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Abstract

Drawdowns measuring the decline in value from the historical running maxima over a given
period of time, are considered as extremal events from the standpoint of risk management.
To date, research on the topic has mainly focus on the side of severity by studying the first
drawdown over certain pre-specified size. In this paper, we extend the discussion by investi-
gating the frequency of drawdowns, and some of their inherent characteristics. We consider
two types of drawdown time sequences depending on whether a historical running maximum is
reset or not. For each type, we study the frequency rate of drawdowns, the Laplace transform
of the n-th drawdown time, the distribution of the running maximum and the value process at
the n-th drawdown time, as well as some other quantities of interest. Interesting relationships
between these two drawdown time sequences are also established. Finally, insurance policies
protecting against the risk of frequent drawdowns are also proposed and priced.

Keywords : Drawdown; Frequency; Brownian motion
MSC (2000): Primary 60G40; Secondary 60J65 91B24

1 Introduction

We consider a drifted Brownian motion X = {Xt, t ≥ 0}, defined on a filtered probability space

(Ω, {Ft, t ≥ 0},P), with dynamics

Xt = x0 + µt+ σWt,

where x0 ∈ R is the initial value, µ ∈ R, σ > 0, and {Wt, t ≥ 0} is a standard Brownian motion.

The time of the first drawdown over size a > 0 is denoted by

τa := inf{t > 0 : Mt −Xt ≥ a}, (1.1)

where M = {Mt, t ≥ 0} with Mt := sups∈[0,t]Xt is the running maximum process of X. Here and

henceforth, we follow the convention that inf ∅ = ∞ and sup ∅ = 0.

Drawdown is one of the most frequently quoted path-dependent risk indicators for mutual

funds and commodity trading advisers (see, e.g., Burghardt et al. [4]). From a risk management

standpoint, large drawdowns should be considered as extreme events of which both the severity

and the frequency need to be investigated. Considerable attention has been paid to the severity
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aspect of the problem by pre-specifying a threshold, namely a > 0, of the size of drawdowns, and

subsequently studying various properties associated to the first drawdown time τa. In this paper,

we extend the discussion by investigating the frequency of drawdowns. To this end, we derive the

joint distribution of the n-th drawdown time, the running maximum, and the value process at

the drawdown time for a drifted Brownian motion. Using the general theory on renewal process,

we proceed to characterize the behavior of the frequency of drawdown episodes in a long time-

horizon. Finally, we introduce some insurance policies which protect against the risk associated

with frequent drawdowns. These policies are similar to the sequential barrier options in over-the-

counter (OTC) market (see, e.g., Pfeffer [16]). Through Carr’s randomization of maturities, we

provide closed-form pricing formulas by making use of the main theoretical results of the paper.

1.1 Literature review

The first drawdown time τa is the first passage time of the drawdown process {Mt −Xt, t ≥ 0} to

level a or above. It has been extensively studied in the literature of applied probability. The joint

Laplace transform of τa and Mτa was first derived by Taylor [20] for a drifted Brownian motion.

Lehoczky [13] extended the results to a general time-homogeneous diffusion by a perturbation

approximation approach. An infinite series expansion of the distribution of τa was derived by

Douady et al. [8] for a standard Brownian motion and the results were generalized to a drifted

Brownian motion by Magdon et al. [14]. The dual of drawdown, known as drawup, measures

the increase in value from the historical running minimum over a given period of time. The

probability that a drawdown precedes a drawup is subsequently studied by Hadjiliadis and Vecer

[10] and Pospisil et al. [18] under the drifted Brownian motion and the general time-homogeneous

diffusion process, respectively. Mijatovic and Pistorius [15] derived the joint Laplace transform

of τa and the last passage time at level Mτa prior to τa, associated with the joint distribution of

the running maximum, the running minimum, and the overshoot at τa for a spectrally negative

Lévy process. The probability that a drawdown precedes a drawup in a finite time-horizon is

studied under drifted Brownian motions and simple random walks in [24]. More recently, [23, 25]

studied Laplace transforms of the drawdown time, the so-called speed of market crash, and various

occupation times at the first exit and the drawdown time for a general time-homogeneous diffusion

process.

In quantitative risk management, drawdowns and its descendants have become an increasingly

popular and relevant class of path-dependent risk indicators. A portfolio optimization problem

with constraints on drawdowns was explicitly solved by Grossman and Zhou [9] in a Black-Scholes

framework. Hamelink and Hoesli [11] used the relative drawdown as a performance measure in

optimization of real estate portfolios. Chekhlov et al. [6] proposed a new family of risk measures

called conditional drawdown and studied parameter selection techniques and portfolio optimization

under constraints on conditional drawdown. Some novel financial derivatives were introduced by

Vecer [21] to hedge maximum drawdown risk. Pospisil and Vecer [17] invented a class of Greeks

to study the sensitivity of investment portfolios to running maxima and drawdowns. Later, Carr

et al. [5] introduced a class of European-style digital drawdown insurances and proposed semi-

static hedging strategies using barrier options and vanilla options. The swap type insurances and

cancelable insurances against drawdowns were studied in Zhang et al. [26].
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1.2 Definitions

While sustaining downside risk can be appropriately characterized using the drawdown process and

the first drawdown time, economic turmoil and volatile market fluctuations are better described

by quantities containing more path-wise information, such as the frequency of drawdowns. The

existing knowledge about the first drawdown time τa provides only limited and implicit information

about the frequency of drawdowns. For the purpose of tackling the problem of frequency directly

and systematically, we define below two types of drawdown time sequences depending on whether

the last running maximum needs to be recovered or not.

