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Abstract. We consider a multi asset financial market with stochastic volatility modeled by
a Wishart process. This is an extension of the one-dimensional Heston model. Within this
framework we study the problem of maximizing the expected utility of terminal wealth for
power and logarithmic utility. We apply the usual stochastic control approach and obtain
explicitly the optimal portfolio strategy and the value function in some parameter settings. In
particular when the drift of the assets is a linear function of the volatility matrix. In this case
the affine structure of the model can be exploited. In some cases we obtain a Feynman-Kac
representation of the candidate value function. Though the approach we use is quite standard,
the hard part is indeed to identify when the solution of the HJB equation is finite. This involves
a couple of matrix analytic arguments. In a numerical study we discuss the influence of the
investors’ risk aversion on the hedging demand.
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1. Introduction

Asset price models need a stochastic volatility in order to produce the ’smile effect’ between
the implied volatility and the strike price of a call option or to reproduce the ’leverage effect’,
i.e. that past returns are negatively correlated with future volatilities. To cover these aspects, a
lot of one-factor stochastic volatility models have been introduced in the course of time, among
them the popular Heston model (see Heston (1993)). However, recent empirical studies show
that even in a single asset model it might be reasonable to model the volatility by at least two
factors (see e.g. Cont & da Fonseca (2002)). Moreover it is often necessary to model a complete
portfolio of assets. Hence in recent times multivariate extensions of the Heston model have
been proposed. They all build on the matrix Wishart process for the volatility which has been
introduced in Bru (1991). It is a direct multivariate extension of the Cox-Ingersoll-Ross model
and has been extended and used for financial applications by e.g. Gourieroux & Sufana (2003,
2004); Da Fonseca et al. (2007, 2008); Buraschi et al. (2010); Muhle-Karbe et al. (2012). While
these papers consider option pricing, hedging, credit risk and term structure models, we will
investigate portfolio optimization problems. More precisely we consider the classical problem of
maximizing the expected utility of terminal wealth in a multi asset Wishart volatility market
for power and logarithmic utility. During the work on this project we became aware that Hata
& Sekine (2011) also consider portfolio optimization problems in a similar setup with the risk-
sensitive criterion. However their methods are different and they also focus on different aspects
as we will explain below. Another recent work is Richter (2012) where solutions of BSDEs in such
a setting are considered and applied to indifference pricing. There also the exponential utility
is dealt with. In Buraschi et al. (2010) a model with two assets and two-dimensional Wishart
process is considered and the hedging demand for a power utility problem is treated. Besides
these works, to the best of our knowledge, there are no others yet which deal with optimization
problems in this financial market. Moreover, all these papers consider only financial markets
where the process of volatility and stochastic logarithm of the asset has an affine differential
w.r.t. the volatility. We call this the affine case. In Kallsen & Muhle-Karbe (2010) the authors
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consider a general semimartingale market which is again affine. They consider portfolio problems
with power utility but only in the single asset framework.

In this paper we use the classical stochastic control approach and solve the portfolio optimiza-
tion problem with the help of the Hamilton-Jacobi-Bellman (HJB) equation. However it turns
out that this is here indeed a non-trivial task due to rather complicated computations. Moreover
some interesting aspects occur in the sense that in some parameter settings the problem is rather
easy and in some not. We already know from Kraft (2005) (see also Kallsen & Muhle-Karbe
(2010) and Liu (2007)) that in the one-dimensional Heston model which is included as a special
case, there are parameter setings where the value function is not finite and thus the stochastic
control approach breaks down. See also Korn & Kraft (2004) for a warning word in this direction.
It will turn out that in the affine case (i.e. when the drift of the stocks is a linear function of
the Wishart process, which is assumed in most models and also in the Heston model), there are
parameter settings where the value function is finite and can be computed explicitly. In this case
fortunately we can show that the optimal value function is a Laplace transform of the Wishart
volatility process and we can use results in Gnoatto & Grasselli (2012) where such expressions
have been computed. The affine structure of the process is here exploited. Still the impression
remains that this is a very special case because the corresponding optimal portfolio strategy is
completely deterministic and hence measurable w.r.t. the initial information. We also identify
another situation with special correlation between the Brownian motions which drive the asset
dynamics and those which drive the volatility dynamics and a special Q matrix, however general
drift, where the HJB equation boils down to a linear partial differential equation and where we
have at least a candidate for the value function via a Feynman-Kac representation formula. In
particular the case of uncorrelated Brownian motions belongs to this category.

In Hata & Sekine (2011) the authors solve a risk-sensitive portfolio problem in an affine
Wishart-volatility model. While doing this, they also solve the power utility problem. However
they use the risk sensitive approach and do a change of measure first, before they set up the HJB
equation. Moreover they do not get a closed form solution like we do and also do not discuss
the cases where the value function is infinite. On the other side they also tackle infinite horizon
problems.

