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Abstract

Consider the problem of drawing random variates (X1, . . . , Xn)
from a distribution where the marginal of eachXi is specified, as well as
the correlation between every pair Xi and Xj . For given marginals, the
Fréchet-Hoeffding bounds put a lower and upper bound on the corre-
lation between Xi and Xj . Any achievable correlation between Xi and
Xj is a convex combinations of these bounds. The value λ(Xi, Xj) ∈
[0, 1] of this convex combination is called here the convexity parame-
ter of (Xi, Xj), with λ(Xi, Xj) = 1 corresponding to the upper bound
and maximal correlation. For given marginal distributions functions
F1, . . . , Fn of (X1, . . . , Xn) we show that λ(Xi, Xj) = λij if and only if
there exist symmetric Bernoulli random variables (B1, . . . , Bn) (that is
{0, 1} random variables with mean 1/2) such that λ(Bi, Bj) = λij . In
addition, we characterize completely the set of convexity parameters
for symmetric Bernoulli marginals in two, three and four dimensions.

1 Introduction

Consider the problem of simulating a random vector (X1, . . . ,Xn) with sec-
ond moments where for all i the cumulative distribution function (cdf) of
Xi is Fi, and for all i and j the correlation between Xi and Xj should be
ρij ∈ [−1, 1]. The correlation here is the usual notion

corr(X,Y ) =
E[(X − E(X))(Y − E(Y ))]

sd(X)sd(Y )
=

E[XY ]− E[X]E[Y ]

sd(X)sd(Y )
,

for standard deviations sd(X) and sd(Y ) that are finite.
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Let Ω denote the set of matrices with entries in [−1, 1], all the diagonal
entries equal 1, and are nonnegative definite. Then it is well known that
any correlation matrix (ρij) must lie in Ω.

This problem, in different guises, appears in numerous fields: physics [16],
engineering [11], ecology [4], and finance [12], to name just a few. Due to
its applicability in the generation of synthetic optimization problems, it has
also received special attention by the simulation community [9], [8].

A variety of approaches exist for this well studied problem. When the
marginals are normal and the distribution is continuous with respect to
Lebesgue measure, this is just the problem of generating a multivariate
normal with specified correlation matrix. It is well known how to accomplish
this (see, for instance [6], p. 223) for any matrix in Ω.

For marginals that are not normal, the question is very much harder. A
common method is to employ families of copulas (see for instance [15]), but
there are very few techniques that apply to general marginals. Instead, dif-
ferent families of copulas typically focus on different marginal distributions.

Devroye and Letac [3] showed that if the marginals are beta distributed
with equal parameters at least 1/2, then when the dimension is three it is
possible to simulate such a vector where the correlation is any matrix in Ω.
This set of beta distributions includes the important case of uniform [0, 1]
marginals, but they have not been able to extend their technique to higher
dimensions.

Chaganty and Joe [1] characterized the achievable correlation matrices
when the marginals are Bernoulli. When the dimension is 3 their charac-
terization is easily checkable, in higher dimensions they give a number of
inequalities that grows exponentially in the dimension.

For the case of general marginals, in statistics there is a tradition of using
transformations of mutivariate normal vectors dating back to Mardia [14]
and Li and Hammond [13]. This approach relies heavily on developing usable
numerical methods. In this paper we approach the same problem using
exclusively probabilistic techniques.

We show that for many correlation matrices the problem of simulating
from a multivariate distribution with fixed marginals and specified correla-
tion can be reduced to showing the existence of a multivariate distribution
whose marginals are Bernoulli with mean 1/2, and for each pair of marginals,
there is a specified probability that the pair takes on the same value. For
n = 2, 3, 4 we are able to give necessary and sufficient conditions on those
agreement probabilities in order for such a distribution to exist.
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The convexity graph. Any two random variables X and Y have corre-
lation in [−1, 1], but if the marginal distributions of X and Y are fixed, it
is generally not possible to build a bivariate distribution for any correlation
in [−1, 1]. For instance, for X and Y both exponentially distributed, the
correlation must lie in [1− π2/6, 1]. The range of achievable correlations is
always a closed interval.

