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Abstract

In the following article we consider the time-stability associated to the sequential Monte
Carlo (SMC) estimate of the backward interpretation of Feynman-Kac Formulae. This is
particularly of interest in the context of performing smoothing for hidden Markov models
(HMMs). We prove a central limit theorem (CLT) under weaker assumptions than adopted
in the literature. We then show that the associated asymptotic variance expression, for
additive functionals grows at most linearly in time, under hypotheses that are weaker than
those currently existing in the literature. The assumptions are verified for some state-space
models.
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1 Introduction

Feynman-Kac formulae provide a very general description of several models, such as hidden
Markov models (see e.g. [3]), used in statistics, physics, computational biology and many more;
see [4]. For a measurable space (X,B(X)), f : X = R (bounded for now), the Feynman-Kac

formula associated to the n-time marginal, n > 1 is:

with, for p a probability measure on X, G,, : X = Ry (bounded), n > 0, M,, : X x B(X) — [0, 1],

n>1

n—1 n
)= [t T] Gotan)]utdon) T] My(eper.dzy). (1)
p=0 p=1

We take 19 = p. In the context of HMMs, 7, represents the predictor, equivalently, the con-
ditional distribution of the signal given the observations up-to time n — 1. In many practical
applications, such as the smoothing problem in HMMs, one is interested in the formula, for

F,, : X"*1 - R (bounded for now),

o) Swsr Balwos )| TThZg G () (o) Ty Myl 1, day)
o Jwor [TI0 Coleg)|nldwo) Ty My(ap1,doy)
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In practice this formula, as well as that for the predictor is unavailable analytically and one must
resort to numerical approximation procedures, in order to compute it. We remark that Q,,(F,) is
of interest, not only for smoothing for HMMs, but many other application areas; see for instance
[7] and the references therein. In this article we focus on the numerical approximation of Q, (F},)
and simultaneously 7,,(f). The latter task is often done quite well using SMC methods, as we
now discuss.

SMC methods are designed to approximate a sequence of probability distributions of increas-
ing dimension. The method uses N > 1 samples (or particles) that are generated in parallel,
and are propagated via importance sampling (i.e. via Markov proposals and importance weights)
and resampling methods. The approach can provide estimates of expectations with respect to
this sequence of distributions of increasing accuracy as N grows. Standard SMC methodology is
by now very well understood with regards to its convergence properties and several consistency
results have been proved (see e.g. [d [10]) along with the stability in time of the error of the
algorithm [IT] 21] in the context of filtering for HMMs. These latter results are particularly
important as due to the sequential in time nature of the inference; one does not want the errors
over time to accumulate.

As noted above, SMC can be very useful for approximating n,,(f). However, it is well known
due to the path degeneracy problem (see [12]) that the standard SMC approach, of cost O(N) per
time step, for approximating Q,,(F},) performs very badly. For example, consider the CLT for the
standard SMC approximation of Q,(F,), call it QY-%(F,) with F,(zo,...,z,) = > p=o Io(Tp),

fp : X = R, (additive functionals - this is of particular interest in application areas):
VN[QYS(Fn) = Qu(Fn)] = N (0,075 (Fn))

where = denotes convergence in distribution as N — 400 and V(0,029 (F,,)) is a one-dimensional
Gaussian distribution with zero mean and variance ¢2%(F,). [19] show that, under strong as-
sumptions, 02°(F,) > ¢(n), with ¢(n), O(n?), i.e. grows quadratically in the time parameter.
One SMC approach designed to deal with these afore-mentioned issues is that of the forward
filtering backward smoothing algorithm (FFBS) of [I3], [15] and in particular the SMC approx-
imation of the backward interpretation of Feynman-Kac formulae, write this QY (F},). This is
a ‘forward only’ approximation of the FFBS algorithm, which is of cost O(N?) per time step,
and several convergence results for this algorithm (and FFBS), including a CLT are proved in
[7, 10, I4]; the assumptions used are fairly strong and do not always apply on non-compact
state-spaces X. The O(N?) cost per time step is counter-balanced by the time-behaviour of (an

appropriateley defined) error in approximating Q,,(F,,) for F,, additive; it can be no worse than



linear in time (see e.g. [14]), versus the O(n?) for standard SMC. For instance, [7] show that for
F,, additive, as vV N[QN(F,) — Q,(F,,)] = N(0,02(F,)), under some strong hypotheses:

o2(F,) < c(n+1)

n

with ¢ < 400 not depending upon n. As already remarked, these theoretical results are derived
under strong assumptions: In this work we weaken the hypotheses used in previous articles (such
as [7, 10, T4]). A related idea, the forward filtering backward simulation algorithm in [I0] has
cost O(N) but we do not consider it in this article.

In the analysis of SMC algorithms, time-stability is often posed as follows. Writing n (f) as
the SMC approximation of 7,, (), one has under minimal assumptions that v N[nX (f)—n.(f)] =

N(0,9%(f)) and in the literature an often proved result, under additional assumptions, is that

D (f) <c

where ¢ does not depend upon n. The time stability of SMC has been studied in many papers
(e.g. [BL[10]), but, only recently have assumptions been weakened, for example in [11 20 21]. The
assumptions used in the early work of [5] relied on very strong mixing assumptions associated
to the underlying Markov chain of the Feynman-Kac formula. Significant efforts were made to
weaken this assumption and recent work of [I1] 21] (see also [22]). These works, in the context
of the asymptotic variance in the CLT associated to the SMC approximation of the n—time
Feynman-Kac marginal, has used local Doeblin (see [9]) and multiplicative drift condions (see
[18]) to provide more verifiable assumptions for the stability of SMC. We use similar assumptions

to [21] to weaken the assumptions used in [7], [§] for:

1. Proving a CLT for the SMC approximation of the backward interpretation of Feynman-Kac
formulae (Theorem [3]), that is

VNIQY (Fy) — Qu(Fn)] = N(0,02(F,)).
2. Giving a linear-in-time bound on the associated asymptotic variance expression when the
function is additive (Theorem L)), that is, for Fy,(zo,...,2n) = >0 _o fp(2p)
on(Fn) <c(n+1)

where ¢ does not depend upon n.

This article is structured as follows. In Section 2] we give our notations, the algorithm and

estimates along with our assumptions. In SectionBlthe CLT is proved. In Section [ we prove the



linear in time increase of the asymptotic variance expression for additive functions. In Section
we give an example of an HMM were our assumptions hold. The appendix contains technical

results for the proofs of the CLT and asymptotic variance and is split into two Sections.