The first sequence {τ̃na , n ∈ N} is called the drawdown times with recovery, defined recursively

as

τ̃na := inf{t > τ̃n−1
a : Mt −Xt ≥ a,Mt > Mτ̃n−1

a
}, (1.2)

where τ̃0a = 0. Note that, after each τ̃n−1
a , the corresponding running maximum Mτ̃n−1

a
must be

recovered before the next drawdown time τ̃na . In other words, the running maximum is reset and

updated only when the previous one is revisited. Since the sample paths of X are almost surely

(a.s.) continuous, we have that Mτ̃na −Xτ̃na = a a.s. if τ̃na < ∞.

The second sequence {τna , n ∈ N} is called the drawdown times without recovery, defined recur-

sively as

τna := inf{t > τn−1
a : M[τn−1

a ,t] −Xt ≥ a}, (1.3)

where τ0a := 0 and M[s,t] := sups≤u≤tXu. From definition (1.3), it is implicitly assumed that the

running maximum Mτna is “reset” to Xτna at the drawdown time τna . In fact, τna is the so-called

iterated stopping times associated with τa defined as

τna =

{

τn−1
a + τa ◦ θτn−1

a
, when τn−1

a and τa ◦ θτn−1
a

are finite,

∞, otherwise,
(1.4)

where θ is the Markov shift operator such that Xt ◦ θs = Xs+t for s, t ≥ 0.

Note that both τna and τ̃na are independent of the initial value x0 for not only the drifted

Brownian motion X, but also a general Lévy process. In view of definitions (1.3) and (1.2), it is

clear that the following inclusive relation of the two types of drawdown times holds:

{τ̃na , n ∈ N} ⊂ {τna , n ∈ N}.

In other words, for each n ∈ N, there exists a unique positive integer m ≥ n such that τ̃na = τma (if

τ̃na < ∞).

Our motivation for introducing the two drawdown time sequences are as follows. The drawdown

times with recovery {τ̃na , n ∈ N} are easy to identify from the sample paths of X by searching the

running maxima. Moreover, they are consistent with definition (1.1) of the first drawdown τa

in the sense that a drawdown can be considered as incomplete if the running maximum has not

been revisited. However, there are also some crucial drawbacks of {τ̃na , n ∈ N} which motivate us

to introduce the drawdown times without recovery {τna , n ∈ N}. First, the downside risk during

recovering periods is neglected. One or more larger drawdowns may occur in a recovering period.

Second, the threshold a needs to be adjusted to gain a more integrated understanding about the

severity of drawdowns. In other words, the selection of a becomes tricky. Third, the requirement
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of recovery is too strong. In real world, a historical high water mark may never be recovered again,

as in the case of a financial bubble [12].

The rest of the paper is organized as follows. In Section 2, some preliminaries on exit times

and the first drawdown time τa of the drifted Brownian motion X are presented. In Section 3, the

frequency rate of drawdowns, and the Laplace transform of τ̃na associated with the distribution of

Mτ̃na and/or Xτ̃na are derived. Section 4 is parallel to Section 3 but studies the drawdown times

without recovery {τna , n ∈ N}. Interesting connections between the two drawdown time sequences

are established. In Section 5, some insurance contracts are introduced to insure against the risk

of frequent drawdowns.

2 Preliminaries

Henceforth, for ease of notation, we write Ex0 [ · ] = E[ · |X0 = x0] for the conditional expectation,

Px0{ · } for the corresponding probability and Ex0 [ · ;U ] = Ex0 [ · 1U ] with 1U denoting the indicator

function of a set U ⊂ Ω. In particular, when x0 = 0, we drop the subscript x0 from the conditional

expectation and probability.

For x ∈ R, let T+
x = inf {t ≥ 0 : Xt > x} and T−

x = inf {t ≥ 0 : Xt < x} be the first passage

times of X to levels in [x,∞) and (−∞, x], respectively. For a < x < b and λ > 0, it is known that

Ex[e
−λT−

a ] = eβ
−
λ (x−a) and Ex[e

−λT+
b ] = eβ

+
λ (x−b), (2.1)

where β±
λ =

−µ±
√

µ2+2λσ2

σ2 (see, e.g., formula 2.0.1 on Page 295 of Borodin and Salminen [3]). By

letting λ → 0+ in (2.1), we have

Px

{

T+
b < ∞

}

= e
−µ+|µ|

σ2 (x−b) and Px

{

T−
a < ∞

}

= e
−µ−|µ|

σ2 (x−a). (2.2)

From Taylor [20] or Equation (17) of Lehoczky [13], we have the following joint Laplace trans-

form of the first drawdown time τa and its running maximum Mτa .

Lemma 2.1 For λ, s > 0, we have

E
[

e−λτa−sMτa

]

=
cλ

bλ + s
(2.3)

where bλ =
β+
λ e

−β−
λ

a
−β−

λ e
−β+

λ
a

e
−β−

λ
a
−e

−β+
λ

a
and cλ =

β+
λ −β−

λ

e
−β−

λ
a
−e

−β+
λ

a
.

A Laplace inversion of (2.3) with respect to s results in

E[e−λτa ;Mτa > x] =
cλ
bλ

e−bλx, (2.4)

for x > 0. Furthermore, letting x → 0+ in (2.4), we immediately have

E[e−λτa ] = cλ/bλ. (2.5)

A numerical evaluation of the distribution function of τa (and more generally τna and τ̃na ) by an

inverse Laplace transform method will be given at the end of Section 4. Other forms of infinite

4



series expansion of the distribution of τa were derived by Douady et al. [8] and Magdon et al.

[14] for a standard Brownian motion and a drifted Brownian motion, respectively. By taking the

derivative with respect to λ in (2.5) and letting λ → 0+, we have

E[τa] =
σ2e2µa/σ

2 − σ2 − 2µa

2µ2
.

It is straightforward to check that

lim
λ→0+

bλ = lim
λ→0+

cλ =
γ

eγa − 1
, (2.6)

where γ = 2µ
σ2 . In the risk theory literature, the constant γ is known as the adjustment coefficient.