For two dimensions it is well known how to find the minimum and max-
imum correlation. These come from the inverse transform method, which
works as follows. First, given a cdf F , define the pseudoinverse of the cdf as

F−1 = inf{x : F (x) ≥ u}. (1)

When U is uniform over the interval [0, 1] (write U ∼ Unif([0, 1])), F−1(U)
is a random variable with cdf F (see for instance p. 28 of [2]). Since U and
1−U have the same distribution, both can be used in the inverse transform
method. The random variables U and 1−U are antithetic random variables.
Of course corr(U,U) = 1 and corr(U, 1 − U) = −1, so these represent an
easy way to get minimum and maximum correlation when the marginals are
uniform random variables.

The following theorem comes from work of Fréchet [7] and Hoeffding [10].

Theorem 1 (Fréchet-Hoeffding bound). For X1 with cdf F1 and X2 with
cdf F2, and U ∼ Unif([0, 1]):

corr(F−1
1

(U), F−1
2

(1− U)) ≤ corr(X1,X2) ≤ corr(F−1
1

(U), F−1
2

(U)).

In other words, the maximum correlation between X1 and X2 is achieved
when the same uniform is used in the inverse transform method to gener-
ate both. The minimum correlation between X1 and X2 is achieved when
antithetic random variates are used in the inverse transform method.

Definition 1. Consider random variables X and Y with finite second mo-
ments, and cdf FX and FY respectively. For U uniform on [0, 1], let ρ− =
corr(F−1

X (U)F−1

Y (1 − U)) and ρ+ = corr(F−1

X (U)F−1

Y (U)). Then (by the
Fréchet-Hoeffding bound) there is a unique λ ∈ [0, 1] such that

corr(X,Y ) = λρ+ + (1− λ)ρ−.

Call λ = λ(X,Y ) the convexity parameter of X and Y .

Definition 2. Consider (X1, . . . ,Xn) with finite second moments, where
each Xi has cdf Fi, and the correlation between Xi and Xj is ρij . Then the
complete graph on {1, . . . , n} where edge {i, j} has weight λij = λ(Xi,Xj)
is the convexity graph of the distribution.
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Let Bn be the set of probabilities on {0, 1}n such that if (B1, . . . , Bn) ∼ µ
where µ ∈ Bn, then P (Bi = 1) = 1/2 for all i.

Theorem 2. Let (B1, . . . , Bn) ∼ µ ∈ Bn. Then λ(Bi, Bj) = P (Bi = Bj)
for all i < j. For all distribution functions F1, . . . , Fn with second mo-
ments, there exists a distribution for (X1, . . . ,Xn) such that for all i we
have P (Xi ≤ x) = Fi(x) and for all i < j we have λ(Xi,Xj) = λ(Bi, Bj).

Proof. For (Bi, Bj) with symmetric Bernoulli marginals, the value of either
P (Bi = Bj) or corr(Bi, Bj) (which is one-to-one with λ(Bi, Bj)) completely
determines the bivariate distribution. It is then straightforward to verify
that P (Bi = Bj) = λ(Bi, Bj).

Next, consider U uniform on [0, 1] independent of (B1, . . . , Bn). Then
Xi = F−1

i (UBi + (1−U)(1−Bi)) has the correct marginals and again it is
straightforward to show λ(Xi,Xj) = λ(Bi, Bj).

Theorem 2 immediately gives us a way to simulate from a distribution
(X1, . . . ,Xn) with given convexity parameters in linear time, provided it is
possible to simulate from a multivariate symmetric Bernoulli with the same
convexity parameters. The next result characterizes when such a multivari-
ate Bernoulli exists in two, three, and four dimensions, and gives necessary
conditions for higher dimensions.

Theorem 3. Suppose (B1, B2, . . . , Bn) are random variables with P(Bi =
1) = P(Bi = 0) = 1/2 for all i. When n = 2, it is possible to simu-
late (B1, B2) for any λ12 ∈ [0, 1]. When n = 3, it is possible to simulate
(B1, B2, B3) if and only if

1 + 2min{λ23, λ12, λ13} ≥ λ23 + λ12 + λ13 ≥ 1.

When n = 4, it is possible to simulate (B1, B2, B3, B4) if and only if

ℓ ≤ u+ 1 and 1 ≤ u

where

ℓ = max(λ14 + λ14 + λ13 + λ23, λ14 + λ34 + λ12 + λ23, λ24 + λ34 + λ12 + λ13)

u = min
{i,j,k}

λij + λjk + λik.