2 Preliminaries

2.1 Notations

For a kernel M : X x B(X) — Ry and o—finite measure p on (X, B(X)) pM(-) := [y pu(da) M (z, ).
For a function ¢ : X — R and kernel M (resp. signed measure p), M(p)(z) := [y o(y)M (z,dy)
(resp. u(p) := [@(y)p(dy)). For a given function V : X — [1,00) we denote by %y the class of

functions ¢ : X — R for which

Thex V(@)
When V' = 1 we write [|¢]lec := sup,ex |@(x)|. We also denote, for a probability measure ,
lullv := sup|,<v [(¥)|. The probability measures on X are denoted P. For y € P such that
w(V) < 400 we denote p € Py. Throughout ¢ is used to denote a constant whose meaning
may change, depending upon the context; any (important) dependencies are written as ¢(-). The
bounded, real-valued and measurable functions on a space Z are written By(Z). The notation
Tk = (T, -+, ) 18 used, with k < n.
Recall ([I) which is defined in terms of potentials G,, and Markov kernels M,,. Throughout

the article it is assumed, for a o—finite measure A on X (typically Lebesgue) and each n > 1:
Mn(fbn—la dwn) = Hn(xn—l 5 xn))\(dxn)

where H, : X? — R,, with fx Hy(xn-1,2n)Ndxy) = 1 V2,1 € X. We also introduce the

semi-group for n > 1:
Qn(xn—l 5 dxn) = Gn—l(xn—l)Mn(xn—l 5 dxn)

with, for 0 < p <n, f: X = R, Qpn(f)(@) = [ f(zn) HZ:erl Qq(zg—1,dzy) with the conven-
tion @ = Id, the identity operator. We use this semi-group notation for operators that are
introduced later on. We will write weak convergence (as N the number of samples grows) as =
and convergence in probability as —p. We write the d—dimensional Gaussian distribution, with

mean vector p and covariance matrix ¥ as Ny(u, ) and if d = 1 we drop subscript d.



2.2 Algorithm and Estimate

The SMC algorithm samples from the joint law

N n
P(ds™ o™, akN)) = ([ motde) H

u,':]z

77p 1 d(E?D),

where 2}V = (z},... 2l) € XV (0 < ¢ < n), n is the empirical measure sz\il 0z and

the operator ®,, : P — P maps a probability distribution p € P to the probability measure
®,,(p) € P defined by
MGn—1M,)(dy)

N(Gn—l)

The estimate of v, (f) is 7Y (f) = [HZ:_Ol ny (Gg)Ink (f). Various results have been proved about

@, (1) (dy) =

the convergence associated to 2 () (resp. Y2 (+)) to 1,.(+) (resp. vn(+)); see for instance [4].
Let F, : X»t! = R, we will study the SMC approximation of

fxnﬂ (Zomn [HZ;(} Gp(xp)} p(do) HZ:I My (zp—1,dzp)
fxn+1 [ p:01 Gp(xp)} pi(dxo) HZ:I My (zp—1,dxp) .

Qn(Fn) =

Now the backward interpretation (see e.g. [7]) is

Qn(Fn) = /X - Fn(xOn)nn(d'xn)Mn(Inv dIO:nfl)

where

Mn(xnude:n—l) = H qMg—1 xqu‘rq 1) (2)

qg=1
Gy1(rg—1)Hy(xg-1,24)09-1(dTg-1)
qul(Gqleq('v xq))

Mg, (xg,dzg—1) =

we write MY in (@), when each 7, ...,n,_1 are replaced by the empirical versions. The SMC

approximation of Q,,(-), written QX (-) is
QN (dzo.n) = 0k (dxy,) H . (@q,dwg—1)

where the empirical measures 7)Y | are defined above. If F,(x0.n) = EZ:O fo(zp), fr : X = R,

then setting Fi¥ = fo, then the O(N?) approximation is

where v

Gn1(zy_1)Hp(z;,_1, ) N i

N J G Foly (@, ).
i=1 Zj:l Gn-1(25_1 ) Hp (27,1, 2)

This is particularly useful for the smoothing problem associated to HMMs.

FY (@) = fa(z) +



2.3 Assumptions

We make the following hypotheses. (A1-2), (A4-6) are (H1-5) in [21], except slightly modified
to the density notations which naturally occur in many application areas. (AB]) appears to be
needed under our analysis, but can be verified in practice. It is not dissimilar to part of (H1) in

[6] and, under the other assumptions of this article could be verified if

-1
H, € % and ( ing Gn,l(x)Hn(x,y)) €L
zeCy

with 51,82 > 0 and o = 1 + B2, v as in (AB]). A discussion of the assumptions and comparison

to [9] can be found in [21I]. The assumptions are, in general, weaker than those used in [7} [10} [14]

and can be verified on non-compact state-spaces.

(A1) There exists a V' : X — [1,00) unbounded and constants § € (0,1) and d > 1 with the

following properties. For each d € (d, +00) there exists a by < +00 such that Vo € X

SU-p Qn(ev)(,’ﬂ) S 6(1_6)‘/(1)4‘1)(1]10[1 (I)
n>1

where Cg = {z € X: V(z) < d}.
(A2) p € P, withov=e".

(A3) For every a € (0,1/2):
Gn,1($)Hn($,y)
su S fﬁa
nZI; nn—l(Gn—lHn('ay))

with T(z, y)* = v(x)*v(y)*.
(A4) With d as in (All), for each d € [d, 00)
Gno1(x)Hp(z,y) >0 Vo,yeX,n>1
with 0 < [, A(dy) < +oo and there exist &; > 0 such that
igfl Gn-1(x)Hy(x,y) > €,, Vx,ye Cqy.
In addition vq(dy) = Ady)lc, (y)/ [o, Mdy) € P
(A5) With d as in (All, and &, as in (AH), for each d € [d, o) there exist & € [¢;,00) such that

sup Gp—1(2)Hy (2,y) < &, Va,y € Cq
n>1

(A6) sup,,>qsup,ex Gn(r) < +00.



3 Central Limit Theorem

The asymptotic variance in the CLT for the forward-only smoothing (resp. FFBS) is, under some
conditions, [7, Theorem 3.1] (see also [10]):

o2(F,) = pz:np < [hp,n{Pp,n(Fn) - %}] 2)

for the predictor. The operators are, for 0 <p <n

QD))
honl®n) = Q)
FnlFlln) = BT
DP,”(FH)(J:P) = /Mp(xpudwo:p—l)Qp,n(xp7dxp-‘rl:n)Fn(:EO:n)
Opnlitp,drpiin) = [ Qusa(grdrgin). )

With the conventions Dy ,, = Qo.n and D,, ,, = M,,. We give the CLT under weaker assumptions
than considered by [T, [I0], but only for bounded functions; we note that (Adl) and (AB]) need not
be time-uniform, but to connect with the next Section, we make them time-uniform. Indeed, one

can pose (Al as Q. (v) < c¢(n)v'~%. We suppose that for any n > 0, ||Gp|lec < +00, below.

