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Abstract

We extend the class of tempered stable distributions first introduced in Rosiński
2007 [19]. Our new class allows for more structure and more variety of tail behav-
iors. We discuss various subclasses and the relation between them. To character-
ize the possible tails we give detailed results about finiteness of various moments.
We also give necessary and sufficient conditions for the tails to be regularly vary-
ing. This last part allows us to characterize the domain of attraction to which a
particular tempered stable distribution belongs.

1 Introduction

Tempered stable distributions were defined in Rosiński 2007 [19] as a class of models
obtained by modifying the Lévy measures of stable distributions by multiplying their
densities by completely monotone functions. This allows for models that are similar
to stable distributions in some central region, but possess lighter (i.e. tempered) tails.
It has been observed that these models provide a good fit to data in a variety of ap-
plications. These include mathematical finance [9] [14], biostatistics [2] [18], computer
science [25], and physics [8] [17]. An explanation for why such models might appear in
applications is given in [11].

The purpose of this paper is two-fold. First, we provide necessary and sufficient
conditions for tempered stable distributions to have regularly varying tails. This is
an important question both from a theoretical perspective, since it will allow us to
classify which domain of attraction a tempered stable distribution belongs to, and
from an applied point of view, since such models are often used in practice. Our
second purpose is to introduce the class of p-tempered α-stable distributions, where
p > 0 and α < 2. The parameter p controls the amount of tempering, while α is
the index of stability of the corresponding stable distribution. Clearly the case where
α ≤ 0 no longer has any meaning in terms of tempering stable distributions, however
it allows the class to be more flexible. In fact, within certain subclasses, the case where
α ≤ 0 has been shown to provide a good fit to data, see e.g. [2] or [9].

This class combines a number of important subclasses that have been studied sep-
arately in the literature. In particular, when p = 1 and α ∈ (0, 2) it coincides with
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Rosiński’s [19] tempered stable distributions. When p = 2 and α ∈ [0, 2) it coincides
with the class of tempered infinitely divisible distributions defined in [6]. If we allow
the distributions to have a Gaussian part, then we would have the class Jα,p defined
in [15]. This, in turn, contains important subclasses including the Thorin class (when
p = 1 and α = 0), the Goldie-Steutel-Bondesson class (when p = 1 and α = −1),
the class of type M distributions (when p = 2 and α = 0), and the class of type G
distributions (when p = 2 and α = −1). For more information on these classes see [4],
[3], and the references therein.

This paper is structured as follows. In Section 2 we define p-tempered α-stable
distributions and state some basic results. We show that, as with tempered stable
distributions, for a fixed α and p, all elements of this class are uniquely determined by
a Rosiński measure R and a shift b. The remaining two sections are concerned with
relating the tails of the Rosiński measure to the tails of the distribution. In Section 3 we
give necessary and sufficient conditions for the existence of moments and exponential
moments. We also give explicit formulas for the cumulants. Finally, in Section 4 we give
necessary and sufficient conditions for the tails to be regularly varying. Specifically, we
show that the tails of a p-tempered α-stable distribution are regularly varying if and
only if the tails of the corresponding Rosiński measure are regularly varying.

Before proceeding, recall that the characteristic function of an infinitely divisible
distribution µ on Rd can be written as µ̂(z) = exp{Cµ(z)} where

Cµ(z) = −1

2
〈z, Az〉+ i〈b, z〉+

∫

Rd

(

ei〈z,x〉 − 1− i
〈z, x〉
1 + |x|2

)

M(dx), (1)

A is a symmetric nonnegative-definite d× d matrix, b ∈ Rd, and M satisfies

M({0}) = 0 and

∫

Rd

(|x|2 ∧ 1)M(dx) < ∞. (2)

The measure µ is uniquely identified by the Lévy triplet (A,M, b) and we write µ =
ID(A,M, b).

2 p-Tempered α-Stable Distributions

Recall that for α ∈ (0, 2) the Lévy measure of an α-stable distribution with spectral
measure σ is given by

L(B) =

∫

Sd−1

∫ ∞

0

1B(ru)r
−α−1drσ(du), B ∈ B(Rd). (3)

By analogy, we define the following.

Definition 1. Fix α < 2 and p > 0. An infinitely divisible probability measure µ is
called a p-tempered α-stable distribution if it has no Gaussian part and its Lévy
measure is given by

M(B) =

∫

Sd−1

∫ ∞

0

1B(ru)q(r
p, u)r−α−1drσ(du), B ∈ B(Rd), (4)
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where σ is a finite Borel measure on Sd−1 and q : (0,∞) × Sd−1 7→ (0,∞) is a Borel
function such that for all u ∈ Sd−1 q(·, u) is completely monotone and

lim
r→∞

q(r, u) = 0. (5)

We denote the class of p-tempered α-stable distributions by TSp
α. If, in addition,

limr↓0 q(r, u) = 1 for every u ∈ Sd−1 then µ is called a proper p-tempered α-stable
distribution.

Remark 2. The complete monotonicity of q(·, u) implies that for each u ∈ Sd−1 the
function q(r, u) is differentiable and monotonely decreasing in r. Moreover, by Bern-
stein’s Theorem (see e.g. Theorem 1a in Section XIII.4 of [10]),

q(rp, u) =

∫

(0,∞)

e−rpsQu(ds) (6)

for some measurable family {Qu}u∈Sd−1 of Borel measures on (0,∞). For a guarantee
that we can take the family to be measurable see Remark 3.2 in [4]. Note that the
condition limr↓0 q(r, u) = 1 for every u ∈ Sd−1 is equivalent to the condition that
{Qu}u∈Sd−1 is a family of probability measures.

Remark 3. From (6) it follows that as p increases the tails of M (as given in (4))
go to zero quicker. In this sense p controls the extent to which the tails of the Lévy
measure are tempered.

Remark 4. For α ∈ (0, 2) and p > 0, all proper p-tempered α-stable distributions
belong to the class of generalized tempered stable distributions defined in [20]. Many
important results about their Lévy processes are given there. These include short time
behavior, conditions for absolute continuity with respect to the underlying stable process,
and a series representation, see Theorems 3.1, 4.1, and 5.5 in [20] for details.

Remark 5. From Theorem 15.10 in [24] it follows that p-tempered α-stable distri-
butions are selfdecomposable if and only if q(rp, u)r−α is a decreasing function of r
for every u ∈ Sd−1. By Remark 2 this always holds when α ∈ [0, 2). Thus, when
α ∈ [0, 2), p-tempered α-stable distributions inherit properties of selfdecomposable dis-
tributions. In particular, if they are nondegenerate then they are absolutely continuous
with respect to Lebesgue measure in d-dimensions and when d = 1 they are unimodal.