The outline of our paper is as follows: In section 2 we introduce the multi asset financial
market where volatility is modeled by a Wishart process and state the optimization problem. In
section 3 we derive the associated HJB equation. The next section is then dedicated to finding
solutions of this HJB equation. We divide this section into two parts. In the first part we
consider a general asset drift, but specific correlations and in the second part we treat the affine
model where we derive an explicit solution. In section 5 we verify that this solution in the affine
model is indeed the value function of our portfolio problem. In section 6 we briefly discuss the
case of logarithmic utility function and in section 7 we consider some numerical examples and
discuss the hedging demand in a two-dimensional setting. The appendix contains some of the
proofs and auxiliary results.

2. The Wishart Volatility Market

It is well-known that the classical standard Black-Scholes model is not flexible enough to create
the simile effect, nor does it satisfy the leverage effect either.

To cover these shortages of the standard Black-Scholes model, Gourieroux & Sufana (2004)
have presented a multivariate Wishart stochastic volatility. The model introduced below pos-
sesses a generalized drift compared with Gourieroux & Sufana (2004). It is an extension of the
one-dimensional Heston model.

In our model the market consists of one riskfree asset with price process
(
S0
t

)
t≥0

and d risky

assets. The constant riskfree rate is r ≥ 0 and the dynamic of the riskfree asset is

dS0
t = S0

t rdt, S
0
t = 1.
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We denote by (St,i)t≥0, 1 ≤ i ≤ d the price processes of the d risky assets and by (St)t≥0 =

(St,1, . . . , St,d)t≥0 the vector process. The return of (St)t≥0 owns a Wishart stochastic volatility

(Σt)t≥0. The joint dynamics of (St)t≥0 and (Σt)t≥0 are given by the following (vector-matrix-)
stochastic differential system:

dSt = diag(St)
(
B(Σt)dt+ Σ

1/2
t dWS

t

)
, (2.1)

dΣt =
(
NNT +MΣt + ΣtM

T
)
dt+ Σ

1/2
t dW σ

t Q+QT (dW σ
t )T Σ

1/2
t , (2.2)

where
(
WS
t

)
t≥0

, is a d dimensional Brownian motion vector and (W σ
t )t≥0 is a d × d Brownian

motion matrix respectively. All processes are defined on a common probability space (Ω,F ,P).
In what follows, (Ft)t≥0 denotes the corresponding Brownian filtration. The entries between(
WS
t

)
t≥0

and (W σ
t )t≥0 can be correlated. We assume that d〈WS

t,k,W
σ
t,ij〉 = ρk,ijdt for 1 ≤

k, i, j ≤ d. The matrix diag(St) is a diagonal matrix with entries St,1, . . . , St,d on the diagonal.
Further N , M, Q are d × d matrices with N ∈ GLd(R) the set of real invertible matrices of

dimension d × d. We also assume that NNT � (d+ 1)QTQ (where A � B means that A − B
is positive semidefinite) which according to Theorem 2.2 in Mayerhofer et al. (2011) implies
that (2.2) has a unique global strong solution on S+

d (R) which is the set of symmetric positive

definite matrices of dimension d × d. As usual we denote for Σ ∈ S+
d (R) by Σ1/2 the unique

matrix A ∈ S+
d (R) such that A2 = Σ. The function B : S+

d (R)→ Rd is measurable and will be
specified later.

In what follows we will assume for the correlation coefficients ρk,ij , 1 ≤ k, i, j ≤ d between the
Brownian motions that ρk,ij = 0 for k 6= i and ρk,kj =: ρj is independent of k. In particular we

denote ρ = (ρ1, . . . , ρd)
T . This means if (Bt) is another d-dimensional Brownian motion vector

independent from (W σ
t ), we assume that

WS
t

d
=
√

1− ρTρBt +W σ
t ρ.

Example 2.1. The Wishart stochastic volatility model can be regarded as an extension of the
Heston model to the multidimensional case. Recall that the one-dimensional asset return process
(St)t≥0 in the Heston model is determined by the stochastic process:

dSt = St(µ+ λZt)dt+
√
ZtdW

S
t ,

whereas the volatility process (Zt)t≥0 follows a Cox-Ingersoll-Ross process:

dZt = κ (θ − Zt) dt+ ξ
√
ZtdW

Z
t ,

where (WS
t )t≥0, (WZ

t )t≥0 are Brownian motions with correlation ρ and µ, κ, θ and ξ are suitable
constants in R. One can easily see that the dynamics above are specifications of (2.1) and (2.2)
in the one-dimensional case.

We assume now that an agent can invest into this financial market and define the portfolio
strategy process (πt)t≥0 as an Rd-valued progressively measurable process with respect to (Ft)t≥0

where πt = (πt,1, . . . , πt,d)
T and πt,k represents the proportion of wealth invested into stock k

at time t. Obviously π0
t := 1 − πTt 1 is the proportion of wealth invested in the bond where

1 = (1, . . . , 1)T ∈ Rd. Under a fixed portfolio strategy (πt)t≥0, the portfolio wealth process
(Xπ

t )t≥0 owns the following dynamic:

dXπ
t = Xπ

t π
T
t

dSt
St

+Xππ0
t

dS0
t

S0
t

. (2.3)