Theorem 3.1. Assume (ADH3). Suppose that for each n >0, 1/G,, € Lys/2, with ¢ as in (A),
then for any n >0, F, € B,(X"T1)

\/N[@SI - Qu](Fn) = N(O, Ufz(Fn))

Proof. By translation, one can assume that Q,(F,) = 0. For notational convenience, we
introduce the rescaled quantity Dy, (F,) = Dpn(Fp)/mpQpm(1) and its empirical analogue
D;])\,,n(Fn) = D;é\,[n(Fn)/anp,n(l) for D;])\,,n(Fn) = fM;fav(Ipvde:pfl)Qp,n(fE;mdI;DH:n)Fn(xO:n)-
From [7, Page 965] and Definition [T, Page 962, eq. (5.3)], it follows that

n =N
VR - Qul(R) = VE S Z i - 8,01 D ()
p=0 '™

where we have set 7 (1) = 7Y (1) /7,(1). For brevity, we set g, (z,) = ﬁp)n(Fn)(xp) and g () =
ﬁZ])\)’n(Fn)(Ip). Since the quantity 7)Y (1) converges to one in probability (see e.g. Proposition[AT)),
Slutsky’s Lemma shows that one can ignore the term 7;\7 (1)/7Y(1) for proving the CLT. The

proof consists in exploiting the decomposition
S VNRY = @) DI(g)) =D VNRY = @) )I(g) — gp)+
p=0 p=0

> VN = ®p(mp1))(gp)-

p=0



and prove that the first term on the R.H.S converges to zero in probability while the second term

converges in laws towards a centred Gaussian distribution with variance o2 (F,).

e Note that the boundedness assumptions on the potentials {G,};_; and test function F,
imply that g, € By(X) for 0 < p < n; by standard results [4, Corollary 9.3.1], the se-
quence VN ([ = n0](g0) s - - -, Y — @n(n)_1)](gn) ) converges in laws towards a centred
Gaussian vector with covariance matrix diag( Vary,(go), - .., Vary, (gn)). It follows that
ZZ:O VN () — ®,(n) 1)](gp) converges in laws towards a centred Gaussian distribution

with variance > 7_, Var,, (g;); this is just another way of writing o2(Fy,).

e The last part of the proof consists in showing that the term ZZ:O VN[ =@, () )](g) —
gp) converges to zero in probability; this quantity has zero expectation and standard manip-
ulations show that its moment of order two is upper bounded by >/ E [@,(n) 1) (g —
9p|?) ] It thus remains to verify that for any index 0 < p < n the quantity E [ ®,(n)Y ;)(|g) —
9p|?) | converges to zero as N — co. We use the decomposition () (lg) — 9pl?) =
Mo(19) = 9p*)+Pp (01 —np—1)(lg9) —9p|?) and treat each term separately. By boundedness
of the potntials {G, };_, the quantity g, and gzj,v are uniformly bounded; it follows from the
dominated convergence theorem, Fubini’s theorem and Lemma [A] that E[n, (|90 — gp[*)]
converges to zero. For dealing with the second term, note that ®,(n)" ; —n,-1)(lg; — gp/°)

is less than

/ ’nﬁl(pral('aIp)) - Np—1(Gp—1Hp (-, xp))
X 77;{7\]_1((;;)—1) Mp—1(Gp-1)

By uniform boundedness of g, and gév and Fubini’s theorem, the conclusion follows once it

x gy (xp) = gp(@p)]* Mdap).  (4)

is established that

/E’n;évl(Glep('v‘Tp)) _ npfl(pral('aI;D))
X n,Jy_l(Gp—l) Mp—1(Gp-1)

converges to zero. By Assumption [3] and the boundedness of G—_1, for every fixed z, € X

Aldy) (5)

Proposition [A] applies to the function Gp_1Hy (-, ;) and G,_1; it follows that for every

fixed x), € X the function

7711)\[71(Gp71Hp('a517p)) -~ Wp—l(pral('pr)) 1
771]7\7_1(017—1) Np—1(Gp-1) Np—1(Gp—1Hp (-, xp))

converges to zero in probability. Lemma shows that for A-a.e. fixed z, € X the

(6)

function (@) is also uniformly integrable; consequently, for A-a.e. fixed z, € X the function

[ converges in expectation to zero. In addition, by Lemma [A2]

/ E| o2 (Go- 1y 2)) iy (Cpa Hy (1))
X n,Jy_l(Gp—l) Mp—1(Gp-1)

Adzy) <



¢ / o)1y 1 (G Hy (-, 5N (dazy).

Application of Fubini and repeated use of [21], Lemma 3] allows us to show [\ v()**1p—1(Gp—1
H,(-,zp))A(dzp) < ¢, where ¢ < 400 depends on p but not N. Thus, by the dominated
convergence theorem, we have shown that the term in [l goes to zero, from which we can

conclude the proof.
O

Remark 3.1. If one wants to adapt the proof for n growing (as in [2]) the proof as used here
must be modified as many of the moment bounds will grow with n (e.g. Lemma [A3); this is
a known problem in SMC, see for instance [1, Page 20]. This is because we do not control
expectations (w.r.t. the simulated algorithm) of unbounded functions, uniformly in time. This
particular problem is very challenging (for example the work of [11), [21] do not deal directly with
the particle system) and is yet to be handeled in the literature; we do not address this problem.
We note also that the proofs of [7,[10] also suffer from this deficiency and assume much stronger

hypothesis than in this work.

4 Control of the Asymptotic Variance

We now consider the asymptotic variance when F,,(zq.,) = ZZ:O folzp), fp : X = R. Contrary

to Theorem [B1] will not assume that the f, are bounded; let

[ fllve = sup || fpllve- (7)
p=>0

Remark 4.1. In some cases F,(xo.,) = ZZ:O fplxp—1:p) (x—1 is null) is of interest. This can
be dealt with by either introducing a dirac mass in the Markov kernel M, and using multistep
drift and minorization condtions (see [Z1] for a discussion), or with some modifications of the

following arguments.

Theorem 4.1. Assume (AIHA). Then if || f||ve < +00, a € (0,1/6) there exist a ¢ < +o00 which
only depends upon the constants in (Al), (ARME) such that for any n > 1:

02(Fo) < el floe(n +1).
Proof. Recall



Let us consider the term

np(Dp,n(Fn))
o) { P (o) — 2 DanlE)

in the asymptotic variance expression. We have the simple calculation:

Np(Dp,n(F)) _ (6x @mp —1p @ 6E)(Ep,n(Fn ®1))
Np(Dp,n(1)) Np(Dp,n (1)) Dp,n (1) ()

where Dy, ,, = D, ® D,, and the ® notation is used to denote operators/functions on the

Bpn(Fn) () —

product space. Then, using the additive nature of the functional F;,, one derives:

p—1
(5% & Np —1p @ 51p)ﬁp,n(Fn ®l) = Z(éwp @ Np —1p O 51p)(§p,n(1)ﬁp:q(fq ®1))
q=0
D (O, @ Mp — M @ 02,) (@ o (£7 @ Ty (1))
q=p

where Mp.g = My, 1. Myt

We consider first for p > 1:

hyp (2 p-! - B o B
Dy (1) Dy (D) 250 & e 02) (@Dl & 1)) =
" Qp an Qo (D) [Myg(F) () = Mpg(£))):

