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Abstract. The aim of this paper is the analysis of the fractional Poisson process where the state
probabilities p

νk
k ptq, t ě 0, are governed by time-fractional equations of order 0 ă νk ď 1 depending

on the number k of events occurred up to time t. We are able to obtain explicitely the Laplace transform
of p

νk
k ptq and various representations of state probabilities. We show that the Poisson process with

intermediate waiting times depending on νk differs from that constructed from the fractional state
equations (in the case νk “ ν, for all k, they coincide with the time-fractional Poisson process).
We also introduce a different form of fractional state-dependent Poisson process as a weighted sum of
homogeneous Poisson processes. Finally we consider the fractional birth process governed by equations
with state-dependent fractionality.

1. Introduction

We first consider a state-dependent time-fractional Poisson process Nptq, t ě 0, whose state probabilities
p
νk
k ptq “ PrtNptq “ ku are governed by the following equations

$

’

&

’

%

dνk

dtνk
p
νk
k ptq “ ´λp

νk
k ptq ` λp

νk´1

k´1 ptq, k ě 0, t ą 0, νk P p0, 1s, λ ą 0,

p
νk
k p0q “

#

1, k “ 0,

0, k ě 1,

(1.1)

where p
νk
k ptq “ 0, if k P Z´zt0u. These equations are obtained by replacing, in the governing equations

of the homogeneous Poisson process, the ordinary derivative with the Dzhrbashyan–Caputo fractional
derivative that is [16]

(1.2)
dν

dtν
fptq “

#

1
Γpm´νq

şt

0
pt´ sqm´ν´1f pmqpsqds, m´ 1 ă ν ă m,

dmf
dtm

, ν “ m.

We remark that in (1.1), the order of the fractional derivatives depend on the number of events occurred
up to time t. By definition we have that

(1.3)
dνk

dtνk
p
νk
k ptq “

1

Γp1´ νkq

ż t

0

pt´ sq´νk
d

ds
p
νk
k psq ds, 0 ă νk ă 1.

Hence the dependence of p
νk
k ptq on the past is twofold. On one side, the fractional derivative depends on

the whole time span r0, ts through the weight function. On the other side the number of events occurred
up to the time t modifies the power of the weight function. This means that the memory effect can play
an increasing or decreasing role, in the case of a monotonical structure of the sequence of fractional orders
νk.

For example, if νk decreases with k, the memory function tends to be constant and to give the same
weight to the whole time span r0, ts. We notice that state-depending fractionality was considered in different
contexts by Fedotov et al. [5].

For νk “ ν, for all k, the system (1.1) coincides with the one governing the classical fractional Poisson
process considered for example by Beghin and Orsingher [3], where the fractional derivative is meant in the
Dzhrbashyan–Caputo sense as in this case. Of course, if νk “ 1, for all k, we retrieve the governing equation
for the homogeneous Poisson process. Some papers devoted to various forms of fractional Poisson processes
have appeared in the last decades. In Hilfer and Anton [7] the authors introduced for the first time the
Mittag-Leffler waiting-time density in the theory of continuous-time random walks. The time-fractional
Poisson process was then explicitly considered by Repin and Saichev [18]. Starting from this paper, different
approaches to fractional Poisson processes were considered. In Mainardi et al. [10], for example, the authors
considered renewal processes with Mittag-Leffler distributed intertimes. A slightly different approach to
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the fractional Poisson process was developed in Laskin [8], where the fractional derivative appearing in the
equations governing the state probabilities coincides with the Riemann–Liouville derivative. More recently
Beghin and Orsingher [3] and Meerschaert et al. [12] studied the subordination of the Poisson process to
the inverse stable subordinator, discussing the relation with fractional Poisson processes. Another type
of fractional Poisson process was developed in Orsingher and Polito [15] where a space-fractionality is
considered. Physical applications of the fractional Poisson processes are discussed, for example, in Laskin
[9], where a new family of quantum coherent states has been studied.

By solving equation (1.1), we obtain that

(1.4)

ż `8

0

e´stp
νk
k ptqdt “

λksν0´1

śk
j“0ps

νj ` λq
, s ą 0.

The inversion of (1.4) is by no means a simple matter and we have been able to obtain an explicit result
for pν00 and pν11 in terms of generalized Mittag–Leffler functions defined as (see for example Saxena et al.
[19])

(1.5) Emν,βpxq “
8
ÿ

k“0

xkΓpm` kq

k!Γpνk ` βqΓpmq
, ν, β,m P R`, x P R.

We give also the distribution p
νk
k ptq of the Poisson process with fractionality νk depending on the number

of events k, in terms of subordinators and their inverses (see formula (2.26) below).
A part of our paper is devoted to the construction of a point process N ptq, t ě 0, with intertime Uk

between the kth and pk ` 1qth event distributed as

(1.6) PrtUk ą tu “ Eνk,1p´λt
νk q.

The Laplace transform of the univariate distributions of N ptq, t ě 0, is

(1.7)

ż 8

0

e´st PrtN ptq “ kudt “ λk
sνk´1

śk
j“0ps

νj ` λq
,

which slightly differs from (1.4). From this point of view the state-dependent fractional Poisson process
differs from the time-fractional Poisson process because the approach based on the construction by means
of independent inter-event times Uk and the one based on fractional equations (1.1), do not lead to the
same one-dimensional distribution. We show that the probabilities pkptq “ PrtN ptq “ ku are solutions to
the fractional integral equations

(1.8) pkptq ´ pkp0q “ ´λI
νkpkptq ` λI

νk´1pk´1ptq,

where Iνk is the Riemann–Liouville fractional integral

(1.9) pIνkfq ptq “
1

Γpνkq

ż t

0

pt´ sqνk´1fpsqds, νk ą 0.

