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Abstract

Under proportional transaction costs, a price process is said to have a consistent

price system, if there is a semimartingale with an equivalent martingale measure

that evolves within the bid-ask spread. We show that a continuous, multi-asset

price process has a consistent price system, under arbitrarily small proportional

transaction costs, if it satisfies a natural multi-dimensional generalization of the

stickiness condition introduced by Guasoni [5].
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1 Introduction

In an asset pricing model that imposes proportional transaction costs on trading, a

consistent price system (CPS) is a shadow price process with an equivalent martingale

measure that evolves within the bid-ask spread implied by transaction costs, a concept

that dates back to the paper by Jouini and Kallal [10]. It is clear that trading under

transaction costs cannot be more profitable than trading at the prices given by the

CPS without frictions. Thus, questions concerning, for example, the no arbitrage (NA)

condition under transaction costs can be answered using frictionless theory. In fact,

such a transaction cost model satisfies NA if there exists a CPS — any arbitrage would

also be an arbitrage with respect to the CPS without frictions, a contradiction.
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The question whether a continuous-time price process has a CPS under proportional

transaction costs has been studied by several authors in the case where the process is

continuous, the case which we focus on in this note. Guasoni et al. [6, Theorem 1.2]

showed that a multi-asset price process has a CPS under arbitrarily small transaction

costs if it has the so-called conditional full support (CFS) property (see Remark 2.4,

below). Kabanov and Stricker [11, Theorem 1] established a similar existence result

under the assumptions that the price process does not admit arbitrage opportunities

with simple trading strategies and is sticky (we will elaborate on this property shortly).

However, the conditions of these two existence results are not necesssary for the existence

of CPSs (see Example 2.6, below).

In fact, in the single-asset case, Guasoni et al. [7, Theorem 2] have established that

a CPS exists under arbitrarily small transaction costs if and only if the price process

satisfies the NA condition under arbitrarily small transaction costs (a fundamental the-

orem of asset pricing). Earlier, Guasoni [5] showed that a price process satisfies the

NA condition under arbitrarily small transaction costs, if it is merely sticky. Informally,

stickiness entails that the process remains in any neighborhood of its current value with

a positive conditional probability (see Definition 2.2, below, for a rigorous formulation).

Combining the results in [5, 7], it follows in the single-asset case that a continuous

process has a CPS under arbitrarily small transaction costs if it is sticky.

The purpose of this note is to show that also in the multi-asset case any sticky

continuous process has a CPS under arbitrarily small transaction costs. In particular,

we give a direct proof of this statement, that is, even in the single-asset case where

the fundamental theorem of Guasoni et al. [7, Theorem 2] is available, we do not rely

on such a result. Instead, our proof is based on the arguments used in [6, 11], but we

modify them in a novel way (see Remark 3.4, below, for a discussion). In this way we

can carry out the construction of a CPS under the stickiness condition alone, which is

weaker and easier to check than the assumptions in [6, 11].

2 Preliminaries and main result

Our probabilistic setup is as follows. Let T ∈ R+ := (0,∞) be a fixed time horizon

and
(
Ω,F, (Ft)t∈[0,T ],P

)
a complete filtered probability space, such that the filtration

(Ft)t∈[0,T ] satisfies FT = F along with the usual conditions of right-continuity and

completeness. We say that an “F-measurable” property P holds almost surely on A ∈ F

if P[{P} ∩ A] = P[A]. Furthermore, let d ∈ N := {1, 2, . . .} and let (St)t∈[0,T ], where

St := (S1
t , . . . , S

d
t ), be an adapted d-dimensional process on

(
Ω,F, (Ft)t∈[0,T ],P

)
with

continuous paths and values in Rd+. In terms of economic interpretation, S describes

the evolution of the prices of d risky securities in terms of a money market.

Definition 2.1. An adapted d-dimensional stochastic process (Mt)t∈[0,T ], where Mt :=

(M1
t , . . . ,M

d
t ), is called an ε-consistent price system (ε-CPS) for S if for any i ∈
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{1, . . . , d} and t ∈ [0, T ],

Sit
1 + ε

≤M i
t ≤ (1 + ε)Sit a.s.,

and if there is a probability measure Q on (Ω,F) such that Q ∼ P and that M is a

Q-martingale.

