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bUniversität zu Lübeck, Institut für Mathematik, Ratzeburger Allee 160,
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Abstract

The multi-level Monte Carlo method proposed by M. Giles (2008) approximates the
expectation of some functionals applied to a stochastic process with optimal order of
convergence for the mean-square error. In this paper, a modified multi-level Monte
Carlo estimator is proposed with significantly reduced computational costs. As the
main result, it is proved that the modified estimator reduces the computational costs
asymptotically by a factor (p/α)2 if weak approximation methods of orders α and
p are applied in case of computational costs growing with same order as variances
decay.
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1 Introduction

The multi-level Monte Carlo method proposed in [7] approximates the expecta-
tion of some functional applied to some stochastic processes like e. g. solutions
of stochastic differential equations (SDEs) at a lower computational complexity
than classical Monte Carlo simulation, see also [5,8,9]. Multi-level Monte Carlo
approximation is applied in many fields like mathematical finance [1,6], for
SDEs driven by a Lévy process [3], by fractional Brownian motion [11] or for
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stochastic PDEs [13]. The main idea of this article is to reduce the compu-
tational costs additionally by applying the multi-level Monte Carlo method
as a variance reduction technique for some higher order weak approximation
method. As a result, the computational effort can be significantly reduced while
the optimal order of convergence for the root mean-square error is preserved.

The outline of this paper is as follows. We give a brief introduction to the main
ideas and results of the multi-level Monte Carlo method in Section 2. Based
on these results, in Section 3 we present as the main result a modified multi-
level Monte Carlo algorithm that allows to reduce the computational costs
significantly. Depending on the relationship between the orders of variance
reduction and of the growth of the costs, there exists a reduction of the
computational costs by a factor depending on the weak order of the underlying
numerical method. As an example, the modified multi-level Monte Carlo
algorithm is applied to the problem of weak approximation for stochastic
differential equations driven by Brownian motion in Section 4.

2 Multi-level Monte Carlo simulation

Let (Ω,F ,P) be a probability space with some filtration (Ft)t≥0 and let X =
(Xt)t∈I denote an adapted stochastic process on the interval I = [t0, T ] that
belongs to a space X that may be infinite dimensional. In the following, we are
interested in the approximation of EP(f(X)) for some functional f ∈ F where
F denotes a suitable class of functionals that are of interest. Further, let an
equidistant discretization Ih = {t0, t1, . . . , tN} with 0 ≤ t0 < t1 < . . . < tN = T
of the time interval I with step size h be given. Then, we consider a probability
space (Ω̃, F̃ , P̃) with some filtration (F̃t)t∈Ih and we denote by Y = (Yt)t∈Ih a
discrete time approximation of X on the grid Ih, adapted to (F̃t)t∈Ih . Thus,
we consider the approximation Y ∈ Xh of X ∈ X on a finite dimensional space
Xh. Here, the probability spaces (Ω,F ,P) and (Ω̃, F̃ , P̃) may be but do not
have to be equal and we assume that Y approximates X in the weak sense
with some order p > 0, i.e.

|EP̃(f(Y ))− EP(f(X))| = O(hp) (1)

for all f ∈ F.

In order to approximate the expectation of f(X) we apply the multi-level
Monte Carlo estimator introduced in [7]. For some fixed M ∈ N with M ≥ 2
and some L ∈ N we define the step sizes hl = T

M l and let Y l = (Yt)t∈Ihl
denote the discrete time approximation process on the grid Ihl based on step
size hl for l = 0, 1, . . . , L. Here, we consider the approximations Y l ∈ Xhl

for l = 0, 1, . . . , L of X ∈ X on a sequence Xh0 ⊂ Xh1 ⊂ . . . ⊂ XhL of finite
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dimensional subspaces. Then, the multi-level Monte Carlo estimator is defined
by

ŶML =
L∑
l=0

Ŷ l (2)

for some L ∈ N using the estimators Ŷ 0 = 1
N0

∑N0
i=1 f(Y 0(i)) and

Ŷ l =
1

Nl

Nl∑
i=1

(
f(Y l(i))− f(Y l−1(i))

)
(3)

for l = 1, . . . , L. Then, we get

EP̃(ŶML) = EP̃(f(Y 0)) +
L∑
l=1

EP̃(f(Y l)− f(Y l−1)) . (4)

Here, we have to point out, that both approximations Y l(i) and Y l−1(i) are
simulated simultaneously based on the same realisation of the underlying driv-

ing random process whereas (Y l(i), Y l−1(i)) and (Y l(j), Y l−1(j)) are independent
realisations for i 6= j.

Now, there are two sources of errors for the approximation. On the one hand,
we have a systematical error that depends on the dimension of Xhl due to the
discrete time approximation Y l ∈ Xhl based on step size hl which is given by
the bias of the method. On the other hand, there is a statistical error from
the estimator for the expectation of f(Y l) by the Monte Carlo simulation.
Therefore, we consider the root mean-square error

e(ŶML) =
(
EP̃(|ŶML − EP(f(X))|2)

)1/2
(5)

of the multi-level Monte Carlo method in the following. In order to rate the
performance of an approximation method, we will analyse the root mean-square
error of the method compared to the computational costs. Therefore, we denote
by C(Y ) the computational costs of the approximation method Y . In order
to determine C(Y ), one may use a cost model where e.g. each operation or
evaluation of some function is charged with the price of one unit, i.e. one
counts the number of needed mathematical operations or function evaluations.
Further, each random number that has to be generated to compute Y may
also be charged with the price of one unit.