Applying the dynamic (2.1) yields

dXπ
t

Xπ
t

=
(
πTt (B(Σt)− r) + r

)
dt+ πTt Σ

1/2
t dWS

t , (2.4)
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with Xπ
0 = x0 and r = (r, . . . , r)T ∈ Rd. We consider only portfolio strategies where (2.4) has

a unique strong solution and call them admissible. The solution of the portfolio wealth process
(Xπ

t ) is given as follows:

Xπ
T = x0 exp

(∫ T

0

[
πTs (B(Σs)− r) + r − 1

2
‖πTs Σ1/2

s ‖22
]
ds+

∫ T

0
πTs Σ1/2

s dWS
s

)
. (2.5)

Now denote by U : R+ → R a (strictly increasing, strictly concave) utility function. We want
to solve the classical problem of maximizing expected utility of terminal wealth for power and
logarithmic utility. The value function of the optimization problem reads as

V (t, x,Σ) = sup
π
Et,x,Σ [U (Xπ

T )] , x > 0, Σ ∈ S+
d (R) , t ∈ [0, T ] (2.6)

where Et,x,Σ is the expectation w.r.t. the conditional distribution Xt = x,Σt = Σ and where the
supremum is taken over all admissible portfolio strategies. We will follow the usual way using
stochastic control, i.e. we will first derive the HJB equation, then find a solution and finally
verify it. However, the challenge here is to identify parameter cases where indeed the value
function is finite. As pointed out in Kraft (2005) and Korn & Kraft (2004) this is an important
issue and in this case a non-trivial task.

3. The HJB Equation and its Transformations

In what follows we assume that U(x) = 1
γx

γ for γ < 1, γ 6= 0. The formal derivation of

the HJB equation is as follows: Since the process
(
V (t,Xπ

t ,Σt)
)
t≥0

is a supermartingale under

any admissible portfolio strategy π and a martingale under the optimal one, the drift of the
process which is derived using the Itô-Doeblin formula has to be zero when maximized over
all portfolio allocations. In order to apply the Itô-Doeblin formula we have to compute the
quadratic variation and covariation of (Xπ

t ) and (Σt):

d〈Σlk,Σpq〉t =
[
Σlp(t)

(
QTQ

)
kq

+ Σpk(t)
(
QTQ

)
ql

+ Σlq(t)
(
QTQ

)
kp

+ Σkq(t)
(
QTQ

)
lp

]
dt

d〈Σlk, X
π〉t = Xπ

t

[
(πTt Σt)l(Q

Tρ)k + (πTt Σt)k(Q
Tρ)l

]
dt

d〈Xπ〉t = (Xπ
t )2
[
πTt Σtπt

]
dt.

We will also denote by Gt and Gx the partial derivative w.r.t. t and x and we denote the operator
matrix

∇ :=

(
∂

∂Σij

)
1≤i,j≤d

.

Thus, a candidate G(t, x,Σ) ∈ C1,2,2
(
[0, T ]×R+ × S+

d (R)
)

for the value function should satisfy
the HJB equation:

0 = Gt + Tr
((
NNT +MΣ + ΣMT

)
∇G

)
+ rxGx +

1

2
Tr
(
Σ(∇+∇T )(QTQ)(∇T +∇)

)
G+

+ sup
u∈Rd

{
xuT (B − r)Gx +

1

2
x2uTΣuGxx + xuTΣ(∇+∇T )GxQ

Tρ
}
, (3.1)

with terminal condition G (T, x,Σ) = 1
γx

γ . When we use the usual Ansatz G(t, x,Σ) = xγ

γ g(t,Σ)

with g > 0 and plug in the expressions above we end up with the HJB equation

1

γ

(
gt +

1

2
Tr
(
Σ(∇+∇T )(QTQ)(∇T +∇)

)
g + Tr

(
(NNT +MΣ + ΣMT )∇g

))
+ rg

+ sup
u∈Rd

{
uT (B − r)g +

γ − 1

2
uTΣug + uTΣ(∇+∇T )gQTρ

}
= 0. (3.2)
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Obviously a maximizer of this HJB equation is given by

π∗ (t,Σ) = Σ−1

(
(B (Σ)− r)g(t,Σ) + Σ(∇+∇T )g(t,Σ)QTρ

(1− γ) g (t,Σ)

)
, Σ ∈ S+

d (R), 0 ≤ t ≤ T.

(3.3)

Plugging the maximum point into the HJB equation we arrive at

gt +
1

2
Tr
(
Σ(∇+∇T )(QTQ)(∇T +∇)

)
g + +Tr

((
NNT +MΣ + ΣMT

)
∇g
)

+ γrg

+
γ

2 (1− γ) g

(
(B − r)T Σ−1 (B − r) g2 + 2ρTQ(∇+∇T )g (B − r) g

+ ρTQ(∇+∇T )gΣ(∇+∇T )gQTρ
)

= 0. (3.4)

In the next section we will solve (3.4) under further conditions on the model parameters. Note
in particular that B = B(Σ) is up to now an arbitrary (measurable) function of Σ. In Section
4 we will consider the following two cases:

(i) Case 1: B(Σ) is general and

ρ = ρ̂1 and Qij = ciQ1j ci ∈ R, 2 ≤ i ≤ d, c1 := 1, (3.5)

i.e. the correlations are the same and the rows of Q are multiples of the first one.
Technically this condition implies that under the transformation g = hδ for a suitable
δ the last two terms in (3.4) at least partially cancel and there remains a linear partial
differential equation. whose solution can be represented by a Feynman-Kac formula.