The rest of the paper is organized as follows. In the next section, Theo-
rem 3 is shown. In Section 2.2, the set of multivariate asymmetric Bernoulli
distributions is linked to that of symmetric Bernoulli distributions.
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2 Proof of Theorem 3

2.1 The n = 2 and n = 3 cases

Lemma 1. For any λ12 ∈ [0, 1], there exists a unique joint distribution on
{0, 1}2 such that (B1, B2) with this distribution has B1, B2 ∼ Bern(1/2) and
P (B1 = B2) = λ12.

Proof. Let pij = P (B1 = i, B2 = j). Then the equations that are necessary
and sufficient to meet the distribution and convexity conditions are:

p10+p11 = 0.5, p01+p11 = 0.5, p11+p00 = λ12, and p00+p01+p10+p11 = 1.

This system of linear equations has full rank, so there exists a unique so-
lution. Given there is a unique solution, it is easy to verify that solution
is:

p00 = (1/2)λ12, p01 = (1/2)[1 − λ12], p10 = (1/2)[1 − λ12], p11 = (1/2)λ12.

This provides an alternate algorithm to that found in [5] for simulating
from bivariate distributions with correlation between ρ−

1,2 and ρ+
1,2.

Lemma 2. A random vector (B1, B2, B3) with Bi ∼ Bern(1/2) exists (and
is possible to simulate from in a constant number of steps) if and only if the
concurrence graph satisfies

1 ≤ λ23 + λ12 + λ13 ≤ 1 + 2min{λ12, λ13, λ23}

Proof. Let pijk = P (B1 = i, B2 = j,B3 = k). The first condition is
∑

i,j,k pi,j,k = 1. There are three conditions from the marginals:

∑

j,k∈{0,1}

p1jk = 0.5,
∑

i,k∈{0,1}

pi1k = 0.5,
∑

ij∈{0,1}

pij1 = 0.5,

and three conditions from the correlations

∑

k∈{0,1}

p00k + p11k = λ12,
∑

j∈{0,1}

p0j0 + p1j1 = λ13,
∑

i∈{0,1}

pi00 + pi11 = λ23.

To get 8 equations, suppose that p111 = α.
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This 8 by 8 system of equations has full rank, so there is a unique solu-
tion. It is easy to verify that the solution is

p000 = (1/2)(λ12 + λ13 + λ23 − 1)− α p100 = (1/2)(1 − (λ12 + λ13)) + α

p001 = (1/2)(1 − (λ13 + λ23)) + α p101 = (1/2)λ13 − α

p010 = (1/2)(1 − (λ12 + λ23)) + α p110 = (1/2)λ12 − α

p011 = (1/2)λ23 − α p111 = α

In order for this solution to yield probabilities, all must lie in [0, 1]. Since
p111 = α, α ≥ 0. The p011, p101, and p110 equations then give

0 ≤ α ≤ (1/2)min{λ12, λ23, λ13}. (2)

The p000 equation requires that

α ≤ (1/2)(λ13 + λ12 + λ23 − 1). (3)

With these two conditions, equations p001, p010, and p100 give the constraint

(1/2)(λ13 + λ12 + λ23 −min{λ13, λ12, λ23} − 1) ≤ α. (4)

Combining (4) and (2) gives

(1/2)(λ13+λ12+λ23−min{λ13, λ12, λ23}−1) ≤ (1/2)min{λ13, λ12, λ23}. (5)

As long an α ≥ 0 exists satisfying (3) and (5) holds, there exists a
solution.

From this result we see that not all positive definite correlation matrices
are attainable with Bern(1/2) marginals. For instance, if λ12 = λ13 = λ23 =
0.3, then ρ12 = ρ13 = ρ23 = −0.4. With diagonal entries 1, the ρ values
form a positive definite graph, but it is impossible to build a multivariate
distribution with Bern(1/2) marginals with these correlations.

