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Abstract

The multi-level Monte Carlo method proposed by M. Giles (2008) approximates the
expectation of some functionals applied to a stochastic process with optimal order of
convergence for the mean-square error. In this paper, a modified multi-level Monte
Carlo estimator is proposed with significantly reduced computational costs. As the
main result, it is proved that the modified estimator reduces the computational costs
asymptotically by a factor (p/a)? if weak approximation methods of orders o and
p are applied in case of computational costs growing with same order as variances
decay.
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1 Introduction

The multi-level Monte Carlo method proposed in [7] approximates the expecta-
tion of some functional applied to some stochastic processes like e. g. solutions
of stochastic differential equations (SDEs) at a lower computational complexity
than classical Monte Carlo simulation, see also [5I8/9]. Multi-level Monte Carlo
approximation is applied in many fields like mathematical finance [IJ6], for
SDEs driven by a Lévy process [3], by fractional Brownian motion [11] or for
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stochastic PDEs [13]. The main idea of this article is to reduce the compu-
tational costs additionally by applying the multi-level Monte Carlo method
as a variance reduction technique for some higher order weak approximation
method. As a result, the computational effort can be significantly reduced while
the optimal order of convergence for the root mean-square error is preserved.

The outline of this paper is as follows. We give a brief introduction to the main
ideas and results of the multi-level Monte Carlo method in Section Rl Based
on these results, in Section [3| we present as the main result a modified multi-
level Monte Carlo algorithm that allows to reduce the computational costs
significantly. Depending on the relationship between the orders of variance
reduction and of the growth of the costs, there exists a reduction of the
computational costs by a factor depending on the weak order of the underlying
numerical method. As an example, the modified multi-level Monte Carlo
algorithm is applied to the problem of weak approximation for stochastic
differential equations driven by Brownian motion in Section []

2 Multi-level Monte Carlo simulation

Let (€2, F,P) be a probability space with some filtration (F;):>o and let X =
(X1)ier denote an adapted stochastic process on the interval I = [ty, T] that
belongs to a space X that may be infinite dimensional. In the following, we are
interested in the approximation of Ep(f(X)) for some functional f € F where
[F denotes a suitable class of functionals that are of interest. Further, let an
equidistant discretization I, = {to,t1,...,txn} with0 <ty <ty < ... <ty =T
of the time interval I with step size h be given. Then, we consider a probability
space (Q, F,P) with some filtration (F; )i, and we denote by Y = (V});es, a
discrete time approximation of X on the grid I, adapted to (F;)ec 1,- Thus,
we consider the approximation Y € X, of X € X on a finite dimensional space
X,. Here, the probability spaces (€2, F,P) and (QJ}, 13) may be but do not
have to be equal and we assume that Y approximates X in the weak sense
with some order p > 0, i.e.

|Ep(f(Y)) = Ep(f(X))] = O(R) (1)
for all f € F.

In order to approximate the expectation of f(X) we apply the multi-level
Monte Carlo estimator introduced in [7]. For some fixed M € N with M > 2
and some L € N we define the step sizes h; = % and let Y! = (Y})telhl
denote the discrete time approximation process on the grid I, based on step
size hy for [ = 0,1,..., L. Here, we consider the approximations Y' € X,
for | =0,1,...,L of X € X on a sequence X, C X, C ... C X, of finite



dimensional subspaces. Then, the multi-level Monte Carlo estimator is defined
by

L
Vi, = > Y (2)
1=0
for some L € N using the estimators Y0 = iy (Y°® and
. i 1) 1-1(1)
Vie D (SOT) —f(y) (3)
NS

forl =1,..., L. Then, we get

L

Ep(Yarr) = Ep(f(Y") + 2 Ep(f(Y) = f(Y'). (4)

=1
Here, we have to point out, that both approximations VI and Y19 are
simulated simultaneously based on the same realisation of the underlying driv-
ing random process whereas (YZ(Z), Yl_l(z)) and (Yl(]), Yl_l(J)) are independent
realisations for ¢ # j.