In particular, when µ = 0, the quantity γ
eγa−1 is understood as limγ→0

γ
eγa−1 = 1

a . It follows from

(2.5) and (2.6) that

P {τa < ∞} = lim
λ→0+

E

[

e−λτa
]

= 1.

Furthermore, we have

P {Mτa ≥ x} = P {Mτa ≥ x, τa < ∞} = lim
λ→0+

E
[

e−λτa ;Mτa ≥ x
]

= e−
γx

eγa−1 . (2.7)

which implies that the running maximum at the first drawdown time Mτa follows an exponential

distribution with mean (eγa − 1) /γ (see, e.g., Lehoczky [13]).

3 The drawdown times with recovery

We begin our analysis with the drawdown times with recovery {τ̃na , n ∈ N} given that their

structure leads to a simpler analysis than their counterpart ones without recovery.

We first consider the asymptotic behavior of the frequency rate of drawdowns with recovery.

Let Ña
t =

∑∞
n=1 1{τ̃na ≤t} be the number of drawdowns with recovery observed by time t ≥ 0, and

define Ña
t /t to be the frequency rate of drawdowns. It is clear that

{

Ña
t , t ≥ 0

}

is a delayed

renewal process where the first drawdown time is distributed as τa, while the subsequent inter-

drawdown times are independent and identically distributed as T+
Xτa+a ◦ τa. From Theorem 6.1.1

of Rolski et al. [19], it follows that, with probability one,

lim
t→∞

Ña
t

t
=

{

1
E[τa]+E[T+

a ]
= 2µ2

σ2(e2µa/σ2
−1)

, if µ > 0,

0, if µ ≤ 0.

Moreover, one could easily obtain some central limit theorems for Ña
t by Theorem 6.1.2 of Rolski

et al. [19].

Next, we study the joint Laplace transform of τ̃na and Mτ̃na . Note that Xτ̃na = Mτ̃na − a

a.s. whenever τ̃na < ∞, and thus the following theorem is sufficient to characterize the triplet
(

τ̃na ,Mτ̃na ,Xτ̃na

)

.

Theorem 3.1 For n ∈ N and λ, x ≥ 0, we have

E

[

e−λτ̃na ;Mτ̃na > x
]

=

(

cλ
bλ

)n

e−(n−1)β+
λ a

n−1
∑

m=0

(bλx)
m

m!
e−bλx. (3.1)
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Proof. To prove this result, we first condition on the first drawdown time τa and subsequently on

the time for the process X to recover its running maximum. Using the strong Markov property of

X and (2.3), it is clear that

E

[

e−λτ̃na −sMτ̃na

]

= E

[

e−λτ̃na −sMτ̃na ; τ̃na < ∞
]

= E
[

e−λτa−sMτa

]

E
[

e−T+
a

]

E
[

e−λτ̃n−1
a −sMτ̃n−1

a

]

=
cλ

bλ + s
e−β+

λ aE

[

e−λτ̃n−1
a −sMτ̃n−1

a

]

=

(

cλ
bλ + s

)n−1

e−(n−1)β+
λ aE

[

e−λτa−sMτa

]

=

(

cλ
bλ + s

)n

e−(n−1)β+
λ a. (3.2)

Given that (bλ/ (bλ + s))n is the Laplace transform of an Erlang random variable (rv) with mean

n/bλ and variance n/ (bλ)
2, a tail inversion of (3.2) wrt s yields (3.1).

In particular, letting x → 0+, we have

E

[

e−λτ̃na
]

= (cλ/bλ)
n e−(n−1)β+

λ a, (3.3)

for n ∈ N. Furthermore, letting λ → 0+ in (3.3), together with (2.6) and limλ→0+ β+
λ = −µ+|µ|

σ2 ,

we have

P {τ̃na < ∞} =

{

1, if µ ≥ 0,

e(n−1)γa, if µ < 0.
(3.4)

In other words, a historical running maximum may never be recovered if the drift µ < 0.

Corollary 3.1 For n ∈ N and x > 0, we have

P
{

Mτ̃na > x, τ̃na < ∞
}

=







e−
γx

eγa−1
∑n−1

m=0
1
m!

(

γx
eγa−1

)m
, if µ ≥ 0,

e(n−1)γae−
γx

eγa−1
∑n−1

m=0
1
m!

(

γx
eγa−1

)m
, if µ < 0.

. (3.5)

Proof. Substituting (3.3) into (3.1) yields

E

[

e−λτ̃na ;Mτ̃na > x
]

= E

[

e−λτ̃na
]

n−1
∑

m=0

(bλx)
m

m!
e−bλx. (3.6)

Taking the limit when λ → 0+ in (3.6), and then using (2.6), one arrives at

P
{

Mτ̃na > x, τ̃na < ∞
}

= P {τ̃na < ∞}
n−1
∑

m=0

( γx
eγa−1)

m

m!
e−

γx
eγa−1 . (3.7)

Substituting (3.4) into (3.7) results in (3.5).

Note that (3.7) indicates

P
{

Mτ̃na > x |τ̃na < ∞
}

=

n−1
∑

m=0

1

m!

(

γx

eγa − 1

)m

e−
γx

eγa−1 , (3.8)
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for all µ ∈ R. This result can be interpreted probabilistically. Indeed, when τ̃na < ∞, Mτ̃ma −Mτ̃m−1
a

follows an exponential distribution with mean (eγa − 1) /γ for m = 1, 2, ..., n. From the strong

Markov property, the rv’s Mτ̃ma − Mτ̃m−1
a

for all m = 1, 2, ..., n are all independent, and thus

Mτ̃na =
∑n

m=1

(

Mτ̃ma −Mτ̃m−1
a

)

is an Erlang rv with survival function (3.8).