2.2 The n = 4 case: asymmetric Bernoulli distributions

To show the n = 4 case, it will be useful to understand the problem of
drawing a multivariate Bernoulli (X1, . . . ,Xn) where Xi ∼ Bern(pi) where i
is not necessarily 1/2.
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Lemma 3. An n dimensional multivariate Bernoulli distribution where the
marginal of component i is Bern(pi) and concurrence graph Λ exists if and
only if an n + 1 dimensional multivariate Bernoulli distribution exists with
Bern(1/2) marginals and concurrence graph









Λ
p1...
pn

p1 · · · pn 1









Proof. Suppose such an n+1 dimensional distribution exists with Bern(1/2)
marginals and specified concurrence graph. Let (B1, . . . , Bn+1) be a draw
from this distribution. Then set Xi = 1(Bi = Bn+1). The concurrence graph
gives P (Xi = 1) = pi, and for i 6= j, P (Xi = Xj) = P (Bi = Bj) = λij .

Conversely, suppose such an n dimensional distribution with Bern(pi)
marginals exists. Let Bn+1 ∼ Bern(1/2) independent of the Xi, and set Bi =
Bn+1Xi+(1−Bn+1)(1−Xi). Then P (Bi = 1) = (1/2)pi+(1/2)(1−pi) = 1/2,
and P (Bi = Bn+1) = pi, the correct concurrence parameter. Finally, for
i 6= j,

P (Bi = Bj) = P (Xi = Xj) = λij .

Lemma 3 can be used to finish the n = 4 case.

Lemma 4. A random vector (B1, B2, B3, B4) with Bi ∼ Bern(1/2) exists
(and is possible to simulate in a constant number of steps) if and only if for

ℓ = max{λ14 + λ24 + λ13 + λ23, λ14 + λ34 + λ12 + λ23, λ24 + λ34 + λ12 + λ13}

u = min
{i,j,k}

(λij + λjk + λik),

it is true that
ℓ ≤ u+ 1 and 1 ≤ u.

Proof. By using Lemma 3, the problem is reduced to finding a distribution
for (X1,X2,X3) whereXi ∼ Bern(λi4) and the upper 3 by 3 minor of Λ is the
new concurrence matrix. Just as in Lemma 2, this gives eight equations of
full rank with a single parameter α. Letting qijk = P(X1 = i,X2 = j,X3 =
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k), the unique solution is

q000 = (1/2)(λ12 + λ13 + λ23)− (1/2) − α

q001 = −(1/2)(λ14 + λ24 + λ13 + λ23) + 1 + α

q010 = −(1/2)(λ14 + λ34 + λ12 + λ23) + 1 + α

q011 = (1/2)(λ24 + λ34 + λ23)− (1/2) − α

q100 = −(1/2)(λ24 + λ34 + λ12 + λ13) + 1 + α

q101 = (1/2)(λ14 + λ34 + λ13)− (1/2) − α

q110 = (1/2)(λ34 + λ24 + λ12)− (1/2) − α

q111 = α.

All of these right hand sides lie in [0, 1] if and only if u ≥ 1, ℓ ≤ u + 1,
and α is chosen to lie in [(1/2)ℓ − 1, (1/2)(u − 1)] ∩ [0, 1].

As with the 3 dimensional case, this proof can be used to simulate a 4
dimensional multivariate symmetric Bernoulli: generate (X1,X2,X3) using
any α ∈ [(1/2)ℓ−1, (1/2)(u−1)]∩ [0, 1] and the q distribution, then generate
B4 ∼ Bern(1/2), and then set Bi to be B4Xi + (1 − B4)(1 − Xi) for i ∈
{1, 2, 3, 4}.

3 Conclusions

The Fréchet-Hoeffding bounds give a lower and upper bound on the pairwise
correlation between two random variables with given marginals. Hence for
higher dimensions the correlation matrix provides edge weights for a con-
vexity graph whose parameters indicated where on the line from the lower
to the upper bound the correlation lies. When it is possible to build a multi-
variate distribution with these convexities for marginals that are symmetric
Bernoulli, then it is possible to build a multivariate distribution with these
convexities for arbitrary marginals. For two, three and four dimensions,
the set of convexity matrices that yield a symmetric Bernoulli distribution
is characterized completely. For five or higher dimensions, every subset of
three and four have these characterizations as necessary conditions.

Acknowledgement Support from the National Science Foundation
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