Now, there are two sources of errors for the approximation. On the one hand,
we have a systematical error that depends on the dimension of X;, due to the
discrete time approximation Y'! € X, based on step size h; which is given by
the bias of the method. On the other hand, there is a statistical error from
the estimator for the expectation of f(Y') by the Monte Carlo simulation.
Therefore, we consider the root mean-square error

1/2

()

of the multi-level Monte Carlo method in the following. In order to rate the
performance of an approximation method, we will analyse the root mean-square
error of the method compared to the computational costs. Therefore, we denote
by C(Y) the computational costs of the approximation method Y. In order
to determine C'(Y'), one may use a cost model where e.g. each operation or
evaluation of some function is charged with the price of one unit, i.e. one
counts the number of needed mathematical operations or function evaluations.
Further, each random number that has to be generated to compute Y may
also be charged with the price of one unit.

e(Varr) = (Ba([Yarr — Ep(f(X))"))

It is well known that the optimal order of convergence for the classical Monte
Carlo estimator Yyc = + >N f(Y?) is given by

e(Yac) = 0 ((1/C(Yae)) )

where p is the weak order of convergence of the approximations Y, see Duffie
and Glynn [4]. Thus, higher order weak approximation methods result in a



higher order of convergence with respect to the root mean-square error. Clearly,
the best root mean-square order of convergence that can be achieved is at
most 1/2. However, the order bound 1/2 can not be reached by any weak order
p approximation method in the case of the classical Monte Carlo simulation.
Therefore, in order to attain the optimal order of convergence for the root
mean-square error we apply the multi-level Monte Carlo estimator . The
following theorem due to Giles [7] is presented in a slightly generalized version
suitable for our considerations.

Theorem 2.1. For some L € N, let Y denote the approzimation process on
the grid Iy, with respect to step size hy = % foreachl=0,1,..., L, respectively.
Suppose that there exist some constants a > 0 and ¢y q, C20, C2,C2,r, > 0 and
B, Br, > 0 such that for the bias

1) |Ep(f(X)) = Ep(f(Y"))] < cra b

and for the variances

2) Varg(f(Y?)) < ca0 hg,
3) Varg(f(YY) — f(Y"1)) < b)) forl=1,...,L—1,
4) Varg(f(YE) = f(YE1) < eo "

Further, assume that there exist constants cso,cs,cs., > 0 and v,y > 1 such
that for the computational costs

5) C(Y%) <30T hy,
6) C(YLY" ") <e3Thy " forl=1,...,L—1,
7) C(YP,YPY) < ey Th™.

Then, for some arbitrarily prescribed error bound € > 0 there exist values L and
N, forl=0,1,...,L, such that the root mean-square error of the multi-level
Monte Carlo estimator Yy, has the bound

e(Yarr) < € (6)
with computational costs bounded by

cie? if B>, Br =y, a > 3 max{y,7},
C(Vars) < 4 eae™ (log(e))? if B=", B>, a > § max{y, v},
- mRushl g <, o> Dl mebdo ),

(7)

Cy €

for some positive constant cy.

In order to apply Theorem [2.1/and the multi-level Monte Carlo method, one has
to determine the values «, 8, B, > 0 as well as v,y > 1. Firstly, a denotes the
weak order of convergence for the bias of the finite dimensional approximation



Y1 € X, as the dimension of the approximation subspace increases. This
value is well known for commonly applied approximations Y*. Because the
approximations (Y');so converge to X in the weak sense, the differences of
two successive approximations ( fyh —f (Yl*1)>l>1 converge to zero as the

dimensions of the subspaces increase. Then, usually their variances will also
tend to zero with some order § and S, for the approximations applied on
levels 0,1,...,L — 1 and on level L, respectively. Here, we want to point
out that estimates of type 1)—4) in Theorem are rather natural and turn
out to be no considerable restriction for typical applications. Finally, the
computational costs to evaluate two correlated approximations Y and Y!~!
on the finite dimensional subspaces X;, and X, | depend on the dimensions of
the subspaces that are proportional to h; *. For commonly used discrete time
approximations, one typically has v =~ = 1.

The calculations for the proof follow the lines of the original proof due to Giles
[7]. Considering the mean square-error

1/2

e(Varr) = (| Be(f(X)) = Ep(f(Y)P + Varg(Varr)) < (8)
we make use of the weight ¢ €10, 1] and claim that
|Ep(f(X)) —Ep(f(Y")* <ge® and  Vars(Yarr) < (1 ). (9)

Then, we can calculate L from the bias and we have to solve the minimization

problem )

NO<I<L
under the constraint that Varg(Yy) < (1—¢) 2. As a result of this, we obtain
the following values for L and N;:

log(q_% Clac 1 T?)

