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Abstract

In the following article we consider the time-stability associated to the sequential Monte

Carlo (SMC) estimate of the backward interpretation of Feynman-Kac Formulae. This is

particularly of interest in the context of performing smoothing for hidden Markov models

(HMMs). We prove a central limit theorem (CLT) under weaker assumptions than adopted

in the literature. We then show that the associated asymptotic variance expression, for

additive functionals grows at most linearly in time, under hypotheses that are weaker than

those currently existing in the literature. The assumptions are verified for some state-space

models.

Keywords: Particle Filter, Central Limit Theorem, Smoothing.

1 Introduction

Feynman-Kac formulae provide a very general description of several models, such as hidden

Markov models (see e.g. [3]), used in statistics, physics, computational biology and many more;

see [4]. For a measurable space (X,B(X)), f : X → R (bounded for now), the Feynman-Kac

formula associated to the n-time marginal, n ≥ 1 is:

ηn(f) :=
γn(f)

γn(1)

with, for µ a probability measure on X, Gn : X → R+ (bounded), n ≥ 0, Mn : X×B(X) → [0, 1],

n ≥ 1

γn(f) :=

∫

Xn+1

f(xn)
[ n−1∏

p=0

Gp(xp)
]
µ(dx0)

n∏

p=1

Mp(xp−1, dxp). (1)

We take η0 = µ. In the context of HMMs, ηn represents the predictor, equivalently, the con-

ditional distribution of the signal given the observations up-to time n − 1. In many practical

applications, such as the smoothing problem in HMMs, one is interested in the formula, for

Fn : Xn+1 → R (bounded for now),

Qn(Fn) =

∫
Xn+1 Fn(x0, . . . , xn)

[∏n−1
p=0 Gp(xp)

]
µ(dx0)

∏n
p=1 Mp(xp−1, dxp)

∫
Xn+1

[∏n−1
p=0 Gp(xp)

]
µ(dx0)

∏n
p=1 Mp(xp−1, dxp)

.
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In practice this formula, as well as that for the predictor is unavailable analytically and one must

resort to numerical approximation procedures, in order to compute it. We remark that Qn(Fn) is

of interest, not only for smoothing for HMMs, but many other application areas; see for instance

[7] and the references therein. In this article we focus on the numerical approximation of Qn(Fn)

and simultaneously ηn(f). The latter task is often done quite well using SMC methods, as we

now discuss.

SMC methods are designed to approximate a sequence of probability distributions of increas-

ing dimension. The method uses N ≥ 1 samples (or particles) that are generated in parallel,

and are propagated via importance sampling (i.e. via Markov proposals and importance weights)

and resampling methods. The approach can provide estimates of expectations with respect to

this sequence of distributions of increasing accuracy as N grows. Standard SMC methodology is

by now very well understood with regards to its convergence properties and several consistency

results have been proved (see e.g. [4, 10]) along with the stability in time of the error of the

algorithm [11, 21] in the context of filtering for HMMs. These latter results are particularly

important as due to the sequential in time nature of the inference; one does not want the errors

over time to accumulate.

As noted above, SMC can be very useful for approximating ηn(f). However, it is well known

due to the path degeneracy problem (see [12]) that the standard SMC approach, of cost O(N) per

time step, for approximating Qn(Fn) performs very badly. For example, consider the CLT for the

standard SMC approximation of Qn(Fn), call it QN,S
n (Fn) with Fn(x0, . . . , xn) =

∑n
p=0 fp(xp),

fp : X → R, (additive functionals - this is of particular interest in application areas):

√
N [QN,S

n (Fn)−Qn(Fn)] ⇒ N (0, σ2,S
n (Fn))

where⇒ denotes convergence in distribution asN → +∞ andN (0, σ2,S
n (Fn)) is a one-dimensional

Gaussian distribution with zero mean and variance σ2,S
n (Fn). [19] show that, under strong as-

sumptions, σ2,S
n (Fn) ≥ c(n), with c(n), O(n2), i.e. grows quadratically in the time parameter.

One SMC approach designed to deal with these afore-mentioned issues is that of the forward

filtering backward smoothing algorithm (FFBS) of [13, 15] and in particular the SMC approx-

imation of the backward interpretation of Feynman-Kac formulae, write this QN
n (Fn). This is

a ‘forward only’ approximation of the FFBS algorithm, which is of cost O(N2) per time step,

and several convergence results for this algorithm (and FFBS), including a CLT are proved in

[7, 10, 14]; the assumptions used are fairly strong and do not always apply on non-compact

state-spaces X. The O(N2) cost per time step is counter-balanced by the time-behaviour of (an

appropriateley defined) error in approximating Qn(Fn) for Fn additive; it can be no worse than
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linear in time (see e.g. [14]), versus the O(n2) for standard SMC. For instance, [7] show that for

Fn additive, as
√
N [QN

n (Fn)−Qn(Fn)] ⇒ N (0, σ2
n(Fn)), under some strong hypotheses:

σ2
n(Fn) ≤ c(n+ 1)

with c < +∞ not depending upon n. As already remarked, these theoretical results are derived

under strong assumptions: In this work we weaken the hypotheses used in previous articles (such

as [7, 10, 14]). A related idea, the forward filtering backward simulation algorithm in [10] has

cost O(N) but we do not consider it in this article.

In the analysis of SMC algorithms, time-stability is often posed as follows. Writing ηNn (f) as

the SMC approximation of ηn(f), one has under minimal assumptions that
√
N [ηNn (f)−ηn(f)] ⇒

N (0, ϑ2
n(f)) and in the literature an often proved result, under additional assumptions, is that

ϑ2
n(f) ≤ c

where c does not depend upon n. The time stability of SMC has been studied in many papers

(e.g. [5, 16]), but, only recently have assumptions been weakened, for example in [11, 20, 21]. The

assumptions used in the early work of [5] relied on very strong mixing assumptions associated

to the underlying Markov chain of the Feynman-Kac formula. Significant efforts were made to

weaken this assumption and recent work of [11, 21] (see also [22]). These works, in the context

of the asymptotic variance in the CLT associated to the SMC approximation of the n−time

Feynman-Kac marginal, has used local Doeblin (see [9]) and multiplicative drift condions (see

[18]) to provide more verifiable assumptions for the stability of SMC. We use similar assumptions

to [21] to weaken the assumptions used in [7, 8] for:

1. Proving a CLT for the SMC approximation of the backward interpretation of Feynman-Kac

formulae (Theorem 3.1), that is

√
N [QN

n (Fn)−Qn(Fn)] ⇒ N (0, σ2
n(Fn)).

2. Giving a linear-in-time bound on the associated asymptotic variance expression when the

function is additive (Theorem 4.1), that is, for Fn(x0, . . . , xn) =
∑n

p=0 fp(xp)

σ2
n(Fn) ≤ c(n+ 1)

where c does not depend upon n.

This article is structured as follows. In Section 2 we give our notations, the algorithm and

estimates along with our assumptions. In Section 3 the CLT is proved. In Section 4 we prove the
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linear in time increase of the asymptotic variance expression for additive functions. In Section

5 we give an example of an HMM were our assumptions hold. The appendix contains technical

results for the proofs of the CLT and asymptotic variance and is split into two Sections.

2 Preliminaries

2.1 Notations

For a kernel M : X×B(X) → R+ and σ−finite measure µ on (X,B(X)) µM(·) :=
∫
X
µ(dx)M(x, ·).

For a function ϕ : X → R and kernel M (resp. signed measure µ), M(ϕ)(x) :=
∫
X
ϕ(y)M(x, dy)

(resp. µ(ϕ) :=
∫
ϕ(y)µ(dy)). For a given function V : X 7→ [1,∞) we denote by LV the class of

functions ϕ : X → R for which

‖ϕ‖V := sup
x∈X

|ϕ(x)|
V (x)

< +∞ .

When V ≡ 1 we write ‖ϕ‖∞ := supx∈X |ϕ(x)|. We also denote, for a probability measure µ,

‖µ‖V := sup|ϕ|≤V |µ(ϕ)|. The probability measures on X are denoted P . For µ ∈ P such that

µ(V ) < +∞ we denote µ ∈ PV . Throughout c is used to denote a constant whose meaning

may change, depending upon the context; any (important) dependencies are written as c(·). The

bounded, real-valued and measurable functions on a space Z are written Bb(Z). The notation

xk:n = (xk, . . . , xn) is used, with k < n.