A third definition of the state-dependent fractional Poisson process, say pNptq, with distribution

(1.10) Prt pNptq “ ju “

pλtqj

Γpνjj`1q
1

Eνj,1pλtq

ř`8

j“0
pλtqj

Γpνjj`1q
1

Eνj,1pλtq

, j ě 0,

is introduced and analyzed in Section 3. The distribution

(1.11) Prt pNνptq “ ju “
pλtqk

Γpνj ` 1q

1

Eνj ,1pλtq
,

investigated in Beghin and Orsingher [3], has been proved to be a weighted sum of Poisson distributions
in Balakrishnan and Kozubowski [1] and Beghin and Macci [2].

Finally, we analyze the state-dependent nonlinear pure birth process with one initial progenitor, where
the state probabilities p

νk
k ptq satisfy the fractional equations

$

’

&

’

%

dνk

dtνk
p
νk
k ptq “ ´λkp

νk
k ptq ` λk´1p

νk´1

k´1 ptq, k ě 1, t ą 0, νk P p0, 1s,

p
νk
k p0q “

#

1, k “ 1,

0, k ě 2.

(1.12)
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The Laplace transform of the solution to (1.12) reads

(1.13)

ż `8

0

e´stp
νk
k ptqdt “

˜

k´1
ź

j“1

λj

¸

sν1´1

śk
j“1ps

νj ` λjq
.

A similar and more general state-dependent fractional birth-death process was recently tackled by Fedotov
et al. [5], where possible applications to chemotaxis are sketched.
The case where νk “ ν, for all k in (1.12), has been dealt with in Orsingher and Polito [14]. An attempt
to apply this fractional birth process was discussed in Garra and Polito [6] in relation to tumoral growth
models and ETAS (Epidemic Type Aftershock Sequences) model in statistical seismology.
The dependence of the state probabilities of the point processes considered here from the structure of νk,
requires a further investigation which certainly implies a numerical approach.

1.1. Notation. For the sake of clarity we briefly summarize the notation used for the different point
processes analyzed in the following sections.

First we indicate with Nptq, t ě 0, the counting process associated with the variable-order difference-
differential equations (1.1). In particular, the state probabilities p

νk
k ptq “ PrtNptq “ ku, k ě 0, represent

the probability of being in state k at a fixed time t ě 0. The point process constructed and studied in
Section 3 by means of independent but non i.d. inter-arrival times is instead indicated by a calligraphic
N ptq. Both processes, when νk “ ν for all k ě 0, reduce to the time-fractional Poisson process Nνptq treated
for example in Beghin and Orsingher [3]. In the same article it is also considered the alternative definition

for a fractional Poisson process characterized by the distribution (1.11) and denoted here by N̂νptq, t ě 0.

We refer to its direct generalization in a state-dependent sense as N̂ptq for which the distribution becomes
that in (1.10). Lastly, the linear fractional pure birth process with state-dependent order of fractionality
presented in the last section is simply indicated as Nlinptq, t ě 0.

2. The state-dependent fractional Poisson process

We first consider a state-dependent time-fractional Poisson process Nptq, t ě 0, whose state probabilities
p
νk
k ptq “ PrtNptq “ ku are governed by equations (1.1). We have the following result

Theorem 2.1. The Laplace transform of the solution to the state-dependent time-fractional equations
$

’

&

’

%

dνk

dtνk
p
νk
k ptq “ ´λp

νk
k ptq ` λp

νk´1

k´1 ptq, k ě 0, t ą 0, νk P p0, 1s,

p
νk
k p0q “

#

1, k “ 0,

0, k ě 1,

(2.1)

reads

p̃
νk
k psq “

ż `8

0

e´stp
νk
k ptqdt “

λksν0´1

śk
j“0ps

νj ` λq
,(2.2)

where the fractional derivative appearing in (2.1) is in the sense of Dzhrbashyan–Caputo.

Proof. We can solve equation (2.1) by means of an iterative procedure, as follows. The equation related
to k “ 0

#

dν0

dtν0
pν00 ptq “ ´λp

ν0
0 ptq, t ą 0, ν0 P p0, 1s,

pν00 p0q “ 1,
(2.3)

has solution pν00 ptq “ Eν0,1p´λt
ν0q, with Laplace transform

(2.4) p̃ν00 psq “

ż `8

0

e´stpν00 ptqdt “
sν0´1

λ` sν0
,

where

Eν0,1p´λt
ν0q “

8
ÿ

k“0

p´λtν0qk

Γpν0k ` 1q
,(2.5)

is the Mittag–Leffler function.
For k “ 1, the equation

#

dν1

dtν1
pν11 ptq “ ´λp

ν1
1 ptq ` λp

ν0
0 ptq, t ą 0, ν1 P p0, 1s,

pν11 p0q “ 0,
(2.6)
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has solution with Laplace transform

(2.7) p̃ν11 psq “

ż `8

0

e´stpν11 ptqdt “
λsν0´1

λ` sν0
1

λ` sν1
.