It is well known that the optimal order of convergence for the classical Monte
Carlo estimator ŶMC = 1

N

∑N
i=1 f(Y (i)) is given by

e(ŶMC) = O
(
(1/C(ŶMC))

p
2p+1

)
where p is the weak order of convergence of the approximations Y , see Duffie
and Glynn [4]. Thus, higher order weak approximation methods result in a
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higher order of convergence with respect to the root mean-square error. Clearly,
the best root mean-square order of convergence that can be achieved is at
most 1/2. However, the order bound 1/2 can not be reached by any weak order
p approximation method in the case of the classical Monte Carlo simulation.
Therefore, in order to attain the optimal order of convergence for the root
mean-square error we apply the multi-level Monte Carlo estimator (2). The
following theorem due to Giles [7] is presented in a slightly generalized version
suitable for our considerations.

Theorem 2.1. For some L ∈ N, let Y l denote the approximation process on
the grid Ihl with respect to step size hl = T

M l for each l = 0, 1, . . . , L, respectively.
Suppose that there exist some constants α > 0 and c1,α, c2,0, c2, c2,L > 0 and
β, βL > 0 such that for the bias

1) |EP(f(X))− EP̃(f(Y L))| ≤ c1,α h
α
L

and for the variances

2) VarP̃(f(Y 0)) ≤ c2,0 h
β
0 ,

3) VarP̃(f(Y l)− f(Y l−1)) ≤ c2 h
β
l for l = 1, . . . , L− 1,

4) VarP̃(f(Y L)− f(Y L−1)) ≤ c2,L h
βL
L .

Further, assume that there exist constants c3,0, c3, c3,L > 0 and γ, γL ≥ 1 such
that for the computational costs

5) C(Y 0) ≤ c3,0 T h
−γ
0 ,

6) C(Y l, Y l−1) ≤ c3 T h
−γ
l for l = 1, . . . , L− 1,

7) C(Y L, Y L−1) ≤ c3,L T h
−γL
L .

Then, for some arbitrarily prescribed error bound ε > 0 there exist values L and
Nl for l = 0, 1, . . . , L, such that the root mean-square error of the multi-level
Monte Carlo estimator ŶML has the bound

e(ŶML) < ε (6)

with computational costs bounded by

C(ŶML) ≤


c4 ε

−2 if β > γ, βL ≥ γL, α ≥ 1
2

max{γ, γL},
c4 ε

−2 (log(ε))2 if β = γ, βL ≥ γL, α ≥ 1
2

max{γ, γL},
c4 ε

−2−max{γ−β,γL−βL}
α if β < γ, α ≥ max{γ,γL}−max{γ−β,γL−βL}

2
,

(7)
for some positive constant c4.

In order to apply Theorem 2.1 and the multi-level Monte Carlo method, one has
to determine the values α, β, βL > 0 as well as γ, γL ≥ 1. Firstly, α denotes the
weak order of convergence for the bias of the finite dimensional approximation
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Y L ∈ XhL as the dimension of the approximation subspace increases. This
value is well known for commonly applied approximations Y L. Because the
approximations (Y l)l≥0 converge to X in the weak sense, the differences of

two successive approximations
(
f(Y l)− f(Y l−1)

)
l≥1

converge to zero as the

dimensions of the subspaces increase. Then, usually their variances will also
tend to zero with some order β and βL for the approximations applied on
levels 0, 1, . . . , L − 1 and on level L, respectively. Here, we want to point
out that estimates of type 1)–4) in Theorem 2.1 are rather natural and turn
out to be no considerable restriction for typical applications. Finally, the
computational costs to evaluate two correlated approximations Y l and Y l−1

on the finite dimensional subspaces Xhl and Xhl−1
depend on the dimensions of

the subspaces that are proportional to h−1l . For commonly used discrete time
approximations, one typically has γ = γL = 1.

The calculations for the proof follow the lines of the original proof due to Giles
[7]. Considering the mean square-error

e(ŶML) =
(
|EP(f(X))− EP̃(f(Y L))|2 + VarP̃(ŶML)

)1/2
< ε (8)

we make use of the weight q ∈ ]0, 1[ and claim that

|EP(f(X))− EP̃(f(Y L))|2 < q ε2 and VarP̃(ŶML) < (1− q) ε2 . (9)

Then, we can calculate L from the bias and we have to solve the minimization
problem

min
Nl:0≤l≤L

C(ŶML) (10)

under the constraint that VarP̃(ŶML) < (1−q) ε2. As a result of this, we obtain
the following values for L and Nl:

L =

 log(q−
1
2 c1,α ε

−1 Tα)

α log(M)

 (11)

and N0 =
⌈

1
1−q ε

−2 h
β+γ
2

0

(
c2,0
c3,0

) 1
2 κ

⌉
,

Nl =

⌈
1

1− q
ε−2 h

β+γ
2

l

(
c2
c3

) 1
2

κ

⌉
(12)

for l = 1, . . . , L − 1 and NL =
⌈

1
1−q ε

−2 h
βL+γL

2
L

(
c2,L
c3,L

) 1
2 κ

⌉
for some q ∈ ]0, 1[

where

• In case of β > γ and βL ≥ γL or in case of β < γ and γL − βL ≤ γ − β:

κ = (c2,0c3,0)
1
2 T

β−γ
2 +(c2c3)

1
2

(M−1T )
β−γ
2 − h

β−γ
2

L

1−M γ−β
2

+(c2,Lc3,L)
1
2 h

βL−γL
2

L . (13)
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• In case of β = γ and βL ≥ γL:

κ = (c2,0c3,0)
1
2 + (L− 1) (c2c3)

1
2 + (c2,Lc3,L)

1
2 h

βL−γL
2

L . (14)

3 The improved multi-level Monte Carlo estimator

The order of convergence of the multi-level Monte Carlo estimator ŶML given
in (2) is optimal in the given framework. However, the computational costs
can be reduced if a modified estimator is applied. As yet, the estimator ŶML

is based on some weak order α approximations Y l for l = 0, 1, . . . , L on each
level. Now, let us apply some cheap low order weak approximation Y l on levels
l = 0, 1, . . . , L− 1 combined with some probably expansive high order weak
approximation Y̌ L on the finest level L. The idea is, that the approximations
Y l contribute a variance reduction while the approximation Y̌ L results in a
small bias of the multi-level Monte Carlo estimator, thus reducing the number
of levels needed to attain a prescribed accuracy.