Recall (1) which is defined in terms of potentials Gn and Markov kernels Mn. Throughout

the article it is assumed, for a σ−finite measure λ on X (typically Lebesgue) and each n ≥ 1:

Mn(xn−1, dxn) = Hn(xn−1, xn)λ(dxn)

where Hn : X2 → R+, with
∫
X
Hn(xn−1, xn)λ(dxn) = 1 ∀xn−1 ∈ X. We also introduce the

semi-group for n ≥ 1:

Qn(xn−1, dxn) := Gn−1(xn−1)Mn(xn−1, dxn)

with, for 0 ≤ p ≤ n, f : X → R, Qp,n(f)(x) :=
∫
f(xn)

∏n
q=p+1 Qq(xq−1, dxq) with the conven-

tion Qp,p = Id, the identity operator. We use this semi-group notation for operators that are

introduced later on. We will write weak convergence (as N the number of samples grows) as ⇒

and convergence in probability as →P. We write the d−dimensional Gaussian distribution, with

mean vector µ and covariance matrix Σ as Nd(µ,Σ) and if d = 1 we drop subscript d.
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2.2 Algorithm and Estimate

The SMC algorithm samples from the joint law

P
(
d(x1:N

0 , x1:N
1 , . . . , x1:N

n )
)
=
( N∏

i=1

η0(dx
i
0)
) n∏

p=1

N∏

i=1

Φp(η
N
p−1)(dx

i
p) ,

where x1:N
q = (x1

q , . . . , x
N
q ) ∈ X

N (0 ≤ q ≤ n), ηNn is the empirical measure 1
N

∑N
i=1 δxi

n
and

the operator Φn : P → P maps a probability distribution µ ∈ P to the probability measure

Φn(µ) ∈ P defined by

Φn(µ)(dy) =
µ(Gn−1Mn)(dy)

µ(Gn−1)
.

The estimate of γn(f) is γ
N
n (f) = [

∏n−1
q=0 ηNq (Gq)]η

N
n (f). Various results have been proved about

the convergence associated to ηNn (·) (resp. γN
n (·)) to ηn(·) (resp. γn(·)); see for instance [4].

Let Fn : Xn+1 → R, we will study the SMC approximation of

Qn(Fn) =

∫
Xn+1 Fn(x0:n)

[∏n−1
p=0 Gp(xp)

]
µ(dx0)

∏n
p=1 Mp(xp−1, dxp)

∫
Xn+1

[∏n−1
p=0 Gp(xp)

]
µ(dx0)

∏n
p=1 Mp(xp−1, dxp)

.

Now the backward interpretation (see e.g. [7]) is

Qn(Fn) =

∫

Xn+1

Fn(x0:n)ηn(dxn)Mn(xn, dx0:n−1)

where

Mn(xn, dx0:n−1) =

n∏

q=1

Mq,ηq−1(xq , dxq−1) (2)

Mq,ηq−1(xq , dxq−1) =
Gq−1(xq−1)Hq(xq−1, xq)ηq−1(dxq−1)

ηq−1(Gq−1Hq(·, xq))

we write MN
n in (2), when each η0, . . . , ηn−1 are replaced by the empirical versions. The SMC

approximation of Qn(·), written QN
n (·) is

QN
n (dx0:n) = ηNn (dxn)

n∏

q=1

Mq,ηN
q−1

(xq, dxq−1)

where the empirical measures ηNq−1 are defined above. If Fn(x0:n) =
∑n

p=0 fp(xp), fp : X → R,

then setting FN
0 = f0, then the O(N2) approximation is

QN
n (Fn) = ηNn (FN

n )

where

FN
n (x) = fn(x) +

N∑

i=1

Gn−1(x
i
n−1)Hn(x

i
n−1, x)∑N

j=1 Gn−1(x
j
n−1)Hn(x

j
n−1, x)

FN
n−1(x

i
n−1).

This is particularly useful for the smoothing problem associated to HMMs.
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2.3 Assumptions

We make the following hypotheses. (A1-2), (A4-6) are (H1-5) in [21], except slightly modified

to the density notations which naturally occur in many application areas. (A3) appears to be

needed under our analysis, but can be verified in practice. It is not dissimilar to part of (H1) in

[6] and, under the other assumptions of this article could be verified if

Hn ∈ Lvβ1 and
(

inf
x∈Cd

Gn−1(x)Hn(x, y)
)−1

∈ Lvβ2

with β1, β2 > 0 and α = β1 + β2, α as in (A3). A discussion of the assumptions and comparison

to [9] can be found in [21]. The assumptions are, in general, weaker than those used in [7, 10, 14]

and can be verified on non-compact state-spaces.

(A1) There exists a V : X → [1,∞) unbounded and constants δ ∈ (0, 1) and d ≥ 1 with the

following properties. For each d ∈ (d,+∞) there exists a bd < +∞ such that ∀x ∈ X

sup
n≥1

Qn(e
V )(x) ≤ e(1−δ)V (x)+bdICd

(x)

where Cd = {x ∈ X : V (x) ≤ d}.

(A2) µ ∈ Pv, with v = eV .

(A3) For every α ∈ (0, 1/2):

sup
n≥1

Gn−1(x)Hn(x, y)

ηn−1(Gn−1Hn(·, y))
∈ Lvα

with v(x, y)α = v(x)αv(y)α.

(A4) With d as in (A1), for each d ∈ [d,∞)

Gn−1(x)Hn(x, y) > 0 ∀x, y ∈ X, n ≥ 1

with 0 <
∫
Cd

λ(dy) < +∞ and there exist ǫ̃−d > 0 such that

inf
n≥1

Gn−1(x)Hn(x, y) ≥ ǫ̃−d , ∀x, y ∈ Cd.

In addition νd(dy) := λ(dy)ICd
(y)/

∫
Cd

λ(dy) ∈ Pv.

(A5) With d as in (A1), and ǫ̃−d as in (A4), for each d ∈ [d,∞) there exist ǫ̃+d ∈ [ǫ̃−d ,∞) such that

sup
n≥1

Gn−1(x)Hn(x, y) ≤ ǫ̃+d , ∀x, y ∈ Cd

(A6) supn≥0 supx∈XGn(x) < +∞.
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3 Central Limit Theorem

The asymptotic variance in the CLT for the forward-only smoothing (resp. FFBS) is, under some

conditions, [7, Theorem 3.1] (see also [10]):

σ2
n(Fn) :=

n∑

p=0

ηp

([
hp,n

{
Pp,n(Fn)−

ηp(Dp,n(Fn))

ηp(Dp,n(1))

}]2)

for the predictor. The operators are, for 0 ≤ p ≤ n

hp,n(xp) =
Qp,n(1)(xp)

ηp(Qp,n(1))

Pp,n(Fn)(xp) =
Dp,n(Fn)(xp)

Dp,n(1)(xp)

Dp,n(Fn)(xp) =

∫
Mp(xp, dx0:p−1)Qp,n(xp, dxp+1:n)Fn(x0:n)

Qp,n(xp, dxp+1:n) =

n−1∏

q=p

Qq+1(xq, dxq+1)). (3)

With the conventions D0,n = Q0,n and Dn,n = Mn. We give the CLT under weaker assumptions

than considered by [7, 10], but only for bounded functions; we note that (A1) and (A3) need not

be time-uniform, but to connect with the next Section, we make them time-uniform. Indeed, one

can pose (A1) as Qn(v) ≤ c(n)v1−δ. We suppose that for any n ≥ 0, ‖Gn‖∞ < +∞, below.

Theorem 3.1. Assume (A1-3). Suppose that for each n ≥ 0, 1/Gn ∈ Lvδ/2 , with δ as in (A1),

then for any n ≥ 0, Fn ∈ Bb(X
n+1)

√
N [QN

n −Qn](Fn) ⇒ N (0, σ2
n(Fn)).

Proof. By translation, one can assume that Qn(Fn) = 0. For notational convenience, we

introduce the rescaled quantity D̂p,n(Fn) = Dp,n(Fn)/ηpQp,n(1) and its empirical analogue

D̂N
p,n(Fn) = DN

p,n(Fn)/ηpQp,n(1) for DN
p,n(Fn) =

∫
MN

p (xp, dx0:p−1)Qp,n(xp, dxp+1:n)Fn(x0:n).

From [7, Page 965] and Definition [7, Page 962, eq. (5.3)], it follows that

√
N [QN

n −Qn](Fn) =
√
N

n∑

p=0

γN
p (1)

γN
n (1)

[ηNp − Φp(η
N
p−1)](D̂

N
p,n(Fn))

where we have set γN
p (1) = γN

p (1)/γp(1). For brevity, we set gp(xp) = D̂p,n(Fn)(xp) and gNp (xp) =

D̂N
p,n(Fn)(xp). Since the quantity γN

p (1) converges to one in probability (see e.g. Proposition A.1),

Slutsky’s Lemma shows that one can ignore the term γN
p (1)/γN

n (1) for proving the CLT. The

proof consists in exploiting the decomposition

n∑

p=0

√
N [ηNp − Φp(η

N
p−1)](g

N
p ) =

n∑

p=0

√
N [ηNp − Φp(η

N
p−1)](g

N
p − gp)+

n∑

p=0

√
N [ηNp − Φp(η

N
p−1)](gp).

