some

aδ ∈ A(x) such that v(x) ≥ c(x,aδ)
α+w(x) +

1
α+w(x)

∫

S
v(y)q(dy|x, aδ) +

w(x)v(x)
α+w(x) − ǫ. Simple rearrangements of this

inequality further lead to v(x) ≥ c(x,aδ)
α+qx(aδ)

+ 1
α+qx(aδ)

∫

S\{x} v(y)q(dy|x, aδ)− δ. Thus, v(x) ≥ T̃ ◦ v(x). It follows

from this and Proposition 9.10 of [2] that u ≤ v, and thus u = v (recalling the opposite direction of the previous

inequality being established earlier). The first part of this lemma is proved.

Next, we observe that according to the first part of this lemma and Proposition 9.16 of [2], Wα is also given by

the value function of a DTMDP with the total undiscounted cost criterion specified by the following primitives.

The state space is S
⋃

{x∞}; the action space is A
⋃

{a∞}; the admissible action space is A(x) for each x ∈ S

with A(x∞) = {a∞}; the transition probability is given by Q(Γ|x, a) := w(x)
w(x)+α

(

q(Γ|x,a)
w(x) + I{x ∈ Γ}

)

for each

x ∈ S, a ∈ A(x) and Γ ∈ B(S), Q({x∞}|x, a) := I{x = x∞, a = a∞} + I{x ∈ S, a ∈ A(x)}(1 −Q(S|x, a)); and

finally, the cost function is I{x ∈ S, a ∈ A(x)} c(x,a)
α+w(x) . Here we recall that x∞ /∈ S and a∞ /∈ A are two isolated

points. Under Condition 3.3, one can verify that the transition probability Q(dy|x, a) is weakly continuous, i.e.,

for each bounded continuous function f on S
⋃

{x∞},
∫

S
⋃
{x∞} f(y)Q(dy|x, a) is continuous in x ∈ S

⋃

{x∞} and

a ∈ A(x); and the cost function is K-inf-compact, see Lemma 5.2. Denote the value function for this DTMDP

problem with the total undiscounted cost criterion also by Wα. Below, to be self-contained, we verify that
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Wα can be constructed using the value iteration algorithm under Condition 3.3. Let v0(x) := 0 and vn(x) :=

infa∈A(x)

{

c(x,a)
α+w(x) +

w(x)
w(x)+α

∫

S
vn−1(y)

(

q(dy|x,a)
w(x) + I{x ∈ dy}

)}

for each x ∈ S, whereas vn(x∞) := 0 for each

n = 0, 1, 2, . . . . Under Condition 3.3, since the transition probability is weakly continuous and the cost function

is K-inf-compact, by Lemma 5.1, vn is lower semi-continuous for each n = 0, 1, . . . . Furthermore, the sequence

{vn} is increasing, so that we formally define v∞(x) := limn↑∞ vn(x), which is thus also lower semi-continuous.

Let x ∈ S be arbitrarily fixed. It is easy to see from the monotone convergence theorem that v∞(x) ≤

c(x,a)
α+w(x) +

∫

S
v∞(y)Q(dy|x, a) for each a ∈ A(x), and thus v∞(x) ≤ infa∈A(x)

{

c(x,a)
α+w(x) +

∫

S
v∞(y)Q(dy|x, a)

}

.

For the opposite direction, without loss of generality, we assume that v∞ < ∞. For each fixed m ≤ n− 1,

v∞(x) ≥ vn(x) = inf
a∈A(x)

{

c(x, a)

α+ w(x)
+

∫

S

vn−1(y)Q(dy|x, a)

}

=
c(x, an)

α+ w(x)
+

∫

S

vn−1(y)Q(dy|x, an) ≥
c(x, an)

α+ w(x)
+

∫

S

vm(y)Q(dy|x, an), (22)

where an ∈ A(x) are the corresponding minimizers, whose existence is ensured by Lemma 5.1, and the last

inequality is due to that {vn} is an increasing sequence. Having noted that c(x,a)
α+w(x) +

∫

S
vm(y)Q(dy|x, a) is

K-inf-compact, and v∞(x) < ∞, we see that the sequence {an} admits some limit point a∗ ∈ A(x). Assume

without loss of generality that an → a∗ for otherwise one can take the corresponding subsequence. By passing

to the limit as n → ∞ on the both sides of (22) and the lower semi-continuity of the involved functions, we

obtain v∞(x) ≥ c(x,a∗)
α+w(x) +

∫

S
vm(y)Q(dy|x, a∗). Further passing to the limit as m → ∞ on the both sides of

the above inequality yields v∞(x) ≥ c(x,a∗)
α+w(x) +

∫

S
v∞(y)Q(dy|x, a∗) ≥ infa∈A(x)

{

c(x,a)
α+w(x) +

∫

S
v∞(y)Q(dy|x, a)

}

.

Hence, in combination with the other direction as proved earlier, we see that v∞ is a nonnegative measurable (in

fact, lower semi-continuous) solution to (7). This, by virtue of Proposition 9.16 of [2], shows v∞(x) = Wα(x),

and thus the lower semi-continuity of Wα follows. Consequently, there exists a deterministic stationary policy

ϕ∗ such that

Wα(x) = inf
a∈A(x)

{

c(x, a)

α+ w(x)
+

w(x)

w(x) + α

∫

S

Wα(y)

(

q(dy|x, a)

w(x)
+ I{x ∈ dy}

)}

=
c(x, ϕ∗(x))

α+ w(x)
+

w(x)

w(x) + α

∫

S

Wα(y)

(

q(dy|x, ϕ∗(x))

w(x)
+ I{x ∈ dy}

)

.

Evidently, this policy satisfies Wα(x) = Wα(x, ϕ
∗). ✷
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