Let Y be an order α weak approximation method and let Y̌ be an order p weak
approximation method applied on the finest level. Further, let L = Lp with

Lp =

 log(q−
1
2 c1,p ε

−1 T p)

p log(M)

 (15)

denote the number of levels in order to indicate the dependence on the weak
order p. Then, we define the modified multi-level Monte Carlo estimator by

ŶML(α,p) =
Lp∑
l=0

Ŷ l (16)

with the estimators Ŷ l for l = 0, 1, . . . , Lp − 1 based on the order α weak
approximations Y l as defined in Section 2, however now applying the modified
estimator

Ŷ Lp =
1

NLp

NLp∑
i=1

(
f(Y̌ Lp)(i) − f(Y Lp−1)(i)

)
(17)

which combines the weak order α approximations Y Lp−1 with the weak order p
approximations Y̌ Lp . Clearly, all conditions of Theorem 2.1 have to be fulfilled
for Y L replaced by Y̌ L. Then, in the case of p > α, the improved multi-level
Monte Carlo estimator ŶML(α,p) features significantly reduced computational

costs compared to the originally proposed estimator ŶML = ŶML(α,α).

Definition 3.1. Let conditions 1)–7) of Theorem 2.1 be fulfilled and suppose

that there exist constants ĉ3,0, ĉ3, ĉ3,Lp , δi > 0 and ĉ
(i)
3,0, ĉ

(i)
3 , ĉ

(i)
3,Lp ≥ 0 such that

for the computational costs
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5’) C(Y 0) = ĉ3,0 T h
−γ
0 +

∑k
i=1 ĉ

(i)
3,0 T h

−γ+δi
0 ,

6’) C(Y l, Y l−1) = ĉ3 T h
−γ
l +

∑k
i=1 ĉ

(i)
3 T h−γ+δil for l = 1, . . . , Lp − 1,

7’) C(Y̌ Lp , Y Lp−1) = ĉ3,Lp T h
−γLp
Lp +

∑k
i=1 ĉ

(i)
3,Lp T h

−γLp+δi
Lp

with some γ, γLp ≥ 1 such that γ−δi ≥ 1 and γLp−δi ≥ 1. Then, the multi-level

Monte Carlo estimator ŶML(α,p) based on a weak order α > 0 approximation
scheme on levels 0, 1, . . . , Lp − 1 and some weak order p > α approximation
scheme on level Lp has reduced computational costs:

i) In case of β > γ and β − γ < βLp − γLp, there exists some ε0 > 0 such
that for all ε ∈ ]0, ε0] it holds

C(ŶML(α,α))(ε)

C(ŶML(α,p))(ε)
> 1 (18)

provided that α ≥ γ
2
, p ≥ 1

2
max{γ, γLp} and p > 1

4
max{β+γ, β−γ+2γLp}.

In case of β > γ and β − γ = βLp − γLp then (18) holds if in addition

c2c3 > (1 −M γ−β
2 )2c2,Lpc3,Lp and ĉ23

c2
c3
> (1 −M γ−β

2 )2ĉ23,Lp
c2,Lp
c3,Lp

. Further,

for 0 < β − γ ≤ βLp − γLp it holds C(ŶML(α,p))(ε) = O(ε−2) if α > 0 and
p ≥ 1

2
max{γ, γLp}.

ii) In case of β = γ and βLp ≥ γLp and if p ≥ 1
2

max{γ, γLp}, α ≥ γ
2
, it holds

lim
ε→0

C(ŶML(α,α))(ε)

C(ŶML(α,p))(ε)
≥
(
p

α

)2

(19)

and C(ŶML(α,p))(ε) = O(ε−2(log(ε))2) if α > 0 and p ≥ 1
2

max{γ, γLp}.
iii) In case of β < γ and γ − β = γLp − βLp it holds

lim
ε→0

C(ŶML(p,p))(ε)

C(ŶML(α,p))(ε)
≥M2(γ−β)

(
ĉ3c2

ĉ3,Lpc2,Lp
+

ĉ3(c2c3,Lp)
1/2

ĉ3,Lp(c2,Lpc3)
1/2

(
M

γ−β
2 − 1

)

+

(
c2c3

c2,Lpc3,Lp

)1/2 (
M

γ−β
2 − 1

)
+
(
M

γ−β
2 − 1

)2−1
(20)

if p > 1
2
(max{γ, γLp} − γ + β). If the parameter q ∈ ]0, 1[ is chosen as

q =
γ − β

γ − β + 2p
(21)

then the computational costs C(ŶML(α,p)) are asymptotically minimal.

In general, if β < γ or if βLp < γLp then it holds C(ŶML(α,p))(ε) =

O
(
ε−2−

max{γ−β,γLp−βLp}
p

)
for p ≥ 1

2
(max{γ, γLp} −min{γ − β, γLp − βLp}).
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We note, that in relations 5’)–7’) of Proposition 3.1 a more detailed poly-
nomial dependence of the computational costs from the dimension of the
approximation subspaces has to be taken into account. E.g., standard discrete
time approximation methods possess polynomial computational costs and the
constants are known explicitly.