7



and prove that the first term on the R.H.S converges to zero in probability while the second term

converges in laws towards a centred Gaussian distribution with variance σ2
n(Fn).

• Note that the boundedness assumptions on the potentials {Gp}np=1 and test function Fn

imply that gp ∈ Bb(X) for 0 ≤ p ≤ n; by standard results [4, Corollary 9.3.1], the se-

quence
√
N
(
[ηN0 − η0](g0) , . . . , [η

N
n −Φn(η

N
n−1)](gn)

)
converges in laws towards a centred

Gaussian vector with covariance matrix diag
(
Varη0(g0), . . . ,Varηn(gn)

)
. It follows that

∑n
p=0

√
N [ηNp − Φp(η

N
p−1)](gp) converges in laws towards a centred Gaussian distribution

with variance
∑n

j=0 Varηj (gj); this is just another way of writing σ2
n(Fn).

• The last part of the proof consists in showing that the term
∑n

p=0

√
N [ηNp −Φp(η

N
p−1)](g

N
p −

gp) converges to zero in probability; this quantity has zero expectation and standard manip-

ulations show that its moment of order two is upper bounded by
∑n

p=0 E
[
Φp(η

N
p−1)(|gNp −

gp|2)
]
. It thus remains to verify that for any index 0 ≤ p ≤ n the quantity E

[
Φp(η

N
p−1)(|gNp −

gp|2)
]
converges to zero as N → ∞. We use the decomposition Φp(η

N
p−1)(|gNp − gp|2) =

ηp(|gNp −gp|2)+Φp(η
N
p−1−ηp−1)(|gNp −gp|2) and treat each term separately. By boundedness

of the potntials {Gp}np=0, the quantity gp and gNp are uniformly bounded; it follows from the

dominated convergence theorem, Fubini’s theorem and Lemma A.1 that E[ηp(|gNp − gp|2)]

converges to zero. For dealing with the second term, note that Φp(η
N
p−1− ηp−1)(|gNp − gp|2)

is less than

∫

X

∣∣∣
ηNp−1(Gp−1Hp(·, xp))

ηNp−1(Gp−1)
− ηp−1(Gp−1Hp(·, xp))

ηp−1(Gp−1)

∣∣∣× [gNp (xp)− gp(xp)]
2 λ(dxp). (4)

By uniform boundedness of gp and gNp and Fubini’s theorem, the conclusion follows once it

is established that

∫

X

E

∣∣∣
ηNp−1(Gp−1Hp(·, xp))

ηNp−1(Gp−1)
− ηp−1(Gp−1Hp(·, xp))

ηp−1(Gp−1)

∣∣∣λ(dxp) (5)

converges to zero. By Assumption 3 and the boundedness of Gp−1, for every fixed xp ∈ X

Proposition A.1 applies to the function Gp−1Hp(·, xp) and Gp−1; it follows that for every

fixed xp ∈ X the function

∣∣∣
ηNp−1(Gp−1Hp(·, xp))

ηNp−1(Gp−1)
− ηp−1(Gp−1Hp(·, xp))

ηp−1(Gp−1)

∣∣∣ 1

ηp−1(Gp−1Hp(·, xp))
(6)

converges to zero in probability. Lemma A.2 shows that for λ-a.e. fixed xp ∈ X the

function (6) is also uniformly integrable; consequently, for λ-a.e. fixed xp ∈ X the function

(6) converges in expectation to zero. In addition, by Lemma A.2

∫

X

E

∣∣∣
ηNp−1(Gp−1Hp(·, xp))

ηNp−1(Gp−1)
− ηp−1(Gp−1Hp(·, xp))

ηp−1(Gp−1)

∣∣∣λ(dxp) ≤

8



c

∫

X

v(xp)
2αηp−1(Gp−1Hp(·, xp))λ(dxp).

Application of Fubini and repeated use of [21, Lemma 3] allows us to show
∫
X
v(xp)

2αηp−1(Gp−1

Hp(·, xp))λ(dxp) ≤ c, where c < +∞ depends on p but not N . Thus, by the dominated

convergence theorem, we have shown that the term in (4) goes to zero, from which we can

conclude the proof.

Remark 3.1. If one wants to adapt the proof for n growing (as in [2]) the proof as used here

must be modified as many of the moment bounds will grow with n (e.g. Lemma A.3); this is

a known problem in SMC, see for instance [1, Page 20]. This is because we do not control

expectations (w.r.t. the simulated algorithm) of unbounded functions, uniformly in time. This

particular problem is very challenging (for example the work of [11, 21] do not deal directly with

the particle system) and is yet to be handeled in the literature; we do not address this problem.

We note also that the proofs of [7, 10] also suffer from this deficiency and assume much stronger

hypothesis than in this work.

4 Control of the Asymptotic Variance

We now consider the asymptotic variance when Fn(x0:n) =
∑n

p=0 fp(xp), fp : X → R. Contrary

to Theorem 3.1 will not assume that the fp are bounded; let

‖f‖vα = sup
p≥0

‖fp‖vα . (7)

Remark 4.1. In some cases Fn(x0:n) =
∑n

p=0 fp(xp−1:p) (x−1 is null) is of interest. This can

be dealt with by either introducing a dirac mass in the Markov kernel Mn and using multistep

drift and minorization condtions (see [21] for a discussion), or with some modifications of the

following arguments.

Theorem 4.1. Assume (A1-6). Then if ‖f‖vα < +∞, α ∈ (0, 1/6) there exist a c < +∞ which

only depends upon the constants in (A1), (A3-6) such that for any n ≥ 1:

σ2(Fn) ≤ c‖f‖vα(n+ 1).

Proof. Recall

σ2
n(Fn) =

n∑

p=0

ηp

([
hp,n

{
Pp,n(Fn)−

ηp(Dp,n(Fn))

ηp(Dp,n(1))

}]2)
.

9



Let us consider the term

hp,n(x)
{
Pp,n(Fn)(x)−

ηp(Dp,n(Fn))

ηp(Dp,n(1))

}

in the asymptotic variance expression. We have the simple calculation:

Pp,n(Fn)(x)−
ηp(Dp,n(Fn))

ηp(Dp,n(1))
=

(δx ⊗ ηp − ηp ⊗ δx)(Dp,n(Fn ⊗ 1))

ηp(Dp,n(1))Dp,n(1)(x)

where Dp,n = Dp,n ⊗ Dp,n and the • notation is used to denote operators/functions on the

product space. Then, using the additive nature of the functional Fn, one derives:

(δxp ⊗ ηp − ηp ⊗ δxp)Dp,n(Fn ⊗ 1) =

p−1∑

q=0

(δxp ⊗ ηp − ηp ⊗ δxp)(Qp,n(1)Mp:q(fq ⊗ 1))

+

n∑

q=p

(δxp ⊗ ηp − ηp ⊗ δxp)(Qp,q((fq ⊗ 1)Qq,n(1)))

where Mp:q = Mp,ηp−1 . . .Mq+1,ηq .

We consider first for p ≥ 1:

hp,n(x)

ηp(Dp,n(1))Dp,n(1)(x)

p−1∑

q=0

(δx ⊗ ηp − ηp ⊗ δx)(Qp,n(1)Mp:q(fq ⊗ 1)) =

hp,n(x)

ηp(Qp,n(1))

p−1∑

q=0

ηp(Qp,n(1)[Mp:q(fq)(x) −Mp:q(fq)]).

By Proposition B.2 the R.H.S. is upper-bounded by c‖f‖vαv(x)2α. Then we consider (which

covers the case p = 0)

hp,n(x)

ηp(Dp,n(1))Dp,n(1)(x)

n∑

q=p

(δxp ⊗ ηp − ηp ⊗ δxp)(Qp,q((fq ⊗ 1)Qq,n(1))) =

hp,n(x)

ηp(Qp,n(1))Qp,n(1)(x)

n∑

q=p

(δx ⊗ ηp − ηp ⊗ δx)(Qp,q((fq ⊗ 1)Qq,n(1))).

By Proposition B.1, the R.H.S. is upper-bounded by c‖f‖vαv(x)3α. Thus, we have proved that

σ2
n(Fn) ≤ c‖f‖vα

n∑

p=0

ηp(v
6α).

We conclude by noting α ∈ (0, 1/6) and using [21, Proposition 1].