(ii) Case 2: B(Σ) − r = Σv for a v ∈ Rd. This assumption implies a constant market
price v of variance-covariance risk. It is also used in the one-dimensional Heston model
(see Example 2.1). In this case it is possible to derive an explicit solution. In some
parameter cases one can show that the solution is finite. The key property that makes
this case solvable is the fact that the Wishart process (Zt) is an affine process and the
value function of the problem can be interpreted as a Laplace transform of (Σt).

4. Solutions of the HJB Equation

4.1. A Candidate for general Drift. In this section we consider case (i), so let us assume
(3.5). This implies

QTρρTQ = ρ̂2QT11TQ = ρ2QTQ with ρ2 = ρ̂2

(∑d
i=1 ci

)2

∑d
i=1 c

2
i

.

We use the further transformation
g(t,Σ) = h(t,Σ)δ (4.1)

with

δ :=
(1− γ)

(1− γ) + γρ2
. (4.2)

In this case equation (3.4) reduces to the linear partial differential equation

ht + Tr
(
Σ(∇+∇T )(QTQ)(∇T +∇)

)
h+

Tr
((
NNT +MΣ + ΣMT +H

)
∇h
)

+
(γr
δ

+
γ

2 (1− γ) δ
(B − r)T Σ−1 (B − r)

)
h = 0 (4.3)

with terminal condition h(T,Σ) = 1 and matrix

H :=
γ

(1− γ)

(
QTρ(B − r)T + (B − r)ρTQ

)
.

This specific transformation has been used before by Zariphopoulou (2001) and in particular by
Kraft (2005) in the one-dimensional Heston model and in Rieder & Bäuerle (2005) in a model
with partial observation. Here we get exactly the same δ as in Kraft (2005), p. 305.
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It is now possible to formally derive a solution via a Feynman-Kac formula. So far we worked
under the physical measure P. We now denote a new measure by P̃ associated with the following
Radon-Nikodym derivative:

Zt :=
dP̃
dP

∣∣∣∣∣
Ft

= exp

(∫ T

t
Tr(θ(Σs)

TdW σ
s )− 1

2

∫ T

t
‖θ(Σs)‖2ds

)
(4.4)

with

θ (Σ) :=
γ

1− γ

(
Σ1/2

)−1
(B(Σ)− r)ρT , Σ ∈ S+

d (R).

For a d × d matrix A we define by ‖A‖2 =
∑

i,j a
2
ij the Frobenius norm. Then, we obtain the

following theorem which is proved in the appendix:

Theorem 4.1. If the Radon-Nikodym derivative (Zt) is an (Ft)-martingale and if

h̃(t,Σ) := ẼΣ,t
[
exp

(∫ T

t

(
γr

δ
+

γ

2 (1− γ) δ
(B (Σs)− r)T Σ−1

s (B (Σs)− r)

)
ds

)]
∈ C1,2(O)

(4.5)
with O = [0, T ] × S+

d (R), then the solution h of (4.3) if it exists, has the Feynman-Kac repre-

sentation h̃, where Ẽ denotes the expectation under P̃.

Hence we have a candidate solution for the stochastic control problem. However for a general
function B it is difficult to compute the expectation or verify the solution. In the next subsection
we consider the special case of a linear function B where we get an explicit solution.

4.2. The Linear Drift Case. In this subsection, we consider case (ii), i.e. the drift coefficient
B(Σ) of (St)t≥0 satisfies B(Σ) − r = Σv for a v ∈ Rd. The asset dynamic (St)t≥0 can now be
written as

dSt = diag (St)
(

(r + Σtv) dt+ Σ
1/2
t dWS

t

)
. (4.6)

The key property that makes this case solvable is the fact that the Wishart process is an affine
process and its Laplace transform can be computed (see e.g. Gnoatto & Grasselli (2012)). We
will later see that under the optimal strategy the expected utility of terminal wealth exactly
reduces to a Laplace transform of the Wishart process. The partial differential equation in (3.4)
now reads

gt +
1

2
Tr
(
Σ(∇+∇T )(QTQ)(∇T +∇)

)
g + Tr

((
NNT +MΣ + ΣMT

)
∇g
)

+ γrg

+
γ

2 (1− γ) g

(
vTΣvg2 + 2ρTQ(∇T +∇)gΣvg + ρTQ(∇T +∇)gΣ(∇+∇T )gQTρ

)
= 0 (4.7)

with g(T,Σ) = 1.
In the next theorem Sd(R) denotes the set of symmetric real matrices of dimension d. The

proof can again be found in the appendix.