Following [19], we will reparametrize the Lévy measure M into a form that is often
easier to work with. Let Q be a Borel measure on Rd given by

Q(A) =

∫

Sd−1

∫

(0,∞)

1A(ru)Qu(dr)σ(du), A ∈ B(Rd). (7)

Note that Q({0}) = 0. Define a Borel measure R on R
d by

R(A) =

∫

Rd

1A

(

x

|x|1+1/p

)

|x|α/pQ(dx), A ∈ B(Rd), (8)

and again note that R({0}) = 0. To get the inverse transformation we have

Q(A) =

∫

Rd

1A

(

x

|x|p+1

)

|x|αR(dx), A ∈ B(Rd). (9)

The following result extends Theorem 2.3 of [19].
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Theorem 6. Fix p > 0. Let M be given by (4) and let R be given by (8).
1. We can write

M(A) =

∫

Rd

∫ ∞

0

1A(tx)t
−1−αe−tpdtR(dx), A ∈ B(Rd), (10)

or equivalently,

M(A) = p−1

∫

Rd

∫ ∞

0

1A(t
1/px)t−1−α/pe−tdtR(dx), A ∈ B(Rd). (11)

2. (10) defines a Lévy measure if and only if either R = 0 or the following hold:

α < 2, R({0}) = 0, (12)

and
∫

Rd

(

|x|2 ∧ |x|α
)

R(dx) < ∞ if α ∈ (0, 2),

∫

Rd

(

|x|2 ∧ [1 + log+ |x|]
)

R(dx) < ∞ if α = 0, (13)

∫

Rd

(

|x|2 ∧ 1
)

R(dx) < ∞ if α < 0.

Moreover, when R satisfies these conditions, M is the Lévy measure of a p-tempered
α-stable distribution and it uniquely determines R.
3. A p-tempered α-stable distribution is proper if and only if in addition to (12) and
(13) R satisfies

∫

Rd

|x|αR(dx) < ∞. (14)

4. If R satisfies (14) then in (4) the measure σ is given by

σ(B) =

∫

Rd

1B

(

x

|x|

)

|x|αR(dx), B ∈ B(Sd−1). (15)

Note that for all α < 2 the conditions in (13) imply the necessity of
∫

Rd

(

|x|2 ∧ |x|α
)

R(dx) < ∞ and

∫

Rd

(

|x|2 ∧ 1
)

R(dx) < ∞. (16)

Before proving Theorem 6, we will translate the integrability conditions on R into
integrability conditions on {Qu}u∈Sd−1 and σ.

Corollary 7. Fix p > 0, let M be given by (4), and let {Qu} be as in (6). M is a
Lévy measure if and only if either

Qu(R+) = 0 σ-a.e.

or α < 2 and
∫

Sd−1

∫ ∞

0

(

t−(2−α)/p ∧ 1
)

Qu(dt)σ(du) < ∞ α ∈ (0, 2)

∫

Sd−1

∫ ∞

0

(

t−2/p ∧
[

1 + log+(t−1/p)
])

Qu(dt)σ(du) < ∞ α = 0

∫

Sd−1

∫ ∞

0

(

t−(2−α)/p ∧ tα/p
)

Qu(dt)σ(du) < ∞ α < 0.
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Note that these conditions guarantee that for any p > 0 and for σ-a.e. u (5) holds
and

∫

Rd e
−rpsQu(ds) < ∞.

Proof of Theorem 6. We omit most parts of the proof because they are similar to the
case when p = 1 and α ∈ (0, 2), which is given in [19]. We only show that when M is
given by (10) it is a Lévy measure if and only if (12) and (13) hold. Assume R 6= 0,
since the other case is trivial. We have

M({0}) =
∫

Rd

∫ ∞

0

1{0}(tx)t
−α−1e−tpdtR(dx) =

∫

{0}

∫ ∞

0

t−1−αe−tpdtR(dx),

which equals zero if and only if R({0}) = 0.
Now assume

∫

(|x|2 ∧ 1)M(dx) < ∞. For any ǫ > 0

∞ >

∫

|x|≤1

|x|2M(dx) =

∫

Rd

|x|2
∫ |x|−1

0

t1−αe−tpdtR(dx)

≥
∫

|x|≤1/ǫ

|x|2
∫ ǫ

0

t1−αe−tpdtR(dx) ≥ e−ǫp
∫

|x|≤1/ǫ

|x|2
∫ ǫ

0

t1−αdtR(dx).

Since R 6= 0, for this to be finite for all ǫ > 0 it is necessary that α < 2. Taking ǫ = 1
gives the necessity of

∫

|x|≤1
|x|2R(dx) < ∞. Observe that

∞ >

∫

|x|≥1

M(dx) =

∫

Rd

∫ ∞

|x|−1

t−1−αe−tpdtR(dx)

≥
∫

|x|≥1

∫ ∞

|x|−1

t−1−αe−tpdtR(dx)

≥
∫ ∞

1

t−1−αe−tpdt

∫

|x|≥1

R(dx) + e−1

∫

|x|≥1

∫ 1

|x|−1

t−1−αdtR(dx).

This implies the necessity of
∫

|x|≥1R(dx) < ∞ and
∫

|x|≥1

∫ 1

|x|−1 t
−1−αdtR(dx) < ∞.

When α < 0 we are done. When α = 0 this implies the finiteness of
∫

|x|≥1 log |x|R(dx),

and when α ∈ (0, 2) it implies the finiteness of
∫

|x|≥1
|x|αR(dx). Thus (12) and (13)

hold.
Now assume that (12) and (13) hold. We have

∫

|x|≤1

|x|2M(dx) =

∫

Rd

|x|2
∫ |x|−1

0

t1−αe−tpdtR(dx)

≤
∫

|x|≤1

|x|2R(dx)

∫ ∞

0

t1−αe−tpdt+

∫

|x|>1

|x|2
∫ |x|−1

0

t1−αdtR(dx)

= p−1Γ

(

2− α

p

)∫

|x|≤1

|x|2R(dx) + (2− α)−1

∫

|x|>1

|x|αR(dx) < ∞.

Let D = supt≥1 t
2−αe−tp . We have

∫

|x|≥1

M(dx) =

∫

Rd

∫ ∞

|x|−1

t−1−αe−tpdtR(dx)

≤ D

∫

|x|≤1

∫ ∞

|x|−1

t−3dtR(dx) +

∫

|x|>1

∫ ∞

|x|−1

t−1−αe−tpdtR(dx).
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The first integral in the above equals .5D
∫

|x|≤1
|x|2R(dx), which is assumed finite. The

second integral can be written as

∫

|x|>1

∫ 1

|x|−1

t−1−αe−tpdtR(dx) +

∫ ∞

1

t−1−αe−tpdt

∫

|x|>1

R(dx)

Of these, the second integral is finite since
∫

|x|>1R(dx) < ∞. The first is bounded by
∫

|x|>1
|x|α−1

α R(dx) when α 6= 0 and by
∫

|x|>1 log |x|R(dx), when α = 0. The fact that

both of these are assumed to be finite gives the result.

Definition 8. The unique measure in (8) is called the Rosiński measure of the
corresponding p-tempered α-stable distribution.

Remark 9. For α ∈ (0, 2) and p = 1 the Rosiński measure was called the spectral
measure in [19]. For α ∈ [0, 2) and p = 2 the Rosiński measure was introduced in a
slightly different parametrization in [6].