In particular, when n → ∞, it is easy to check that limn→∞ P
{

Mτ̃na > x
}

= P {T+
x < ∞} which

agrees with (2.2). For completeness, we conclude this section with a result that is immediate from

(3.1) and the fact that Mτ̃na −Xτ̃na = a a.s. whenever τ̃na < ∞.

Corollary 3.2 For n ∈ N and x ≥ −a, we have

E

[

e−λτ̃na ;Xτ̃na > x
]

=

(

cλ
bλ

)n

e−(n−1)β+
λ a

n−1
∑

m=0

(bλ(x+ a))m

m!
e−bλ(x+a).

4 Drawdown times without recovery

In this section, we focus on the drawdown times without recovery which are more challenging to

analyze than their counterparts with recovery.

Let Na
t =

∑∞
n=1 1{τna ≤t} be the number of drawdowns without recovery by time t ≥ 0. Clearly,

{Na
t , t ≥ 0} is a renewal process with independent inter-drawdown times, all distributed as τa. By

Theorem 6.1.1 of Rolski et al. [19], it follows that, with probability one,

lim
t→∞

Na
t

t
=

1

E [τa]
=

2µ2

σ2e2µa/σ2 − σ2 − 2µa
,

which is consistent with our intuition based on (1.4). Here again, one can also obtain some central

limit theorems for Na
t by an application of Theorem 6.1.2 of Rolski et al. [19].

Next, we characterize the joint distribution of
(

τna ,Xτna

)

by deriving an explicit expression for

E[e−λτna ;Xτna > x].

Theorem 4.1 For n ∈ N and λ, x > 0, the joint distribution of
(

τna ,Xτna

)

satisfies

E[e−λτna ;Xτna > x] =

(

cλ
bλ

)n

e−bλ(x+na)
n−1
∑

m=0

(bλ(x+ na))m

m!
. (4.1)

Proof. Given that Xτna + na is a positive rv (and Xτna is not), we prove (4.1) by first deriving

an expression for the joint Laplace transform of
(

τna ,Xτna + na
)

. By conditioning on the first

drawdown time and its associated value process, and by making use of the strong Markov property

and (2.3), it is clear that for all s ≥ 0,

E

[

e−λτna −s(Xτna
+na)

]

= E

[

e−λτa−s(Xτa+a)
]

E

[

e
−λτn−1

a −s
(

X
τn−1
a

+(n−1)a
)]

= E

[

e−λτa−sMτa

]

E

[

e
−λτn−1

a −s
(

X
τn−1
a

+(n−1)a
)]

=
cλ

bλ + s
E

[

e
−λτn−1

a −s
(

X
τn−1
a

+(n−1)a
)]

=

(

cλ
bλ + s

)n

. (4.2)
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The Laplace transform inversion of (4.2) with respect to s results in

E
[

e−λτna ;
(

Xτna + na
)

∈ dy
]

= (cλ)
n yn−1e−bλy

(n− 1)!
dy, (4.3)

for y ≥ 0. Integrating (4.3) over y from x+ na to ∞ yields (4.1).

Letting s → 0+ in (4.2), it follows that

E[e−λτna ] = (cλ/bλ)
n =

(

E[e−λτa ]
)n

. (4.4)

Note that (4.4) and (2.6) implies that

P {τna < ∞} = 1.

It is worth pointing out that the relation E
[

e−λτna
]

=
(

E
[

e−λτa
])n

holds more generally for X a

general Lévy process or a renewal risk process (also known as the Sparre Andersen risk model [2])

given that the inter-drawdown times τ1a , and
{

τna − τn−1
a

}

n≥2
form a sequence of i.i.d. rvs.

Similarly, letting λ → 0+ in (4.1), it follows that

P
{

Xτna ≥ x
}

= e−
γ(x+na)
eγa−1

n−1
∑

m=0

(

γ(x+na)
eγa−1

)m

m!
, (4.5)

for n ∈ N and x ≥ −na. As expected, (4.5) is the survival function of an Erlang rv with mean

n (eγa − 1) /γ and variance n ((eγa − 1) /γ)2, later translated by −na units.

Our objective is now to include Mτna in the analysis of the n-th drawdown time. A result

particularly useful to do so is provided in Lemma 4.1 which consider a specific constrained Laplace

transform of the first passage time to level x.

Lemma 4.1 For n ∈ N and x > 0, the constrained Laplace transform of T+
x together with this

first passage time occurring before τna is given by

E

[

e−λT+
x ;T+

x < τna

]

= e−bλx
n−1
∑

j=0

(

cλe
−bλa

)j x(x+ ja)j−1

j!
. (4.6)

Proof. We prove this result by induction on n. For n = 1, we have

E

[

e−λT+
x ;T+

x < τ1a

]

= E

[

e−λT+
x

]

− E

[

e−λT+
x ;T+

x > τ1a

]

= e−β+
λ x −

∫ x

0
E

[

e−λτ1a ;Mτ1a
∈ dy

]

Ey−a

[

e−λT+
x

]

= e−β+
λ x −

∫ x

0
cλe

−bλy e−β+
λ (x−y+a)dy

= e−β+
λ x − cλe

−β+
λ a e

−β+
λ x − e−bλx

bλ − β+
λ

,

where we used (2.4) in the third equality.
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On the other hand, using the fact that cλe
−β+

λ a = bλ − β+
λ , we have

E

[

e−λT+
x ;T+

x < τ1a

]

= e−bλx.

We now assume that (4.6) holds for n = 1, 2, ..., k−1 and shows that (4.6) also holds for n = k.