5 An Example

An example where our assumptions can hold, is that of [21, Section 3.2], with some minor

modifications. We recount the details here. X = Rdx with n ≥ 0

Xn+1 = Xn +Wn Wn
i.i.d.∼ Ndx(0, Idx)

10



Idx the dx×dx identity matrix. One can take V (x) = 1+ xTx
2(1+δ0)

, δ0 > 1. The observation model

is taken as

Yn|Xn = x ∼ Ndy (H(x), σ2Idy )

where H : X → Rdy ; that is Gn(x) is the dy-dimensional Gaussian density with mean H(x)

covariance Idy and is evaluated point-wise at the observed yn. It is assumed that the actual

observations lie on a space Y⋆ ⊂ Rdy , with Y⋆ compact. If H is bounded such that

lim
r→∞

sup
|x|≥r

xTx

2

1 + δ1
δ0(1 + δ0)

+
1

σ2
y

sup
y∈Y⋆

|y| sup
|λ|=1

λTH(x)− H(x)TH(x)

2σ2
y

< 0

with δ1 ∈ (0, 1) then one can verify all of the assumptions, including 1/Gn−1 ∈ Lvδ/2 using the

work in [21], apart from (A3). This latter assumption will hold, if one can show that for each

α ∈ (0, 1/2)

inf
y∈X

((
inf

x∈Cd

Hn(x, y)
)
v(y)α

)
> 0. (8)

This is because ηn−1(Cd) can be shown to be lower-bounded uniformly in n (see the proof of [21,

Lemma 8]) and Gn−1 is (uniform in n) upper and lower-bounded if Y⋆ is compact (which it is).

Simple calculations show that (8) can hold if σ2
y > 4 and then taking 1 < δ0 small enough.

Another observation model (with the above hidden Markov chain and v(x)) for which one

can verify the assumptions of this article can be found in [21, Section 3.1.1.]. Here one sets

Y⋆ = Y = {0, 1}dx and writing B(p) as the Bernoulli distribution with success probability p, the

observation model is

Yn|Xn = x ∼ B(p(x1))⊗ · · · ⊗ B(p(xdx))

where p(x) = 1/(1 + e−x). It is easily shown that 1/Gn−1 ∈ Lvδ/2 and all the other assump-

tions apart from (A3) easily follow. The latter assumption will follow by the above calcula-

tions and the fact that (treating Gn as a function of the observations also) Gn(x; y) ≤ 1 and

inf(y,x)∈Y×Cd
Gn(x; y) > 0.
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A Technical Results for Central Limit Theorem

Throughout this Section we suppose that for any n ≥ 0, ‖Gn‖∞ < +∞ and this is ommited from

all statements below. We also use E[·] to denote expectation w.r.t. the particle system. FN
n is

the natural filtration of the particles at time n.
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Lemma A.1. Assume (A1-3). Suppose that for each n ≥ 0, 1/Gn ∈ Lvδ , with δ as in (A1).

Let p > 0, then for λ−a.e. xp ∈ X and any F ∈ Bb(X
n+1)

[DN
p,n −Dp,n](F )(xp) →P 0.

Proof. By [7, Lemma 6.1], we have

[DN
p,n −Dp,n](F )(xp) =

p∑

q=0

[Mp,q,ηN
q
−Mp,q,Φq(ηN

q−1)
](SN

p,q,n(F ))(xp) (9)

where for µ ∈ P , 0 ≤ q < p

Mp,q,µ(xp, dxq:p−1) =
µ(dxq)Qq,p−1(xq , dxq+1:p−1)Gp−1(xp−1)Hp(xp−1, xp)

µQq,p−1(Gp−1Hp(·, xp))

Qq,p−1 is defined in (3) and

SN
p,q,n(F )(xq:p) =

∫

Xq+n−p

Qp,n(xp, dxp+1:n)MN
q (xq, dx0:q−1)F (x0:n)

see (2) for a defintion of MN
q . We note that

sup
xq:p∈Xp−q+1

|SN
p,q,n(F )(xq:p)| ≤ c‖F‖∞ (10)

where c is a finite constant that may depend on p, n but not N . We will show that each summand

on the R.H.S. of (9) will converge to zero in probability.

It is first remarked that by (A1), (A3) and Proposition A.1

ηNq Qq,p−1

( Gp−1Hp(·, xp)

ηp−1(Gp−1Hp(·, xp))

)
→P ηqQq,p−1

( Gp−1Hp(·, xp)

ηp−1(Gp−1Hp(·, xp))

)

and

Φq(η
N
q−1)Qq,p−1

( Gp−1Hp(·, xp)

ηp−1(Gp−1Hp(·, xp))

)
→P ηqQq,p−1

( Gp−1Hp(·, xp)

ηp−1(Gp−1Hp(·, xp))

)

so it is enough to show that

ηqQq,p−1

( Gp−1Hp(·, xp)

ηp−1(Gp−1Hp(·, xp))

)−1(
[ηNq − Φq(η

N
q−1)]

[
Qq,p−1

( Gp−1Hp(·, xp)

ηp−1(Gp−1Hp(·, xp))
SN
p,q,n(F )

)])

converges in probability to zero. We have via Jensen and the (condtional) Marcinkiewicz-

Zygmund inequalities that

E

[∣∣∣∣∣[η
N
q − Φq(η

N
q−1)]

[
Qq,p−1

( Gp−1Hp(·, xp)

ηp−1(Gp−1Hp(·, xp))
SN
p,q,n(F )

)]∣∣∣∣∣

]
≤

c√
N

E

[∣∣∣∣∣Qq,p−1

( Gp−1Hp(·, xp)

ηp−1(Gp−1Hp(·, xp))
SN
p,q,n(F )

)
(x1

q)

∣∣∣∣∣

2]1/2
.

By (10)

E

[∣∣∣∣∣Qq,p−1

( Gp−1Hp(·, xp)

ηp−1(Gp−1Hp(·, xp))
SN
p,q,n(F )

)
(X1

q )

∣∣∣∣∣

2]1/2
≤ c‖F‖∞E

[
Qq,p−1

( Gp−1Hp(·, xp)

ηp−1(Gp−1Hp(·, xp))

)
(X1

q )
2

]1/2
.

12



Then by (A3) and repeated application of [21, Lemma 3], we have

E

[
Qq,p−1

( Gp−1Hp(·, xp)

ηp−1(Gp−1Hp(·, xp))

)
(X1

q )
2

]1/2
≤ cv(xp)

αE[v(X1
q )

2α]1/2

then, for E[v(X1
q )

2α], Jensen and application of Lemma A.3, yields that

E

[∣∣∣∣∣[η
N
q − Φq(η

N
q−1)]

[
Qq,p−1

( Gp−1Hp(·, xp)

ηp−1(Gp−1Hp(·, xp))
SN
p,q,n(F )

)]∣∣∣∣∣

]
≤ c√

N
v(xp)

α.

Thus we have shown that

ηqQq,p−1

( Gp−1Hp(·, xp)

ηp−1(Gp−1Hp(·, xp))

)−1(
[ηNq − Φq(η

N
q−1)]

[
Qq,p−1

( Gp−1Hp(·, xp)

ηp−1(Gp−1Hp(·, xp))
SN
p,q,n(F )

)])

converges in probability to zero, from which we can conclude.

Lemma A.2. Assume (A1-3). Suppose that for each n ≥ 0, 1/Gn ∈ Lvδ/2 , with δ as in (A1),

then there exist a 1 ≥ υ > 0 such that for any n ≥ 1 there exist a c < +∞ such that for

λ−a.e. xn ∈ X

E

[∣∣∣∣∣

[
ηNn−1(Gn−1Hn(·, xn))

ηNn−1(Gn−1)
− ηn−1(Gn−1Hp(·, xn))

ηn−1(Gn−1)

]
1

ηn−1(Gn−1Hn(·, xn))

∣∣∣∣∣

1+υ]
≤ cv(xn)

(1+υ)α

where α is as in (A3).

Proof. Throughout c is a constant whose value can change from line to line, but only depends

upon n. We have

E

[∣∣∣∣∣

[
ηNn−1(Gn−1Hn(·, xn))

ηNn−1(Gn−1)
− ηn−1(Gn−1Hp(·, xn))

ηn−1(Gn−1)

]
1

ηn−1(Gn−1Hn(·, xn))

∣∣∣∣∣

1+υ]
≤

c

(
1

ηn−1(Gn−1)1+υ
+ E

[∣∣∣∣∣
ηNn−1(Gn−1Hn(·, xn))

ηNn−1(Gn−1)ηn−1(Gn−1Hn(·, xn))

∣∣∣∣∣

1+υ])
.