If S has an ε-CPS, then S, as a price process, is free of arbitrage and free lunches

with vanishing risk with ε-sized proportional transaction costs (which follows, e.g., by

combining Corollary 1.2 of [3] and Lemma 2.1 of [5]). We refer the reader to [6, 7] for

details on how the value of a portfolio is defined under proportional transactions costs

in continuous time.

To formulate our main result, we recall the notion of stickiness — here in a multi-

dimensional form — that was initially introduced by Guasoni [5]. To this end, we use

the norm ‖x‖ := max(|x1|, . . . , |xd|) for any x = (x1, . . . , xd) ∈ Rd, and write for any

stopping time τ ∈ [0, T ],

S?τ := sup
u∈[τ,T ]

‖Su − Sτ‖.

Definition 2.2. The process S is sticky, if for any t ∈ [0, T ) and δ > 0,

P[S?t < δ|Ft] > 0 a.s.

Remark 2.3. We stress that t in Definition 2.2 is non-random. This definition of sticki-

ness is, however, equivalent to the concept of joint stickiness introduced in [16, Defini-

tion 2], by Lemma 3.1, below. When d = 1, Definition 2.2 is also equivalent to Guasoni’s

original one-dimensional definition of stickiness [5, Definition 2.2] by Proposition 1 of

[1] and Lemma 3.1.

Remark 2.4. Recall that the process S has conditional full support (CFS) if for any

t ∈ [0, T ), δ > 0, and for any continuous function f : [0, T ]→ Rd such that f(0) = 0, it

holds that

P

[
sup
u∈[t,T ]

‖Su − St − f(u− t)‖ < δ

∣∣∣∣Ft] > 0

a.s. on {f(u − t) + St ∈ Rd+ for all u ∈ [t, T ]}. Intuitively, the process (Su)u∈[t,T ] then

“sticks” to any random function of the form f(· − t) + St with positive conditional

probability. The CFS property is clearly a stronger requirement than stickiness, which

entails that S “sticks” merely to its current value with positive conditional probability

(that is, f = 0). The CFS property has been recently established for a wide selection of

processes, see [2, 4, 6, 8, 9, 13, 14]. In particular, many Gaussian processes, including

fractional Brownian motion, have CFS.

It is worth pointing out that stickiness is obviously preserved under composition

of the process S with a continuous function, which is not true in general for the CFS

property. Due to this observation one can easily construct an abundance of sticky

processes by composing, e.g., a process having CFS with a continuous function.
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We can now state our main result, deferring its proof until Section 3.

Theorem 2.5 (Consistent price systems). If S is sticky, then it admits an ε-CPS for

any ε > 0.

Curiously, one of the implications of Theorem 2.5 is that there exist examples of

a process with monotonic, smooth paths that can be approximated, with arbitrary

precision, by a process that transforms into a martingale under an equivalent probability

measure — which is perhaps a bit counterintuitive from a probabilistic point of view.

Example 2.6 (Strictly increasing process). Suppose that (Bt)t∈[0,T ] is a standard (one-

dimensional) Brownian motion and s0 > 0 is a constant. Let us consider the process

St := s0 +

∫ t

0
|Bs|ds, t ∈ [0, T ].

Clearly, S has strictly increasing, continuously differentiable paths. Thus, neither the

CFS property (see Remark 2.4) nor the criterion of Kabanov and Stricker [11] is in

force. However, using the independence and stationarity of increments of B, and their

full support property [15, Corollary VIII.2.3], it is straightforward to show that S is

sticky. Thus, by Theorem 2.5, there exists for any ε > 0 a probability measure Q ∼ P

and a Q-martingale M such that |Mt/St − 1| ≤ ε a.s. for all t ∈ [0, T ]. Note that the

monotonicity and differentiability of S is preserved under Q since Q ∼ P.

3 Proof of Theorem 2.5

We will first introduce some additional notation and concepts that are crucial in what

follows. Suppose that E ⊂ Rd. Recall that the convex hull of E, denoted by convE, is

the smallest convex subset of Rd that contains E. Moreover, the relative interior of E,

denoted by riE, is the interior of E in the relative topology of the smallest affine subset

of Rd that contains E (the so-called affine hull of E). We use intE for the (ordinary)

interior of E. The support of a probability measure µ on Rd, denoted by suppµ is the

smallest closed set E ⊂ Rd such that µ(E) = 1. The (regular) conditional law of a

random vector X in Rd, defined on (Ω,F,P), with respect to a σ-algebra G ⊂ F will be

denoted by L(X|G). We use the standard convention that inf ∅ =∞.