Proof. In the following, we will first state some basic formulas and conditions
used in the remaining part of the proof. Then we will calculate lower and upper
bounds for the computational costs in the case β 6= γ. Those will then be used
to prove first i) and then iii). Finally, case ii) with β = γ is considered.

Basic formulas. Assume that ε < 1. Let δ0 = 0, ĉ
(0)
3,0 = ĉ3,0, ĉ

(0)
3 = ĉ3 and

ĉ
(0)
3,Lp = ĉ3,Lp . Then, the computational costs for ŶML(α,p) are

C(ŶML(α,p)) =
k∑
i=0

ĉ
(i)
3,0 T h

−γ+δi
0 N0 +

k∑
i=0

Lp−1∑
l=1

ĉ
(i)
3 T h−γ+δil Nl

+
k∑
i=0

ĉ
(i)
3,Lp T h

−γLp+δi
Lp NLp

(22)

with L = Lp =
⌈
log(q−

1
2 c1,p ε−1 T p)

p log(M)

⌉
and Nl for l = 0, 1, . . . , Lp given in (12).

Without loss of generality, suppose that δi 6= δj for i 6= j and that δk = γ−β
2

with ĉ
(k)
3,0 = ĉ

(k)
3 = ĉ

(k)
3,Lp = 0 in the case of β ≥ γ. In the following, we make use

of the two estimates

Lα ≥
log(ε−1)

α log(M)
+

log(q−
1
2 c1,α T

α)

α log(M)
, (23)

Lp − 1 ≤ log(ε−1)

p log(M)
+

log(q−
1
2 c1,pT

p)

p log(M)
. (24)

Lower bound for β 6= γ. Let β 6= γ. Then, we obtain the lower bound

C(ŶML(α,α))(ε) ≥
Tκ ε−2

1− q

k∑
i=0

hβ−γ2 +δi
0 ĉ

(i)
3,0

(
c2,0
c3,0

)1/2

+
Lα∑
l=1

h
β−γ
2

+δi
l ĉ

(i)
3

(
c2
c3

)1/2


≥ T

1− q
ε−2

 k∑
i=0

T β−γ+δi ĉ
(i)
3,0c2,0

+
k∑
i=0

T
β−γ
2

+δi ĉ
(i)
3,0

(
c2,0c2c3
c3,0

)1/2
T
β−γ
2 − h

β−γ
2

Lα

M
β−γ
2 − 1

+
k−1∑
i=0

ĉ
(i)
3

(
c2c2,0c3,0

c3

)1/2

T
β−γ
2 ·

T
β−γ
2

+δi − h
β−γ
2

+δi
Lα

M
β−γ
2

+δi − 1

8



+ ĉ
(k)
3

(
c2c2,0c3,0

c3

)1/2

T
β−γ
2

 log(ε−1)

α log(M)
+

log(q−
1
2 c1,αT

α)

α log(M)


+

k−1∑
i=0

ĉ
(i)
3 c2

T
β−γ
2

+δi − h
β−γ
2

+δi
Lα

M
β−γ
2

+δi − 1
·
T
β−γ
2 − h

β−γ
2

Lα

M
β−γ
2 − 1

+ ĉ
(k)
3 c2

T
β−γ
2 − h

β−γ
2

Lα

M
β−γ
2 − 1

 log(ε−1)

α log(M)
+

log(q−
1
2 c1,αT

α)

α log(M)


(25)

where ĉ
(i)
3,Lα = ĉ

(i)
3 , c2,Lα = c2, c3,Lα = c3, βLα = β and γLα = γ for ŶML(α,α).

Upper bound for β 6= γ. Next, we calculate for the case of β 6= γ the upper
bound

C(ŶML(α,p))(ε)

≤ Tκ ε
−2

1− q

k∑
i=0

hβ−γ2 +δi
0 ĉ

(i)
3,0

(
c2,0
c3,0

)1/2

+
Lp−1∑
l=1

h
β−γ
2

+δi
l ĉ

(i)
3

(
c2
c3

)1/2

+h
βLp
−γLp
2

+δi
Lp ĉ

(i)
3,Lp

(
c2,Lp
c3,Lp

)1/2


+ T
k∑
i=0

ĉ(i)3,0h
−γ+δi
0 + ĉ

(i)
3

Lp−1∑
l=1

h−γ+δil + ĉ
(i)
3,Lph

−γLp+δi
Lp


≤ T

1− q
ε−2

 k∑
i=0

ĉ
(i)
3,0

c2,0T β−γ+δi +

(
c2,0c2c3
c3,0

)1/2

Λ0T
β−γ
2

+δi

+

(
c2,0c2,Lpc3,Lp

c3,0

)1/2

T
β−γ
2

+δih
βLp
−γLp
2

Lp


+

k−1∑
i=0

ĉ
(i)
3

(
c2,0c3,0c2

c3

)1/2

T
β−γ
2 Λi +

k−1∑
i=0

ĉ
(i)
3 c2ΛiΛ0

+

(
ĉ
(k)
3 c2Λ0 + ĉ

(k)
3

(
c2c2,Lpc3,Lp

c3

)1/2

h
βLp
−γLp
2

Lp

+ ĉ
(k)
3

(
c2,0c3,0c2

c3

)1/2

T
β−γ
2

) log(ε−1)

p log(M)
+

log(q−
1
2 c1,pT

p)

p log(M)