By Proposition [B:2] the R.H.S. is upper-bounded by c||f||yev(x)?**. Then we consider (which

covers the case p = 0)

hpn(2) = _ - o) _
np(Dp,n(l))Dp,n(l)(x) ;(5% QMp —Mp @ 5Ip)(QP1q((fq ® UQ%"(U)) -
hpon

Oyl ))Q,,n 7 2 0 @ 1 = 1 © )@y (g © 1Qyn (D))

By Proposition [B] the R.H.S. is upper-bounded by c|| f||,av(x)3®. Thus, we have proved that
Tn(Fn) < || flloa Y mp(0).
p=0

We conclude by noting a € (0,1/6) and using |21l Proposition 1]. O

5 An Example

An example where our assumptions can hold, is that of [2IL Section 3.2], with some minor

modifications. We recount the details here. X = R with n > 0
X1 =X+ W, Wy, "5 Ny (0, 1,,)

10



I, the d, x d, identity matrix. One can take V(z) =1+ %, do > 1. The observation model
is taken as

Yn|Xn =T~ Ndy (H(I)a O'QIdy)

where H : X — R%; that is G,(z) is the d,-dimensional Gaussian density with mean H(z)
covariance I4, and is evaluated point-wise at the observed y,. It is assumed that the actual

observations lie on a space Y, C R% with Y, compact. If H is bounded such that

e 146 1 H(z)TH(z)
lim sup ——<—————~ + — sup |y sup NTH(z) - ——~2 "2 <0
7= > 2 o(1+d0) o yev, i [Al=1 (@) 202

with §; € (0,1) then one can verify all of the assumptions, including 1/G,—1 € Z,s/2 using the
work in [21], apart from (AB]). This latter assumption will hold, if one can show that for each
a€(0,1/2)
inf (( inf Ha(w.9))o(s)" ) >0, (8)

This is because 7,—1(Cq) can be shown to be lower-bounded uniformly in n (see the proof of [21]
Lemma 8]) and G,,_1 is (uniform in n) upper and lower-bounded if Y, is compact (which it is).
Simple calculations show that (8) can hold if 05 > 4 and then taking 1 < §p small enough.

Another observation model (with the above hidden Markov chain and v(z)) for which one
can verify the assumptions of this article can be found in [2I, Section 3.1.1.]. Here one sets
Y, =Y = {0,1}% and writing B(p) as the Bernoulli distribution with success probability p, the
observation model is

Yol Xn =2~ B(p(a")) @ - @ B(p(a®))

where p(z) = 1/(1 4+ e *). It is easily shown that 1/G,_1 € Z,s,» and all the other assump-
tions apart from (AB]) easily follow. The latter assumption will follow by the above calcula-

tions and the fact that (treating G,, as a function of the observations also) G, (z;y) < 1 and

inf(y,z)GYXCd Gn(x, y) > 0.
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A Technical Results for Central Limit Theorem

Throughout this Section we suppose that for any n > 0, |G, ||cc < 400 and this is ommited from
all statements below. We also use E[-] to denote expectation w.r.t. the particle system. Z2 is

the natural filtration of the particles at time n.
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Lemma A.1. Assume (ADH3). Suppose that for each n > 0, 1/G,, € Z,s, with 6 as in (Ad).

Let p > 0, then for A—a.e. z, € X and any F € B,(X" 1)
[Dy'n = D) (F)(2p) —p 0.
Proof. By [, Lemma 6.1], we have

(D = Dyl (F) () = D [ My g — Myg2,0 )] (Spgn(F))(@p) 9)
=0

q

where for p € P,0<g<p

(drg) Qg p—1(Tgs dTgr1:p—1)Gp—1(Tp—1) Hp(Tp—1,Tp)
1Qq,p—1(Gp—1Hp (-, xp))

My g (T, drgp1) =
Q4. p—1 is defined in ([B]) and

S;é\,]q,n(F)(wqip) = / Qp,n(xpadxp-i-l:n)M(]]V(xqudwO:q—l)F(xO:n)

Xa+n—p

see (@) for a defintion of M. We note that

N
sup  [Spgn
TqpEXP—atl

(F)(@g:p)| < el Flloo (10)

where c¢ is a finite constant that may depend on p,n but not N. We will show that each summand
on the R.H.S. of (@) will converge to zero in probability.
It is first remarked that by (All), (AB]) and Proposition [A]]

Gp—1Hp (- xp)
Np—1(Gp—1Hp (-, p))

Gp-1Hy(-, zp) )

N
Nq Qqﬁ”*l( np_l(Gp—al('ux;D))

) —P Wqu,pq(

and
Gp—1Hp(-; wp)
npfl(pral('v xp))

so it is enough to show that

Gp—1Hp (-, zp) )

N
@4 (0 1) Qa1 T 1(Gyr oy, 23))

) —P anq,p—l(

e (Gt ) (= 2| Qoo (e Sy e ) )

converges in probability to zero. We have via Jensen and the (condtional) Marcinkiewicz-

Zygmund inequalities that

E <

[név - q)q(név—l)] [Qq,p—l (ﬁpfgjé;]iﬁ;(gf?ip)) Szjv\qu(F))] ‘

241/2
pral('v‘Tp)

Q-1 (5,0 oy S ) D)

TNE[
By [@0)

ks Gp—1Hy(-, zp) 1\2 12
‘| = el FilE [qu_l(ﬁp1(Gp1Hp('v$p)))(Xq) ] '

Gp—1Hp (-, 7p) N X1

E Qq)p_l(T]pfl(pral(';Ip)) p,q,n(F))( q)

12



Then by (AB]) and repeated application of [2I, Lemma 3], we have

Gp—al('vxp)
Np—1(Gp—1Hp (-, p))

then, for E[v(X)?*], Jensen and application of Lemma [A3] yields that

1/2
Jox?| < eote) Bl

E {Qq,pl(

Gp_1Hy (-, zp) ¢
IEN—<I>N_[Q L gl L(F < —=u(xp)"
[77q q(nq 1)] q,p—1 (np—l(Gp—al('7xp)) p,q,n( )) = N ( ZD)
Thus we have shown that
Gp—1Hy(-, 2p) N N [ Gp—1Hp (-, zp) N ]
_ - " Qup— S (F

Qo 1(77p71(GP*1Hp('733p))) ([nq o=l Qo 1(771071(G;D*1Hp('733p>) pan( )) )
converges in probability to zero, from which we can conclude. O

Lemma A.2. Assume (ADM3). Suppose that for each n >0, 1/G,, € L, s/2, with § as in (A,
then there exist a 1 > v > 0 such that for any n > 1 there exist a ¢ < 400 such that for

A—a.e. T, €X

E

14+v
1 < CU(.’L‘n)(1+U)a

ng—l(Gn—lHn(Hxn)) _ 77n—1(Gn—1Hp(-,:vn)) 1
nrjyfl(anl) Nn—1(Gn—1) Nn—1(Gn—1 Hy (-, 20))

where a is as in (A3).