Theorem 4.2. The partial differential equation (4.7) with boundary condition g(T,Σ) = 1
possesses the following solution in case the expressions are finite:

g(t,Σ) = exp (φ(T − t) + Tr[ψ(T − t)Σ]) , (4.8)

where φ(t) ∈ R and ψ(t) ∈ Sd(R) for t ∈ [0, T ] are solutions of the following Riccati equations
system:

ψt(t) = ψ(t)M̃ + M̃Tψ(t) + 2ψ(t)Q̃T Q̃ψ(t) + Γ̃, (4.9)

φt(t) = Tr[ψ(t)NNT ] + γr (4.10)

with

M̃ = M +
γ

(1− γ)
QTρvT , Q̃T Q̃ = QTQ+

γ

(1− γ)
QTρρTQ, Γ̃ =

γ

2(1− γ)
vvT
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and the initial conditions: ψ(0) = 0 ∈ Sd(R), φ(0) = 0 ∈ R.

Note that equation (4.10) is not a problem because φ can simply be obtained by integrating the
right hand side. The Riccati equations (4.9) have a finite solution in some parameter settings and
there are different ways to compute a solution. For example it is possible to use a linearization
of the matrix Riccati ODE (see Gnoatto & Grasselli (2012) for details). In this case one obtains
with Proposition 11 in Gnoatto & Grasselli (2012):

Proposition 4.3. In case a finite solution of (4.9) exists for t ∈ [0, T ] with ψ(0) = 0, it is given
by

ψ(t) = ψ22(t)−1ψ21(t)

where (
ψ11(t) ψ12(t)
ψ21(t) ψ22(t)

)
= exp

{
t

(
M̃ −2Q̃T Q̃

Γ̃ −M̃T

)}
,

and M̃ , Q̃T Q̃, Γ̃ are given in Theorem 4.2.

However, the inverse ψ−1
22 (t) does not necessarily exist and it is hard to give conditions on

the parameters which imply this. The next proposition presents an alternative representation
of the solution (under further parameter restrictions) which allows explicit conditions. As usual

sinh(A) for A ∈ S+
d (R) is defined as sinh(A) = eA−e−A

2 where eA is the matrix exponential.
Moreover, the log which appears there is the matrix logarithm. The proof can be found in the
appendix.

Proposition 4.4. Suppose M̃T (Q̃T Q̃)−1 = (Q̃T Q̃)−1M̃ . For t ∈ [0, T ] define

κ(t) := −
(√

C2 cosh(
√
C2t) + C1 sinh(

√
C2t)

)−1(√
C2 sinh(

√
C2t) + C1 cosh(

√
C2t)

)
,

C2 := Q̃
(
− 2Γ̃ + M̃T (Q̃T Q̃)−1M̃

)
Q̃T ∈ Sd(R),

C1 := −Q̃M̃T (Q̃T Q̃)−1Q̃T ∈ Sd(R)

with M̃ , Q̃T Q̃, Γ̃ given in Theorem 4.2. If

−2Γ̃ + M̃T (Q̃T Q̃)−1M̃ � 0,
√
C2 + C1 � 0 and Q̃T Q̃ ∈ GLd(R) (4.11)

is satisfied, then the partial differential equation (4.3) possesses on [0, T ] the finite solution (4.8),
with

ψ(t) =
1

2

(
Q̃−1

√
C2κ(t)Q̃−T

)
− 1

2
M̃T (Q̃T Q̃)−1 (4.12)

φ (t) = −1

2
Tr
(
NNT M̃T (Q̃T Q̃)−1

)
t+ γrt

− 1

2
Tr
(
Q̃−TNNT Q̃−1 · log

[(√
C2

)−1
(√

C2 cosh
(√

C2t
)

+ C1 sinh
(√

C2t
))])

. (4.13)

Remark 4.5. a) Note that the condition M̃T (Q̃T Q̃)−1 = (Q̃T Q̃)−1M̃ is more general than

the commutativity assumption M̃Q̃ = Q̃M̃ in Bru (1991). For a discussion see Gnoatto
& Grasselli (2012).

b) The first two conditions in (4.11) for the existence of a finite solution of the Riccati
equations reduce to the single condition

Γ̃ ≺ M̃T (2Q̃T Q̃)−1M̃, (4.14)

if M̃T (Q̃T Q̃)−1 is negative semidefinite. Under this assumption, C1 is positive semi-
definite, thus the condition (4.14) implies the condition

√
C2 + C1 � 0. If γ > 0 and

Q ∈ GLd(R) then Q̃T Q̃ ∈ GLd(R) is always satisfied. Note that for γ < 0 the condition

Γ̃ � M̃T (2Q̃T Q̃)−1M̃ is always fulfilled.
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c) In the special case d = 1 the conditions (4.11) coincide with the results in the Heston
model in Proposition 5.2 of Kraft (2005). Let us use the terminologies in Kraft (2005)
and denote for d = 1

M := −κ
2
< 0, v := λ̄, ρ := ρ, Q :=

σ

2
, M̃ = −κ

2
+

γ

1− γ
σ

2
ρλ̄ =: − κ̃

2
.