+

k−1∑
i=0

ĉ
(i)
3

(
c2c2,Lpc3,Lp

c3

)1/2

Λih
βLp
−γLp
2

Lp

+
k∑
i=0

ĉ
(i)
3,Lp

(
c2,0c3,0c2,Lp

c3,Lp

)1/2

T
β−γ
2 h

βLp
−γLp
2

+δi
Lp

+
k∑
i=0

ĉ
(i)
3,Lp

(c2c3c2,Lp
c3,Lp

)1/2

Λ0h
βLp
−γLp
2

+δi
Lp + c2,Lph

βLp−γLp+δi
Lp
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+ T
k∑
i=0

ĉ(i)3,0T
δi−γ + ĉ

(i)
3

(M−1T )δi−γ − hδi−γLp

1−Mγ−δi
+ ĉ

(i)
3,Lph

δi−γLp
Lp


(26)

with Λi =
(M−1T )

β−γ
2 +δi−h

β−γ
2 +δi

Lp

1−M
γ−β
2 −δi

for i = 0, . . . , k − 1.

Proof of i). In case of β > γ and βLp > γLp , we prove that there exists some

ε0 > 0 such that for all ε ∈ ]0, ε0] it follows C(ŶML(α,α))(ε) > C(ŶML(α,p))(ε).

From the lower bound (25) for C(ŶML(α,α))(ε) and the upper bound (26) for

C(ŶML(α,p))(ε) we get the estimate

C(ŶML(α,α))(ε)− C(ŶML(α,p))(ε)

≥ T

1− q
ε−2

k−1∑
i=0

T
β−γ
2

+δi ĉ
(i)
3,0

(
c2,0c2c3
c3,0

)1/2 h
β−γ
2

Lp −M
γ−β
2 h

β−γ
2

Lα

1−M γ−β
2

+
k−1∑
i=0

ĉ
(i)
3

(
c2c2,0c3,0

c3

)1/2

T
β−γ
2 ·

h
β−γ
2

+δi
Lp −M γ−β

2
−δih

β−γ
2

+δi
Lα

1−M γ−β
2
−δi

+
k−1∑
i=0

ĉ
(i)
3 c2

(M−1T )
β−γ
2

+δi

(
h
β−γ
2

Lp −M
γ−β
2 h

β−γ
2

Lα

)
(1−M γ−β

2
−δi)(1−M γ−β

2 )

+
(M−1T )

β−γ
2

(
h
β−γ
2

+δi
Lp −M γ−β

2
−δih

β−γ
2

+δi
Lα

)
− hβ−γ+δiLp +Mγ−β−δihβ−γ+δiLα

(1−M
γ−β
2
−δi)(1−M γ−β

2 )


−

k−1∑
i=0

ĉ
(i)
3,0

(
c2,0c2,Lpc3,Lp

c3,0

)1/2

T
β−γ
2

+δih
βLp
−γLp
2

Lp

−
k−1∑
i=0

ĉ
(i)
3

(
c2c2,Lpc3,Lp

c3

)1/2

Λih
βLp
−γLp
2

Lp

−
k−1∑
i=0

ĉ
(i)
3,Lp

(
c2,0c3,0c2,Lp

c3,Lp

)1/2

T
β−γ
2 h

βLp
−γLp
2

+δi
Lp

−
k−1∑
i=0

ĉ
(i)
3,Lp

(c2c3c2,Lp
c3,Lp

)1/2

Λ0h
βLp
−γLp
2

+δi
Lp + c2,Lph

βLp−γLp+δi
Lp


− T

k−1∑
i=0

ĉ(i)3,0T
δi−γ + ĉ

(i)
3

(M−1T )δi−γ − hδi−γLp

1−Mγ−δi
+ ĉ

(i)
3,Lph

δi−γLp
Lp

 . (27)

In the following, we make use of the estimates M−1c
− 1
α

1,α q
1
2α ε

1
α ≤ hLα ≤

c
− 1
α

1,α q
1
2α ε

1
α and M−1c

− 1
p

1,p q
1
2p ε

1
p ≤ hLp ≤ c

− 1
p

1,p q
1
2p ε

1
p , i.e. we have hLp → 0 and

hLα → 0 as ε→ 0.
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Multiplying both sides of (27) with 1−q
T
ε2 h

−
min{β−γ,βLp−γLp}

2
Lp and taking into

account the assumptions 4p > β + γ and 4p > β − γ + 2γLp results in

1− q
T

ε2 h
−

min{β−γ,βLp−γLp}
2

Lp

(
C(ŶML(α,α))(ε)− C(ŶML(α,p))(ε)

)

≥

 k−1∑
i=0

T
β−γ
2

+δi ĉ
(i)
3,0

(
c2,0
c3,0

)1/2
(c2c3)

1/2 h
β−γ
2

Lp

1−M γ−β
2

−
(
c2,Lpc3,Lp

)1/2
h
βLp
−γLp
2

Lp


+ T

β−γ
2 (c2,0c3,0)

1/2

ĉ(0)3

(
c2
c3

)1/2 h
β−γ
2

Lp

1−M γ−β
2

− ĉ(0)3,Lp

(
c2,Lp
c3,Lp

)1/2

h
βLp
−γLp
2

Lp


+

k−1∑
i=0

ĉ
(i)
3 c2

1/2 (M−1T )
β−γ
2

+δi

1−M γ−β
2
−δi

(c2)
1/2

h
β−γ
2

Lp

1−M γ−β
2

−
(
c2,Lpc3,Lp

c3

)1/2

h
βLp
−γLp
2

Lp


+

(M−1T )
β−γ
2

1−M γ−β
2

c2
1/2

ĉ(0)3 c2
1/2

h
β−γ
2

Lp

1−M γ−β
2

− ĉ(0)3,Lp

(
c3c2,Lp
c3,Lp

)1/2

h
βLp
−γLp
2

Lp


+ o

(
h

min{βLp−γLp ,β−γ}
2

Lp

)h−min{β−γ,βLp−γLp}
2

Lp . (28)