By iterating this procedure, we arrive at

p̃
νk
k psq “

ż `8

0

e´stp
νk
k ptqdt “

λksν0´1

śk
j“0ps

νj ` λq
.(2.8)

�

Remark 2.2. A direct approach based on the inversion of the Laplace transform of (2.8) is clumsy and
cumbersome. We give the explicit evaluation of pν11 ptq. In this case, from (2.7), we have that

p̃ν11 psq “

ż `8

0

e´stpν11 ptqdt(2.9)

“
λsν0´1

λ2 ` λpsν0 ` sν1q ` sν0`ν1

“
λsν0´1

λ2 ` sν0`ν1
1

1` λpsν0`sν1 q

λ2`sν0`ν1

“ λsν0´1
8
ÿ

m“0

p´λpsν0 ` sν1qqm

pλ2 ` sν0`ν1qm`1

“ λsν0´1
8
ÿ

m“0

p´λqm

pλ2 ` sν0`ν1qm`1

m
ÿ

r“0

˜

m

r

¸

sν0r`ν1pm´rq.

The inversion of (2.9) involves the generalized Mittag–Leffler function, defined as (see, for example,
Saxena et al. [19])

(2.10) Emν,βp´λt
ν
q “

8
ÿ

k“0

p´λtνqkΓpm` kq

k!Γpνk ` βqΓpmq
,

where ν, β,m P R`.
Indeed, we recall the following relation.

(2.11)

ż `8

0

e´sttβ´1Emν,βp´λt
ν
qdt “

sνm´β

pλ` sνqm
.

In view of (2.9) and (2.11), we arrive at

(2.12) pν11 ptq “
8
ÿ

m“0

p´1qmλm`1
m
ÿ

r“0

˜

m

r

¸

tν0pm´rq`ν1r`ν1Em`1
ν0`ν1,ν0pm´rq`ν1r`ν1`1p´λ

2tν0`ν1q.

For the case ν1 “ ν0 “ ν, formula (2.12) becomes

pν1ptq “
8
ÿ

m“0

p´1qmλm`1
m
ÿ

r“0

˜

m

r

¸

tνpm`1qEm`1
2ν,νpm`1q`1p´λ

2t2νq(2.13)

“

8
ÿ

m“0

p´1qmpλtνqm`12mEm`1
2ν,νpm`1q`1p´λ

2t2νq

“

8
ÿ

m“0

p´1qmpλtνqm`12m
8
ÿ

r“0

˜

m` r

r

¸

p´1qrpλ2t2νqr

Γp2νr ` νpm` 1q ` 1q

“

8
ÿ

m“0

p´1qmpλtνqm`12m
8
ÿ

r“0

˜

´pm` 1q

r

¸

pλ2t2νqr
1

2πi

ż

Ha

eww´2νr´νpm`1q´1dw

“

8
ÿ

m“0

p´1qmpλtνqm`12m
1

2πi

ż

Ha

eww´νpm`1q´1

«

8
ÿ

r“0

˜

´pm` 1q

r

¸

pλ2t2νw´2ν
q
r

ff

dw

“

8
ÿ

m“0

p´1qmλtνqm`12m
1

2πi

ż

Ha

ew
w´νpm`1q´1

pλ2t2νw´2ν ` 1qm`1
dw



STATE-DEPENDENT FRACTIONAL POINT PROCESSES 5

“
1

2πi

ż

Ha

ew
λtνw´ν´1

λ2t2νw´2ν ` 1

«

8
ÿ

m“0

p´1qm
ˆ

2w´νλtν

λ2t2νw´2ν ` 1

˙m
ff

dw

“
1

2πi

ż

Ha

λtνwν´1ew

pwν ` λtνq2
dw

“
λtν

ν
Eν,νp´λt

ν
q,

where we have used in the last equality the fact that

Eν,νpxq “ ν
d

dx
Eν,1pxq “

ν

2πi

d

dx

ż

Ha

ewwν´1

wν ´ x
dw “

ν

2πi

ż

Ha

ewwν´1

pwν ´ xq2
dw,(2.14)

and we have applied the contour-integral representation of the reciprocal of the Gamma function

(2.15)
1

Γpxq
“

1

2πi

ż

Ha

euu´xdu,

where Ha stands for the Hankel contour (see formula 5.9.2, pg. 139 in Olver et al. [13]).
We notice that equation (2.13) gives the result obtained for the time-fractional Poisson process in Beghin

and Orsingher [3] as expected. Moreover by considering that

(2.16)

ż `8

0

e´st
λtν

ν
Eν,νp´λt

ν
qdt “

λsν´1

pλ` sνq2
,

we retrieve, for the case ν “ ν0 “ ν1 that

pν1ptq “
λtν

ν
Eν,νp´λt

ν
q,(2.17)

that is the result obtained for the time-fractional Poisson process (see formula (2.11) of Beghin and Ors-
ingher [3]).

By applying formula (34) of Saxena et al. [19] it is possible to give an explicit expression for p
νk
k ptq, for

any k ě 2, in terms of cumbersome sums of generalized Mittag–Leffler functions.

Remark 2.3. A different way to give a representation of the state probability in the state-dependent
Poisson process is given by the following integral approach; starting from (2.8), we have

p̃
νk
k psq “

ż `8

0

e´stp
νk
k ptqdt “ λk

sν0´1

śk
j“0ps

νj ` λq
(2.18)

“

ˆ
ż 8

0

e´λw0sν0´1e´w0s
ν0

dw0

˙

˜

k
ź

j“1

ż 8

0

e´λwjλe´wjs
νj

dwj

¸

.