In Kraft (2005) it is assumed that κ̃ > 0. Then Q̃T Q̃ = σ2

4

(
1 + γ

1−γρ
2) =: σ̃2 and

2M̃T (Q̃T Q̃)−1 = − κ̃
σ̃2 is negative semidefinite. The condition in (4.14) can be written as

γ

2 (1− γ)
λ̄2 <

(
κ2 − 2γλ̄ρσκ

(1− γ)
+
γ2λ̄2ρ2σ2

(1− γ)2

)
· 1

2(σ2 + γ
(1−γ)ρ

2σ2)
.

Note that the term σ2 + γ
(1−γ)ρ

2σ2 is always positive, thus, multiplying both sides with

this expression, the inequality above can be simplified to

γλ̄

1− γ

(
λ̄

2
+
ρκ

σ

)
<

κ2

2σ2

which is condition (26) in Kraft (2005).
d) The one-dimensional Heston model with power utility has also been solved in Kallsen

& Muhle-Karbe (2010) using martingale methods. They deal with parameter settings
where the value function is finite for certain time horizons up to a critical one. The
conditions in (4.11) ensure that the value function exists for all T ≥ 0. Inspecting
the proof of Proposition 4.4 one may also be able to identify cases where the matrix√
C2 cosh(

√
C2t) + C1 sinh(

√
C2t) ∈ GLd(R) for some t up to a critical one.

5. Verification

In this section we consider the linear drift case from Section 4.2 and verify that

G (t, x,Σ) :=
xγ

γ
exp (φ(T − t) + Tr[ψ(T − t)Σ]) , t ∈ [0, T ] (5.1)

where ψ, φ are solutions of (4.9),(4.10) is indeed the value function of our portfolio optimiza-
tion problem, given G(t, x,Σ) is finite which is for example satisfied under the conditions of
Proposition 4.4.

First note that our candidate for the optimal portfolio strategy π∗ is given through (3.3) by
π∗t = π∗(t,Σt) with

π∗(t,Σ) =
v

1− γ
+

2ψ(T − t)QTρ
1− γ

. (5.2)

Note that π∗(t,Σ) = π∗t , i.e. the optimal strategy is purely deterministic and does not depend
on Σ.

We will show directly that the corresponding value attained by this portfolio strategy is
G(t, x,Σ) and every other admissible portfolio strategy will not yield a larger value.

Theorem 5.1 (Verification). Suppose the function G in (5.1) is finite (this is for example
satisfied under the conditions of Proposition 4.4). Given (π∗t ) as in (5.2), there is

Et,x,Σ
[(Xπ∗

T )γ

γ

]
= G(t, x,Σ), t ∈ [0, T ], x > 0,Σ ∈ S+

d (R)

and for every other admissible portfolio strategy π we obtain

Et,x,Σ
[(Xπ

T )γ

γ

]
≤ G(t, x,Σ), t ∈ [0, T ], x > 0,Σ ∈ S+

d (R).

Thus, V = G and (π∗t ) in (5.2) is the optimal portfolio strategy.
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Proof. The inequality for every admissible portfolio strategy is standard and follows e.g. like in
Kraft (2005) Proposition 4.3. For the equation recall that we have

Xπ
T = Xπ

t exp
(∫ T

t

[
πTs Σsv + r − 1

2
‖πTs Σ1/2

s ‖22
]
ds+

∫ T

t
πTs Σ1/2

s dWS
s

)
with Xπ

t = x. Let us denote

Zt :=
dQ
dP

∣∣∣∣
Ft

= exp
(
γ

∫ T

t
(π∗s)

TΣ1/2
s dWS

s −
γ2

2

∫ T

t
‖(π∗s)TΣ1/2

s ‖2ds
)
, (5.3)

which is a martingale by Proposition 8.2 in the appendix. Using Girsanov’s Theorem we obtain

x−γ Et,x,Σ
[
(Xπ∗

T )γ
]

=Et,x,Σ
[
exp

(
γ

∫ T

t

[
(π∗s)

TΣsv + r − 1

2
‖(π∗s)TΣ1/2

s ‖22
]
ds+ γ

∫ T

t
(π∗s)

TΣ1/2
s dWS

s

)]
=Et,x,ΣQ

[
exp

(
γ

∫ T

t

[
(π∗s)

TΣsv + r − 1

2
‖(π∗s)T (Σs)

1/2‖22 +
γ

2
‖(π∗s)T (Σs)

1/2‖22
]
ds

)]
=Et,x,ΣQ

[
exp

(
γ

∫ T

t

[
(π∗s)

TΣsv + r +
γ − 1

2
(π∗s)

TΣsπ
∗
s

]
ds

)]
=Et,x,ΣQ

[
exp

(
γr(T − t) +

∫ T

t
Tr

[(
γv(π∗s)

T +
γ(γ − 1)

2
π∗s(π

∗
s)
T

)
Σs

]
ds

)]
. (5.4)

In what follows let us introduce the deterministic matrix-valued process

Fs = γv(π∗s)
T +

γ(γ − 1)

2
π∗s(π

∗
s)
T

which appears in (5.4). By plugging in the optimal strategy π∗ and using (4.9) we obtain:

Fs =
γ

1− γ

{1

2
vvT + vρTQψ(T − s)− ψ(T − s)QTρvT − 2ψ(T − s)QTρρTQψ(T − s)

}
=ψt(T − s)− ψ(T − s)M −MTψ(T − s)− 2ψ(T − s)QTQψ(T − s)

+
γ

γ − 1

{
2ψ(T − s)QTρvT + 4ψ(T − s)QTρρTQψ(T − s)

}
.