Remark 10. Fix α < 2, p > 0, and let µ ∈ TSp
α with Rosiński measure R. Then

µ = ID(0,M, b) for some b ∈ Rd and M uniquely determined by R. We write TSp
α(R, b)

to denote this distribution.

Theorem 6 shows that for a fixed p > 0 and α < 2, the Rosiński measure is uniquely
determined by the Lévy measure. This leaves the question of whether all of the param-
eters are jointly identifiable. Unfortunately this is not the case. As we will show below,
even for a fixed p > 0 the parameters α and R are not jointly identifiable. However,
using ideas similar to those in [19], we will show that for a fixed p > 0, in the subclass of
proper tempered stable distribution, they are jointly identifiable. On the other hand,
for a fixed α < 2, even in the subclass of proper tempered stable distributions, the
parameters p and R are not jointly identifiable. We begin with the following lemma.

Lemma 11. Fix α < 2, p > 0, and let M be the Lévy measure of a p-tempered α-stable
distribution with Rosiński measure R 6= 0.
1. The map s 7→ sαM(|x| > s) is decreasing and lims→∞ sαM(|x| > s) = 0.
2. If α ∈ (0, 2) then

lim
s↓0

sαM(|x| > s) =
1

α

∫

Rd

|x|αR(dx)

and if α ≤ 0 then
lim
s↓0

sαM(|x| > s) = ∞.

3. If α < 0 then

lim
s↓0

sαM(|x| < s) =
1

|α|

∫

Rd

|x|αR(dx)

and if α ∈ [0, 2) then for all s > 0

M(|x| < s) = ∞.

This lemma extends Corollary 2.5 in [19]. Note that it implies that in the subclass
of proper tempered stable distributions both lims↓0 s

αM(|x| > s) = ∞ and M(|x| <
s) = ∞ if and only if α = 0.

6



Proof. We begin with the first part. Since

sαM(|x| > s) = sα
∫

Rd

∫ ∞

s|x|−1

t−1−αe−tpdtR(dx)

=

∫

Rd

∫ ∞

|x|−1

t−1−αe−(st)pdtR(dx), (17)

the map s 7→ sαM(|x| > s) is decreasing. For large enough s, the integrand in
(17) is bounded by t−1−αe−tp , which is integrable. Thus by dominated convergence
lims→∞ sαM(|x| > s) = 0.

For the second part, by (17) and the Monotone Convergence Theorem

lim
s↓0

sαM(|x| > s) =

∫

Rd

∫ ∞

|x|−1

t−1−αdtR(dx).

Thus if α ∈ (0, 2) then

lim
s↓0

sαM(|x| > s) =
1

α

∫

Rd

|x|αR(dx),

and if α ≤ 0 then
lim
s↓0

sαM(|x| > s) = ∞.

Now for the third part. If α ∈ [0, 2) then for all s > 0

M(|x| < s) =

∫

Rd

∫ s|x|−1

0

t−1−αe−tpdtR(dx)

≥
∫

Rd

e−(s/|x|)p
∫ s|x|−1

0

t−1−αdtR(dx) = ∞.

If α < 0 then

lim
s↓0

sαM(|x| < s) = lim
s↓0

sα
∫

Rd

∫ s|x|−1

0

t−1−αe−tpdtR(dx)

= lim
s↓0

∫

Rd

∫ |x|−1

0

t−1−αe−(st)pdtR(dx)

=

∫

Rd

∫ |x|−1

0

t−1−αdtR(dx) =
1

|α|

∫

Rd

|x|αR(dx),

where the third line follows by the Monotone Convergence Theorem.

Combining Lemma 11 with (14) gives the following.

Proposition 1. In the subclass of proper tempered stable distributions with parameter
p > 0 fixed, the parameters R and α are jointly identifiable.

However, in general, the parameters α and p are not identifiable. This will become
apparent from the following results.
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Proposition 2. Fix α < 2, β ∈ (α, 2), and let K =
∫∞

0
sβ−α−1e−spds. If µ =

TSp
β(R, b) and

R′(A) = K−1

∫

Rd

∫ 1

0

1A(ux)u
−β−1 (1− up)

(β−α)/p−1
duR(dx) (18)

then R′ is the Rosiński measure of a p-tempered α-stable distribution and µ = TSp
α(R

′, b).

Proof. First we will show that R′ is the Rosiński measure of some p-tempered α-stable

distribution. Let C = maxu∈[0,.5] (1− up)
(β−α)/p−1

. We have

K

∫

|x|≤1

|x|2R′(dx) =

∫

Rd

|x|2
∫ 1∧|x|−1

0

u1−β(1− up)(β−α)/p−1duR(dx)

≤
∫

|x|≤2

|x|2R(dx)

∫ 1

0

u1−β(1− up)(β−α)/p−1du

+C

∫

|x|>2

|x|2
∫ |x|−1

0

u1−βduR(dx)

=

∫

|x|≤2

|x|2R(dx)

∫ 1

0

u1−β(1− up)(β−α)/p−1du

+
C

2− β

∫

|x|≥2

|x|βR(dx) < ∞.

If α ∈ (0, 2) then

K

∫

|x|>2

|x|αR′(dx) =

∫

|x|≥2

|x|α
∫ 1/2

|x|−1

uα−1−β(1− up)(β−α)/p−1duR(dx)

+

∫

|x|≥2

|x|α
∫ 1

1/2

uα−1−β(1 − up)(β−α)/p−1duR(dx)

≤ C

∫

|x|≥2

|x|α
∫ ∞

|x|−1

uα−1−βduR(dx)

+

∫

|x|>2

|x|βR(dx)

∫ 1

1/2

uα−1−β(1− up)(β−α)/p−1du.

Here the first integral equals C
β−α

∫

|x|≥2 |x|βR(dx) < ∞ and the second is also finite.

Now assume α = 0 and fix ǫ ∈ (0, β). By 4.1.37 in [1] there exists a Cǫ > 0 such that
for all u > 0, log u ≤ Cǫu

ǫ. Thus

K

∫

|x|>2

log |x|R′(dx) ≤ KCǫ

∫

|x|>2

|x|ǫR′(dx),

8



which is finite by arguments similar to the previous case. When α < 0

K

∫

|x|>2

R′(dx) =

∫

|x|>2

∫ 1

|x|−1

u−1−β(1 − up)(β−α)/p−1duR(dx)

≤ C

∫

|x|>2

∫ 1

|x|−1

u−1−βduR(dx)

+

∫

|x|>2

R(dx)

∫ 1

1/2

u−1−β(1− up)(β−α)/p−1du.

Here the second integral is finite. For β 6= 0 the first equals C
β

∫

|x|>2

(

|x|β − 1
)

R(dx)

which is finite, and for β = 0 it equals
∫

|x|>2
log |x|R(dx) < ∞.