Indeed, by the total probability formula,

E

[

e−λT+
x ;T+

x < τka

]

= E

[

e−λT+
x ;T+

x < τ1a

]

+ E

[

e−λT+
x ; τ1a < T+

x < τka

]

= e−bλx +

∫ x

0
E

[

e−λτa ;Mτa ∈ dy
]

Ey−a

[

e−λT+
x ;T+

x < τk−1
a

]

dy

= e−bλx +

∫ x

0
cλe

−bλy E

[

e−λT+
x−y+a;T+

x−y+a < τk−1
a

]

dy. (4.7)

Substituting (4.6) at n = k − 1 into (4.7) yields

E

[

e−λT+
x ;T+

x < τka

]

= e−bλx + cλe
−bλ(x+a)

k−2
∑

j=0

∫ x

0

(

cλe
−bλa

)j (x− y + a) (x− y + (j + 1) a)j−1

j!
dy

= e−bλx + cλe
−bλ(x+a)



x+

k−2
∑

j=1

(

cλe
−bλa

)j
∫ x

0

(

(y + (j + 1) a)j

j!
− a

(y + (j + 1) a)j−1

(j − 1)!

)

dy





= e−bλx



1 + cλe
−bλax+

k−1
∑

j=2

(

cλe
−bλa

)j x (x+ ja)j−1

j!





= e−bλx
k−1
∑

j=0

(

cλe
−bλa

)j x(x+ ja)j−1

j!
.

This completes the proof.

In the next theorem, we provide a distributional characterization of the n-th drawdown time

τna with respect to both Mτna and Xτna .

Theorem 4.2 For n ∈ N and x > 0, we have

E

[

e−λτna ;Mτna > x,Xτna ∈ dy
]

= (cλ)
n e−bλ(y+na)

n−1
∑

m=0

x(x+ma)m−1(y − x+ (n −m)a))n−1−m1{y−x+(n−m)a≥0}

m!(n−m− 1)!
dy. (4.8)

Proof. By conditioning on the drawdown episode during which the drifted Brownian motion

process X reaches level x for the first time and subsequently using the strong Markov property,

we have

E

[

e−λτna ;Mτna > x,Xτna ∈ dy
]

=
n−1
∑

m=0

E

[

e−λτna ;Mτna > x,Xτna ∈ dy, τma < T+
x < τm+1

a

]

=
n−1
∑

m=0

E

[

e−λT+
x ; τma < T+

x < τm+1
a

]

Ex

[

e−λτn−m
a ;Xτn−m

a
∈ dy

]

(4.9)
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From Lemma 4.1, we know that

E

[

e−λT+
x ; τma < T+

x < τm+1
a

]

= E

[

e−λT+
x ; τma < T+

x

]

− E

[

e−λT+
x ; τm+1

a < T+
x

]

= (cλ)
m x(x+ma)m−1

m!
e−bλ(x+ma). (4.10)

By Theorem 4.1, we have

Ex

[

e−λτn−m
a ;Xτn−m

a
∈ dy

]

=
(cλ)

n−m (y − x+ (n−m)a)n−m−1e−bλ(y−x+(n−m)a)1{y−x+(n−m)a≥0}

(n−m− 1)!
dy. (4.11)

Substituting (4.10) and (4.11) into (4.9) and simplifying, one easily obtains (4.8).

Recall that τ1a = τ̃1a = τa and Xτa = Mτa − a a.s.. Therefore, by letting λ → 0+ and x = a in

(4.10), it follows that, for m = 0, 1, 2, · · · ,

P
{

τ̃2a = τ2+m
a

}

= P{τma < T+
a < τm+1

a }

=
(m+ 1)m−1

m!

(

γa

eγa − 1

)m

e−
(m+1)γa
eγa−1 , (4.12)

which is the probability mass function of a generalized Poisson rv (see, e.g., Equation (9.1) of

Consul and Famoye [7] with θ = λ = γa/(eγa − 1)). For completeness, a rv Y has a generalized

Poisson(θ, λ) distribution if its probability mass function pY is given by

pY (m) =
θ (θ + λm)m−1 e−θ−λm

m!
, m = 0, 1, 2, ...,

when both θ, λ > 0.

Note that a generalization of (4.12) will be proposed in Theorem 4.3.

Remark 4.1 Equation (4.12) can be interpreted as follows: the number of drawdowns without

recovery between two successive drawdowns with recovery follows a generalized Poisson distribution

with θ = λ = γa/(eγa − 1).

The following result connecting the two drawdown time sequences is provided. It should be

noted that the rv Na
τ̃ka

− k represents the number of drawdowns without recovery over the first k

drawdowns with recovery. When k = 2, (4.13) coincides with (4.12).

Theorem 4.3 For any k ∈ N, Na
τ̃ka

− k follows a generalized Poisson distribution with parameters

θ = (k − 1)γa/(eγa − 1) and λ = γa/(eγa − 1), i.e., for m = 0, 1, 2, . . . , we have

P
{

τ̃ka = τk+m
a

}

= P
{

Na
τ̃ka

= k +m
}

=
k − 1

m+ k − 1

(

(m+k−1)γa
eγa−1

)m

m!
e−

(m+k−1)γa
eγa−1 . (4.13)

Proof. It is clear that
{

τ̃ka = τk+m
a

}

corresponds to the event that m drawdowns without recovery

will occur over the first k drawdowns with recovery, i.e.
{

τ̃ka = τk+m
a

}

=
{

Na
τ̃ka

= k +m
}

.
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Next we prove Na
τ̃ka

− k follows a generalized Poisson distribution. By Remark 4.1 and the strong

Markov property of X, we know that the numbers of drawdowns without recovery between any

two successive drawdowns with recovery are i.i.d. and follow a generalized Poisson distribution

with θ = λ = γa/(eγa − 1). Thus,

Na
τ̃ka

− k =

k
∑

i=2

(

Na
τ̃ ia

−Na
τ̃ i−1
a

− 1
)

,

corresponds to a sum of i.i.d. rv’s with a generalized Poisson distribution θ = λ = γa/(eγa − 1).