As a preparation for the proof of Theorem 2.5, we show that stickiness implies

a (seemingly) stronger property, obtained by replacing the deterministic time t and

radius δ of Definition 2.2 with a stopping time τ and an Fτ -measurable random radius

η, respectively. This result is analogous to Proposition 2.9 of [6], which says that the

CFS property implies the strong CFS property, and its proof is, in fact, carried out in

a similar fashion (cf. also Lemma 2.2 of [12]).

Lemma 3.1. If S is sticky, then for any stopping time τ ∈ [0, T ] and Fτ -measurable

random variable η ≥ 0,

P[S?τ < η|Fτ ] > 0 a.s. on {η > 0}.
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Proof. To exclude a triviality, we assume that P[η > 0] > 0. We use a contrapositive

argument and suppose that the assertion is not true, that is, there is a stopping time

τ ∈ [0, T ], an Fτ -measurable random variable η, and A ∈ Fτ such that A ⊂ {η > 0},
P[A] > 0, and

P[S?τ ≥ η|Fτ ] = 1 on A. (3.1)

Note that, necessarily, A ⊂ {τ < T}. Since A ⊂ {η > 0}, we may write A =
⋃
n∈NA

′
n,

where A′n := A∩{η > 2/n} ∈ Fτ . The property P[A] > 0 implies then that P[A′n0
] > 0

for some n0 ∈ N. Further, by the continuity of S, we have A′n0
=
⋃
q∈[0,T )∩QA

′′
q , where

A′′q := A′n0
∩ {τ < q} ∩

{
sup
t∈[τ,q]

‖St − Sτ‖ <
1

n0

}
∈ Fq.

Thus, P[A′n0
] > 0 implies that P[A′′q0 ] > 0 for some q0 ∈ [0, T ) ∩Q.

The property (3.1) implies that 1{S?τ≥η} = 1 a.s. on A. Thus, recalling that A′′q0 ⊂ A,

P[A′′q0 ] = E[1A′′q0
1{S?τ≥η}] = P[A′′q0 ∩ {S

?
τ ≥ η}]. (3.2)

Since we have the inclusion

A′′q0 ∩ {S
?
τ ≥ η} ⊂ A′′q0 ∩ {S

?
q0 ≥ 1/n0},

it follows that

P[A′′q0 ∩ {S
?
τ ≥ η}] ≤ P[A′′q0 ∩ {S

?
q0 ≥ 1/n0}] ≤ P[A′′q0 ]. (3.3)

Combining (3.2) and (3.3), we obtain

P[S?q0 ≥ 1/n0|Fq0 ] = 1 a.s. on A′′q0 ,

which implies that S is not sticky.

Similarly to the paper by Kabanov and Stricker [11], the key ingredient in the proof

of our Theorem 2.5 is the following result (Lemma 1 in the revised version of [11]) that

gives sufficient conditions for the existence of an equivalent martingale measure for a

discrete parameter process with infinite time horizon (see also Remark 3.5, below).

Lemma 3.2 (Equivalent martingale measure). Let (Gn)n≥0 be a filtration on (Ω,F,P)

and let (Xn)n≥0 be a discrete-parameter, d-dimensional process adapted to (Gn)n≥0.

Further, write ξn := Xn −Xn−1 for any n ∈ N. If

(i) 0 ∈ ri conv suppL(ξn|Gn−1) a.s. for any n ∈ N,

(ii) 1{ξn=0} ↑ 1 a.s. when n ↑ ∞,

(iii) P[ξn = 0|Gn−1] > 0 a.s. on {ξn−1 6= 0} for any n ∈ N,

then there exists a probability measure Q ∼ P such that X is a Q-martingale and

bounded in L2(Q).

5



Remark 3.3. Kabanov and Stricker [11] write the condition (i) in a different form that

requires the process (Xn)Nn=1 to be free of arbitrage for any time horizon N ∈ N. For

our purposes, the geometric formulation (i) will be more convenient. Both formulations

are equivalent by Theorem A* in Chapter V of [17].

Proof of Theorem 2.5. Fix ε > 0. Let us define an increasing sequence (τn)n≥0 of stop-

ping times by setting τ0 := 0 and for any n ∈ N,

τn := inf

{
t ≥ τn−1 :

Sit
Siτn−1

/∈
(

1

1 + ε
, 1 + ε

)
for some i = 1, . . . , d

}
∧ T.