For the following developments, it is useful to recall that the inverse process of a ν-stable subordinator
Hν
ptq, t ě 0, namely Lνptq, t ě 0, is such that

(2.19) PrtLνptq ă xu “ PrtHν
pxq ą tu, x, t ě 0.

Hence the relation between the law lνpx, tq of the process Lνptq and the law hνpx, tq of the process Hν
ptq is

given by (see for example D’Ovidio et al. [4])

(2.20) lνpx, tq “
PrtLνptq P dxu

dx
“
B

Bx
PrtHν

pxq ą tu “
B

Bx

ż 8

t

hνps, xqds,

or otherwise

(2.21)

ż 8

t

PrtHν
pxq P dwu “

ż x

0

PrtLνptq P dzu.

Hence the density of the inverse process Lνptq reads

(2.22) PrtLνptq P dxu “
B

Bx

ż 8

t

PrtHν
pxq P dwu.

Therefore the Laplace transform of lνpx, tq is given by

l̃νpx, sq “

ż 8

0

e´stlνpx, tqdt “

ż 8

0

e´st
d

dx

„
ż `8

t

PrtHν
pxq P dwu



dt(2.23)

“
d

dx

ż 8

0

PrtHν
pxq P dwu

ż w

0

e´stdt
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“
1

s

d

dx

„
ż 8

0

p1´ e´swqPrtHν
pxq P dwu



“ sν´1e´xs
ν

,

where we used the fact that

h̃νpx, sq “

ż `8

0

e´sthνpx, tqdt “ e´xs
ν

.(2.24)

We also notice that the explicit form of the law of the inverse of the stable subordinator is known in terms
of Wright functions [4]. Going back to equation (2.18) and in view of (2.23), we can write

p̃
νk
k psq “

ˆ
ż 8

0

e´λw0dw0

ż 8

0

e´stlν0pw0, tqdt

˙

˜

k
ź

j“1

λ

ż 8

0

e´λwjdwj

ż 8

0

e´sxhνj px,wjqdx

¸

(2.25)

“

ż 8

0

dw0e
´λw0 ¨ ¨ ¨

ż 8

0

dwke
´λwk

«

ż 8

0

e´stlν0pw0, tqdt
k
ź

j“1

λ

ż 8

0

e´sxhνj px,wjqdx

ff

.

Hence by inverting the Laplace transform we obtain

p
νk
k ptq “ λk

ż 8

0

dw0e
´λw0

ż 8

0

dw1e
´λw1 ¨ ¨ ¨

ż 8

0

dwke
´λwk rlν0pw, tq ˚ hν1,¨¨¨ ,νk pw1, ¨ ¨ ¨ , wk, tqs ,(2.26)

where the symbol ˚ stands for the convolution of the law of the inverse stable subordinator lν0 and the
distribution of the sum of k independent stable subordinators hν1,¨¨¨ ,νk pw1, ¨ ¨ ¨ , wk, tq. In other words
lν0pw, tq ˚ hν1,¨¨¨ ,νk pw1, ¨ ¨ ¨ , wk, tq is the distribution of the r.v.

Lν0ptq `
k
ÿ

j“1

Hνj ptq.(2.27)

Remark 2.4. Another interesting characterization of the state-probabilities of the above process is given
by the following observation. First of all, since for m “ 1, E1

ν,βp¨q “ Eν,βp¨q, from (2.11) we have that

ż `8

0

e´sttν´1Eν,νp´λt
ν
qdt “

1

λ` sν
,(2.28)

ż `8

0

e´stEν,1p´λt
ν
qdt “

sν´1

λ` sν
.(2.29)

Hence, from (2.8), we find that

p̃
νk
k psq “

λksν0´1

śk
j“0ps

νj ` λq
(2.30)

“

„
ż `8

0

e´stEν0,1p´λt
ν
qdt

 k
ź

j“1

„
ż `8

0

e´stλtνj´1Eνj ,νj p´λt
νj qdt



.

On the other hand, from (2.25), we have

p̃
νk
k psq “

ˆ
ż 8

0

e´λw0dw0

ż 8

0

e´stlν0pw0, tqdt

˙

˜

k
ź

j“1

λ

ż 8

0

e´λwjdwj

ż 8

0

e´sxhνj px,wjqdx

¸

(2.31)

“

ˆ
ż 8

0

e´st l̃ν0pλ, tqdt

˙

˜

k
ź

j“1

λ

ż 8

0

e´sxh̃νj px, λqdx

¸

,

which clearly coincides with (2.30).
By inverting the Laplace transform, we obtain the following result

p
νk
k ptq “ Eν0,1p´λt

ν0q
k
˚
j“1

λtνj´1Eνj ,νj p´λt
νj q(2.32)