Now note that under Q defined in (5.3) the process Ŵ σ
t := W σ

t − γΣ
1/2
t π∗t ρ

T is also a standard
Brownian motion and the dynamics of (Σt) under Q is given by

dΣt =
(
NNT +MΣt + ΣtM

T
)
dt+ Σ

1/2
t dW σ

t Q+QT (dW σ
t )T Σ

1/2
t

=
(
NNT +MΣt + ΣtM

T + γΣtπ
∗ρTQ+ γQTρ(π∗)TΣt

)
dt+ Σ

1/2
t dŴ σ

t Q+QT(dŴ σ
t )TΣ

1/2
t .

Hence under Q the process (Σt) is again a Wishart process with drift

NNT +MΣt + ΣtM
T + γΣtπ

∗ρTQ+ γQTρ(π∗)TΣt

=NNT +MΣt + ΣtM
T +

γ

1− γ
Σtvρ

TQ+
2γ

1− γ
Σtψ(T − t)QTρρTQ

+
γ

1− γ
QTρvTΣt +

2γ

1− γ
QTρρTQψ(T − t)Σt.

Next we compute
∫ T
t Tr(FsΣs)ds under Q. For this instance note that due to the product rule

and since ψ(0) = 0,Σt = Σ we obtain∫ T

t
Tr(ψt(T − s)Σs)ds = Tr

(
Σψ(T − t) +

∫ T

t
ψ(T − s)dΣs

)
. (5.5)
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Plugging in the dynamics of (Σt) under Q we obtain:∫ T

t
Tr(FsΣs)ds

=Tr (Σψ(T − t)) +

∫ T

t
Tr
(
ψ(T − s)NNT

)
ds−

∫ T

t
Tr
(
2ψ(T − s)QTQψ(T − s)Σs

)
ds

+ Tr
(∫ T

t
ψ(T − s)Σ1/2

s dŴ σ
s Q+

∫ T

t
ψ(T − s)QT (dŴ σ

s )TΣ1/2
s

)
.

Note that the differential equation (4.10) can be written as

φ(T − t) =

∫ T

t
Tr
(
ψ(T − s)NNT

)
ds+ γr(T − t).

Hence we obtain:

x−γ Et,x,Σ
[
(Xπ∗

T )γ
]

=Et,x,ΣQ

[
exp

(
γr(T − t) +

∫ T

t
Tr(FsΣs)ds

)]
=Et,x,ΣQ

[
exp

(
Tr
(
Σψ(T − t)

)
+ φ(T − t)−

∫ T

t
Tr
(
2ψ(T − s)QTQψ(T − s)Σs

)
ds

+ Tr
(∫ T

t
ψ(T − s)Σ1/2

s dŴ σ
s Q+

∫ T

t
ψ(T − s)QT (dŴ σ

s )TΣ1/2
s

))]
= exp

(
Tr
(
Σψ(T − t)

)
+ φ(T − t)

)
Et,x,ΣQ

[
exp

(
−
∫ T

t
Tr
(
2Qψ(T − s)Σsψ(T − s)QT

)
ds+ 2Tr

(∫ T

t
Qψ(T − s)Σ1/2

s dŴ σ
s

))]
.

With the help of Proposition 8.1 it can be shown that the expression within the expectation is
a Q-martingale with expectation 1 which yields:

Et,x,Σ
[

(Xπ∗
T )γ

γ

]
=
xγ

γ
exp

(
Tr (Σψ(T − t)) + φ(T − t)

)
and the statement is shown. �

Remark 5.2. The optimal portfolio strategy (π∗t ) in (5.2) can be decomposed into the Merton
ratio v

1−γ and the hedging demand given by

2ψ(T − t)QTρ
1− γ

.

In case there is no correlation between the Brownian motions that drive the assets and those
which drive the volatility process, i.e. ρ = 0, the optimal portfolio strategy reduces to the
Merton ratio and does not depend on time. In any case note that the optimal portfolio strategy
does not depend on NNT and is deterministic.

6. Logarithmic Utility Case

In case the utility function in problem (2.6) is the logarithmic utility U(x) = log x, the
problem can be solved by pointwise maximization. Indeed we obtain in the general drift case
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for an admissible portfolio strategy:

Et,x,Σ
(

log(Xπ
T )
)

= log x+ Et,x,Σ
[ ∫ T

t
πTs (B (Σs)− r) + r − 1

2
‖πTs Σ1/2

s ‖22ds
]

+ Et,x,Σ
[ ∫ T

t
πTs Σ1/2

s dWS
s

]
(6.1)

= log x+ Et,x,Σ
[ ∫ T

t
max

πs,s∈[t,T ]

(
πTs (B (Σs)− r) + r − 1

2
‖πTs Σ1/2

s ‖22
)
ds
]

(6.2)

when we assume that
∫ T
t πTs Σ

1/2
s dWS

s is a true martingale. Obviously the maximizer is here
given by

π∗(Σ) = Σ−1 (B(Σ)− r) . (6.3)

For the case B(Σ) = r + Σv with a v ∈ Rd, it is evident that π∗t ≡ v and
∫ T
t vTΣ

1/2
s dWS

s is a
true martingale.