As a result of (28) it follows that in the case of β − γ < βLp − γLp there exists
some ε0 > 0 such that

C(ŶML(α,α))(ε)

C(ŶML(α,p))(ε)
> 1 (29)

for all ε ∈ ]0, ε0]. In the case of β − γ = βLp − γLp there exists some ε0 > 0

such that (29) holds for all ε ∈ ]0, ε0] if c2c3 > (1 − M
γ−β
2 )2c2,Lpc3,Lp and(

ĉ
(0)
3

)2
c2
c3
> (1−M γ−β

2 )2
(
ĉ
(0)
3,Lp

)2 c2,Lp
c3,Lp

. Finally, C(ŶML(α,p))(ε) = O(ε−2) follows

from (26).

Proof of iii). In case of β < γ and β < 2p, we have to compare the dominating
terms as ε→ 0. Therefore, we get from the lower bound that

C(ŶML(p,p))(ε) ≥
q
β−γ
2p

1− q
ε−2−

γ−β
p T ĉ

(0)
3,Lp c2,Lp c

γ−β
p

1,p Mγ−β
(
M

β−γ
2 − 1

)−2
+ o(ε−2−

γ−β
p ) (30)

and from the upper bound

C(ŶML(α,p))(ε) ≤
q
β−γ
2p

1− q
ε−2−

γ−β
p T c

γ−β
p

1,p

 ĉ
(0)
3 c2(

1−M γ−β
2

)2 − ĉ
(0)
3

(
c2c2,Lpc3,Lp

)1/2
c
1/2
3

(
1−M γ−β

2

)

11



−
ĉ
(0)
3,Lp

(
c2c3c2,Lp

)1/2
c
1/2
3,Lp

(
1−M γ−β

2

) + ĉ
(0)
3,Lpc2,Lp

+ o(ε−2−
γ−β
p ). (31)

Making use of these two estimates (30) and (31), this results in the estimate
(20) where βLp < γLp because we require that βLp − γLp = β − γ < 0.

In general, it follows that C(ŶML(α,p))(ε) = O
(
ε−2−

max{γ−β,γLp−βLp}
p

)
due to the

upper bound (26) for β < γ and any βLp > 0, γLp ≥ 1. Further, there is
an asymptotically optimal choice for the parameter q ∈ ]0, 1[ such that the
computational costs are asymptotically minimal. Calculating a lower bound
for C(ŶML(α,p))(ε) and taking into account the upper bound (31), we get

C(ŶML(α,p))(ε) =
1

1− q
ε−2−

γ−β
p q

β−γ
2p C + o(ε−2−

γ−β
p ) (32)

with some constant C > 0 independent of q and ε. Now, we have to find some
q̂ ∈ ]0, 1[ such that

Cε−2−
γ−β
p
q̂
β−γ
2p

1− q̂
= min

q∈ ]0,1[
Cε−2−

γ−β
p
q
β−γ
2p

1− q
(33)

for all 0 < ε < 1. Solving this minimization problem leads to

q̂ =
γ − β

γ − β + 2p
(34)

which is asymptotically the optimal choice for q ∈ ]0, 1[ in case of β < γ.

Lower bound for β = γ. In case of β = γ, we get the following lower bound

C(ŶML(α,α))(ε) ≥
T

1− q
ε−2

 k∑
i=0

ĉ
(i)
3,0c2,0h

δi
0 +

k∑
i=0

ĉ
(i)
3,0

(
c2,0c2c3
c3,0

)1/2

Lαh
δi
0

+ ĉ
(0)
3

(
c2c2,0c3,0

c3

)1/2

Lα +
k∑
i=1

ĉ
(i)
3

(
c2c2,0c3,0

c3

)1/2 T δi − hδiLα
M δi − 1

+ ĉ
(0)
3 c2L

2
α +

k∑
i=1

ĉ
(i)
3 c2Lα

T δi − hδiLα
M δi − 1

)

≥ T

1− q
ε−2

 k∑
i=0

ĉ
(i)
3,0c2,0T

δi +

 k∑
i=0

ĉ
(i)
3,0

(
c2,0c2c3
c3,0

)1/2

T δi

+ ĉ
(0)
3

(
c2c2,0c3,0

c3

)1/2

+
k∑
i=1

ĉ
(i)
3 c2

T δi − hδiLα
M δi − 1

)

×

 log(ε−1)

α log(M)
+

log(q−
1
2 c1,αT

α)

α log(M)

+ ĉ
(0)
3 c2

(
log(ε−1)

α log(M)

)2
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+ 2ĉ
(0)
3 c2

log(ε−1) log(q−
1
2 c1,αT

α)

α2(log(M))2
+ ĉ

(0)
3 c2

(
log(q−

1
2 c1,αT

α)
)2

(α log(M))2

+
k∑
i=1

ĉ
(i)
3

(
c2c2,0c3,0

c3

)1/2 T δi − hδiLα
M δi − 1

)
(35)

where ĉ
(i)
3,Lα = ĉ

(i)
3 , c2,Lα = c2, c3,Lα = c3, βLα = β and γLα = γ for ŶML(α,α).