L=
a log(M)

(11)

1 Bty 3
N, = [ e ?h,? (02> 4 (12)

1—gq C3

N|=

Br+vp
for I = 1., L= Land Ny = | {4 e b, T (22)

C3,L

Ii-‘ for some ¢ €]0,1]

where

e In case of >~ and B > v, orin case of B <~ and v, — B < v — 0

B=n
M) —p,7 1 BLoor
( 1 )MM L +(caresr)®hy = . (13)

ﬁ% + (0263)

N

R = (02700370)% T



e In case of =~ and B, > v.:

1 BrL—rL

+ (L — 1) (CQC?,)E + (027[/03’[/)5 hL 2 . (14)

N|=

K= (02,003,0)
3 The improved multi-level Monte Carlo estimator

The order of convergence of the multi-level Monte Carlo estimator Yarz given
in (2)) is optimal in the given framework. However, the computational costs
can be reduced if a modified estimator is applied. As yet, the estimator Y
is based on some weak order a approximations Y for [ = 0,1,..., L on each
level. Now, let us apply some cheap low order weak approximation Y on levels
[=0,1,...,L —1 combined with some probably expansive high order weak
approximation Y~ on the finest level L. The idea is, that the approximations
Y! contribute a variance reduction while the approximation Y* results in a
small bias of the multi-level Monte Carlo estimator, thus reducing the number
of levels needed to attain a prescribed accuracy.

Let Y be an order a weak approximation method and let Y be an order p weak
approximation method applied on the finest level. Further, let L = L, with

log(q~% ¢1 e+ TP)

L p—
p log(M)

p

(15)

denote the number of levels in order to indicate the dependence on the weak
order p. Then, we define the modified multi-level Monte Carlo estimator by

Ly

YirLag) = 2V (16)
1=0

with the estimators Y for | = 0,1,...,L, — 1 based on the order o weak
approximations Y as defined in Section , however now applying the modified

estimator
Nz,

O M (LB ) (7)

N, o
which combines the weak order a approximations Y *»~! with the weak order p
approximations Y2». Clearly, all conditions of Theorem have to be fulfilled
for Y* replaced by Y*. Then, in the case of p > «a, the improved multi-level
Monte Carlo estimator Yi, L(a,p) features significantly reduced computational

costs compared to the originally proposed estimator YML = )A/ML(ma).

Definition 3.1. Let conditions 1)-7) of Theorem be fulfilled and suppose
that there exist constants 3, Cs,C3,1,,0; > 0 and 63170, é;(;), égl)Lp > 0 such that
for the computational costs



57) C(Y°) = 50T hy” + S5, &5 T hg "™,
6) COYL YY) =6, Th Y+ 55, &0 Th ™ forl=1,... L, —1,
7) OVl Yir ) = g Thy ™ + Xk &) Thy ™

with some 7,7y, > 1 such that y—0; > 1 and yr, —0; > 1. Then, the multi-level

Monte Carlo estimator YML(a,p) based on a weak order o > 0 approximation
scheme on levels 0,1,...,L, — 1 and some weak order p > a approzimation
scheme on level L, has reduced computational costs:

i) In case of f >y and 8 —~ < B, — 1, there exists some g9 > 0 such
that for all € €10, ] it holds

C(YiL(a)(€)

= 1 18
CPrrrom)@) e

provided that o > 1, p > L max{v,7,,} andp > 3 max{S+~, B—y+27.,}.
In case of B >~ and B —~v = Br, — 71, then (@) holds if in addition

1=By2 2o 1=By2x2 21,
cac3 > (1= M2 )’cyp,c31, and 32 > (1—M7=") Ly rs Further,

for 0 < B —~ < B, — 1, it holds C(?ML(M,))(&) =0 ifa>0 and

p = 3 max{y,7L,}
it) In case of 8 =7 and Br, > i, and if p > $max{y,vr,}, o > 1, it holds

. C(Y/ML(oz,a)xE) p 2
i e > (5) (19)

and C(Yarr(ap)(€) = O(e2(log(e))?) if a > 0 and p > I max{y,7r,}.
i) In case of B <~ andy — B =g, — By, it holds