Now, let M ′ be the Lévy measure of TSp
α(R

′, b). By (10)

M ′(A) = K−1

∫

Rd

∫ ∞

0

∫ 1

0

1A(utx)t
−1−αe−tpu−β−1 (1− up)

β−α
p −1

dudtR(dx)

= K−1

∫

Rd

∫ ∞

0

∫ t

0

1A(vx)t
β−α−1e−tpv−β−1 (1− vp/tp)

β−α
p −1

dvdtR(dx)

= K−1

∫

Rd

∫ ∞

0

∫ ∞

v

1A(vx)t
p−1e−tpv−β−1 (tp − vp)

β−α
p −1 dtdvR(dx)

= K−1

∫

Rd

∫ ∞

0

1A(vx)e
−vp

v−β−1dvR(dx)

∫ ∞

0

e−spsβ−α−1ds

=

∫

Rd

∫ ∞

0

1A(vx)e
−vp

v−β−1dvR(dx),

where the second line follows by the substitution v = ut and the fourth by the substi-
tution sp = tp − vp.

To show a similar result for the parameter p we need some additional notation. For
r ∈ (0, 1), let fr be the density of the r-stable distribution with

∫ ∞

0

e−txfr(x)dx = e−tr . (19)

Such a density exists by Proposition 1.2.12 in [22]. However, the only case where an
explicit formula is known is

f.5(s) = (2
√
π)−1e−1/(4s)s−3/21[s>0] (20)

(see Examples 2.13 and 8.11 in [24]). From Theorem 5.4.1 in [27] it follows that if
X ∼ fr and β ≥ 0 then

E|X |−β < ∞. (21)

Proposition 3. Fix α < 2, 0 < p < q. If µ = TSp
α(R, b) and

R′(A) =

∫

Rd

∫ ∞

0

1A(s
−1/qx)sα/qfp/q(s)dsR(dx) (22)

then R′ is the Rosiński measure of a q-tempered α-stable distribution and µ = TSq
α(R

′, b).
Moreover, µ is a proper p-tempered α-stable distribution if and only if it is a proper
q-tempered α-stable distribution.
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This implies that for a fixed α the parameters p and R are not jointly identifiable
even within the subclass of proper tempered stable distributions.

Proof. First we show that R′ is, in fact, the Rosiński measure of a q-tempered α-stable
distribution. We have

∫

|x|≤1

|x|2R′(dx) =

∫

Rd

|x|2
∫ ∞

|x|q
s−(2−α)/qfp/q(s)dsR(dx)

≤
∫

|x|≤1

|x|2
∫ ∞

0

s−(2−α)/qfp/q(s)dsR(dx)

+

∫

|x|>1

|x|αR(dx)

∫ ∞

0

fp/q(s)ds < ∞.

If α 6= 0 and β = α ∨ 0 then

∫

|x|>1

|x|βR′(dx) =

∫

Rd

|x|β
∫ |x|q

0

s−(β−α)/qfp/q(s)dsR(dx)

≤
∫

|x|≤1

|x|2
∫ ∞

0

s−(2−α)/qfp/q(s)dsR(dx)

+

∫

|x|>1

|x|β
∫ ∞

0

s−(β−α)/qfp/q(s)dsR(dx) < ∞.

If α = 0 then
∫

|x|>1

log |x|R′(dx) =

∫

Rd

∫ |x|q

0

log |xs−1/q|fp/q(s)dsR(dx)

≤
∫

|x|≤1

|x|2R(dx)

∫ ∞

0

s−2/qfp/q(s)ds

∫

|x|>1

log |x|R(dx)

∫ ∞

0

fp/q(s)ds

∫

|x|>1

R(dx)

∫ ∞

0

s−1/qfp/q(s)ds < ∞,

where the inequality uses the fact that log |x| ≤ |x| (see 4.1.36 in [1]).
If M ′ is the Lévy measure of TSq

α(R
′, b) then by (10)

M ′(A) =

∫

Rd

∫ ∞

0

∫ ∞

0

1A(s
−1/qtx)t−1−αe−tqdtsα/qfp/q(s)dsR(dx)

=

∫

Rd

∫ ∞

0

1A(vx)v
−1−α

∫ ∞

0

e−vqsfp/q(s)dsdvR(dx)

=

∫

Rd

∫ ∞

0

1A(vx)v
−1−αe−vp

dvR(dx).

The last part follows from (14) and the fact that
∫

Rd

|x|αR′(dx) =

∫

Rd

|x|αR(dx)

∫ ∞

0

s−α/qsα/qfp/q(s)ds =

∫

Rd

|x|αR(dx).

This completes the proof.

10



Propositions 2 and 3 give a constructive proof of the following result, a version of
which was shown in [15].

Corollary 12. Fix α < 2, p > 0, and let µ ∈ TSp
α.

1. For any q ≥ p, µ ∈ TSq
α.

2. For any β ≤ α, µ ∈ TSp
β.

We end this section by characterizing when a p-tempered α-stable distribution is
β-stable for some β ∈ (0, 2).

Proposition 4. Fix α < 2, p > 0, and β ∈ (0, 2). Let µ be a β-stable distribution with
spectral measure σ 6= 0. If β ≤ α then µ /∈ TSp

α. If β ∈ (0 ∨ α, 2) then µ = TSp
α(R, b)

and

R(A) = K−1

∫

Sd−1

∫ ∞

0

1A(rξ)r
−1−βdrσ(dξ), A ∈ B(Rd), (23)

where K =
∫∞

0
tβ−α−1e−tpdt.

Note that
∫

Rd

|x|αR(dx) = K−1σ(Sd−1)

∫ ∞

0

r−(β−α)−1dr = ∞.

Thus, by Part 3 of Theorem 6, no stable distributions are proper p-tempered α-stable.

Proof. If µ ∈ TSp
α then its Lévy measure can be written as (4). By uniqueness of the

polar decomposition of Lévy measures (see Lemma 2.1 in [4]) the function q(r, u) =
r(α−β)/p. This is not completely monotone when β < α, and it does not satisfy (5)
when β = α.

Now assume that β > α and let R be as in (23). In this case R({0}) = 0 and for
any γ ∈ [0, β)

∫

Rd

(

|x|2 ∧ |x|γ
)

R(dx) = K−1σ(Sd−1)

∫ ∞

0

(r1−β ∧ rγ−β−1)dr < ∞.

Thus, by Theorem 6, R is the Rosiński measure of a p-tempered α-stable distribution.
If M is the Lévy measure of TSp

α(R, b) then

M(A) = K−1

∫

Sd−1

∫ ∞

0

∫ ∞

0

1A(rtξ)t
−1−αe−tpdtr−1−βdrσ(dξ)

= K−1

∫ ∞

0

tβ−α−1e−tpdt

∫

Sd−1

∫ ∞

0

1A(rξ)r
−1−βdrσ(dξ)

=

∫

Sd−1

∫ ∞

0

1A(rξ)r
−1−βdrσ(dξ),

which is the Lévy measure of µ.
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3 Moments

In this section we give necessary and sufficient conditions for the finiteness of moments
and exponential moments. We also give explicit formulas for the cumulants when they
exist. This is useful, for instance, in parameter estimation by the method of moments.
First we introduce some notation. For any x ∈ Rd let xi be the ith component. For
simplicity, throughout this section, we will use M to denote the Lévy measure of a
p-tempered α-stable distribution.