Using Theorem 9.1 of Consul and Famoye [7], we have that Na
τ̃ka

− k follows a generalized Poisson

distribution with parameters θ = (k − 1)γa/(eγa − 1) and λ = γa/(eγa − 1).

Next, we propose the following corollary which can be viewed as an extension to Taylor [20]

and Lehoczky [13] from the first drawdown case to the n-th drawdown without recovery.

Corollary 4.1 For n ∈ N and x > 0, we have

E

[

e−λτna ;Mτna > x
]

=

(

cλ
bλ

)n n−1
∑

m=0

x(x+ma)m−1bmλ
m!

e−bλ(ma+x).

Proof. Taking the integral of (4.8) with respect to y in (−na,∞), we have

E

[

e−λτna ;Mτna > x
]

= (cλ)
n

n−1
∑

m=0

x(x+ma)m−1

m!(n −m− 1)!

∫ ∞

x−(n−m)a
e−bλ(y+na)(y − x+ (n−m)a)n−m−1dy

= (cλ)
n

n−1
∑

m=0

x(x+ma)m−1

m!(n −m− 1)!

∫ ∞

0
e−bλ(z+x+ma)zn−m−1dz

= (cλ)
n

n−1
∑

m=0

x(x+ma)m−1

m!(n −m− 1)!
e−bλ(x+ma)

∫ ∞

0
e−bλzzn−m−1dz

= (cλ)
n

n−1
∑

m=0

x(x+ma)m−1

m!bn−m
λ

e−bλ(x+ma).

which completes the proof.

The marginal distribution of Mτna can easily be obtained from Corollary 4.1 by letting λ → 0+

and subsequently making use of (2.6). Indeed,

P
{

Mτna > x
}

=
n−1
∑

m=0

x(x+ma)m−1
(

γ
eγa−1

)m

m!
e−

γ(ma+x)
eγa−1 . (4.14)

Rearrangements of (4.14) yields

P
{

Mτna > x
}

=
n−1
∑

k=0

Dk,n

(

γx
eγa−1

)k

k!
e−

γx
eγa−1 , (4.15)
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where D0,n = 1, and

Dk,n =

n−1
∑

m=k

k
(

mγa
eγa−1

)m−k

m (m− k)!
e−

mγ
eγa−1

a =

n−1−k
∑

m=0

k
(

(m+k)γa
eγa−1

)m

(m+ k)m!
e−

(m+k)γa
eγa−1 , (4.16)

for k = 1, 2, ..., n − 1. Note that by substituting k by k + 1 in (4.13), it follows that (4.16) can be

rewritten as

Dk,n =

n−1−k
∑

m=0

P

{

τ̃k+1
a = τk+1+m

a

}

,

which is equivalent to

Dk,n = P

{

τ̃k+1
a ≤ τna

}

= P

{

Ña
τna

> k
}

.

Then,

P
{

Mτna ∈ dy
}

=
n
∑

k=1

dk,n

(

γa
eγa−1

)k
yk−1e−

γa
eγa−1

y

(k − 1)!
dy,

where {dk,n}nk=1 are given by

dk,n ≡ Dk−1,n −Dk,n

=
n
∑

j=k

k − 1

j − 1

(

(j−1)γa
eγa−1

)j−k

(j − k)!
e−

(j−1)γa
eγa−1

(

1−
n−j−1
∑

m=0

(m+ 1)m−1

m!

(

γa

eγa − 1

)m

e−
(m+1)γa
eγa−1

)

.

In conclusion, Mτna follows a mixed-Erlang distribution which is an important class of distribution

in risk management (see, e.g., Willmot and Lin [22] for an extensive review of mixed Erlang

distributions).

Remark 4.2 Note that the distribution of Mτna does not come as a surprise. Indeed, one can

obtain the structural form of the distribution of Mτna by conditioning on Ña
τna
, namely the number

of drawdowns with recovery over the first n drawdowns (without recovery). Using the strong Markov

property of the process X and Equation (2.7), it follows that Mτna

∣

∣

∣
Ña

τna
= m is an Erlang rv with

mean m eγa−1
γ and variance m

(

eγa−1
γ

)2
for m = 1, 2, ..., n. Thus, in (4.15), Dk,n can be interpreted

as the survival function of Ña
τna
, i.e.

Dk,n = P

{

Ña
τna

> k
}

= P

{

τ̃k+1
a ≤ τna

}

.

The next corollary investigates the actual drawdown Mt −Xt at t = τna .

Corollary 4.2 For a ≤ x ≤ na, we have

E

[

e−λτna ;Mτna −Xτna ≤ x
]

= (cλ)
ne−bλ(na−x)

n−1
∑

m=0

(

(na− x)m

bn−m
λ m!

− 1{x≤(n−m)a}((n−m)a− x)n−m−1
∫∞
0 e−bλyy(y +ma)m−1dy

m!(n−m− 1)!

)

.
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Proof. We have

E

[

e−λτna ;Mτna −Xτna > x
]

=

∫ ∞

−x
E

[

e−λτna ;Mτna −Xτna > x,Xτna ∈ dy
]

+ E

[

e−λτna ;Mτna −Xτna > x,Xτna ≤ −x
]

=

∫ ∞

−x
E

[

e−λτna ;Mτna > x+ y,Xτna ∈ dy
]

+ E

[

e−λτna ;Xτna ≤ −x
]

=

∫ ∞

−x
E

[

e−λτna ;Mτna > x+ y,Xτna ∈ dy
]

+ (cλ/bλ)
n

(

1− e−bλ(na−x)
n−1
∑

m=0

(bλ(na− x))m

m!