(Y, ; . 1/2 )
lim (AML(p’p))(E) > M20—P) (A €32 A03(02€3,Lp) - (M¥ B 1)
=0 C(Ynmr(ap)(€) 31,021,  C3,1,(C2,1,C3)

+ (Czcg )1/2 (M = 1)+ (% - 1)’ i
C2,1,C3,L,

(20)
if p> %(max{%va} — v+ ). If the parameter q €10, 1] is chosen as

=B
Bt w (21

then the computational costs C(YML(a,p)) are asymptotically minimal.
In general, if B < v or if By, < 7y, then it holds C’(}A/ML(mp))(e) =

max{y—B,7L, ~AL,}

o 7 ) forp > G(max{y, vz, } = min{y = 5,7, = f1,}).



We note, that in relations 5)-7") of Proposition a more detailed poly-
nomial dependence of the computational costs from the dimension of the
approximation subspaces has to be taken into account. E.g., standard discrete
time approximation methods possess polynomial computational costs and the
constants are known explicitly.

Proof. In the following, we will first state some basic formulas and conditions
used in the remaining part of the proof. Then we will calculate lower and upper
bounds for the computational costs in the case 8 # ~. Those will then be used
to prove first i) and then iii). Finally, case ii) with 8 = 7 is considered.

Basic formulas. Assume that ¢ < 1. Let §y = 0, cgg = (30, céo) = ¢3 and

ég% = ¢3,1,- Then, the computational costs for YM L(a,p) aT€
R k ) 5 k Lp—1 s
CYurr(ap) = D¢ fOThO TNy + Y Z DT 0N,

=0 =0 [=1
. (22)

+Z )L ThL'prJ’_é NLp
=0

1 B
with L = L, = Pog(q pigé(’}\;)lw)w and N, for [ = 0,1,..., L, given in (12)).

Without loss of generality, suppose that d; # d; for ¢ # j and that ¢, = ﬂ
with ¢ 03 0 A(k) = éék% = 0 in the case of $ > ~. In the following, we make use

of the two estlmates

- log(e™1) 1og(q_% C1aT?)

La 2 a log(M) alog(M) (23)
log(e™!) |, log(g 2c1,T7)
bp— 1= plog(M) plog(M) 2y

Lower bound for B # ~. Let B # ~. Then, we obtain the lower bound

) Tre=2 k =1s /2 L, . 1/2
C(YML(a,a))(E)Z KE Z(ho 46 ()(Czo) +th +51A()(>

1 —q =0 0370 = Cs
r 2
£ h-+i 00
k B—y =
- ~ Co 0CoC T—= —h,?
+ZT"’W+&C§%< 2,0C2 3) i,
=0 ' 3,0 M= —1
> L4
= A(3) [ C2€2,0C3,0 12 5, T2 toi h,?
+ 63 T B) — o
=0 e M=+ _q



(k) (Czc2,003,o)1/2 s [ log(e™h)  log(q 2eraT®)
4ol (20200803 T pls
Cs alog(M) alog(M)
— B=v 5. —y By
T T T T
’ b=y 1

k—1
(i)
+ Cy'cC —
; PUUME o M5B
— B— 1
(1og<el> 1og<q—zc1,aTa>)

T2 —hg?
alog(M) alog(M)
(25)

where éé’)La = 5:(;)7 CoL, = C2, C3,1, = C3, Br., = B and ~y, = for ?ML(a,a)-
Upper bound for  # ~. Next, we calculate for the case of 5 # ~ the upper

bound
C(Yarrap)(€)
Trke 2k B=ais, .y [ ¢ 12 Lyl 5, 5 iy [ Co\ /2
STut g () K g ()
- q i=0 C3,0 I=1 C3
5L, 5 c 1/2
thy +“£(%)L ( 2,Lp>
=P C3,Lp
k Lp—1 »
Ty (eéi%ha””i o S AR O )
=0 =1
koo 1/2 B
< r e Zéé% Co 0 TP~ 740 4 <62’06203> AT+
l—gq =0 3,0

1/2 B Rl
CZ,OCZ,LPCB,LP ngv +6ih Lp2 L
- L
C3,0 P

1/2 k—1
C2.0C30C2 B=v i
— T Az + Z C:(;)CQAz‘AO
i=0

k-1
+2 & (
€3

=0
By Ly
2

A A CQCQ,L CS7L 1/2
<C:(3k)C2A0 C:(;k) <C§,p) h[p
log(q %Cl,pfZ )