Proof. Throughout c is a constant whose value can change from line to line, but only depends

14+v
|<

upon n. We have
nyzlv_l(Gn—l) nn—l(Gn—l) nn—l(Gn—lHn('u :En))

|
1 14+v
(i o )

Then, application of (AB]) gives that
14+v
1 . (11)

|

We will show now that (see the R.H.S. of (II]))

lmel(Gann(»xn)) - nm(Ganpc,xn))] 1

Ny 1 (Gr1Hy (- 7))
77711\],1 (anl)nnfl(anlHn('v .In))

0h_1 (G Ho (-, 20))
nrjyfl(anl)nnfl (anlHn('a In))

771]:]—1 (v?)
nﬁil(Gn—l)

1+v
] < Cv<wn><””)aE[

777];[—1 (v?)

14+v
—_— <c
nrjzv—l(Gn—l) ‘| N

for some 1 > v > 0 when a = 1/2 (recall « € (0,1/2)). From the proof of Lemma [A3] equation

(@) one can show in a similar manner that
1
E l 1y (v2)

1+v
m 1 S CE[{mjy_l(v%)nﬁf_l(vé/z)}uv]'

13



Then we have by Minkowski
E[{n1 (02)mh 1 (o)} ] <

N2(1+v S (B[ {Z P LR[S e )ru(xd 1)3}1+U}%>1+v§

7]

N(N —

1 1) .
9 E[ (X717, 1)2v (X721 1)

N2(1+v)

5 v) 4 L
a+ )2(1+ )} jE

(NE[ (X’rll 1) v+ 5(12+v)]1+%)1+v'

Let 0 < v < (1 —=10)/(1+9), we will show that two expectations in the line above are upper-

bounded by a constant. For

A+8)A+o) ] —

E[v(X,-1)

one can apply Jensen followed by Lemma For

we can apply Cauchy-Schwarz to obtain the upper-bound
E[o(X!_ )70 Efu(X2_, )50+ 2

the left hand expectation is controlled via Lemma [A3] and the right-hand via Jensen followed by

Lemma [A-3l Hence one can deduce that

1+v
B iy (v 5 ) <
N <c
-1 (Gn* 1)
for some v > 0 which concludes the proof of the Lemma. O

Proposition A.1. Assume (A1-2). Suppose that for each n > 0, 1/G,, € L5, with 6 as in

(Adl), then for any 0 >0, f € La/are), n >0

nsz\](f) = M (f)-

Proof. The result is proved by induction. The case n = 0 follows by the weak law of large
numbers for i.i.d. random variables; 1y € P,. Thus, the result is assumed for n — 1 and we

consider n. We have

[ =] (f) = [ — @u()_DI) + [@n(mh1) — ] (f)- (12)

We first deal with the second term on the R.H.S. of (I2)). We have the standard decomposition

1 1 N 1
[7752’_1(0”_1) " 1(Gn1) 1 (@n(F)) + Mn-1(Gn-1)

[0 (1n—1) =] (f) = [ = 1a) (Qu(f))-

14



By the proof of 21, Lemma 3] Qn(f) € Z,1/a+0 (recall that for any n > 0, [|G, /e < +00), s0

by the induction hypothesis, it follows that

(@5 (1) — nal(f) = 0. (13)

We now deal with the first term on the R.H.S. of ([I2]). One can use [8, Theorem A.1], which
can be applied by Lemma A3l We have to verify Eq. 25 and Eq. 26 of that paper: in the notation

of this article, they read:
o supy P(@, n(n)_1)(|f]) > k) = 0 as k — oo.

L] % sz\ilE [|f(x;1)|]1{\f(w;)\/]\726}| yﬁl} —Pp O, for any € > 0.

The tightness condition (i.e. the first bullet point), Eq. 25, readily follows from equation (I3]).

For the second bullet point, set 0 < v < p A /(1 — §), one easily has

1

N
1 .
—EIE IV Ty poi ZN 1 <o, (nN oy —
N vt [|f(xn)| {|j(zn)\/N25}"/n—1] = (nn—l)(|f| )(EN)U

As Qun(Jf|*) € Z,1/a+0 by construction, it follows that

1

<I>n(n,i\’,1)(|fl”“)m —p 0

which completes the proof.

O

Lemma A.3. Assume (A1-2). Suppose that for each n > 0, 1/G,, € Z,s, with 6 as in (A,

then for any n > 0 there exists a ¢ < 400 such that for any N > 2
Ep(X,)] < ¢ (14)

Proof. We proceed via induction. The case n = 0 follows as ny € P,. Thus, we assume for n —1

and consider n:
mjffl(Qn(v))]

E[u(X1)] :E[anl(anl)

n

Now, consider

1
ng—l(Gn—l) = ng—l(Gn—lvlsﬁ)
_ 1
> /Gl ()
1
2 ||1/Gn71||_17. (15)
v ny 1 (v9)

So, we have that

E[v(X,)] < 11/Gn-1llos Bl (Qn(0))m371 (v°)].

15



Now via the multiplicative drift Q,(v) < cv'~?, so

Bl @u()ia () B[ (o) + e )’
i i#£]
= c(BlCe )+ S B ,)))

< 2E[u(X, )]

where we have applied Holder to get to the last line; the induction hypothesis completes the

proof of ([I4).

B Proofs for the Asymptotic Variance

We give the proofs which are used for Theorem Il bounding the asymptotic variance. This is

broken into three sections: controlling the forward part of the asymptotic variance:

hy
Np (Qp, (1 ))Q}L

Z (6x @np —1p @ 51)(@p,q((fq ® 1)©q,n(1)))

‘IZP

controlling the backward part of the asymptotic variance

Z Mp(Qpn (1) [Mpiq(fo) (@) — Mp:q(f3)])

Tlp Qpn

and the technical results used to achieve this. Recall || f||o is defined in ().
The following additional notations are used in this Appendix. We write E@n as the ex-
pectation w.r.t. the inhomogeneous Markov chain {X,},>0 on X := X? with initial distribu-

tion p ® n and transition Hy(zp—1,2p)Hp(Yp—1,Yp)A(dzp) @ M(dy,). We also use the notation
pq _Z Cd(Xk)]ICd(Xk‘i‘l)

B.1 Controlling the Forward Part

Proposition B.1. Assume (AIHZ), (AGHB). Then if || f|loe < 400, a € (0,1/3) there exist a
¢ < 400 and p € (0,1) which depends only upon the constants in (Ad), (AGHB), such that for any

reX

hy
Mp (Qp, ( ))Qp,

5 D 098 @y ()T 1) < oty {14 T,

(16)

Proof. We break up our proof into controlling the summands on the L.H.S. of (I6]).