“

ż 8

0

Eν0,1 p´λpt´ sq
ν0q gpsqds,

where gpsq is the k´th time iterated convolution of the functions

hjptq “ λtνj´1Eνj ,νj p´λt
νj q
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We notice that, the last equation can be written in terms of the Prabhakar operator, that is an integral
operator involving a Mittag–Leffler function as kernel [17]. From equation (2.32) we have an integral
representation, in explicit form given by

pν11 ptq “

ż t

0

Eν0,1p´λpt´ sq
ν0qEν1,ν1p´λs

ν1qsν1´1ds(2.33)

pν22 ptq “

ż t

0

ds1Eν0,1p´λpt´ s1q
ν0q

ż s1

0

ds2s
ν1´1
2 Eν1,ν1p´λs

ν1
2 qps1 ´ s2q

ν2´1Eν2,ν2p´λps1 ´ s2q
ν2q

...

p
νk
k ptq “

ż t

0

ds1Eν0,1p´λpt´ s1q
ν0q

ż s1

0

ds2 ¨ ¨ ¨ ˆ

ˆ

ż sk

0

dsks
νk´1´1

k Eνk´1,νk´1p´λs
νk´1

k qpsk´1 ´ skq
νk´1Eνk,νk p´λpsk´1 ´ skq

νk q.

In order to find the mean value of the distribution p
νk
k ptq, we multiply all the terms of (2.1) for k and

sum over all the states so that
8
ÿ

k“0

k
dνk

dtνk
p
νk
k ptq “ ´λ

8
ÿ

k“0

kp
νk
k ptq ` λ

8
ÿ

k“0

kp
νk´1

k´1 ptq(2.34)

“ ´λ
8
ÿ

k“0

kp
νk
k ptq ` λ

8
ÿ

k“0

pk ` 1qp
νk
k ptq “ λ.

In the case νk “ ν, for all k, we have

(2.35)
dν

dtν

8
ÿ

k“0

kpνkptq “
dν

dtν
EpNνptqq “ λ,

whose solution is given by EpNνptqq “ λtν

Γpν`1q
(see formula (2.7) in Beghin and Orsingher [3]). We notice

that it is possible to find an interesting summation formula by using the Laplace transform in equation
(2.34). Indeed we have

8
ÿ

k“0

ksνk p̃
νk
k psq “ λs´1,(2.36)

and recalling that

p̃
νk
k psq “

λksν0´1

śk
j“0ps

νj ` λq
,(2.37)

we find that

(2.38)
8
ÿ

k“0

kλksν0`νk
śk
j“0ps

νj ` λq
“ λ.

This summation formula is not trivial and we can check that it works for example in the special case ν “ νk
for all k.

8
ÿ

k“1

kλks2ν

psν ` λqk`1
“

s2ν

sν ` λ

8
ÿ

k“1

kλk

psν ` λqk
(2.39)

“
λs2ν

sν ` λ

«

d

dw

8
ÿ

k“1

wk

psν ` λqk

ff

w“λ

“
λs2ν

sν ` λ

„

d

dw

w

sν ` λ´ w



w“λ

“
λs2ν

sν ` λ

„

sν ` λ

psν ` λ´ wq2



w“λ

“ λ

Remark 2.5. We notice that for the probability generating function Gpu, tq of the process Nptq, t ě 0, the
following representation holds for u P r0, 1s

ż 8

0

e´stGpu, tqdt “
8
ÿ

k“0

uk
ż 8

0

e´st PrtNptq “ kudt(2.40)
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“

ż 8

0

e´st Prt min
0ďkďNptq

Xk ą 1´ uudt

“

8
ÿ

k“0

λkuksν0´1

śk
j“0pλ` s

νj q
,

where Xk, k ě 1, are i.i.d. random variables uniform in r0, 1s.
The representation of the probability generating function as

(2.41) Gpu, tq “ Prt min
0ďkďNptq

Xk ą 1´ uu,

follows the same lines of the time and space fractional Poisson processes described in Orsingher and Polito
[15]. In (2.40), the driving process is the state-dependent Poisson process.

3. Alternative forms of the state-dependent Poisson process

We construct now a point process with independent but not i.d. inter-arrival times. In particular, the
waiting time Uk between the kth and pk ` 1qth arrival is distributed with p.d.f.

fUk ptq “ λtνk´1Eνk,νk p´λt
νk q, t ą 0(3.1)

Let us now call N ptq, t ě 0, such process and we have the following theorem.

Theorem 3.1. The state probabilities pkptq of the process N ptq, t ě 0, are governed by the integral equation

(3.2) pkptq ´ pkp0q “ ´λI
νkpkptq ` λI

νk´1pk´1ptq, t ě 0, νk P p0, 1s,

where Iν is the fractional integral in the sense of Riemann–Liouville (see (1.9)). Moreover, their Laplace
transforms are given by

(3.3)

ż 8

0

e´st PrtN ptq “ kudt “ λk
sνk´1

śk
j“0ps

νj ` λq
.

Proof. First, we observe that the Laplace transform of the state probabilities, can be directly calculated
by using the definition of the process N ptq

ż 8

0

e´st PrtN ptq “ kudt(3.4)

“

ż 8

0

e´stdt

„
ż t

0

PrpU0 ` ¨ ¨ ¨ ` Uk´1 P dyq ´

ż t

0

PrpU0 ` ¨ ¨ ¨ ` Uk P dyq



“
1

s

ż 8

0

e´sy rPrpU0 ` ¨ ¨ ¨ ` Uk´1 P dyq ´ PrpU0 ` ¨ ¨ ¨ ` Uk P dyqs

“
1

s

«

λk
śk´1
j“0 pλ` s

νj q
´

λk`1

śk
j“0pλ` s

νj q

ff

“
1

s

λkpλ` sνj q ´ λk`1

śk
j“0pλ` s

νk q

“ λk
sνk´1

śk
j“0ps

νj ` λq
.