Let k be a d-dimensional vector of nonnegative integers. Let Cµ be as in (1). Recall
that we define the cumulant

ck = (−i)
∑

ki
∂
∑

ki

∂zkd

d · · · ∂zk1
1

Cµ(z)
∣

∣

∣

z=0
, (24)

when the derivative exists and is continuous in a neighborhood of zero. Cumulants can
be uniquely expressed in terms of moments. Let X ∼ µ. When ki = 1 and kj = 0 for
all j 6= i then ck = EXi, when ki = 2 and kj = 0 for all j 6= i then ck = var(Xi), and
when for some i 6= j ki = kj = 1 and kℓ = 0 for all ℓ 6= i, j then ck = cov(Xi, Xj). In
the statement of the following theorem, we adopt the convention that 00 = 1.

Theorem 13. Fix α < 2, p > 0 and let µ = TSp
α(R, b).

1. If α ∈ (0, 2) and q1, . . . , qd ≥ 0 with q :=
∑d

j=1 qj < α then

∫

Rd





d
∏

j=1

|xj |qj


µ(dx) ≤
∫

Rd

|x|qµ(dx) < ∞. (25)

2. If α ∈ (0, 2) then

∫

Rd

|x|αµ(dx) < ∞ ⇐⇒
∫

|x|>1

|x|α log |x|R(dx) < ∞. (26)

Additionally, if q1, . . . , qd ≥ 0 with
∑d

j=1 qj = α then

∫

Rd





d
∏

j=1

|xj |qj


µ(dx) < ∞ (27)

if and only if

∫

|x|>1





d
∏

j=1

|xj |qj


 log |x|R(dx) < ∞. (28)

3. If q > (α ∨ 0) then

∫

Rd

|x|qµ(dx) < ∞ ⇐⇒
∫

|x|>1

|x|qR(dx) < ∞. (29)
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Additionally, if q1, . . . , qd ≥ 0 with
∑d

j=1 qj > (α ∨ 0) then

∫

Rd





d
∏

j=1

|xj |rj


µ(dx) < ∞ for all rk ∈ [0, qk], k = 1, . . . , d (30)

if and only if

∫

|x|>1





d
∏

j=1

|xj |rj


R(dx) < ∞ for all rk ∈ [0, qk], k = 1, . . . , d. (31)

4. Let q1, . . . , qd be nonnegative integers and let q =
∑d

i=1 qi. Further if q = α assume
that (28) holds and if q > α that (31) holds. If qi = q = 1 for some i then

c(q1,...,qd) = bi +

∫

Rd

∫ ∞

0

xi
|x|2

1 + |x|2t2 t
2−αe−tdtR(dx). (32)

If q ≥ 2 then

c(q1,...,qd) = p−1Γ

(

n− α

p

)∫

Rd





d
∏

j=1

x
qj
j



R(dx). (33)

For proper 1-tempered α-stable distributions with α ∈ (0, 2) a somewhat weaker
version of Part (iv) above was given in [26].

Proof. By Corollary 25.8 in [24], the condition
∫

Rd |x|qµ(dx) < ∞ is equivalent to
the condition

∫

|x|>1 |x|qM(dx) < ∞. Similarly, by Theorem 1 in [23] the condition
∫

Rd

(

∏d
j=1 |xj |rj

)

µ(dx) < ∞ for all rk ∈ [0, qk], k = 1, . . . , d is equivalent to the

condition
∫

|x|>1

(

∏d
j=1 |xj |rj

)

M(dx) < ∞ for all rk ∈ [0, qk], k = 1, . . . , d.

We will now transfer the integrability conditions from M to R. Let fq(x) be either

|x|q or
∏d

j=1 |xj |rj where
∑d

j=1 rj = q. By (10)

∫

|x|>1

fq(x)M(dx) =

∫

Rd

∫ ∞

|x|−1

fq(x)t
q−1−αe−tpdtR(dx).

From here (26) and Parts 1 and 2 follow by arguments similar to those in Proposition
2.7 of [19]. The second half of Part 2 essentially follows from arguments similar to those
in Proposition 2.7 of [19] as well, but to guarantee that the integral remains finite for
all rk ∈ [0, qk) we use (25).

For general infinitely divisible distributions, the form of the cumulants in terms of
the Lévy measure is given in Theorems 5.1 and 5.2 of [12]. From this, Part 4 follows
by using (10) and simplifying.

In the rest of this section we will give conditions for the finiteness of certain expo-
nential moments.
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Theorem 14. Fix α < 2, p ∈ (0, 1], and θ > 0. Let µ = TSp
α(R, b).

1. If α ∈ (0, 2) then

∫

Rd

eθ|x|
p

µ(dx) < ∞ ⇐⇒ R({|x| > θ−1/p}) = 0.

2. If α < 0 then
∫

Rd e
θ|x|pµ(dx) < ∞ if and only if

R({|x| ≥ θ−1/p}) = 0 and

∫

0<|x|−p−θ<1

(|x|−p − θ)α/pR(dx) < ∞.

3. If α = 0 then
∫

Rd e
θ|x|pµ(dx) < ∞ if and only if

R({|x| ≥ θ−1/p}) = 0 and

∫

0<|x|−p−θ<1

∣

∣log(|x|−p − θ)
∣

∣R(dx) < ∞.

This implies that unless R = 0 it is impossible to have
∫

Rd e
θ|x|pµ(dx) < ∞ for all θ >

0. Note that in Parts 2 and 3 we have the condition, R({|x| ≥ θ−1/p}) = 0, whereas in
Part 1 we have a similar condition, but with strict inequality. Note also that the set
{0 < |x|−p − θ < 1} = {(1 + θ)−1/p < |x| < θ−1/p}. The latter form may be somewhat
more appealing, but it loses emphasis on why the integrals may diverge.

Proof. The proof of Part 1 is similar to the proof of Proposition 2.7 in [19]. Now fix
α ≤ 0. By Corollary 25.8 in [24] the finiteness of

∫

Rd e
θ|x|pµ(dx) is equivalent to the

finiteness of
∫

|x|>1
eθ|x|

p

M(dx). We have

∫

|x|>1

eθ|x|
p

M(dx) =

∫

Rd

∫ ∞

|x|−1

e(θ|x|
p−1)tpt−α−1dtR(dx)

≥
∫

|x|p≥θ−1

∫ ∞

θ1/p

t−α−1dtR(dx).

This shows the necessity of R({|x| ≥ θ−1/p}) = 0 in both Parts 2 and 3. We will hence-
forth assume that this property holds both when showing necessity and sufficiency. We
have
∫

|x|>1

eθ|x|
p

M(dx) =

∫

|x|<θ−1/p

∫ ∞

|x|−1

e(θ|x|
p−1)tpt−1−αdtR(dx)

= p−1

∫

0<|x|−p−θ

(1 − θ|x|p)α/p
∫ ∞

|x|−p−θ

e−uu−1−α/pduR(dx).