)

,

(4.17)

where the last step is due to (4.1). Moreover, by Theorem 4.2, the first term of (4.17)

∫ ∞

−x
E

[

e−λτna ;Mτna > x+ y,Xτna ∈ dy
]

= (cλ)
n

n−1
∑

m=0

((n −m)a− x)n−m−11{−x+(n−m)a≥0}

m!(n−m− 1)!

∫ ∞

−x
e−bλ(y+na)(x+ y)(x+ y +ma)m−1dy

= (cλ)
n

n−1
∑

m=0

((n −m)a− x)n−m−11{x≤(n−m)a}

m!(n−m− 1)!

∫ ∞

0
e−bλ(z−x+na)z(z +ma)m−1dz

= (cλ)
ne−bλ(na−x)

n−1
∑

m=0

((n−m)a− x)n−m−11{x≤(n−m)a}

m!(n−m− 1)!

∫ ∞

0
e−bλzz(z +ma)m−1dz.

Substituting this back into (4.17), we complete the proof.

To complete the section, we consider a numerical example to compare the distribution of the

n-th drawdown times τ̃na and τna whose Laplace transforms are given in (3.3) and (4.4), respectively.

We implement a numerical inverse Laplace transform approach proposed by Abate and Whitt [1].

For ease of notation, we denote the cumulative distribution functions of τna and τ̃na by Fn and F̃n,

respectively.

Table 4.1 Distribution of the n-th drawdown times when a = 0.1 and σ = 0.2

µ = 0.1 µ = 0 µ = −0.1

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6

Fn(1) F̃n(1)
0.9779 0.9779
0.8759 0.4865
0.6651 0.1024
0.4060 0.0082
0.1942 0.0002
0.0721 0.0000

Fn(1) F̃n(1)
0.9908 0.9908
0.9366 0.4406
0.7926 0.0885
0.5652 0.0070
0.3262 0.0002
0.1492 0.0000

Fn(1) F̃n(1)
0.9967 0.9967
0.9719 0.3636
0.8874 0.0663
0.7166 0.0050
0.4871 0.0001
0.2696 0.0000

Table 4.1 presents the probabilities that at least n drawdowns with or without recovery occurs

before time 1 for different values of the drift µ. We observe that Fn(1) > F̃n(1) for n ≥ 2 due

to the relation between τna and τ̃na given in (4.13). In addition, it shows that Fn(1) increases as

µ decreases. However, we observe the opposite trend for F̃n(1) when n ≥ 2. This is because the
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previous running maximum is less likely to be revisited for a smaller µ. Since the drawdown risk

is in principle a type of downside risk, we think smaller µ should lead to higher downside risks. In

this sense, we suggest that the drawdown times without recovery are better to capture the essence

of drawdown risks.

Table 4.2 Distribution of drawdown times when a = 0.1 and σ = 0.12

µ = 0.1 µ = 0 µ = −0.1

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6

Fn(1) F̃n(1)
0.5663 0.5663
0.1592 0.0339
0.0225 0.0002
0.0016 0.0000
0.0001 0.0000
0.0000 0.0000

Fn(1) F̃n(1)
0.7845 0.7845
0.3755 0.0494
0.0986 0.0002
0.0137 0.0000
0.0010 0.0000
0.0000 0.0000

Fn(1) F̃n(1)
0.9257 0.9257
0.6509 0.0463
0.2891 0.0002
0.0730 0.0000
0.0099 0.0000
0.0007 0.0000

Table 4.2 is the equivalent of Table 4.1 with a lower volatility σ = 0.12. We notice that Fn(1)

and F̃n(1) decrease as σ decreases. We also have an interesting observation that the trend of F̃2(1)

is not monotone in µ. Again, this is because the occurrence of τ̃na for n ≥ 2 necessitates a recovery

for the previous running maximum. Smaller drift does imply higher drawdown risk, meanwhile

the recovery becomes more difficult.

5 Insurance of frequent relative drawdowns

In this section, we consider insurance policies protecting against the risk of frequent drawdowns.

We denote the price of an underlying asset by S = {St, t ≥ 0}, with dynamics

dSt = rStdt+ σStdW
Q
t , S0 = s0,

where r > 0 is the risk-free rate, σ > 0 and {WQ
t , t ≥ 0} is a standard Brownian motion under a

risk-neutral measure Q. It is well known that

St = s0e
Xt , (5.1)

where Xt = (r − 1
2σ

2)t+ σWQ
t .

In practice, drawdowns are often quoted in percentage. For fixed 0 < α < 1, we denote the

time of the first relative drawdown over size α by

ηα(S) = inf
{

t ≥ 0 : MS
t − St ≥ αMS

t

}

,

where MS
t = sup0≤u≤t Su represents the running maximum of S by time t. By (5.1), it is easy

to see that the relative drawdown of the geometric Brownian motion S corresponds to the actual

drawdown of a drifted Brownian motion X, namely

ηα(S) = inf
{

t ≥ 0 : MX
t −Xt ≥ − log(1− α)

}

= τᾱ(X),

where ᾱ = − log(1 − α). Similarly, we denote the relative drawdown times with and without

recovery by

η̃nα(S) = inf{t > η̃n−1
α (S) : MS

t − St ≥ αMS
t ,M

S
t > MS

η̃n−1
α (S)

},
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and

ηnα(S) = inf{t > ηn−1
α (S) : MS

[ηn−1
α (S),t]

− St ≥ αMS
[ηn−1

α (S),t]
},

respectively. Therefore, we have

η̃nα(S) = τ̃nᾱ (X) and ηnα(S) = τnᾱ (X). (5.2)

Next, we consider two types of insurance policies offering a protection against relative draw-

downs. For the first one, we assume that the seller pays the buyer $k at time T if a total of k

relative drawdowns over size 0 < α < 1 occurred prior to time T (for all k). For the relative

drawdown times with and without recovery, by (5.2), the risk-neutral prices are given by