We notice that, unfortunately, it does not coincide with (2.8).
Hence we have two distinct processes that can be matched only by assuming that νk “ ν for each

k “ 0, 1 . . . (in other words in the time-fractional Poisson case).
We can also find in explicit way the integral equation governing the probabilities pkptq “ PrtN ptq “ ku.

We start from the ordinary difference-differential equation, governing the Poisson process

(3.5)
dpk
dt
ptq “ ´λpkptq ` λpk´1ptq,

with initial conditions

pkp0q “

#

1 k “ 0,

0 k ě 1.
(3.6)
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By integration with respect to t, we have the equivalent integral equation

(3.7) pkptq ´ pkp0q “ ´λ

ż t

0

pkpsqds` λ

ż t

0

pk´1psqds,

In order to obtain a fractional generalization of the last equation, we replace the first-order integral in
the right hand side of (3.7), with state-dependent fractional integrals, i.e.

(3.8) pkptq ´ pkp0q “ ´λI
νkpkptq ` λI

νk´1pk´1ptq, t ě 0, νk P p0, 1s, k ě 0,

where Iνk is the fractional integral in the sense of Riemann–Liouville. For k “ 0, we have

(3.9) p0ptq ´ 1 “ ´λIν0p0ptq,

whose solution is simply given by p0ptq “ Eν0,1p´λt
ν0q. With k “ 1, we obtain

(3.10) p1ptq “ ´λI
ν1p1ptq ` λI

ν0p0ptq,

whose Laplace transform, after some simple calculation, is given by

(3.11) p̃1ptq “
λsν1´1

psν0 ` λqpsν1 ` λq
,

and coincides with (3.4) in the case k “ 1. Then, it is immediate to prove that, for any order k ě 1, the
Laplace transform of pkptq, is given by (3.4). This proves that (3.8) is the governing equation for N ptq,
t ě 0, as claimed. �

In order to highlight the relation between the two processes Nptq, t ě 0, and N ptq, t ě 0, by rearranging
(2.37), we can write the following

p̃
νk
k psq “ sν0´νk

λksνk´1

śk
j“0ps

νj ` λq
.(3.12)

Therefore if pνk ´ ν0q ą 0 for a fixed k we have that

p
νk
k ptq “

1

Γpνk ´ ν0q

ż t

0

pt´ yqpνk´ν0q´1 PrtN pyq “ ku dy(3.13)

“ Iνk´ν0 PrtN ptq “ ku, t ě 0,

where Iνk´ν0 is the Riemann–Liouville fractional integral. Note that since the Riemann–Liouville fractional
derivative (that we indicate here with Dα) is the left-inverse operator to the Riemann–Liouville fractional
integral we also obtain the related relation

Dνk´ν0p
νk
k ptq “ PrtN ptq “ ku, t ě 0, pνk ´ ν0q ą 0.(3.14)

Conversely, in view of (3.4), we can write
ż 8

0

e´st PrtN ptq “ kudt “ sνk´ν0
λksν0´1

śk
j“0ps

νj ` λq
,(3.15)

and thus if pν0 ´ νkq ą 0, for a fixed k, we obtain that

PrtN ptq “ ku “
1

Γpν0 ´ νkq

ż t

0

pt´ yqpν0´νkq´1p
νk
k pyq dy(3.16)

“ Iν0´νkp
νk
k ptq, t ě 0,

and that

Dν0´νk PrtN ptq “ ku “ p
νk
k ptq, t ě 0, pν0 ´ νkq ą 0.(3.17)

Finally, we have the following relation between the state probabilities of the two processes

(3.18) p
νk
k ptq “

#

Iνk´ν0 PrtN ptq “ ku, νk ą ν0,

Dν0´νk PrtN ptq “ ku, νk ă ν0.

In order to deepen the meaning of this relation, we consider as an example the relation between pν11 ptq and
PrtN ptq “ 1u.

By inverting the Laplace transform (3.4), we obtain that

(3.19) PrtN ptq “ 1u “
8
ÿ

m“0

p´1qmλm`1
m
ÿ

r“0

˜

m

r

¸

tν0pm´rq`ν1r`ν0Em`1
ν0`ν1,ν0pm´rq`ν1r`ν0`1p´λ

2tν0`ν1q,
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by calculation similar to those given above for pν11 ptq. Recalling that (Mathai and Haubold [11], page 123)

(3.20) Iαrtγ´1Emβ,γpat
β
qs “ tα`γ´1Emβ,α`γpat

β
q,

and assuming, for example ν1 ą ν0, we find that

Iν1´ν0 PrtN ptq “ 1u(3.21)

“

8
ÿ

m“0

p´1qmλm`1
m
ÿ

r“0

˜

m

r

¸

Iν1´ν0
´

tν0pm´rq`ν1r`ν0Em`1
ν0`ν1,ν0pm´rq`ν1r`ν0`1p´λ

2tν0`ν1q
¯

“

8
ÿ

m“0

p´1qmλm`1
m
ÿ

r“0

˜

m

r

¸

tν0pm´rq`ν1r`ν1Em`1
ν0`ν1,ν0pm´rq`ν1r`ν1`1p´λ

2tν0`ν1q “ pν11 ptq,

as expected.
Moreover, we observe that, since pν00 ptq “ PrtN ptq “ 0u “ Eν0,1p´λt

ν0q, we have

(3.22)
8
ÿ

k“1

p
νk
k ptq “

8
ÿ

k“1

PrtN ptq “ ku “ 1´ Eν0,1p´λt
ν0q.