Then, application of (A3) gives that

E

[∣∣∣∣∣
ηNn−1(Gn−1Hn(·, xn))

ηNn−1(Gn−1)ηn−1(Gn−1Hn(·, xn))

∣∣∣∣∣

1+υ]
≤ cv(xn)

(1+υ)αE

[∣∣∣∣∣
ηNn−1(v

α)

ηNn−1(Gn−1)

∣∣∣∣∣

1+υ]
. (11)

We will show now that (see the R.H.S. of (11))

E

[∣∣∣∣∣
ηNn−1(v

α)

ηNn−1(Gn−1)

∣∣∣∣∣

1+υ]
≤ c

for some 1 ≥ υ > 0 when α = 1/2 (recall α ∈ (0, 1/2)). From the proof of Lemma A.3, equation

(15) one can show in a similar manner that

E

[∣∣∣∣∣
ηNn−1(v

1
2 )

ηNn−1(Gn−1)

∣∣∣∣∣

1+υ]
≤ cE

[{
ηNn−1(v

1
2 )ηNn−1(v

δ/2)
}1+υ]

.
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Then we have by Minkowski

E
[{
ηNn−1(v

1
2 )ηNn−1(v

δ/2)
}1+υ] ≤

1

N2(1+υ)

(
E
[{∑

i

v(X i
n−1)

1+δ
2

}1+υ] 1
1+υ + E

[{∑

i6=j

v(X i
n−1)

1
2 v(Xj

n−1)
δ
2

}1+υ] 1
1+υ

)1+υ

≤

1

N2(1+υ)

(
NE
[
v(X1

n−1)
(1+δ)(1+υ)

2

] 1
1+υ +

N(N − 1)

2
E
[
v(X1

n−1)
1
2 v(X2

n−1)
δ(1+υ)

2

] 1
1+υ

)1+υ

.

Let 0 < υ < (1 − δ)/(1 + δ), we will show that two expectations in the line above are upper-

bounded by a constant. For

E
[
v(X1

n−1)
(1+δ)(1+υ)

2

] 1
1+υ

one can apply Jensen followed by Lemma A.3. For

E
[
v(X1

n−1)
1
2 v(X2

n−1)
δ(1+υ)

2

] 1
1+υ

we can apply Cauchy-Schwarz to obtain the upper-bound

E[v(X1
n−1)]

1
2(1+υ)E[v(X2

n−1)
δ(1+υ)]

1
2(1+υ)

the left hand expectation is controlled via Lemma A.3 and the right-hand via Jensen followed by

Lemma A.3. Hence one can deduce that

E

[∣∣∣∣∣
ηNn−1(v

1
2 )

ηNn−1(Gn−1)

∣∣∣∣∣

1+υ]
≤ c

for some υ > 0 which concludes the proof of the Lemma.

Proposition A.1. Assume (A1-2). Suppose that for each n ≥ 0, 1/Gn ∈ Lvδ , with δ as in

(A1), then for any ̺ > 0, f ∈ Lv1/(1+̺) , n ≥ 0

ηNn (f) →P ηn(f).

Proof. The result is proved by induction. The case n = 0 follows by the weak law of large

numbers for i.i.d. random variables; η0 ∈ Pv. Thus, the result is assumed for n − 1 and we

consider n. We have

[ηNn − ηn](f) = [ηNn − Φn(η
N
n−1)](f) + [Φn(η

N
n−1)− ηn](f). (12)

We first deal with the second term on the R.H.S. of (12). We have the standard decomposition

[Φn(η
N
n−1)−ηn](f) =

[ 1

ηNn−1(Gn−1)
− 1

ηn−1(Gn−1)

]
ηNn−1(Qn(f))+

1

ηn−1(Gn−1)
[ηNn −ηn](Qn(f)).

14



By the proof of [21, Lemma 3] Qn(f) ∈ Lv1/(1+̺) (recall that for any n ≥ 0, ‖Gn‖∞ < +∞), so

by the induction hypothesis, it follows that

[Φn(η
N
n−1)− ηn](f) →P 0. (13)

We now deal with the first term on the R.H.S. of (12). One can use [8, Theorem A.1], which

can be applied by Lemma A.3. We have to verify Eq. 25 and Eq. 26 of that paper: in the notation

of this article, they read:

• supN P(Φn,N (ηNn−1)(|f |) ≥ κ) → 0 as κ → ∞.

• 1
N

∑N
i=1 E

[
|f(xi

n)| I{|f(xi
n)|/N≥ǫ}

∣∣FN
n−1

]
→P 0, for any ǫ > 0.

The tightness condition (i.e. the first bullet point), Eq. 25, readily follows from equation (13).

For the second bullet point, set 0 < υ ≤ ̺ ∧ δ/(1− δ), one easily has

1

N

N∑

i=1

E
[
|f(xi

n)| I{|f(xi
n)|/N≥ǫ}

∣∣FN
n−1

]
≤ Φn(η

N
n−1)(|f |1+υ)

1

(ǫN)υ
.

As Qn(|f |1+υ) ∈ Lv1/(1+̺) by construction, it follows that

Φn(η
N
n−1)(|f |1+υ)

1

(ǫN)υ
→P 0

which completes the proof.

Lemma A.3. Assume (A1-2). Suppose that for each n ≥ 0, 1/Gn ∈ Lvδ , with δ as in (A1),

then for any n ≥ 0 there exists a c < +∞ such that for any N ≥ 2

E[v(X1
n)] ≤ c (14)

Proof. We proceed via induction. The case n = 0 follows as η0 ∈ Pv. Thus, we assume for n− 1

and consider n:

E[v(X1
n)] = E

[ηNn−1(Qn(v))

ηNn−1(Gn−1)

]
.

Now, consider

ηNn−1(Gn−1) = ηNn−1

(
Gn−1v

δ 1

vδ

)

≥ ‖1/Gn−1‖−1
vδ η

N
n−1

( 1

vδ

)

≥ ‖1/Gn−1‖−1
vδ

1

ηNn−1(v
δ)
. (15)

So, we have that

E[v(X1
n)] ≤ ‖1/Gn−1‖vδE[ηNn−1(Qn(v))η

N
n−1(v

δ)].
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Now via the multiplicative drift Qn(v) ≤ cv1−δ, so

E[ηNn−1(Qn(v))η
N
n−1(v

δ)] ≤ cE
[ 1

N2

(∑

i

v(X i
n−1) +

∑

i6=j

v(X i
n−1)

1−δv(Xj
n−1)

δ
)]

= c
(
E[v(X1

n−1)] +
N − 1

N
E[v(X1

n−1)
1−δv(X2

n−1)
δ]
)

≤ 2cE[v(X1
n−1)]

where we have applied Hölder to get to the last line; the induction hypothesis completes the

proof of (14).

B Proofs for the Asymptotic Variance

We give the proofs which are used for Theorem 4.1, bounding the asymptotic variance. This is

broken into three sections: controlling the forward part of the asymptotic variance:

hp,n(x)

ηp(Qp,n(1))Qp,n(1)(x)

n∑

q=p

(δx ⊗ ηp − ηp ⊗ δx)(Qp,q((fq ⊗ 1)Qq,n(1)))

controlling the backward part of the asymptotic variance

hp,n(x)

ηp(Qp,n(1))

p−1∑

q=0

ηp(Qp,n(1)[Mp:q(fq)(x) −Mp:q(fq)])

and the technical results used to achieve this. Recall ‖f‖vα is defined in (7).

The following additional notations are used in this Appendix. We write Eµ⊗η as the ex-

pectation w.r.t. the inhomogeneous Markov chain {Xp}p≥0 on X := X
2 with initial distribu-

tion µ ⊗ η and transition Hp(xp−1, xp)Hp(yp−1, yp)λ(dxp) ⊗ λ(dyp). We also use the notation

M
d

p,q :=
∑q−1

k=p ICd
(Xk)ICd

(Xk+1).

B.1 Controlling the Forward Part

Proposition B.1. Assume (A1-2), (A4-6). Then if ‖f‖vα < +∞, α ∈ (0, 1/3) there exist a

c < +∞ and ρ ∈ (0, 1) which depends only upon the constants in (A1), (A4-6), such that for any

x ∈ X

hp,n(x)

ηp(Qp,n(1))Qp,n(1)(x)

n∑

q=p

(δx⊗ηp−ηp⊗δx)(Qp,q((fq⊗1)Qq,n(1))) ≤ c‖f‖vαv(x)3α
{
1+

ρ(1− ρn−p)

1− ρ

}
.

(16)

Proof. We break up our proof into controlling the summands on the L.H.S. of (16).
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Case q = p. We first consider the case q = p in the summation on the L.H.S. of (16). Then

we have

(δx ⊗ ηp − ηp ⊗ δx)(Qp,q((fq ⊗ 1)Qq,n(1))) = (δx ⊗ ηp − ηp ⊗ δx)((fp ⊗ 1)Qp,n(1)).