Lol (W)” 2Tﬁy> log(e ™)
€3 plog(M) plog(M)
k=1 . 1/2 8L, —7L
i CoC C P p
ISFY (W) Ay
=0 C3 P
i 1/2 BLp =L
(%) C2,0€3,0C2,L, B—y P s,
+ C R A T B} h 2
; 3,Lp ( CS,LP > Ly
k 1/2 BL, =L
AL C2C3C2, —P__"P 1§, — d;
+z¢g«i;%j Ao, ++%ﬂ%w¢)]
i=0 Ly



A(i (M 1T)6 T—h (i di—
+TY (cé,)T‘s R e T o,
(26)
(M-17) 5o h627+‘51‘
with A; = m(;p fori=0,...,k—1.

Proof of i). In case of 3 > v and 7, > vy, we prove that there exists some
g0 > 0 such that for all £ €]0, ] it follows C(Yarriam)(€) > C(YVarriap)(€)-
From the lower bound for C (YML(Q,O[))(s) and the upper bound for
C(YarL(ap))(2) we get the estimate

C(Varztam)(€) = C(Varzap)(€)

k—1 1/2 57 a=p, B2
T - 72548 50 [ C2,0€2€8 h, — M7= hg]
e X €30 1B

Lo 3,0 1—M—
S A() [ €2€2,0C3,0 1/2 By hL2 — M 6’hL§
+ Z C3 (H> T2 —
=0 €3 1— M= %
it — —B B—
k—1 M_lT)T+5i h,2 M5 h,2
+ Z (1) Ly L
C3°C2 — _
i=0 1—M%—6i)(1_MLf)
=1 - B=v s,
+ -
(1—M™2"=%)(1 - M”g")
k—1 1/2 g —
N (CZOCMCBL ) pisea g e
i=0 ' C3,0 P
k=1 1/2 BL., =L
i C2C C PLp~7Lp
YL <22L3L> Ay
- A(%) C2,0C3,0C2,L,, 12 B—v IBLP#"‘(S@'
- ZC3L —_— T2 h,
i—0 C3,L, P
k—1 1/2 FTp—
(7 CoC3C: _Zp Ltp 5
RS <w> I s O
=0 r C3,L, P
kot , . (M_lT)(Si—’Y _ o
~(7 0;— ~(2 L i —y
T 2 (Cé’éT v —+ c:(z) - M'Yi(;i P z(;Lph Lyp (27)

_1
In the following, we make use of the estimates M~'¢; g qraca < hr, <
-1 5
qzaaa and M1 c q2pgp < hg, < ¢ ,yq%er, i.e. we have hy, — 0 and
hLa —0ase— 0.

10



min{B—7,8L, ~7L,}
Multiplying both sides of 1!) with =92 h, 2 and taking into
account the assumptions 4p > 3 + and dp > ﬁ — ¥+ 27z, results in

min{8—v,8r,,—vr,}

2hy, 2 (C(Vauriem)(E)

Q

(Varap)(€))

BLy, =Ly
2

1/2 h,2
c I 1/2
2,0) (cacs)'V? b (CZ,LPCS,Lp) hy

1—M—= P

o 1/2 g
-
A(0) vz hyp (0) ([ C2L, Lp_Ttp
e 0 (2L
5 —G3L Ly

C3,L,

+T 2 (620630 (

k—1 —1\ B2 44, 2 1/2 PrLp,—L

i M * h C C / P P
Z 61(3)021/2( 1 1 (02)1/2 Ly ( 2,Ly 3,Lp> n
i=0

1— M50 1— M™% c3 Le

B _ B 1/2 _
(M 1T) X 12 A(O)Cgl/2 th (0) C3Ca 1, / 5Lp2’YLP
1- M= 1— M="

min{8r, —vL,.8-7} min{f—.8L,,~7L,}
2 - 2
+olhyg, hy : (28)

As a result of (28) it follows that in the case of 3 —~ < 81, — 71, there exists
some g > 0 such that

C3,L,

C(Variaa)(€)

C(Varziam)(e)
for all € €]0,¢0]. In the case of § —~ = 1, — 71, there exists some gy > 0
such that holds for all € €]0,e] if cacs > (1 — M%)chipcg,% and
(A7) 2 > (1=M73)2 (&))" 222 Finally, C(Virs(ap)(€) = O(=) follows
from (126)).