This can be divided into two parts

p−1

∫

1≤|x|−p−θ

(|x|−p − θ)−|α|/p|x|−|α|

∫ ∞

|x|−p−θ

e−uu−1+|α|/pduR(dx)

+p−1

∫

0<|x|−p−θ<1

(|x|−p − θ)−|α|/p|x|−|α|

∫ ∞

|x|−p−θ

e−uu−1+|α|/pduR(dx)

=: p−1(I1 + I2).

14



Let Cθ := supu>1 e
−uu−1+|α|/p(u+ θ)(2+|α|)/p+1. We have,

I1 ≤
∫

1≤|x|−p−θ

|x|−|α|

∫ ∞

|x|−p−θ

e−uu−1+|α|/pduR(dx)

≤ Cθ

∫

1≤|x|−p−θ

|x|−|α|

∫ ∞

|x|−p−θ

(u+ θ)−(2+|α|)/p−1duR(dx)

= Cθ
p

2− α

∫

|x|≤(1+θ)−1/p

|x|2R(dx) < ∞.

Thus finiteness is determined by I2.
If α < 0 and 0 < |x|−p − θ < 1, we have

∫ ∞

1

e−uu−1+|α|/pdu ≤
∫ ∞

|x|−p−θ

e−uu−1+|α|/pdu ≤ Γ(|α|/p)

and
θ|α|/p ≤ |x|−|α| ≤ (1 + θ)|α|/p.

Thus, when α < 0, I2 is finite if and only if

∫

0<|x|−p−θ<1

(|x|−p − θ)−|α|/pR(dx) < ∞

If α = 0 then for 0 < |x|−p − θ < 1, we have

∫ ∞

|x|−p−θ

e−uu−1du =

∫ ∞

1

e−uu−1du+

∫ 1

|x|−p−θ

e−uu−1du,

where the first integral is finite. For the second, we have

∫ 1

|x|−p−θ

e−uu−1du ≤
∫ 1

|x|−p−θ

u−1du = − log(|x|−p − θ),

and

∫ 1

|x|−p−θ

e−uu−1du ≥ e−1

∫ 1

|x|−p−θ

u−1du = −e−1 log(|x|−p − θ).

Thus, when α = 0, the finiteness of I2 is equivalent to the finiteness of

−
∫

0<|x|−p−θ<1

log(|x|−p − θ)R(dx) =

∫

0<|x|−p−θ<1

∣

∣log(|x|−p − θ)
∣

∣R(dx).

This completes the proof.

Theorem 15. Fix α < 2, p > 0, and let µ = TSp
α(R, b).

1. If q ∈ (0, 1] with q < p then for any θ > 0

∫

Rd

eθ|x|
q

µ(dx) < ∞ (34)
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whenever
∫

|x|>1

eAp,q(θ|x|
q)p/(p−q) |x|−αq/(p−q)R(dx) < ∞, (35)

where Ap,q = (q/p)q/(p−q) (1− q/p).
2. If R 6= 0 then

∫

Rd e
θ|x| log |x|µ(dx) = ∞ for every θ > 0.

For the case where α ∈ (0, 2), p = 2, and q = 1, a necessary and sufficient condition
for (34) is given in [6]. Their method of proof is easily extended to the case when α < 2
and p = 2q. In this case, the necessary and sufficient condition for (34) is

∫

|x|>1

eθ
2|x|2q/4|x|−q−αR(dx) < ∞. (36)

Proof. We begin with Part 1. Fix c =
(

2p
θq

)1/p

. By Corollary 25.8 in [24], the problem

is equivalent to the finiteness of

∫

|x|>1

eθ|x|
q

M(dx) =

∫

|x|≤c

∫ ∞

|x|−1

eθ|x|
qtq−tpt−1−αdtR(dx)

+

∫

|x|>c

∫ (θ|x|q)1/(p−q)

|x|−1

eθ|x|
qtq−tpt−1−αdtR(dx)

+

∫

|x|>c

∫ ∞

(θ|x|q)1/(p−q)

eθ|x|
qtq−tpt−1−αdtR(dx)

=: I1 + I2 + I3.

For the first integral, we have

I1 =

∫

|x|≤c

∫ ∞

|x|−1

eθ|x|
qtq−tpt1−αt−2dtR(dx)

≤
∫

|x|≤c

|x|2R(dx)

∫ ∞

c−1

eθc
qtq−tpt1−αdt < ∞.

For the third integral, by the substitution u = tp−q/(θ|x|q), we have

I3 =
1

(p− q)

∫

|x|>c

(θ|x|q)−α/(p−q) ×

×
∫ ∞

1

e−(1−1/u)(uθ|x|q)p/(p−q)

u−1−α/(p−q)duR(dx)

≤ 1

(p− q)

∫

|x|>c

(θ|x|q)−α/(p−q)R(dx)×

×
∫ ∞

1

e−(1−1/u)(uθcq)p/(p−q)

u−1−α/(p−q)du.

Clearly this is finite for α ∈ [0, 2). We will show that it is, in fact, always finite when

16



I2 < ∞. To see this, observe that, after the substitution u = tp−q/(θ|x|q), we have

I2 =
1

(p− q)

∫

|x|>c

(θ|x|q)−α/(p−q) ×

×
∫ 1

|x|−p/θ

e(1/u−1)(uθ|x|q)p/(p−q)

u−1−α/(p−q)duR(dx) (37)

≥ 1

(p− q)

∫

|x|>c

(θ|x|q)−α/(p−q)R(dx)

∫ 1

c−p/θ

u−1−α/(p−q)du.

Thus everything is determined by I2.
Note that, as a function of u, (1/u− 1) (uθ|x|q)p/(p−q) is strictly increasing until

u = q/p, where it attains a maximum and is then decreasing. Thus

∫ q/(2p)

|x|−p/θ

e(1/u−1)(uθ|x|q)p/(p−q)

u−1−α/(p−q)du

≤ e(2p/q−1)(θ|x|qq/(2p))p/(p−q)

(|x|pθ)0∨[1+α/(p−q)] (38)

and for some constant C > 0

∫ 1

q/(2p)

e(1/u−1)(uθ|x|q)p/(p−q)

u−1−α/(p−q)du ≤ Ce(p/q−1)[qp−1θ|x|q]p/(p−q)

. (39)

Note that (p/q − 1) (q/p)p/(p−q) = Ap,q. Now observing that the right side in (39) goes
to infinity faster than the right side in (38), and combining this with (37) gives Part 1.

Now to show Part 2. For any h > 0, let Th = {|x| > h}. Assume that R 6= 0. Since
R({0}) = 0 there exists an ǫ > 0 such that R(Tǫ) > 0. Thus for any h > 0

M(Th) =

∫

Rd

∫ ∞

h|x|−1

e−tpt−1−αdtR(dx)

≥
∫

|x|>ǫ

∫ ∞

hǫ−1

e−tpt−1−αdtR(dx) = R(Tǫ)

∫ ∞

hǫ−1

e−tpt−1−αdt > 0.

From here the result follows by Theorem 26.1 in [24].