In view of (3.18), this implies that

(3.23)
8
ÿ

k“1

PrtN ptq “ ku “
8
ÿ

k“1

p
νk
k ptq “

ÿ

k : νkąν0

Iνk´ν0 PrtN ptq “ ku `
ÿ

k : νkăν0

Dν0´νk PrtN ptq “ ku.

The second process we construct here, denoted by pNptq, t ě 0, is given by the following generalization
of the Poisson process, whose univariate probabilities are given by

(3.24) Prt pNptq “ ju “

pλtqj

Γpνjj`1q
1

Eνj,1pλtq

ř`8

j“0
pλtqj

Γpνjj`1q
1

Eνj,1pλtq

, j ě 0,

where λ ą 0, 0 ă νj ď 1. We can treat it as a generalized Poisson process with state-dependent probabili-
ties. Indeed, we notice that, if νj “ 1, for all j, we have

Prt pNptq “ ju “

pλtqj

Γpj`1q
1
eλt

ř`8

j“0
pλtqj

Γpj`1q
1
eλt

“
pλtqj

j!
e´λt “ PrtNptq “ ju,(3.25)

that is the state probability of the homogeneous Poisson process.
A similar construction was adopted in Beghin and Orsingher [3]. We notice that an analogous general-

ization was used by Sixdeniers et al. [20] in quantum mechanics, in relation to Mittag-Leffler type coherent
states. We now recall from Balakrishnan and Kozubowski [1] that the distribution (3.24) can be regarded
as a weighted Poisson sum. Indeed we notice that

(3.26)
pλtqj

Γpνjj ` 1q

1

Eνj ,1pλtq
“

j!
Γpνjj`1q

PrtNptq “ ju
ř`8

k“0
k!

Γpνjk`1q
PrtNptq “ ku

.

Hence we have

(3.27) Prt pNptq “ ju “

j!
Γpνjj`1q

PrtNptq“ju

ř`8
k“0

k!
Γpνjk`1q

PrtNptq“ku

ř`8

j“0

j!
Γpνjj`1q

PrtNptq“ju

ř`8
k“0

k!
Γpνjk`1q

PrtNptq“ku

.

The probability generating function of (3.24) is given by

Gpu, tq “
8
ÿ

k“0

uk Prt pNptq “ ku(3.28)

“

ř`8

k“0
pλutqk

Γpνkk`1q
1

Eνk,1pλtq

ř`8

k“0
pλtqk

Γpνkk`1q
1

Eνk,1pλtq

.
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In the case νj “ ν, for all j ě 0, we have

Gpu, tq “

ř`8

k“0
pλutqk

Γpνk`1q
1

Eν,1pλtq
ř`8

k“0
pλtqk

Γpνk`1q
1

Eν,1pλtq

“
Eν,1puλtq

Eν,1pλtq
,(3.29)

that coincides with the equation (4.4) of Beghin and Orsingher [3].
By means of the generating function we can also find the explicit form of the mean value of the distribution
(3.24), i.e.

E pNptq “
λt

ř`8

k“0
kpλtqk´1

Γpνkk`1q
1

Eνk,1pλtq

ř`8

k“0
pλtqk

Γpνkk`1q
1

Eνk,1pλtq

“

λt
ř`8

k“0
pλtqk

νk`1Γpνk`1k`νk`1q

1
Eνk`1,1

pλtq

ř`8

k“0
pλtqk

Γpνkk`1q
1

Eνk,1pλtq

,(3.30)

such that, when νk “ ν for all k, we recover the case considered in Beghin and Orsingher [3] and in Beghin
and Macci [2], i.e.

E pNνptq “
λtEν,νpλtq

νEν,1pλtq
.(3.31)

We now consider a sequence of a random number of non-negative i.i.d. random variables with distribution

F pβq “ PrpXi ď βq, i ě 1 and represented by pNptq. The distribution of the maximum and minimum of
this sequence is given by

Prtmax
´

X1, ¨ ¨ ¨ , X
xNptq

¯

ă βu “

ř`8

k“0
pλF pβqtqk

Γpνkk`1q
1

Eνk,1pλtq

ř`8

k“0
pλtqk

Γpνkk`1q
1

Eνk,1pλtq

,(3.32)

Prtmin
´

X1, ¨ ¨ ¨ , X
xNptq

¯

ą βu “

ř`8

k“0
pλr1´F pβqstqk

Γpνkk`1q
1

Eνk,1pλtq

ř`8

k“0
pλtqk

Γpνkk`1q
1

Eνk,1pλtq

.(3.33)

In the case ν “ νk “ 1, for all k, we recover the distribution of the maximum and minimum of the
homogeneous Poisson process.

4. State dependent fractional pure birth processes

In this section we consider a different point process which can be generalized in a state-dependent sense
as we have done for the fractional Poisson process. We thus analyze a state-dependent fractional pure birth
process (see Orsingher and Polito [14] for the fractional case with constant order), where the probabilities
are governed by the following equations

$

’

&

’

%

dνk

dtνk
p
νk
k ptq “ ´λkp

νk
k ptq ` λk´1p

νk´1

k´1 ptq, k ě 1, t ą 0, νk P p0, 1s,

p
νk
k p0q “

#

1, k “ 1,

0, k ě 2.