As argued in [6, p. 509], the continuity of the process S ensures that 1{τn=T} ↑ 1 a.s.

when n ↑ ∞.

Following the proof of Theorem 1 in [11], we approximate the skeleton (Sτn)n≥0
of the process S by a carefully constructed discrete-parameter process (Xn)n≥0 that

will satisfy the conditions of Lemma 3.2 with (Gn)n≥0 := (Fτn)n≥0. Deviating from the

construction of X in [6, 11] we first decompose the event {τn = T, τn−1 < T} into (2d+1)

disjoint subevents such that each of them has positive Fτn−1-conditional probability, if

S moves after τn−1. On one of these subevents, we set Xn −Xn−1 := 0 to ensure that

condition (iii) of Lemma 3.2 holds. On the remaining 2d subevents, Xn −Xn−1 will be

assigned values given by the d standard basis vectors of Rd and their opposites, scaled

by a small positive factor so that X remains “close” to the skeleton (Sτn)n≥0. In this

way we can guarantee that X satisfies the support condition (i) of Lemma 3.2.

We proceed now with the rigorous construction of the discrete-parameter process

X. For any stopping time τ ∈ [0, T ], we introduce

Sτ := sup suppL(S?τ |Fτ ). (3.4)

Observe that the random variable Sτ assumes values in [0,∞] and is Fτ -measurable

since we can alternatively represent it as

Sτ = sup
s∈Q+

s1{P[S?τ≥s|Fτ ]>0},

where {P[S?τ ≥ s|Fτ ] > 0} ∈ Fτ and Q+ := R+ ∩Q. We set

δn−1 := min

(
ε

1 + ε
S1
τn−1

, . . . ,
ε

1 + ε
Sdτn−1

, Sτn−1

)
,

which is an Fτn−1-measurable (finite) random variable, and

Cin :=

{
S?τn−1

∈
[
i− 1

2d+ 1
δn−1,

i

2d+ 1
δn−1

)}
∩
{
Sτn−1 > 0

}
⊂ {τn = T, τn−1 < T},

(3.5)

with n ∈ N and i ∈ {1, . . . , 2d + 1}. Below, in Lemma 3.6, we show these events have

positive Fτn−1-conditional probabilities, as a consequence of the stickiness of the process
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S. We define X to be the (Fτn)n≥0-adapted process

Xn := S0 +
n∑
k=1

ξk, n ≥ 0,

where

ξn := (Sτn − Sτn−1)1{τn<T} +

d∑
i=1

δn−1(1C2i
n
− 1C2i+1

n
)ei for any n ∈ N, (3.6)

using ei to denote the i-th standard basis vector of Rd.
For any n ∈ N, the second term in (3.6) ensures that ξn = δn−1ei on C2i

n and

ξn = −δn−1ei on C2i+1
n with i ∈ {1, . . . , d} and, moreover, ξn = 0 on C1

n. To verify

condition (i) of Lemma 3.2, note that

suppL(ξn|Fτn−1) = {0} a.s. on
{
Sτn−1 = 0

}
, (3.7)

whereas

suppL(ξn|Fτn−1) ⊃ {±δn−1ei : i = 1, . . . , d} a.s. on
{
Sτn−1 > 0

}
(3.8)

by the construction of ξn on the sets Cin and Lemma 3.6 below. Thus, it follows that

0 ∈ ri conv suppL(ξn|Fτn−1) a.s.

The condition (ii) of Lemma 3.2 is satisfied since {ξn+1 = 0} ⊃ {ξn = 0} ⊃ {τn−1 = T}
and

1{ξn=0} ≥ 1{τn−1=T} ↑ 1 a.s. when n ↑ ∞.

Finally, condition (iii) of Lemma 3.2 follows from (3.7) and the inequalities

P[ξn = 0|Fτn−1 ] ≥ P[C1
n|Fτn−1 ] > 0 a.s. on

{
Sτn−1 > 0

}
, (3.9)

the latter of which comes from Lemma 3.6 below.

The construction of a CPS can now be carried out using a standard method (cf.