> 1 (29)

Proof of iii). In case of 5 < v and [ < 2p, we have to compare the dominating
terms as € — 0. Therefore, we get from the lower bound that

B=v
g% 9 3-8 . .(0 =8 _ B=y —2
C(Yumrpp)(€) > ¢ e Tci(,,’%p ear, C1y M7 A (M T — 1)
+oe ) (30)
and from the upper bound
By B A(0) +(0) 1/2
q?*® 9 38 =5 C3 Co C3 (6202,Lp03,Lp)
O(YML , )(6) S g p T ? - =
Y S VO Y=o (T

11



+(0)
C3,L, (020302,Lp) A(0) _o_3=8
B AT i MR

Making use of these two estimates and , this results in the estimate
(20) where 31, < 71, because we require that 8, — ., =8 —~v <0.

max{v—B,7, AL, )

In general, it follows that C(YML(mp))(s) = O<572 f) due to the

upper bound for < v and any S, > 0, vz, > 1. Further, there is

an asymptotically optimal choice for the parameter ¢ €]0, 1[ such that the

computational costs are asymptotically minimal. Calculatinlower bound
(31)

for C’(}A/ML(mp))(z—:) and taking into account the upper bound (31)), we get
~ r _J 918
COrvnan)(e) = 7€ 7 0% Chole™7) (32)

with some constant C' > 0 independent of ¢ and . Now, we have to find some
¢ €10, 1] such that

B= B—v
C—Q—%Q S C-z-%‘] : 33
T e .
for all 0 < € < 1. Solving this minimization problem leads to
X v—B
§g=——+ 34
Y—B+2p (34

which is asymptotically the optimal choice for ¢ €0, 1] in case of 8 < 7.

Lower bound for = . In case of § = v, we get the following lower bound

N T k € 0CoC 1/2
C(YML(a,a))(5) > (Z c3 002 Oho Z é:(;%) ( 202 3) Lahgi
i=0

- q i=0 C3,0
k 1/2 o _ o
.(0) 0202,003,0>1/2 (1) <CQC2 0030) La
TG < C3 Z:Cg C3 Mo —1
T h5¢
L2 L La
+ & +;C3CQ Mz_1>
T k k Co.0C2C3 12
> e (S elenst® + () (2222) e
-4 i=0 i=0 €3,0
k [ di
.(0) 0202,003,o>1/2 () I —hp,
TG ( C3 +ZZ::163 @ M —1
_ 1 o TN
o [los(e™)  loglg zeraT®) ) | o), (log(c™!)
alog(M) alog(M) 3 72 alog(M)

12



1 2
) log(e7")log(g 2 ¢1aT*) L0 (log(g2c1,aT?))

2
T T log(M)? & T W log(M))?
ko 1/2 & _ o
A(7) 02027003,()) Lo 35
byl ()P (3)

NO RN () _ _ _ _ ?
where C31, =C3's CoL, = C2, (3L, = C3, Br, = B and v, =7 for Yarr(a,0)-

Upper bound for B = ~. Next, we calculate for = v the upper bound

i—0 i—1 c3

T k 1/2
5—2{2 :()’%) 0T5 +ZA(Z (02003062) A

k 1/2 BL, =L
A1) [ €2,0C2,L,C3,L, §i7 — oL
+ Z Cio | —————+ T%hy,

C3,0

2003002\ Y2 Eu iy [ CaoCac 1/2 ,
n (Céo) ( 2,0€3,0 2) n ch% 2,0C2C3 7
i=0

C3 C3,0

1/2 BrL,—7L
+ &) <C2C2,LPCB,LP) 4 B

L
C3 P

BL

G [cacsearn, | e s
+ Z C3,L, hy, +ZC3 col\;
C3,Ly i=1
(sl Toa(g~her, )
plog(M) plog(M)

2
PO (log(€‘1> i 10%(61‘561,pr))

> "\ plog(M) plog(M)

k 1/2 BLp Lp
z : 3 5 5
Cg) ( P P /\Zh 2

i=1 e3

1/2 Br., =L
(1) €2,0C3,0C2,L, PP BLy—VLp+0i
+Z G, |\ |7 h, "t co,r,hr,

C3,L,

, (MY h ,
+TZ<6§%T@—7+65”( 1_)MH ey ell) by, ) (36)
=0

where we applied the relation ([24]).