Upper bound for β = γ. Next, we calculate for β = γ the upper bound

C(ŶML(α,p))(ε)

≤ T

1− q
ε−2

 k∑
i=0

ĉ
(i)
3,0c2,0T

δi +
k∑
i=1

ĉ
(i)
3

(
c2,0c3,0c2

c3

)1/2

Λi

+
k∑
i=0

ĉ
(i)
3,0

(
c2,0c2,Lpc3,Lp

c3,0

)1/2

T δih
βLp
−γLp
2

Lp

+

ĉ(0)3

(
c2,0c3,0c2

c3

)1/2

+
k∑
i=0

ĉ
(i)
3,0

(
c2,0c2c3
c3,0

)1/2

T δi

+ ĉ
(0)
3

(
c2c2,Lpc3,Lp

c3

)1/2

h
βLp
−γLp
2

Lp

+
k∑
i=0

ĉ
(i)
3,Lp

(
c2c3c2,Lp
c3,Lp

)1/2

h
βLp
−γLp
2

+δi
Lp +

k∑
i=1

ĉ
(i)
3 c2Λi


×

 log(ε−1)

p log(M)
+

log(q−
1
2 c1,pT

p)

p log(M)


+ ĉ

(0)
3 c2

 log(ε−1)

p log(M)
+

log(q−
1
2 c1,pT

p)

p log(M)

2

+
k∑
i=1

ĉ
(i)
3

(
c2c2,Lpc3,Lp

c3

)1/2

Λih
βLp
−γLp
2

Lp

+
k∑
i=0

ĉ
(i)
3,Lp

(c2,0c3,0c2,Lp
c3,Lp

)1/2

h
βLp
−γLp
2

+δi
Lp + c2,Lph

βLp−γLp+δi
Lp


+ T

k∑
i=0

ĉ(i)3,0T
δi−γ + ĉ

(i)
3

(M−1T )δi−γ − hδi−γLp

1−Mγ−δi
+ ĉ

(i)
3,Lph

δi−γLp
Lp

 (36)

where we applied the relation (24).

Proof of ii). Suppose that βLp ≥ γLp and γ, γLp ≤ 2p. Then, we get from the
upper bound (36) that

C(ŶML(α,p))(ε) = O(ε−2(log(ε))2).

Further, comparing the lower and the upper bounds (35) and (36), we asymp-
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totically obtain that

lim
ε→0

C(ŶML(α,α))(ε)

C(ŶML(α,p))(ε)
≥ lim

ε→0

T
1−qε

−2ĉ
(0)
3 c2

(
log(ε−1)
α log(M)

)2
+ o(ε−2(log(ε))2)

T
1−qε

−2ĉ
(0)
3 c2

(
log(ε−1)
p log(M)

)2
+ o(ε−2(log(ε))2)

=
p2

α2

(37)

which proves statement (19). This completes the proof.

Remark 3.2. Especially, if c3 = ĉ3 and c3,Lp = ĉ3,Lp, then it follows in case
of β < γ and β < 2p that

lim
ε→0

C(ŶML(p,p))(ε)

C(ŶML(α,p))(ε)
≥Mγ−β

1−M
β−γ
2

1−
(

c2c3
c2,Lpc3,Lp

)1/2
−2 . (38)

Thus, if c2c3 < c2,Lpc3,Lp it follows directly that

lim
ε→0

C(ŶML(p,p))(ε)

C(ŶML(α,p))(ε)
> 1 . (39)

4 Numerical examples in case of SDEs

For illustration of the improvement that can be realized with the proposed
modified multi-level Monte Carlo estimator, we consider the problem of weak
approximation for stochastic differential equations (SDEs)

dXt = a(Xt) dt+
m∑
j=1

bj(Xt) dBj
t (40)

with initial value Xt0 = x0 ∈ Rd driven by m-dimensional Brownian motion.

In the following, we compare for several numerical examples the root mean-
square errors (5) versus the computational costs for the multi-level Monte Carlo
estimator ŶML proposed in [5,6,7] and described in Section 2 with the proposed
modified multi-level Monte Carlo estimator ŶML(α,p) described in Section 3. As
a measure for the computational costs, we count the number of evaluations of
the drift and diffusion functions taking into account the dimension d of the
solution process as well as the dimension m of the driving Brownian motion.

In the following, we consider on each level l = 0, 1, . . . , L an equidistant
discretization Ihl = {t0, . . . , t T

2l
} of [t0, T ] with step size hl = T

2l
. Further,

we denote by Yn = Ytn the approximation at time tn. In case of the multi-
level Monte Carlo estimator ŶML we apply on each level l = 0, 1, . . . , L the

14



Euler-Maruyama scheme on the grid Ihl given by Y0 = x0 and

Yn+1 = Yn + a(Yn)hn +
m∑
j=1

bj(Yn) I(j),n (41)

where hn = hl and I(j),n = Bj
tn+1
− Bj

tn for n = 0, 1, . . . , T
2l
− 1. The Euler-

Maruyama scheme converges with order 1/2 in the mean-square sense and
with order α = 1 in the weak sense to the solution of the considered SDE (40)
at time T [10].