4 Regular Variation

In this section we give necessary and sufficient conditions for tempered stable distribu-
tions to have regularly varying tails. To simplify the notation, we adopt the following
convention. For c ∈ R and real-valued functions f, g with g strictly positive in some
neighborhood of infinity we write f(t) ∼ cg(t) as t → ∞ to mean

lim
t→∞

f(t)

g(t)
= c.

We now recall what it means for a measure to have regularly varying tails.
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Definition 16. Fix ̺ ≥ 0. Let R be a Borel measure on Rd such that for some T > 0

R({x ∈ R
d : |x| > T }) < ∞ (40)

and for all s > 0

R({x ∈ R
d : |x| > s}) > 0. (41)

We say that R has regularly varying tails with index ̺ if there exists a finite Borel
measure σ 6= 0 on S

d−1 such that for all D ∈ B(Sd−1) with σ(∂D) = 0

lim
r↓0

R
(

|x| > rt : x
|x| ∈ D

)

R (|x| > r)
= t−̺ σ(D)

σ(Sd−1)
. (42)

When this holds we write R ∈ RV−̺(σ).

Clearly a measure R ∈ RV−̺(σ) if and only if there exists a slowly varying function
ℓ such that for all D ∈ B(Sd−1) with σ(∂D) = 0

R(|x| > t, x/|x| ∈ D) ∼ σ(D)t−̺ℓ(t) as t → ∞. (43)

It is well-known (see e.g. [5]) that if R ∈ RV−̺(σ) then

∫

|x|≥T

|x|γR(dx)

{

< ∞ if γ < ̺
= ∞ if γ > ̺

. (44)

Let µ = TSp
α(R, b). If α ∈ (0, 2) then Theorem 13 implies that

∫

Rd |x|̺µ(dx) < ∞
for all ̺ ∈ [0, α), and hence, by (44) µ cannot have regularly varying tails with index
̺ < α. However, other tail indices are possible. We will now categorize when µ has
regularly varying tails.

Theorem 17. Fix α < 2, p > 0. Let µ = TSp
α(R, b) and let M be the Lévy measure

of µ. If ̺ > α ∨ 0 then

µ ∈ RV∞
−̺(σ) ⇐⇒ M ∈ RV∞

−̺(σ) ⇐⇒ R ∈ RV∞
−̺(σ). (45)

Moreover, if M ∈ RV ∞
−̺(σ) then for all D ∈ B(Sd−1) with σ(∂D) = 0 and σ(D) > 0

lim
r→∞

R (|x| > r, x/|x| ∈ D)

M (|x| > r, x/|x| ∈ D)
=

p

Γ
(

̺−α
p

) .

Before proving the theorem let us state a useful corollary. Recall that for γ ∈ (0, 2)
a probability measure µ is in the domain of attraction of a γ-stable distribution with
spectral measure σ 6= 0 if and only if µ ∈ RV−γ(σ). See e.g. [21] or [16] although they
make the additional assumption that the limiting stable distribution is full.

Corollary 18. Fix α < 2, p > 0, and let µ = TSp
α(R, b). If σ 6= 0 is a finite Borel

measure on Sd−1 and γ ∈ (0 ∨ α, 2) then µ is in the domain of attraction of a γ-stable
with spectral measure σ if and only if R ∈ RV−γ(σ).
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In Theorem 17, the relationship between the regular variation of µ and M is well
know, see for example [13]. A proof of the fact that R ∈ RV ∞

−̺(σ) implies that
M ∈ RV∞

−̺(σ) can be accomplished using standard tools. However the other direction
requires heavier machinery. For brevity, we use the same approach for both directions.

Let k : (0,∞) 7→ R be a Borel function. The Mellin transform of k is defined by

k̂(z) =

∫ ∞

0

uz−1k(1/u)du (46)

for all z ∈ C for which the integral converges. We will need the following result, which
combines Theorems 4.4.2 and 4.9.1 in [7].

Lemma 19. Let −∞ < γ < ρ < τ < ∞, c ∈ R, and let ℓ be a slowly varying function.
Assume that k is a continuous and non-negative function on (0,∞) such that

∑

−∞<n<∞

max{e−γn, e−τn} sup
en≤x≤en+1

k(x) < ∞ (47)

and

k̂(z) 6= 0 when ℜz = ρ. (48)

Let U be a monotone, right continuous function on (0,∞) with

lim sup
r↓0

|U(r)|
rγ

< ∞. (49)

Then
∫

(0,∞)

k(x/t)dU(t) ∼ cρk̂(ρ)xρℓ(x) as x → ∞ (50)

if and only if

U(x) ∼ cxρℓ(x) as x → ∞. (51)

Let µ = TSp
α(R, b), let M be the Lévy measure of µ, and assume that σ 6= 0 is a

finite Borel measure on Sd−1. For all D ∈ B(Sd−1) with σ(∂D) = 0 define for r > 0

MD(r) = M(|x| > r, x/|x| ∈ D)

and
RD(r) = R(|x| > r, x/|x| ∈ D).

Note that for any integrable function f : R → R

∫

x/|x|∈D

f(|x|)R(dx) = −
∫

(0,∞)

f(x)dRD(x). (52)

Lemma 20. If ̺ > α ∨ 0 and ℓ ∈ RV∞
0 then

MD(r) ∼ σ(D)p−1Γ

(

̺− α

p

)

r−̺ℓ(r) as r → ∞

if and only if

RD(r) ∼ σ(D)r−̺ℓ(r) as r → ∞.
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Proof. For simplicity, let β = α ∨ 0. Note that by (10) and (52)

MD(r) =

∫

x/|x|∈D

∫ ∞

r|x|−1

t−1−αe−tpdtR(dx)

= −
∫

(0,∞)

∫ ∞

r/x

t−1−αe−tpdtdRD(x)

= −
∫

(0,∞)

k(r/x)RD(dx),

where

k(s) =

∫ ∞

s

t−α−1e−tpdt = p−1

∫ ∞

sp
t−α/p−1e−tdt.

For ℜz < −β

k̂(z) =

∫ ∞

0

uz−1k(1/u)du =

∫ ∞

0

uz−1

∫ ∞

1/u

t−1−αe−tpdtdu

=

∫ ∞

0

uz+α−1

∫ ∞

1

t−1−αe−(t/u)pdtdu

=

∫ ∞

0

u−z−α−1e−up

du

∫ ∞

1

tz−1dt = − 1

pz
Γ

(−z − α

p

)

.

Thus, since −̺ < −β

k(−̺) =
1

p̺
Γ

(

̺− α

p

)

.

From here, the result will follow by ma 19. We just need to verify that the assumptions
hold.

It is easy to see that k is a continuous, non-negative function on (0,∞) and that

k̂(z) has no zeros. Fix τ ∈ (−̺,−β), γ < −(̺ ∨ 2), and let C = supt≥1 t
−α/p−1e−t/2.