[6, 11]). By Lemma 3.2, there exists a probability measure Q ∼ P such that X is

a uniformly integrable Q-martingale, thus closable at ∞. We may then define a d-

dimensional continuous-parameter Q-martingale M by setting Mt := EQ[X∞|Ft] for

any t ∈ [0, T ]. By the optional sampling theorem, Mτn = Xn a.s. for any n ≥ 0. For the

remainder of the proof, let us fix arbitrary i ∈ {1, . . . , d} and t ∈ [0, T ]. The processes

X and M satisfy, by construction, for any n ≥ 0,

1

(1 + ε)2
≤ Xi

n

Siτn
=
M i
τn

Siτn
≤ (1 + ε)2 a.s. (3.10)

It is shown in [6, p. 510] that

1

(1 + ε)2
≤
Siρt
Sit
≤ (1 + ε)2 a.s., (3.11)
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where ρt := min{τn : τn > t}, which is a stopping time. It follows then from (3.10) and

(3.11) that

1

(1 + ε)4
≤
M i
ρt

Sit
=
M i
ρt

Siρt

Siρt
Sit
≤ (1 + ε)4 a.s.

By the optional sampling theorem, M i
t/S

i
t = EQ[M i

ρt/S
i
t |Ft], so we find that

1

(1 + ε)4
≤ M i

t

Sit
≤ (1 + ε)4 a.s.,

and we can conclude the proof by adjusting ε appropriately.

Remark 3.4. The difference between the proof of Theorem 2.5 and the earlier proofs

of existence of CPSs under stronger assumptions in the papers [6, 11] is indeed that

we introduce the second term in the definition of the increment (3.6). This term is

indispensable as it ensures that the support condition (i) of Lemma 3.2 holds even

when S is merely sticky. Namely, under stickiness the condition (i) might otherwise fail

as it is possible, for example, that

{0} 6= suppL(Sτn − Sτn−1 |Fτn−1) ⊂ [0,∞)d a.s. on {τn−1 < T}

(like in the case of Example 2.6).

Remark 3.5. The probability measure Q in the proof of Theorem 2.5 can be alternatively

constructed using Lemma 3.1 of [6], instead of applying Lemma 3.2. More precisely,

Lemma 3.1 of [6] can be applied sequentially to

X := ξn, A :=
{
Sτn−1 = 0

}
, G := Fτn−1 , H := Fτn , η :=

1

2n
,

for any n ∈ N, since (3.7) and (3.9) hold, and since the inclusion (3.8) ensures that, in

fact,

0 ∈ int conv suppL(ξn|Fτn−1) a.s. on
{
Sτn−1 > 0

}
.

As in [6, p. 509], the probability measure Q can then be defined through the density

L =
∏∞
n=1 Zn, where Zn, n ∈ N, are the conditional densities obtained from Lemma 3.1

of [6]. The required properties of Q can be verified following [6, pp. 509–510]. To this

end, it is useful to note that

1{ξn−1=0} ≤ 1{
Sτn−1=0

} ≤ 1{ξn=0} a.s. for any n ∈ N.

It remains to prove the following lemma, used above in the proof of Theorem 2.5,

which a consequence of the stickiness of the process S.

Lemma 3.6. For any n ∈ N and i ∈ {1, . . . , 2d+ 1},

P[Cin|Fτn−1 ] > 0 a.s. on
{
Sτn−1 > 0

}
,

where Cin and Sτn−1 are given by (3.5) and (3.4), respectively.
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Proof. Fix n ∈ N and i ∈ {1, . . . , 2d+ 1}. Again to exclude a triviality (cf. the proof of

Lemma 3.2), we assume that P
[
Sτn−1 > 0

]
> 0. Define a stopping time

ρ := inf

{
t > τn−1 : ‖St − Sτn−1‖ =

2i− 1

2(2d+ 1)
δn−1

}
∧ T

and note that P[ρ < T |Fτn−1 ] > 0 a.s. on
{
Sτn−1 > 0

}
by the definition of Sτn−1 and

δn−1. Clearly, we have the inclusion

{ρ < T} ∩ E ⊂ Cin, (3.12)

where

E :=

{
S?ρ <

1

2(2d+ 1)
δn−1

}
.

Let now A ∈ Fτn−1 be such that P[A] > 0 and A ⊂
{
Sτn−1 > 0

}
. Observe that

E
[
1AP[{ρ < T} ∩ E|Fτn−1 ]

]
= E

[
1A∩{ρ<T}P[E|Fρ]

]
> 0

since P[A ∩ {ρ < T}] > 0 and P[E|Fρ] > 0 a.s. by the stickiness of S and Lemma 3.1.

The assertion follows now from the inclusion (3.12).
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