On the other hand, for the modified multi-level Monte Carlo estimator ŶML(α,p)

the Euler-Maruyama scheme is applied on levels 0, 1, . . . , Lp−1 whereas on level
Lp a second order weak stochastic Runge-Kutta (SRK) scheme RI6 proposed
in [12] is applied. The SRK scheme RI6 on level Lp is defined on the grid IhLp
by Y̌0 = x0,

Y̌n+1 = Y̌n + 1
2

(
a(Y̌n) + a(Υ)

)
hn + 1

2

m∑
k=1

(
bk(Υ

(k)
+ )− bk(Υ(k)

− )
)

Î(k,k),n√
hn

+
m∑
k=1

(
1
2
bk(Y̌n) + 1

4
bk(Υ

(k)
+ ) + 1

4
bk(Υ

(k)
− )

)
I(k),n

+ 1
2

m∑
k=1

(
bk(Υ̂

(k)
+ )− bk(Υ̂(k)

− )
) √

hn

−
m∑
k=1

(
1
2
bk(Y̌n)− 1

4
bk(Υ̂

(k)
+ )− 1

4
bk(Υ̂

(k)
− )

)
I(k),n

(42)

where hn = hLp and I(k),n = Bk
tn+1
−Bk

tn for n = 0, 1, . . . , T
2Lp
− 1 with stages

Υ = Y̌n + a(Y̌n)hn +
m∑
j=1

bj(Y̌n) I(j),n,

Υ
(k)
± = Y̌n + a(Y̌n)hn ± bk(Y̌n)

√
hn, Υ̂

(k)
± = Y̌n ±

m∑
j=1
j 6=k

bj(Y̌n)
Î(k,j),n√

hn

(43)

where Î(k,k),n = 1
2
(I2(k),n − hn) and

Î(k,j)n =


1
2
(I(k),nI(j),n −

√
hnĨ(k),n) if k < j

1
2
(I(k),nI(j),n +

√
hnĨ(j),n) if j < k

(44)

based on independent random variables Ĩ(k),n with P(Ĩ(k),n = ±
√
hn) = 1

2
. Thus,

we have α = 1 and p = 2 for the modified multi-level Monte Carlo estimator
ŶML(α,p) in the following. Further, for both schemes the variance decays with
the same order as the computational costs increase, i. e. β = βLp = γ = γLp = 1.
Then, the optimal order of convergence attained by the multi-level Monte Carlo
method is O(ε−2(log(ε))2) due to Theorem 2.1. For the presented simulations,
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Fig. 1. Error vs. computational effort for SDE (45) using f(x) = x (left) and
f(x) = x2 (right).

we denote by MLMC EM the numerical results for ŶML based on the Euler-
Maruyama scheme only and by MLMC SRK the results for ŶML(α,p) based on
the combination of the Euler-Maruyama scheme and the SRK scheme RI6.

As a first example, we consider the scalar linear SDE with d = m = 1 given by

dXt = r Xt dt+ σXt dBt , X0 = 0.1 , (45)

using the parameters r = 1.5 and σ = 0.1. We choose T = 1 and apply the
functionals f(x) = x and f(x) = x2, see Figure 1. The presented simulations
are calculated using the prescribed error bounds ε = 4−j for j = 0, 1, . . . , 5.
In Figure 1 we can see the significantly reduced computational effort for the
estimator ŶML(1,2) (MLMC SRK) compared to the estimator ŶML (MLMC
EM) in case of a linear and a nonlinear functional.

The second example is a nonlinear scalar SDE with d = m = 1 given by

dXt = 1
2
Xt +

√
X2
t + 1 dt+

√
X2
t + 1 dBt , X0 = 0 . (46)

We apply the functional

f(x) = (log(x+
√
x2 + 1))3 − 6(log(x+

√
x2 + 1))2 + 8 log(x+

√
x2 + 1).

Then, the approximated expectation is given by

E(f(Xt)) = t3 − 3t2 + 2t.

Here, the results presented in Figure 2 (left) are calculated for T = 2 applying
the prescribed error bounds ε = 4−j for j = 0, 1, . . . , 6. Here, the improved
estimator ŶML(1,2) performs much better than ŶML also for nonlinear functionals
and a nonlinear SDE. Finally, we consider a nonlinear multi-dimensional SDE
with a d = 4 dimensional solution process driven by an m = 6 dimensional
Brownian motion with non-commutative noise:
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Fig. 2. Error vs. computational effort for the nonlinear SDE (46) (left) and SDE (47)
(right) with non-commutative noise.
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13


dB6
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(47)

with initial condition X0 = (1
8
, 1
8
, 1, 1

8
)T . Then, the approximated first moment

of the solution is given by E(X i
T ) = X i

0 exp(2T ) for i = 1, 2, 3, 4. The simulation
results calculated at T = 1 for the error bounds ε = 4−j for j = 0, 1, . . . , 6 are
presented in Figure 2 (right). Again, in the multi-dimensional non-commutative
noise case the proposed estimator ŶML(1,2) needs significantly less computational

effort compared to the estimator ŶML which reveals the theoretical results (19)
in Proposition 3.1.
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5 Conclusions

In this paper we proposed a modification of the multi-level Monte Carlo method
introduced by M. Giles which combines approximation methods of different
orders of weak convergence. This modified multi-level Monte Carlo method
attains the same mean square order of convergence like the originally proposed
method that is in some sense optimal. However, the newly proposed multi-level
Monte Carlo estimator can attain significantly reduced computational costs.
As an example, there is a reduction of costs by a factor (p/α)2 for the problem
of weak approximation for SDEs driven by Brownian motion in case of β = γ.
This has been approved by some numerical examples for the case of p = 2
and α = 1 where four times less calculations are needed compared to the
standard multi-level Monte Carlo estimator. Here, we want to point out that
there also exist higher order weak approximation schemes, e. g. p = 3 in case
of SDEs with additive noise [2], that may further improve the benefit of the
modified multi-level Monte Carlo estimator. Future research will consider the
application of this approach to, e.g., more general SDEs like SDEs driven by
Lévy processes [3] or fractional Brownian motion [11] and to the numerical
solution of SPDEs [13]. Further, the focus will be on numerical schemes that
feature not only high orders of convergence but also minimized constants for
the variance estimates.
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