16



Case ¢ = p. We first consider the case ¢ = p in the summation on the L.H.S. of (). Then

we have

(6x ® Np —Mp @ 6w)(§p,q((fq ® 1)§q,n(1))) = (0. ® Np — Mp ® 62)((fp ® 1)@;),71(1))-

Then as f, € £, we have

6z @ mp((fg ® 1)Qp,n(1)) <[ flloev(2)* Qpn (1) (2)7p (Qp,n (1)) (17)

Thus by using a similar argument to ()

(62 @ 1p —1p @ 62)((fp ® 1)@;0,71(1)) < e[ fllve Qpn (1) (@) [0(2)*np(Qp,n (1)) + 1p (v Qp,n(1))]-

Hence, we have that

hp,n(ﬂv B .
00, e O & = 8 8:)(f @ 1Ty (1)) <
M v(x)® v
c|| fve np(Qp,n(l))[ (@) np(Qp.n (1)) + np(v*Qpn(1))] (18)
Now for the first term on the R.H.S. of ([I8]) we have
M’U z)“ cv(x 2c
Np(Qp.n(1)) ()N (Qpn(1)) < cv(x)

where we have used Propositions 1 and 2 and Lemma 3 of [21], i.e. that sup,,~1 supg<, <, [[Ap.nllve <

+o0. For the second term on the R.H.S. of ([I8) we have for any r € [d, 00)

hpn(2)
Mp(@p,n (1))

where we again use sup,, Supg<,<, [[2p.nllve < 4+00. By Proposition 1 of [21] sup,,> [[7,(0**)[[ve <

Mp(V*Qp,n (1)) = hp,n(2)0p (V" hpn) < Cv(x)anp(vza)

+o00, thus
hpn ()
1p(Q@pn(1))

Thus for the case ¢ = p we have established that

hp,n(2)
Mp(Qp,n(1))Qpn(1)(2)

Case ¢ = n. Second, we consider the case ¢ = n in the summation on the L.H.S. of (I8)).

1p (v Qp.n(1)) < cv(x)®.

(02 @ 1p —1p @ 62)((fp ® 1)§p,n(1)) < CHvaQU(x)m' (19)

Then we have

(02 ® Mp = Mp @ 02)(Qy (g ® 1)@y (1)) = (02 @ 11p — 1p ® 02)(Qp 1 ((fp @ 1)))-

Then, one can apply the proof of Theorem 1 of [2I] to show that there exist a p € (0,1) (which
depends upon the the constants in (AIH), (ABHE))

(02 @ 1p — Mp @ 62)(Q),  ((fp ®1)))
Np(Qpn(1))Qpn(1)(z)

Up,n,a(T)

172,

<l flloe p(v®)p" "

17



where vy o(z) = v(@)*||hp nllve /hpn(z). Thus we have established for ¢ = n:

(6z ® Mp —Mp D 51)(@p,n((fp ®1)))
Mp(Qpn (1)) Qpn (1) ()

Case p < ¢ < n. Lastly, we consider the case p < ¢ < n in the summation on the L.H.S. of

hpn () < cl[fllvev (@) p(v®)p" . (20)

([I6). Using almost the same calculations as [2I] Theorem 1 (which themselves rely on the proofs
of [10, [I7]) we have for arbitrary d, 8 € (0, 1):

(6x @mp —1p @ 6w)(§p,q((fq ® 1)@(1,71(1))) < 2”][”1}‘*{1&5 Qnp [1:[ aq(YS)ﬁ(yq)a@q,n(l)(yq)x

p

—5d

i ey ,
Lart 2o-mPa "] Es ®%UG (X )Jo(X0)* QoM (X o) 71 <(q-p) Pa ]} 1)

N2
where pg = 1 — (Z%) . We begin by considering the first term on the R.H.S. of (2II), when

d

multiplied by the term outside the summation on the L.H.S. of ([[@]). As in Theorem 1 of [21] as

pa < 1 we have:

q—1 —7d

= (Y \=(Y \a) ~ Mp,q
. E5z®77p[ GQ(XS)U(XQ) Qq n( )(X )H{szqZB(q—p)}pd ]S

pla=p)p, (I)Qp,q(anq,n(l))(x) Np[Qp,g(vV*Qgn(1))]
m Qp,q(Qqn(1))(z) np[anq(Qq,n(l))]'

Then, one can apply Lemma [B.1] to show that

hpn(2) T7 (7 % \ar ~ M, , B(a—p) o
@ (D)@ @) HG (R Qun (V)i s pyfa ™ < ellflompf @ ol

Now consider the second term on the R.H.S. of (ZII), when multiplied by the term outside the
summation on the L.H.S. of ([8l). We have
@), [{ T2, B (K} @y DKzt ] _
Qp,n(1)(@)1p(Qp,n (1)) B
e(d, o, B)u(v**)v(x)* exp{—(g — p)e(d, a, B)]}-

where we note that d was arbitrary above and we have applied Lemma[B:2l Then, one can make

d larger so that we have for p < g < n:

hp,n ()
Mp(Qpn(1))Qpn(1)(2)

where p € (0,1) depends upon the constants in (All), (A2HE) as well as a.

(62 @ 11p = 11p ® 02) (@4 (fg © Qg n (1)) < €l fllomp? Po(2)®  (22)

Then, combining ([I9), 20) and (22]), we have proved that for any = € X

hp.n () - —= = o - a—p
O ()G ;(5z®77p—77p®5z)(%q((fq®1)Qq,n(1))) < cull fllvov(z)® [1+q:zp;rlp ]

from which we can conclude. O
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B.2 Controlling the Backward Part

Proposition B.2. Assume (ADHA). Then if ||f|yo < 400 for o € (0,1/2) there exist a ¢ < +00
which depends only upon the constants in (Adl) and (AHA), such that for any x € X, p > 1

p—1
S (@ (DM ()0) ~ M) = €l ool (23)
p(&p,n o

Proof. Consider the summand in (23])

( Qs (D[ Myg () () = Myg (F0)]) = |1l (| @pon (D)0
Then applying Lemma [B3] we have the upper-bound
Mp(Qpn(1)[Mpig(fo) () — Mp:g(fg)]) < CHf”v‘*p(p_q_l)np(Qp,n(l)Ua)U(x)a'
Thus (23) is upper-bounded by
cll fllvoPp,n (@) (hp,nv®)o ().
Then we have

el fllvehpn(@)np (hpnv™)v(2)®

IN

cllfllossup sup [lhp,nlloa]®v(@)*np (0 )o(2)*
n>10<p<n
2c

IN

cllfllvolsup sup ||hp,nllve]? sup [[1p]]v20 v(2)
n>10<p<n p>0

By [2IL Propositions 1,2] [sup,>1 SuPo<p<n [1p,nlloe]* supysg [[77pllo2e < 400 and we conclude

that
hpn(z) %=
Wf&)) q;)np(Qp,n(l)[Mp:q(fq)(I) = Myg(f)]) < ell fllomv(a)
as was to be proven. O