Then as fp ∈ Lvα , we have

δx ⊗ ηp((fq ⊗ 1)Qp,n(1)) ≤ ‖f‖vαv(x)αQp,n(1)(x)ηp(Qp,n(1)). (17)

Thus by using a similar argument to (17)

(δx ⊗ ηp − ηp ⊗ δx)((fp ⊗ 1)Qp,n(1)) ≤ c‖f‖vαQp,n(1)(x)[v(x)
αηp(Qp,n(1)) + ηp(v

αQp,n(1))].

Hence, we have that

hp,n(x)

ηp(Qp,n(1))Qp,n(1)(x)
(δx ⊗ ηp − ηp ⊗ δx)((fp ⊗ 1)Qp,n(1)) ≤

c‖f‖vα

hp,n(x)

ηp(Qp,n(1))
[v(x)αηp(Qp,n(1)) + ηp(v

αQp,n(1))] (18)

Now for the first term on the R.H.S. of (18) we have

hp,n(x)

ηp(Qp,n(1))
v(x)αηp(Qp,n(1)) ≤ cv(x)2α

where we have used Propositions 1 and 2 and Lemma 3 of [21], i.e. that supn≥1 sup0≤p≤n ‖hp.n‖vα <

+∞. For the second term on the R.H.S. of (18) we have for any r ∈ [d,∞)

hp,n(x)

ηp(Qp,n(1))
ηp(v

αQp,n(1)) = hp,n(x)ηp(v
αhp,n) ≤ cv(x)αηp(v

2α)

where we again use supn≥1 sup0≤p≤n ‖hp.n‖vα < +∞. By Proposition 1 of [21] supp≥0 ‖ηp(v2α)‖vα <

+∞, thus

hp,n(x)

ηp(Qp,n(1))
ηp(v

αQp,n(1)) ≤ cv(x)α.

Thus for the case q = p we have established that

hp,n(x)

ηp(Qp,n(1))Qp,n(1)(x)
(δx ⊗ ηp − ηp ⊗ δx)((fp ⊗ 1)Qp,n(1)) ≤ c‖f‖vαv(x)2α. (19)

Case q = n. Second, we consider the case q = n in the summation on the L.H.S. of (16).

Then we have

(δx ⊗ ηp − ηp ⊗ δx)(Qp,q((fq ⊗ 1)Qq,n(1))) = (δx ⊗ ηp − ηp ⊗ δx)(Qp,n((fp ⊗ 1))).

Then, one can apply the proof of Theorem 1 of [21] to show that there exist a ρ ∈ (0, 1) (which

depends upon the the constants in (A1-4), (A5-6))

(δx ⊗ ηp − ηp ⊗ δx)(Qp,n((fp ⊗ 1)))

ηp(Qp,n(1))Qp,n(1)(x)
≤ c‖f‖vα

vp,n,α(x)

‖hp,n‖vα

µ(vα)ρn−p

17



where vp,n,α(x) = v(x)α‖hp,n‖vα/hp,n(x). Thus we have established for q = n:

hp,n(x)
(δx ⊗ ηp − ηp ⊗ δx)(Qp,n((fp ⊗ 1)))

ηp(Qp,n(1))Qp,n(1)(x)
≤ c‖f‖vαv(x)αµ(vα)ρn−p. (20)

Case p < q < n. Lastly, we consider the case p < q < n in the summation on the L.H.S. of

(16). Using almost the same calculations as [21] Theorem 1 (which themselves rely on the proofs

of [10, 17]) we have for arbitrary d, β ∈ (0, 1):

(δx ⊗ ηp − ηp ⊗ δx)(Qp,q((fq ⊗ 1)Qq,n(1))) ≤ 2‖f‖vα

{
Eδx⊗ηp [

q−1∏

s=p

Gq(Xs)v(Xq)
αQq,n(1)(Xq)×

I
{M

d
p,q≥β(q−p)}

ρ
M

d
p,q

d ] + Eδx⊗ηp [

q−1∏

s=p

Gq(Xs)v(Xq)
αQq,n(1)(Xq)I{Md

p,q<β(q−p)}
ρ
M

d
p,q

d ]

}
(21)

where ρd = 1 −
(

ǫ−d
ǫ+d

)2

. We begin by considering the first term on the R.H.S. of (21), when

multiplied by the term outside the summation on the L.H.S. of (16). As in Theorem 1 of [21] as

ρd < 1 we have:

hp,n(x)

ηp(Qp,n(1))Qp,n(1)(x)
Eδx⊗ηp [

q−1∏

s=p

Gq(Xs)v(Xq)
αQq,n(1)(Xq)I{Md

p,q≥β(q−p)}
ρ
M

d
p,q

d ] ≤

ρ
β(q−p)
d hp,n(x)

Qp,q(v
αQq,n(1))(x)

Qp,q(Qq,n(1))(x)

ηp[Qp,q(v
αQq,n(1))]

ηp[Qp,q(Qq,n(1))]
.

Then, one can apply Lemma B.1, to show that

hp,n(x)

ηp(Qp,n(1))Qp,n(1)(x)
Eδx⊗ηp [

q−1∏

s=p

Gq(Xs)v(Xq)
αQq,n(1)(Xq)IMd

p,q≥β(q−p)
ρ
M

d
p,q

d ] ≤ c‖f‖vαρ
β(q−p)
d v(x)3α

Now consider the second term on the R.H.S. of (21), when multiplied by the term outside the

summation on the L.H.S. of (16). We have

hp,n(x)Eδx⊗ηp

[{∏q−1
s=p Gs(Xs)

}
v(Xq)

αQq,n(1)(Xq)IMd
p,q<β(q−p)

]

Qp,n(1)(x)ηp(Qp,n(1))
≤

c(d, α, β)µ(v3α)v(x)3α exp{−(q − p)c(d, α, β)]}.

where we note that d was arbitrary above and we have applied Lemma B.2. Then, one can make

d larger so that we have for p < q < n:

hp,n(x)

ηp(Qp,n(1))Qp,n(1)(x)
(δx ⊗ ηp − ηp ⊗ δx)(Qp,q((fq ⊗ 1)Qq,n(1))) ≤ c‖f‖vαρq−pv(x)3α (22)

where ρ ∈ (0, 1) depends upon the constants in (A1), (A2-6) as well as α.

Then, combining (19), (20) and (22), we have proved that for any x ∈ X

hp,n(x)

ηp(Qp,n(1))Qp,n(1)(x)

n∑

q=p

(δx⊗ηp−ηp⊗δx)(Qp,q((fq⊗1)Qq,n(1))) ≤ cµ‖f‖vαv(x)3α[1+

n∑

q=p+1

ρq−p]

from which we can conclude.
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B.2 Controlling the Backward Part

Proposition B.2. Assume (A1-6). Then if ‖f‖vα < +∞ for α ∈ (0, 1/2) there exist a c < +∞

which depends only upon the constants in (A1) and (A3-6), such that for any x ∈ X, p ≥ 1

hp,n(x)

ηp(Qp,n(1))

p−1∑

q=0

ηp(Qp,n(1)[Mp:q(fq)(x)−Mp:q(fq)]) ≤ c‖f‖vαv(x)2α. (23)

Proof. Consider the summand in (23)

ηp(Qp,n(1)[Mp:q(fq)(x)−Mp:q(fq)]) = ‖f‖vαηp

([
Qp,n(1)v(x)

αvα
][ [Mp:q(

fq
‖f‖vα

)(x)−Mp:q(
fq

‖f‖vα
)])

v(x)αvα

])
.

Then applying Lemma B.3, we have the upper-bound

ηp(Qp,n(1)[Mp:q(fq)(x) −Mp:q(fq)]) ≤ c‖f‖vαρ(p−q−1)ηp(Qp,n(1)v
α)v(x)α.

Thus (23) is upper-bounded by

c‖f‖vαhp,n(x)ηp(hp,nv
α)v(x)α.

Then we have

c‖f‖vαhp,n(x)ηp(hp,nv
α)v(x)α ≤ c‖f‖vα [sup

n≥1
sup

0≤p≤n
‖hp,n‖vα ]2v(x)αηp(v

2α)v(x)α

≤ c‖f‖vα [sup
n≥1

sup
0≤p≤n

‖hp,n‖vα ]2 sup
p≥0

‖ηp‖v2αv(x)2α.

By [21, Propositions 1,2] [supn≥1 sup0≤p≤n ‖hp,n‖vα ]2 supp≥0 ‖ηp‖v2α < +∞ and we conclude

that

hp,n(x)

ηp(Qp,n(1))

p−1∑

q=0

ηp(Qp,n(1)[Mp:q(fq)(x) −Mp:q(fq)]) ≤ c‖f‖vαv(x)2α

as was to be proven.