Ṽ1(T ) = e−rT
∞
∑

k=1

kQ
{

Ñ ᾱ
T (X) = k

}

= e−rTEQ[Ñ ᾱ
T (X)],

and

V1(T ) = e−rT
∞
∑

k=1

kQ
{

N ᾱ
T (X) = k

}

= e−rTEQ[N ᾱ
T (X)],

respectively. For the second type of policies, the seller pays the buyer $1 at the time of each

relative drawdown time as long as it occurs before maturity T . Hence, their risk-neutral prices are

Ṽ2(T ) =
∞
∑

k=1

EQ[e−rτ̃kᾱ(X); τ̃kᾱ(X) ≤ T ],

and

V2(T ) =
∞
∑

k=1

EQ[e−rτkᾱ(X); τkᾱ(X) ≤ T ],

respectively.

Corollary 5.1 For λ > 0, we have

∫∞
0 e−λTV1(T )dT = 1

λ+r
c̄λ+r/b̄λ+r

1−c̄λ+r/b̄λ+r
,
∫∞
0 e−λT Ṽ1(T )dT = 1

λ+r
c̄λ+r/b̄λ+r

1−e
−β̄+

λ+r
a
c̄λ+r/b̄λ+r

,

∫∞
0 e−λTV2(T )dT = 1

λ
c̄λ+r/b̄λ+r

1−c̄λ+r/b̄λ+r
,

∫∞
0 e−λT Ṽ2(T )dT = 1

λ
c̄λ+r/b̄λ+r

1−e
−β̄

+
λ+r

a
c̄λ+r/b̄λ+r

,

where b̄λ =
β̄+
λ e

−β̄−
λ

ᾱ
−β̄−

λ e
−β̄+

λ
ᾱ

e
−β̄−

λ
ᾱ
−e

−β̄+
λ

ᾱ
, c̄λ =

β̄+
λ −β̄−

λ

e
−β̄−

λ
ᾱ
−e

−β̄+
λ

ᾱ
and β̄±

λ =
−r+ 1

2
σ2±

√

(r− 1
2
σ2)2+2λσ2

σ2 .

Proof. We provide the proof for
∫∞
0 V1(T )e

−λTdT and
∫∞
0 V2(T )e

−λTdT only. The other two

results can be derived in a similar fashion. From the definition of N ᾱ
T (X), we have the following

relation

EQ
[

N ᾱ
T (X)

]

=

∞
∑

k=1

Q
{

N ᾱ
T (X) ≥ k

}

=

∞
∑

k=1

Q

{

τkᾱ(X) ≤ T
}

.
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By (4.4), it follows that
∫ ∞

0
V1(T )e

−λTdT =

∫ ∞

0
e−(λ+r)TEQ[N ᾱ

T (X)]dT

=

∞
∑

k=1

∫ ∞

0
e−(λ+r)TQ

{

τkᾱ(X) ≤ T
}

dT

=
1

λ+ r

∞
∑

k=1

EQ[e−(λ+r)τkᾱ(X)]

=
1

λ+ r

∞
∑

k=1

(

c̄λ+r

b̄λ+r

)n

=
1

λ+ r

c̄λ+r/b̄λ+r

1− c̄λ+r/b̄λ+r
.

For
∫∞
0 V2(T )e

−λTdT , by Fubini’s theorem and (4.4), we have

∫ ∞

0
V2(T )e

−λTdT =
∞
∑

k=1

∫ ∞

0
EQ[e−rτkᾱ(X); τkᾱ(X) ≤ T ]e−λTdT

=

∞
∑

k=1

∫ ∞

0

∫ T

0
e−rtQ

{

τkᾱ(X) ∈ dt
}

e−λTdT

=

∞
∑

k=1

1

λ

∫ ∞

0
e−(λ+r)tQ {τnᾱ (X) ∈ dt}

=

∞
∑

k=1

1

λ

(

c̄λ+r

b̄λ+r

)n

=
1

λ

c̄λ+r/b̄λ+r

1− c̄λ+r/b̄λ+r
.

This completes the proof.

Remark 5.1 It is worth pointing out that, through expansion of the randomized prices in Corol-

lary 5.1 in terms of exponentials, it is possible to obtain semi-static hedging portfolios as in [5].

Moreover, capped insurance contracts against frequency of drawdowns can also be formulated and

priced using Theorems 3.1, 4.1, and Corollary 4.1.

To conclude, we consider a pricing example for the four types of insurance contracts proposed

earlier. The same numerical Laplace transform approach as in the last section is applied.

Table 5.1 Insurance contracts prices when α = 15% and r = 5%

V1(T ) Ṽ1(T ) V2(T ) Ṽ2(T )

T = 1 σ = 0.1 0.1102 0.1091 0.1120 0.1108
T = 2 σ = 0.1 0.3011 0.2769 0.3131 0.2885
T = 3 σ = 0.1 0.4743 0.4031 0.5058 0.4318

T = 1 σ = 0.2 1.1777 0.7873 1.2043 0.8081
T = 2 σ = 0.2 2.3815 1.1842 2.4977 1.2550
T = 3 σ = 0.2 3.4651 1.4519 3.7279 1.5890
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As expected, Table 5.1 shows that type 2 contracts have higher prices than type 1 contracts

because of earlier payments (at the moment of each drawdown time instead of the maturity T ).

It also shows that Ṽ1(T ) and Ṽ2(T ) are respectively lower than V1(T ) and V2(T ) due to τna ≤ τ̃na .

All the prices increase as T increases or σ increases. Moreover, we can expect that the prices will

decrease as α or r increases. The latter is due to a higher discount rate which is the risk-free rate

under the risk-neutral measure Q.
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