B.3 Technical Results
B.3.1 Forward Part

Lemma B.1. Assume (AIH2) and (AJH0). Then for any a € (0,1/2) there exist a ¢ < +0o0
depending only in the constants in (Ad), (ARA), such that for anyn >1,0<p<qg<n, x € X:

Qpa(V*Qqyn (1)) (@) 7p[Qp.q(v*Qyn(1))] <
Qp,a(Qqn(1))(@)  1p[Qp,e(Qgn(1))] —

Proof. Note that throughout ¢ denotes a generic finite constant that may depend upon «, but

hpn (@) cv(x)®®.

whose value may change upon each appearance. Define the Markov semi-group T}, ,(z,dy) =

Qp.q(2,dy)/Qpq(1)(x). Then we have

Qp,g(V*Qq,n(1))(®) 7p[Qp,q(v*Qqgn(1))]
Qpg(Qan(1))(x)  1p[Qp.g(Qgn(1))]

Tp,q(vahq,n)(‘r) Mp [hp,quyq(vahq,n)]

Tpg(hgn) (@) nplhp,gTpg(hgn)]
(24)

hp.n () = hpn(x)

19



We will consider the R.H.S. of (24)); first the term:

hpn (1) Qpn(D (@) Qoa(D (@) ITiZ, As
Tpq(hn) (@) TIIZ0N Qpn(1)(2)

s=p 7'S

where Ay = 1n5(G) and we have used, recursively, [2I Lemma 1]. Then by cancelling, it clearly

follows that
hyp ()
= Dy, 4().
prq(hq,n)(x) P

Hence, combining our calculations together and returning to (24)), we have established that

Qp.g(v*Qqn(1))(x) Np[Qp.g(vV*Qyn(1))] Mp[Pp,qTp,q (V¥ hg,n)]

prq(qun(l))(I) Tlp [Qp,q(Qq,n(l))] Mp [hpqup,q(hq,n)] '
(25)

hp,n () = hyp,q(2)Tp,q (v g0 ) ()

We now focus on the term 1/m,[hp oTp q(hqn)] in 25). We note that for any = € X:

_ an(l)(:v) Qp,n(l)(iﬂ)
15, Qua(D)(@) T, Al

By Lemma 10 of [2] for any arbitrary d € [d, 00), inf,,>1 info<p<y, infac o, hpn(2) > 0 and so for

hpyq(I)Tp,q(hqyn)(I) = hpyn(x)-

any d as stated and by using the above calculation:

np[hp,qu,qmq,n)Jan[ﬂcdhp,n12np<od>[inf inf inf by (o).

n>10<p<nzec,
Now by using the proof of Lemma 8 of [21], page 2527, we have for d large enough, that there is

a finite ¢ > 0 such that

)| 08 18 )] 2

Thus returning to (28), we have

Qp,g(V*Qqn(1))(x) 7p[Qp,q(vV*Qy,n(1))]

" )G Qun @) 1lQa(Qan (1)

< chyg(2)Tp.q (v hgn) (T)p [Pp.g Tp.q (v hg )]
(26)

Now using the above arguments, we have sup,,~; Sup;<,<,, [|fgnllve < +00, so we have for
any x € X
Tpq(v*hgn) () < Ty q(v**) (@)

where ¢ does not depend upon p,q,n. Then using the calculations of [2I, Theorem 1], which
arrive at the equation (61), page 2532, one has
a Up,g,2a ()
Tp,q(v"hgn)(2) < e (27)
7.l v2e
where vy, .26 () = v(2)2%||hp.q4llv20 /hp q(7) and we are invoking Lemma 3 of [21]. Hence, return-

ing to (28], we have

Qp,g(V*Qqn(1))(T) Mp[Qp,q(v*Qy,n(1))]

cv(z)3e "y n
Qs @an )@ @ @an ()] = Mol aTpa(v el (28)

hp,n(2)
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We now turn to 0, [hp qTp,q(vhe,n)] on the R.H.S. of ([28). By using ([271), we have

Np[Pp,gTp,q(vV*hgn)] < cmp (”m)

where ¢ depends upon « only. Using Proposition 1 of [21I] (noting again Lemma 3 of [21] and

that o € (0,1/2)), we can thus conclude that:

prq(”aqun(l))(z) Wp[prq(UaQq,n(l))] < cv(a
Qp.q(Qqn(1))(x)  1p[Qp¢(Qqn(1))] —

which completes the proof. |

)3&

hp,n(2)

Lemma B.2. Assume (AIH3) and (AGHB). Then there exist a d € [d,00) such that for any
a € (0,1/3), B € (0,1) there exist a 0 < ¢(d, o, B) < +00 such that for any,n >1,0<p < qg<n,

r e X:
o (@)oo, [ { T2 () ) QD Kodigs (]
Qp,n(1)(2)0p(Qp,n(1))
e(d; o, Bu(v* yo(w)** exp{~(g ~ p)e(d; o, B)]}.

<

Proof. Throughout ¢ denotes a generic finite and positive constant that depends upon «, 3, d,
but whose value may change upon each appearance. The dependences of ¢ are omitted in the
proof to simplity the notations.
We can rewrite
hyn@)Es, e, [{ T2, Gu(X) PR QDX )yt ]
Qpn(1)(@)np(Qp.n(1))

o (@), | { T} o) o) P Kl g, |
Qp.q(hg.n)(@)np(Qp.q(hg.n)) '

Now consider the term: % in ([29). We have

hpn(@) QM@ A 1
Qpalhgn)(@)  TI22) XQpa(D)(x) T2, A

Now, using Propositions 1 and 2 of [2I], A := infs>¢ A\s; > 0 and thus by the above calculation it

follows that

This leaves us with

(@B, o, [ { T3 Cal(K) o (X)) " Qo D X iy ]
Qp,n(1)()0p(Qp,n(1))

Eiz®np H HZ;; G (YS)}E(YQ)O% (Y )HMP <Bla— p)}
AP0, (@Qp.g(hgn))
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The next term we consider on the R.H.S. of B0) is 1/7,(Qp.q(hqn)). Pick ar € [d,d) fixed.

Then we have by repeatedly applying (AH)

Np(Qp.g(hgn)) = Mp(Qpq(Cr)) 1nf 0<1n£ inf hgn(v)
qsnTeC,
- q—p
> p(Cr)(e; VT(CT)) mfl Oézlinmlencf’ hgn (7).

Now by Lemma 10 of [21] inf,,>1 info<y<y infz . hgn(x) > 0 and for r and hence d large enough
inf,>0n,(Cr) > 0 by the proof of Lemma 8 page 2527 of [2I]. Now fix r from here-in. Thus we

have shown that for r, d large enough:

hpn(2)Es, @n, [{ Hg;;as(ys)} (X)*Qqn(1)(X, Mz o g <Bla— p)}
(1

Qo D@ @y (1) :
CE&I%H ir}T(c ))w Wm’qw(qw)l (31)

Now to complete the proof, we note that as hy,, € Ly and sup,,>1 SUpg< <y, [|hgnllve < +00,

by Propositions 1, 2 and Lemma 3 of [21], the upper-bound of the R.H.S. of (BI):

Es.om H Hg;ll’ Ga(X.) }E(YQ)SQHM;KWWP)}

‘ (Aer v, (Cry)T?