B.3 Technical Results

B.3.1 Forward Part

Lemma B.1. Assume (A1-2) and (A4-6). Then for any α ∈ (0, 1/2) there exist a c < +∞

depending only in the constants in (A1), (A3-6), such that for any n ≥ 1, 0 ≤ p < q < n, x ∈ X:

hp,n(x)
Qp,q(v

αQq,n(1))(x)

Qp,q(Qq,n(1))(x)

ηp[Qp,q(v
αQq,n(1))]

ηp[Qp,q(Qq,n(1))]
≤ cv(x)3α.

Proof. Note that throughout c denotes a generic finite constant that may depend upon α, but

whose value may change upon each appearance. Define the Markov semi-group Tp,q(x, dy) =

Qp,q(x, dy)/Qp,q(1)(x). Then we have

hp,n(x)
Qp,q(v

αQq,n(1))(x)

Qp,q(Qq,n(1))(x)

ηp[Qp,q(v
αQq,n(1))]

ηp[Qp,q(Qq,n(1))]
= hp,n(x)

Tp,q(v
αhq,n)(x)

Tp,q(hq,n)(x)

ηp[hp,qTp,q(v
αhq,n)]

ηp[hp,qTp,q(hq,n)]
.

(24)
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We will consider the R.H.S. of (24); first the term:

hp,n(x)

Tp,q(hq,n)(x)
=

Qp,n(1)(x)∏n−1
s=p λs

Qp,q(1)(x)
∏n−1

s=q λs

Qp,n(1)(x)

where λs = ηs(Gs) and we have used, recursively, [21, Lemma 1]. Then by cancelling, it clearly

follows that

hp,n(x)

Tp,q(hq,n)(x)
= hp,q(x).

Hence, combining our calculations together and returning to (24), we have established that

hp,n(x)
Qp,q(v

αQq,n(1))(x)

Qp,q(Qq,n(1))(x)

ηp[Qp,q(v
αQq,n(1))]

ηp[Qp,q(Qq,n(1))]
= hp,q(x)Tp,q(v

αhq,n)(x)
ηp[hp,qTp,q(v

αhq,n)]

ηp[hp,qTp,q(hq,n)]
.

(25)

We now focus on the term 1/ηp[hp,qTp,q(hq,n)] in (25). We note that for any x ∈ X:

hp,q(x)Tp,q(hq,n)(x) =
Qp,q(1)(x)∏q−1

s=p λs

Qp,n(1)(x)

Qp,q(1)(x)
∏n−1

s=q λs

= hp,n(x).

By Lemma 10 of [21] for any arbitrary d ∈ [d,∞), infn≥1 inf0≤p≤n infx∈Cd
hp,n(x) > 0 and so for

any d as stated and by using the above calculation:

ηp[hp,qTp,q(hq,n)] ≥ ηp[ICd
hp,n] ≥ ηp(Cd)

[
inf
n≥1

inf
0≤p≤n

inf
x∈Cd

hp,n(x)

]
.

Now by using the proof of Lemma 8 of [21], page 2527, we have for d large enough, that there is

a finite c > 0 such that

inf
p≥0

ηp(Cd)

[
inf
n≥1

inf
0≤p≤n

inf
x∈Cd

hp,n(x)

]
≥ c.

Thus returning to (25), we have

hp,n(x)
Qp,q(v

αQq,n(1))(x)

Qp,q(Qq,n(1))(x)

ηp[Qp,q(v
αQq,n(1))]

ηp[Qp,q(Qq,n(1))]
≤ chp,q(x)Tp,q(v

αhq,n)(x)ηp[hp,qTp,q(v
αhq,n)].

(26)

Now using the above arguments, we have supn≥1 sup1≤q≤n ‖hq,n‖vα < +∞, so we have for

any x ∈ X

Tp,q(v
αhq,n)(x) ≤ cTp,q(v

2α)(x)

where c does not depend upon p, q, n. Then using the calculations of [21, Theorem 1], which

arrive at the equation (61), page 2532, one has

Tp,q(v
αhq,n)(x) ≤ c

vp,q,2α(x)

‖hp,q‖v2α

(27)

where vp,q,2α(x) = v(x)2α‖hp,q‖v2α/hp,q(x) and we are invoking Lemma 3 of [21]. Hence, return-

ing to (26), we have

hp,n(x)
Qp,q(v

αQq,n(1))(x)

Qp,q(Qq,n(1))(x)

ηp[Qp,q(v
αQq,n(1))]

ηp[Qp,q(Qq,n(1))]
≤ cv(x)3αηp[hp,qTp,q(v

αhq,n)] (28)
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We now turn to ηp[hp,qTp,q(v
αhq,n)] on the R.H.S. of (28). By using (27), we have

ηp[hp,qTp,q(v
αhq,n)] ≤ cηp(v

2α)

where c depends upon α only. Using Proposition 1 of [21] (noting again Lemma 3 of [21] and

that α ∈ (0, 1/2)), we can thus conclude that:

hp,n(x)
Qp,q(v

αQq,n(1))(x)

Qp,q(Qq,n(1))(x)

ηp[Qp,q(v
αQq,n(1))]

ηp[Qp,q(Qq,n(1))]
≤ cv(x)3α

which completes the proof.

Lemma B.2. Assume (A1-2) and (A4-6). Then there exist a d ∈ [d,∞) such that for any

α ∈ (0, 1/3), β ∈ (0, 1) there exist a 0 < c(d, α, β) < +∞ such that for any, n ≥ 1, 0 ≤ p < q < n,

x ∈ X:

hp,n(x)Eδx⊗ηp

[{∏q−1
s=p Gs(Xs)

}
v(Xq)

αQq,n(1)(Xq)IMd
p,q<β(q−p)

]

Qp,n(1)(x)ηp(Qp,n(1))
≤

c(d, α, β)µ(v3α)v(x)3α exp{−(q − p)c(d, α, β)]}.

Proof. Throughout c denotes a generic finite and positive constant that depends upon α, β, d,

but whose value may change upon each appearance. The dependences of c are omitted in the

proof to simplity the notations.

We can rewrite

hp,n(x)Eδx⊗ηp

[{∏q−1
s=p Gs(Xs)

}
v(Xq)

αQq,n(1)(Xq)IMd
p,q<β(q−p)

]

Qp,n(1)(x)ηp(Qp,n(1))
=

hp,n(x)Eδx⊗ηp

[{∏q−1
s=p Gs(Xs)

}
v(Xq)

αhq,n(Xq)IMd
p,q<β(q−p)

]

Qp,q(hq,n)(x)ηp(Qp,q(hq,n))
. (29)

Now consider the term:
hp,n(x)

Qp,q(hq,n)(x)
in (29). We have

hp,n(x)

Qp,q(hq,n)(x)
=

Qp,n(1)(x)
∏n−1

s=q λs
∏n−1

s=p λsQp,n(1)(x)
=

1
∏q−1

s=p λs

.

Now, using Propositions 1 and 2 of [21], λ := infs≥0 λs > 0 and thus by the above calculation it

follows that

hp,n(x)

Qp,q(hq,n)(x)
≤ 1

λq−p .

This leaves us with

hp,n(x)Eδx⊗ηp

[{∏q−1
s=p Gs(Xs)

}
v(Xq)

αQq,n(1)(Xq)IMd
p,q<β(q−p)

]

Qp,n(1)(x)ηp(Qp,n(1))
=

Eδx⊗ηp

[{∏q−1
s=p Gs(Xs)

}
v(Xq)

αhq,n(Xq)IMd
p,q<β(q−p)

]

λq−pηp(Qp,q(hq,n))
. (30)
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The next term we consider on the R.H.S. of (30) is 1/ηp(Qp,q(hq,n)). Pick a r ∈ [d, d) fixed.

Then we have by repeatedly applying (A4)

ηp(Qp,q(hq,n)) ≥ ηp(Qp,q(Cr)) inf
n≥1

inf
0≤q≤n

inf
x∈Cr

hq,n(x)

≥ ηp(Cr)(ǫ
−
r νr(Cr))

q−p inf
n≥1

inf
0≤q≤n

inf
x∈Cr

hq,n(x).

Now by Lemma 10 of [21] infn≥1 inf0≤q≤n infx∈Cr
hq,n(x) > 0 and for r and hence d large enough

infp≥0 ηp(Cr) > 0 by the proof of Lemma 8 page 2527 of [21]. Now fix r from here-in. Thus we

have shown that for r, d large enough:

hp,n(x)Eδx⊗ηp

[{∏q−1
s=p Gs(Xs)

}
v(Xq)

αQq,n(1)(Xq)IMd
p,q<β(q−p)

]

Qp,n(1)(x)ηp(Qp,n(1))
≤

c
Eδx⊗ηp

[{∏q−1
s=p Gs(Xs)

}
v(Xq)

αhq,n(Xq)IMd
p,q<β(q−p)

]

(λǫ−r νr(Cr))q−p
. (31)

Now to complete the proof, we note that as hq,n ∈ Lvα and supn≥1 sup0≤q≤n ‖hq,n‖vα < +∞,

by Propositions 1, 2 and Lemma 3 of [21], the upper-bound of the R.H.S. of (31):

c
Eδx⊗ηp

[{∏q−1
s=p Gs(Xs)

}
v(Xq)

3αI
M

d
p,q<β(q−p)

]

(λǫ−r νr(Cr))q−p
.