Proof of ii). Suppose that 3, > vz, and v,vz, < 2p. Then, we get from the
upper bound that

C(Yrram)(e) = O~ (log(e))?).

Further, comparing the lower and the upper bounds and , we asymp-
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totically obtain that

- _94(0 log(e~1) \ 2 _
o C0rsiaa) ) i "0 (Pogn) + (e (l0g(e))”) _ p?
9 = 540 1 —1y\ 2 _ 2
=20 C(Yur(ap)(e) — =70 1%(]5 260¢, (poi(ga(M))) +o0(e72(log(e))?) ¢
(37)
which proves statement . This completes the proof. O

Remark 3.2. Especially, if c3 = ¢3 and c3 1, = ¢31,, then it follows in case
of B <~ and 8 < 2p that

lim O(}:/ML(pvp))(g) > NoB (1 _ (1 — <6263> 1/2)) . (38)

0 C(Yar(ap)(€) 2Ly 3Ly

Thus, if cocy < co1,¢3,1, it follows directly that

~

Y,

0 COVarrian)(€)

4 Numerical examples in case of SDEs

For illustration of the improvement that can be realized with the proposed
modified multi-level Monte Carlo estimator, we consider the problem of weak
approximation for stochastic differential equations (SDEs)

dX, = a(X,) dt + fj v (X,)dB] (40)

=1
with initial value X;, = z¢ € R? driven by m-dimensional Brownian motion.

In the following, we compare for several numerical examples the root mean-
square errors (b)) versus the computational costs for the multi-level Monte Carlo
estimator iy, proposed in [56l[7] and described in Section [2| with the proposed
modified multi-level Monte Carlo estimator ?M L(a,p) described in Section . As
a measure for the computational costs, we count the number of evaluations of
the drift and diffusion functions taking into account the dimension d of the
solution process as well as the dimension m of the driving Brownian motion.

In the following, we consider on each level [ = 0,1,..., L an equidistant
discretization I, = {to,... ,tz} of [to, T] with step size by = L. Further,
we denote by Y, =Y, the aﬁproximation at time t,,. In case of the multi-
level Monte Carlo estimator Yy, we apply on each level [ = 0,1,..., L the

14



Euler-Maruyama scheme on the grid I, given by Y, = x, and
Vo1 = Yo +a(Yy) hy + >V (Y2) Ijm (41)
=1

where h, = h; and I;, = Bgn+1 — Bgn forn =0,1,..., 21 — 1. The Euler-
Maruyama scheme converges with order 1/2 in the mean-square sense and
with order & = 1 in the weak sense to the solution of the considered SDE ({40)
at time 7" [10].

On the other hand, for the modified multi-level Monte Carlo estimator }A/M L(ap)
the Euler-Maruyama scheme is applied on levels 0, 1, ..., L, —1 whereas on level
L, a second order weak stochastic Runge-Kutta (SRK) scheme RI6 proposed
in [12] is applied. The SRK scheme RI6 on level L, is defined on the grid I hi,

by}%:x07

o = Fart § (000) 4 a() ha 5 32 (008 = 00 ™)) fe

k=1 (42)

k=1
where h, = hr, and I (), = Bt"C o Bt’“n forn=0,1,..., 2% — 1 with stages
T =Y, +aY,)hy +> (V) Ljn,
j=1
(k) Y - k) v m - (43)
TE =V, 4 alVo) b £05V) by T =¥, £ 3 09(F,) (e
j=1
J#k

where f(k,k),n = %(I?k)m — hy) and

Lk ), = {

based on independent random variables ] n With P( = +vh,) = 3. Thus7
we have a = 1 and p = 2 for the modiﬁed multl level Monte Carlo estimator
)A/M L(a,p) in the following. Further, for both schemes the variance decays with
the same order as the computational costs increase, i.e. 8 = 3, =~v =y, = L.