(4.1)

As in the Section 2 the Laplace transform of the solution to (4.1) can be found rather easily. This is
done in the following proposition.

Proposition 4.1. The Laplace transform of the solution to the state-dependent fractional pure-birth process
(4.1) reads

p̃
νk
k psq “

ż `8

0

e´stp
νk
k ptqdt “

˜

k´1
ź

j“1

λj

¸

sν1´1

śk
j“1ps

νj ` λjq
,(4.2)

where the fractional derivative appearing in (4.1) is in the sense of Dzhrbashyan–Caputo.

Proof. We can solve equation (4.1) by means of an iterative procedure, as follows. The equation related
to k “ 1

#

dν1

dtν1
pν11 ptq “ ´λ1p

ν1
1 ptq, t ą 0, ν1 P p0, 1s,

pν11 p0q “ 1,
(4.3)

has solution pν11 ptq “ Eν1,1p´λt
ν1q. For k “ 2, the equation
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#

dν2

dtν2
pν22 ptq “ ´λ2p

ν2
2 ptq ` λ1p

ν1
1 ptq, t ą 0, ν2 P p0, 1s,

pν22 p0q “ 0,
(4.4)

has solution with Laplace transform

(4.5) p̃ν22 psq “

ż `8

0

e´stpν22 ptqdt “
λ1s

ν1´1

λ1 ` sν1
1

λ2 ` sν2
.

whose inverse is given by (see (2.9))

(4.6) pν22 ptq “
8
ÿ

m“0

p´1qm
m
ÿ

r“0

˜

m

r

¸

λr`1
1 λm´r2 tν2pm´rq`ν1r`ν2Em`1

ν1`ν2,ν2pm´rq`ν1r`ν2`1p´λ1λ2t
ν1`ν2q.

By iterating this procedure, we arrive immediately at

p̃
νk
k psq “

ż `8

0

e´stp
νk
k ptqdt “

˜

k´1
ź

j“1

λj

¸

sν1´1

śk
j“1ps

νj ` λjq
,(4.7)

as claimed. �

By recalling (2.28), we obtain the explicit expression of the state probabilities p
νk
k ptq, k ě 1, t ě 0, as

(4.8) p
νk
k ptq “ Eν1,1p´λ1t

ν1q
k
˚
j“1

λjt
νj´1Eνj ,νj p´λjt

νj q,

where the convolution is in the sense of equation (2.32).
We now consider the state dependent linear birth process, denoted by Nlinptq, t ě 0. This means that

we take λk “ λk in (4.1). We have the following

Theorem 4.2. Let us consider the state dependent linear birth process Nlinptq, t ě 0, governed by

(4.9)

$

’

&

’

%

dνk

dtνk
p
νk
k ptq “ ´λkp

νk
k ptq ` λpk ´ 1qp

νk´1

k´1 ptq, k ě 1, t ą 0, νk P p0, 1s,

p
νk
k p0q “

#

1, k “ 1,

0, k ě 2,

then the following relation holds

8
ÿ

k“1

km
dνk

dtνk
p
νk
k ptq “ λ

m´1
ÿ

j“1

˜

m

j

¸

ENm´j`1
lin .(4.10)

Proof. In order to find explicit relations for the moments of the distribution Nlinptq, we multiply both
sides of equation (4.9) by km and sum over all the states, obtaining

8
ÿ

k“1

km
dνk

dtνk
p
νk
k ptq “ ´λ

8
ÿ

k“1

km`1p
νk
k ptq ` λ

8
ÿ

k“1

kmpk ´ 1qp
νk´1

k´1 ptq(4.11)

“ ´λ
8
ÿ

k“1

km`1p
νk
k ptq ` λ

8
ÿ

k“1

kpk ` 1qmp
νk
k ptq

“ ´λ
8
ÿ

k“1

km`1p
νk
k ptq ` λ

8
ÿ

k“1

m
ÿ

j“0

˜

m

j

¸

km´j`1p
νk
k ptq

“ λ
m
ÿ

j“1

˜

m

j

¸

8
ÿ

k“1

km´j`1p
νk
k ptq “ λ

m
ÿ

j“1

˜

m

j

¸

ENm´j`1
lin ,

�

Remark 4.3. We can consider in a explicit way the relations involving first and second moments. For
example, if we multiply (4.9) for k and sum over all the states, we obtain that

8
ÿ

k“1

k
dνk

dtνk
p
νk
k ptq “ ´λ

8
ÿ

k“1

k2p
νk
k ptq ` λ

8
ÿ

k“1

kpk ´ 1qp
νk´1

k´1 ptq(4.12)

“ λ
8
ÿ

k“1

kp
νk
k ptq “ λENlinptq.
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In the same way, for the second moment, we multiply (4.9) for k2, obtaining
8
ÿ

k“1

k2 dνk

dtνk
p
νk
k ptq “ ´λ

8
ÿ

k“1

k3p
νk
k ptq ` λ

8
ÿ

k“1

k2
pk ´ 1qp

νk´1

k´1 ptq(4.13)

“ λ
8
ÿ

k“1

kp
νk
k ptq ` 2λ

8
ÿ

k“1

k2p
νk
k ptq

“ λENlinptq ` 2λEpNlinq2ptq.
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