Then by the proof of Theorem 1 of [21I], pages 2533-2534 we note

Es.en, |{ H Go(X) JoX )" Eze iy | < enlo™)(@)* exp{=dd(q—p)(1- B)/2+3d5/2}.
Hence we have proved that for r, d large enough

By @)Es, e, [{ T2 Go () (R Ry D E )izt ]
Qp,n(1)(2)1p(Qp,n (1)

cp(v3*)o(2)* exp{—(q — p)[dd(1 — B)/2 + log(A

) <
) +log(e, " pur (Cr)))] 4 3d6/2}.

On noting that r is fixed, one can increase d to ensure that the result holds true. O

B.3.2 Backward Part

Lemma B.3. Assume (ADM@). Then for any a € (0,1/2), p > 1, ¢ € {0,...,p — 1} there exist
a ¢ < +oo which depends only upon the constants in (Adl), (ARHE) such that

sup  sup |Mp:q(f) (@) — Mp:g () (2)]

— < cp(P—q—l)'
(z,2)eX | fI<ve v(x, 2)e

Proof. We start by using Lemma 4.3 of [7], which provides the neat reversal formula:

Wq(qu,pfl[(Qp('a z)])

Mp:q(f)(x) = nq(Qq7p_1[Qp('7w)])

Ve e X (32)
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where we use the abuse of notation uQ,(-,z) = [ pu(dy)Gp—1(y)Hy(y, z) for any o—finite measure

1.
We first focus on the case that ¢ € {0,...,p —2}. We note that using a similar proof to [21]

Lemma 1] that for any ¢ : X = R

M(Qap-1(2)) = (ﬁxs)np_lm (33)

Using the representation ([B2) and the identity ([B3]), we have that

(10 1) Q1100 (s D)@y 1@, )] = Quip 1@ (- N @y 1@, )]
(220 ) 11 Qo)1 (@ 2) o, 2)

Consider the argument of the function that is operated on by (74 ® 14), when excluding f on

(34)

the R.H.S. of (34). This can be written as

(0s ® 0t — 0t ® 65)(Qq,p—1(Qp('v ) @ Qp( 2)))-

Then by (AB) as Qp(y, z)/Np—1[Qp(, x)] € Lo, and via decompositions and calculations in [10]
and [I7] (see e.g. the proof of Theorem 1 of [21])

(05 @0 — 61 ® 05)(Qg p—1(Qp(-,7) @ Qp(+,2)))
Np—1[Qp (s ) ]0p—1[Qp (-, 2)]

where ¢ depends on sup,~; [|Qp/1y—1[@p][z= and

< (05 ® 0) Ry p—1 (7)) (x, 2)

R (z,dy) = Q,(z,dy) — Iz, () (e )*va ® va(dy)

with Z = (z1,22) € X, § = (y1,2) € X and Ryp-1 = Ry+1...Rp—1. By the calculations of [21]
Theorem 1, pp. 2532-2534], we have that

5d(1 — B) ] 30d

(6,900 Rap1.(5%) < cpf ™ VQ, 1 (0%) (5. ) +cexp { —(p—g—1) [ 2 —2ba| + 5 }(s,1)°

N2
where ¢ does not depend upon d, d > d, § € (0,1) are arbitrary and pg = (1 — (%) ) Thus

d

returning to ([B34)), we have established that

Mysy(£)(@) = Myo D)) (17, )2
= v(a:,z)o‘pq = C(sl:[q)\s) x
1= od(1 — od
(ng ® nq)(vo‘{pg(p 1 1)Qq7p,1(50‘) + exp{ —(p—q-—1) {uTﬁ) - 2b¢} + %}EO‘D (35)
We split the R.H.S. of (B3] into the sum of two expressions:
p—2 9 .
o(TI) “u@n) (v2pi Qa0 (36)
5=q
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and

c(]:_H:/\S>_2(77q ® nq)(vo‘ exp{ —(p—q—-1) [M _ 21@] 4 %}Ea) (37)

We start with ([B):

Cpg(;qufl) Ng(v° Qg p-1(v*)) 1g(Qgp-1(v*))

p—2 p—2
Hs:q )\5 Hs:q )\5

By [2I, Theorem 1] we have the upper-bound
Cpg(pﬂﬁl)nq(va[hq,p—lnp—l(Ua)"‘ﬁﬂ(p_q_l)ﬂ(va)Cuva])nq([hq,p—lnp—l(Ua)"’ﬁﬁ(p_q_l)ﬂ(va)cuva])

where ¢ < oo, p € (0,1) that does not depend on d. As sup,q Sup;<,<q41 |hgp—1lve < 400
by [21, Proposition 2] and by Proposition 1 of [21I] we have that sup,s [[7,—1(v¥)[ye < 400 we
have the upper-bound on (30])

Cprg(P—q—l)nq(v2a)nq(va)

where again, ¢ does not depend on d. Noting that « € (0,1/2) and applying Jensen and again
[21] Proposition 1, we have the upper-bound cpg(p_q_l) for ¢ independent of d.

Now, turning to (37)), by Proposition 2 of [2I] inf,>¢ A, = A > 0, and, by the above argument
supp>1 [[7p—1(v**)[Jye < +00 hence we have the upper-bound on (B7)

cexp{ —(p—q-— 1)[@ —2b¢+210g(3)} + ?}

Thus combining this upper-bound, with that of cpg(p ~4=Y on [B6) and recalling that the sum of
these terms upper-bounded the L.H.S. of ([B3]), we have established that

Mp:q(f) (@) — Mpq(f)(2) d(1 — )
v(x)*v(2)® 2

< c[pf(pfq”“rexp{—(p—q—l) _2bi+210g@)} +¥H

where ¢ € {0,...,p — 2}, ¢ does not depend upon d and d > d is arbitrary. As d is arbitrary, we

can conclude that for d large enough, there is a p € (0, 1) such that for any ¢ € {0,...,p — 2}

|Mp:q(f)($) - Mp:q(f)(z)| < cp(p—q—l)

v(z)*v(z)>

sup  sup
(z,2)eX | fI<v™

with ¢ < +00.

For the case ¢ = p — 1 we have, by definition of the backward kernel
My, (f)(x) = My, (f)(2) Mp—1(fQp (-, 7)) mp-1(fQp(, 2))

v(z)*o(z) T 1 (@G )u@)v(z) mp—1 (@ 2))u()ru(z)e
By (AB) as Qp(y, x)/mp-1[Qp(-, )] € L5 and as v > 1, we have

Mp)"h)—l(f)(x) — Mpn, (N)(=)
v(@)*v(z)”

< enp—1 (v2°‘ ).

Using « € (0,1/2) and [21I], Proposition 1] we can conclude. O
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