Then, the optimal order of convergence attained by the multi-level Monte Carlo
method is O(e7%(log(¢))?) due to Theorem [2.1] For the presented simulations,

Ty ndym — Vi) if k<

44
Ty mdiym + Vil ya) ifj <k (4

D= D=
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Fig. 1. Error vs. computational effort for SDE using f(z) = z (left) and
f(x) = 2? (right).

we denote by MLMC EM the numerical results for YML baspd on the Euler-
Maruyama scheme only and by MLMC SRK the results for Y1) based on
the combination of the Euler-Maruyama scheme and the SRK scheme RIG6.

As a first example, we consider the scalar linear SDE with d = m = 1 given by
dXt:TXtdt+UXtdBt, X():O.l, (45)

using the parameters r = 1.5 and ¢ = 0.1. We choose T" = 1 and apply the
functionals f(z) = x and f(z) = 22, see Figure [I} The presented simulations
are calculated using the prescribed error bounds ¢ = 477 for j = 0,1,...,5.
In Figure we can see the significantly reduced computational effort for the
estimator Yy1,2) (MLMC SRK) compared to the estimator Yy, (MLMC
EM) in case of a linear and a nonlinear functional.

The second example is a nonlinear scalar SDE with d = m = 1 given by

Xt:%Xt—k\/mdt—l-\/mdBt, Xo=0. (46)

We apply the functional
f(z) = (log(z + Va2 +1))* — 6(log(z + Va2 + 1))* + 8log(z + Va2 + 1).

Then, the approximated expectation is given by
E(f(Xy)) =t — 3% + 2t.

Here, the results presented in Figure [2) I (left) are calculated for T' = 2 applying
the prescribed error bounds ¢ = 4~ Jfor j = 0,1,...,6. Here, the improved
estimator YM (1,2) performs much better than YM I also for nonlinear functionals
and a nonlinear SDE. Finally, we consider a nonlinear multi-dimensional SDE
with a d = 4 dimensional solution process driven by an m = 6 dimensional
Brownian motion with non-commutative noise:
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Fig. 2. Error vs. computational effort for the nonlinear SDE (left) and SDE
(right) with non-commutative noise.

th ?gin Xt2 125?21X3 a ﬁX4

4 th _ ﬂXl _ %XQ 165:")4)(3 _ ﬁX4 "
XE’ 124‘)(1 154)(2 + %X? - 7X4
X;l 16514)(1 154X2 + %Xf 162X4

1 1

13 14

1 2 |4 1 E:
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1 11 o
13 16
1 1
15 12
1 1
6 8
+ — ! (X1)? + (X2)2—|—1 % dB} + — ! (X3)2 + ()(4)2—1—i % dB}
12y N It Py 29 !
5 8
1 1
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1 1
11 12
1 1| 1 2 |4
3 LR BE 5 e, 2 |13 6
13 16
1 1
11 13
(47)
with initial condition X, = (é, 515, 1, 8) . Then, the approximated first moment
of the solution is given by E(X%) = X} exp(2T) for i = 1,2, 3, 4. The simulation
results calculated at 7' = 1 for the error bounds ¢ =477 for j = 0,1,...,6 are

presented in Figure 2] (right). Again, in the multi-dimensional non-commutative
noise case the proposed estimator Yj,1,(1,2) needs significantly less computational

effort compared to the estimator }A/M 1, which reveals the theoretical results
in Proposition [3.1]
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5 Conclusions

In this paper we proposed a modification of the multi-level Monte Carlo method
introduced by M. Giles which combines approximation methods of different
orders of weak convergence. This modified multi-level Monte Carlo method
attains the same mean square order of convergence like the originally proposed
method that is in some sense optimal. However, the newly proposed multi-level
Monte Carlo estimator can attain significantly reduced computational costs.
As an example, there is a reduction of costs by a factor (p/a)? for the problem
of weak approximation for SDEs driven by Brownian motion in case of § = 7.
This has been approved by some numerical examples for the case of p = 2
and o = 1 where four times less calculations are needed compared to the
standard multi-level Monte Carlo estimator. Here, we want to point out that
there also exist higher order weak approximation schemes, e. g. p = 3 in case
of SDEs with additive noise [2], that may further improve the benefit of the
modified multi-level Monte Carlo estimator. Future research will consider the
application of this approach to, e.g., more general SDEs like SDEs driven by
Lévy processes [3] or fractional Brownian motion [I1] and to the numerical
solution of SPDEs [13]. Further, the focus will be on numerical schemes that
feature not only high orders of convergence but also minimized constants for
the variance estimates.
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