Note that γ < τ < 0. We have

p

∞
∑

n=0

max{e−γn, e−τn} sup
en≤x≤en+1

k(x)

=

∞
∑

n=0

e|γ|n
∫ ∞

enp

t−α/p−1e−t/2e−t/2dt

≤ C
∞
∑

n=0

e|γ|n
∫ ∞

enp

e−t/2dt = 2C
∞
∑

n=0

e|γ|ne−enp/2 < ∞

and

p
∑

−∞<n≤−1

max{e−γn, e−τn} sup
en≤x≤en+1

k(x)

=

∞
∑

n=1

e−|τ |n

∫ ∞

e−np

t−α/p−1e−tdt.
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When α < 0 this is bounded by

∫ ∞

0

t−α/p−1e−tdt
∞
∑

n=1

e−|τ |n < ∞.

When α = 0 it is bounded by

∞
∑

n=1

e−|τ |n

(∫ 1

e−np

t−1dt+

∫ ∞

1

e−tdt

)

=

∞
∑

n=1

e−|τ |n
(

np+ e−1
)

< ∞.

When α ∈ (0, 2) it is bounded by

∞
∑

n=1

e−|τ |n

∫ ∞

e−np

t−α/p−1dt =
p

α

∞
∑

n=1

e−|τ |n+αn =
p

α

∞
∑

n=1

e−(|τ |−α)n < ∞.

Recall that γ < −2. Note that −RD(r) is a right continuous, monotonely increasing
function on (0,∞) with

lim sup
r↓0

| −RD(r)|
rγ

≤ lim sup
r↓0

r2
∫

|x|>r

R(dx)

≤ lim sup
r↓0

∫

1>|x|>r

|x|2R(dr) + lim sup
r↓0

r2R (|x| ≥ 1)

≤
∫

|x|<1

|x|2R(dr) < ∞.

This completes the proof of Lemma 20.

The proof of Theorem 17 follows immediately from Lemma 20 and (43).

Acknowledgements

Most of the research for this paper was done while the author was a PhD student
working with Professor Gennady Samorodnitsky. Professor Samorodnitsky’s comments
and support are gratefully acknowledged.

References

[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover
Publications, New York, 9th edition, 1972.

[2] O. O. Allen. Modelling heterogeneity in survival analysis by the compound poisson
distribution. The Annals of Applied Probability, 2(4):951–972, 1992.

[3] T. Aoyama, M. Maejima, and J. Rosiński. A subclass of type G selfdecomposable
distributions on Rd. Journal of Theoretical Probability, 21(1):14–34, 2008.

[4] O. E. Barndorff-Nielsen, M. Maejima, and K. Sato. Some classes of multivari-
ate infinitely divisible distributions admitting stochastic integral representations.
Bernoulli, 12(1):1–33, 2006.

21



[5] B. Basrak, R. A. Davis, and T. Mikosch. A characterization of multivariate regular
variation. Annals of Applied Probability, 12(2):908–920, May 2002.

[6] M. L. Bianchi, S. T. Rachev, Y. S. Kim, and F. J. Fabozzi. Tempered infinitely
divisible distributions and processes. Theory of Probability and Its Applications,
55(1), 2011.

[7] N. H. Bingham, C. M. Goldie, and J. L. Teugels. Regular Variation. Encyclopedia
of Mathematics And Its Applications. Cambridge University Press, Cambridge,
1987.

[8] R. Bruno, L. Sorriso-Valvo, V. Carbone, and B. Bavassano. A possible
truncated-lévy-flight statistics recovered from interplanetary solar-wind velocity
and magnetic-field fluctuations. Europhysics Letters, 66(1):146–152, 2004.

[9] P. Carr, H. Geman, D. B. Madan, and M. Yor. The fine structure of asset returns:
An empirical investigation. Journal of Business, 75(2):305–332, 2002.

[10] W. Feller. An Introduction to Probability Theory and Its Applications Volume II.
John Wiley & Sons, Inc., New York, 2nd edition, 1971.

[11] M. Grabchak and G. Samorodnitsky. Do financial returns have finite or infinite
variance? A paradox and an explanation. Quantitative Finance, 10(8):883–893,
October 2010.

[12] A. K. Gupta, D. N. Shanbhag, T. T. Nguyen, and J. T. Chen. Cumulants of
infinitely divisible distibutions. Random Operators and Stochastic Equations,
17(2):103–124, 2009.

[13] H. Hult and F. Lindskog. On regular variation for infinitely divisible random
vectors and additive processes. Advances in Applied Probability, 38:134–148, 2006.

[14] Y. S. Kim, S. T. Rachev, M. L. Bianchi, and F. J. Fabozzi. Tempered stable
and tempered infinitely divisible garch models. Journal of Banking & Finance,
34:2096–2109, 2010.

[15] M. Maejima and G. Nakahara. A note on new classes of infinitely divisible distri-
butions on Rd. Electronic Comunications in Probability, 14:358–371, 2009.

[16] M. M. Meerschaert and H. Scheffler. Limit Distributions for Sums of Independent
Random Vectors: Heavy Tails in Theory and Practice. John Wiley & Sons, New
York, 2001.

[17] M. M. Meerschaert, Y. Zhang, and B. Baeumer. Tempered anomalous diffusion
in heterogeneous systems. Geophysical Research Letters, 35, 2008.

[18] K. J. Palmer, M. S. Ridout, and B. J. T. Morgan. Modelling cell generation times
by using the tempered stable distribution. Journal of the Royal Statistical Society
Series C: Applied Statistics, 57(4):379–397, 2008.

[19] J. Rosiński. Tempering stable processes. Stochastic Processes and their Applica-
tions, 117(6):677–707, June 2007.

22



[20] J. Rosiński and J. L. Sinclair. Generalized tempered stable processes. Banach
Center Publications, 90:153–170, 2010.

[21] E. L. Rvačeva. On domains of attraction of multi-dimensional distributions. In
Selected Translations in Mathematical Statistics and Probability Vol. 2, pages
183–205. American Mathematical Society, Providence, 1962. Translated by S.
G. Ghurye.

[22] G. Samorodnitsky and M. S. Taqqu. Stable Non-Gaussian Random Processes:
Stochastic Models with Infinite Variance. Chapman & Hall, New York, 1994.

[23] T. Sapatinas and D. N. Shanbhag. Moment properties of multivariate infinitely
divisible laws and criteria for multivariate self-decomposability. Journal of Multi-
variate Analysis, 101(3):500–511, 2010.

[24] K. Sato. Lévy Processes and Infinitely Divisible Distributions. Cambridge Univer-
sity Press, Cambridge, 1999.

[25] G. Terdik and T. Gyires. Does the internet still demonstrate fractal nature? In
ICN ’09: Eighth International Conference on Networks, pages 30–34, March 2009.

[26] Gy. Terdik and W. A. Woyczyński. Rosiński measures for tempered stable and
related Ornstien-Uhlenbeck processes. Probability and Mathematical Statistics,
26(2):213–243, 2006.

[27] V. V. Uchaikin and V. M. Zolotarev. Chance and Stability: Stable Distributions
and their Applications. VSP BV, Utrecht, 1999.

23


	1 Introduction
	2 p-Tempered -Stable Distributions
	3 Moments
	4 Regular Variation