Then by the proof of Theorem 1 of [21], pages 2533-2534 we note

Eδx⊗ηp

[{ q−1∏

s=p

Gs(Xs)
}
v(Xq)

3αI
M

d
p,q<β(q−p)

]
≤ cµ(v3α)v(x)3α exp{−dδ(q−p)(1−β)/2+3dδ/2}.

Hence we have proved that for r, d large enough

hp,n(x)Eδx⊗ηp

[{∏q−1
s=p Gs(Xs)

}
v(Xq)

αQq,n(1)(Xq)IMd
p,q<β(q−p)

]

Qp,n(1)(x)ηp(Qp,n(1))
≤

cµ(v3α)v(x)3α exp{−(q − p)[dδ(1− β)/2 + log(λ) + log(ǫ−1
r µr(Cr)))] + 3dδ/2}.

On noting that r is fixed, one can increase d to ensure that the result holds true.

B.3.2 Backward Part

Lemma B.3. Assume (A1-6). Then for any α ∈ (0, 1/2), p ≥ 1, q ∈ {0, . . . , p− 1} there exist

a c < +∞ which depends only upon the constants in (A1), (A3-6) such that

sup
(x,z)∈X

sup
|f |≤vα

|Mp:q(f)(x)−Mp:q(f)(z)|
v(x, z)α

≤ cρ(p−q−1).

Proof. We start by using Lemma 4.3 of [7], which provides the neat reversal formula:

Mp:q(f)(x) =
ηq(fQq,p−1[(Qp(·, x)])
ηq(Qq,p−1[Qp(·, x)])

∀x ∈ X (32)
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where we use the abuse of notation µQp(·, x) =
∫
µ(dy)Gp−1(y)Hp(y, x) for any σ−finite measure

µ.

We first focus on the case that q ∈ {0, . . . , p− 2}. We note that using a similar proof to [21,

Lemma 1] that for any ϕ : X → R

ηq(Qq,p−1(ϕ)) =
( p−2∏

s=q

λs

)
ηp−1(ϕ). (33)

Using the representation (32) and the identity (33), we have that

Mp:q(f)(x)−Mp:q(f)(z)

v(x, z)α
=

(ηq ⊗ ηq)(f{Qq,p−1[Qp(·, x)]Qq,p−1[Qp(·, z)]−Qq,p−1[Qp(·, z)]Qq,p−1[Qp(·, x)]})(∏p−2
s=q λs

)2
ηp−1[Qp(·, x)]ηp−1[Qp(·, z)]v(x, z)α

. (34)

Consider the argument of the function that is operated on by (ηq ⊗ ηq), when excluding f on

the R.H.S. of (34). This can be written as

(δs ⊗ δt − δt ⊗ δs)(Qq,p−1(Qp(·, x)⊗Qp(·, z))).

Then by (A3) as Qp(y, x)/ηp−1[Qp(·, x)] ∈ Lvα , and via decompositions and calculations in [10]

and [17] (see e.g. the proof of Theorem 1 of [21])

(δs ⊗ δt − δt ⊗ δs)(Qq,p−1(Qp(·, x) ⊗Qp(·, z)))
ηp−1[Qp(·, x)]ηp−1[Qp(·, z)]

≤ c(δs ⊗ δt)Rq,p−1(v
α)]v(x, z)α

where c depends on supp≥1 ‖Qp/ηp−1[Qp]‖vα and

Rr(x̄, dȳ) = Qr(x̄, dȳ)− ICd
(x̄)(ǫ−d )

2νd ⊗ νd(dȳ)

with x̄ = (x1, x2) ∈ X, ȳ = (y1, y2) ∈ X and Rq,p−1 = Rq+1 . . . Rp−1. By the calculations of [21,

Theorem 1, pp. 2532-2534], we have that

(δs⊗δt)Rq,p−1(v
α) ≤ cρ

β(p−q−1)
d Qq,p−1(v

α)(s, t)+c exp
{
−(p−q−1)

[δd(1− β)

2
−2bd

]
+
3δd

2

}
v(s, t)α

where c does not depend upon d, d ≥ d, β ∈ (0, 1) are arbitrary and ρd = (1 −
(

ǫ−d
ǫ+d

)2
) Thus

returning to (34), we have established that

Mp:q(f)(x)−Mp:q(f)(z)

v(x, z)α
≤ c
( p−2∏

s=q

λs

)−2

×

(ηq ⊗ ηq)
(
vα
{
ρ
β(p−q−1)
d Qq,p−1(v

α) + exp
{
− (p− q − 1)

[δd(1 − β)

2
− 2bd

]
+

3δd

2

}
vα
})

(35)

We split the R.H.S. of (35) into the sum of two expressions:

c
( p−2∏

s=q

λs

)−2

(ηq ⊗ ηq)
(
vαρ

β(p−q−1)
d Qq,p−1(v

α)
)

(36)
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and

c
( p−2∏

s=q

λs

)−2

(ηq ⊗ ηq)
(
vα exp

{
− (p− q − 1)

[δd(1 − β)

2
− 2bd

]
+

3δd

2

}
vα
)

(37)

We start with (36):

cρ
β(p−q−1)
d

ηq(v
αQq,p−1(v

α))
∏p−2

s=q λs

ηq(Qq,p−1(v
α))

∏p−2
s=q λs

By [21, Theorem 1] we have the upper-bound

cρ
β(p−q−1)
d ηq(v

α[hq,p−1ηp−1(v
α)+ρ̃β(p−q−1)µ(vα)cµv

α])ηq([hq,p−1ηp−1(v
α)+ρ̃β(p−q−1)µ(vα)cµv

α])

where c < ∞, ρ̃ ∈ (0, 1) that does not depend on d. As supq≥1 sup1≤p≤q+1 ‖hq,p−1‖vα < +∞

by [21, Proposition 2] and by Proposition 1 of [21] we have that supp≥1 ‖ηp−1(v
α)‖vα < +∞ we

have the upper-bound on (36)

cρ
β(p−q−1)
d ηq(v

2α)ηq(v
α)

where again, c does not depend on d. Noting that α ∈ (0, 1/2) and applying Jensen and again

[21] Proposition 1, we have the upper-bound cρ
β(p−q−1)
d for c independent of d.

Now, turning to (37), by Proposition 2 of [21] infp≥0 λp = λ > 0, and, by the above argument

supp≥1 ‖ηp−1(v
2α)‖vα < +∞ hence we have the upper-bound on (37)

c exp
{
− (p− q − 1)

[δd(1− β)

2
− 2bd + 2 log(λ)

]
+

3δd

2

}
.

Thus combining this upper-bound, with that of cρ
β(p−q−1)
d on (36) and recalling that the sum of

these terms upper-bounded the L.H.S. of (35), we have established that

Mp:q(f)(x) −Mp:q(f)(z)

v(x)αv(z)α
≤ c
[
ρ
β(p−q−1)
d +exp

{
− (p−q−1)

[δd(1 − β)

2
−2bd+2 log(λ)

]
+

3δd

2

}]

where q ∈ {0, . . . , p− 2}, c does not depend upon d and d > d is arbitrary. As d is arbitrary, we

can conclude that for d large enough, there is a ρ ∈ (0, 1) such that for any q ∈ {0, . . . , p− 2}

sup
(x,z)∈X

sup
|f |≤vα

|Mp:q(f)(x) −Mp:q(f)(z)|
v(x)αv(z)α

≤ cρ(p−q−1)

with c < +∞.

For the case q = p− 1 we have, by definition of the backward kernel

Mp,ηp−1(f)(x)−Mp,ηp−1(f)(z)

v(x)αv(z)α
=

ηp−1(fQp(·, x))
ηp−1(Qp(·, x))v(x)αv(z)α

− ηp−1(fQp(·, z))
ηp−1(Qp(·, z))v(x)αv(z)α

.

By (A3) as Qp(y, x)/ηp−1[Qp(·, x)] ∈ Lvα and as v ≥ 1, we have

Mp,ηp−1(f)(x) −Mp,ηp−1(f)(z)

v(x)αv(z)α
≤ cηp−1(v

2α).

Using α ∈ (0, 1/2) and [21, Proposition 1] we can conclude.
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