Plugging π∗ into (6.2) yields

sup
(πs)

Et,x,Σ
(

log(Xπ
T )
)

= log x+ r (T − t) +
1

2

∫ T

t
Et,x,Σ

(
(B (Σs)− r)T Σ−1

s (B (Σs)− r)
)
ds.

For further computations we need to calculate the conditional expectation of the function

f(Σt) := (B (Σt)− r)T Σ−1
t (B (Σt)− r) .

Note that Σt has a Wishart distribution for fixed t. We refer to Matsumoto (2012) for the
conditional expectation of the moments of real inverse Wishart distributed matrices and Sultan
& Tracy (1996) for the moments of central and noncentral Wishart distributions.

7. An Example

In this subsection we compute the optimal portfolio strategy numerically for time horizon
T = 1 in a two-dimensional example for the case B(Σ)− r = Σv. More precisely, we consider a
financial market with one riskfree asset and d = 2 risky assets. The parameters are taken from
Buraschi et al. (2010) who calibrated such a model to real market data of the S& P500 Index
and 30-year Treasury bonds. For the volatility process (Σt) they obtain

M =

(
−1.21 0.491
0.3292 −1.271

)
, Q =

(
0.167 0.033
0.001 0.09

)
, ρ =

(
−0.115
−0.549

)
, v =

(
4.722
3.317

)
.

In the computation we assume an investor with power utility U(x) = 1
γx

γ , γ < 1, γ 6= 0 where

we vary the parameter γ. We use the formula in Proposition 4.3 to compute ψ(t), i.e.

ψ(t) = ψ22(t)−1ψ21(t), t ∈ [0, 1]

where (
ψ11(t) ψ12(t)
ψ21(t) ψ22(t)

)
= exp

{
t

(
M̃ −2Q̃T Q̃

Γ̃ −M̃T

)}
, t ∈ [0, 1]

and M̃ , Q̃T Q̃, Γ̃ are given in Theorem 4.2. In our numerical study, ψ22(t) was always invertible
and we obtained finite values for ψ(t). The optimal portfolio strategy is given by (5.2):

π∗t =
v

1− γ
+

2ψ(T − t)QTρ
1− γ

. (7.1)

Indeed, in the figures we only plot the hedging demand.
Note that the degree of risk aversion of the investor changes with parameter γ. Formally the

degree of risk aversion is defined by the Arrow-Pratt absolute risk aversion coefficient, which is

−U
′′(x)

U ′(x)
= (1− γ)

1

x
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Figure 1. Hedging demand 2
1−γψ(1− t)QTρ for asset 1 and 2 for (from left to

right) γ = 0.8 γ = 0.2.

Figure 2. Hedging demand 2
1−γψ(1− t)QTρ for asset 1 and 2 for (from left to

right) γ = −0.1, γ = −1, γ = −8.

in case of the power utility. Thus, the risk aversion decreases for all wealth levels with γ. The
case γ → 0 corresponds to the logarithmic utility: It is easy to see that γ → 0 implies Γ̃ → 0
and hence a trivial solution of (4.9) is ψ ≡ 0. Thus, the hedging demand

2ψ(T − t)QTρ
1− γ

in this case is zero and π?t = v. We know from (6.3) that this is the optimal portfolio strategy
in case of a logarithmic utility.

If γ ∈ (0, 1), the investor is less risk averse than in the logarithmic utility case and we expect a
negative hedging demand which implies a tendency to shortsell stocks. Indeed, when we look at
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the pictures of the hedging demand for different γ we see that positive γ (less risk averse investor)
imply a negative hedging demand (see figure 1) and negative γ (more risk averse investor) imply
a positive hedging demand (see figure 2). We have observed this behavior in all our numerical
computations. This effect has also been reported in other situations with power utility (see e.g.
Rieder & Bäuerle (2005)). Since the formula for (π∗t ) is still quite complicated we did not try
to prove this observation but we conjecture that it is true for reasonable parameters.

In any case, the numerical study shows that it is very easy to compute the optimal portfolio
strategy numerically since the formulas are explicit and no numerical integration is needed.
Much higher dimensions than d = 2 would also pose no numerical problems.

8. Appendix

This section contains some proofs and auxiliary results.

Proof of Theorem 4.1: Observe first that under the new measure P̃, the process defined by

W̃ σ
t := W σ

t −
∫ t

0 θ (Σs) ds is a d× d matrix Brownian motion on [0, T ] by the Girsanov theorem.

Thus, under P̃ the process (Σt) has dynamics

dΣt =
(
NNT +MΣt + ΣtM

T +H
)
dt+ Σ

1/2
t dW̃ σ

t Q+QT (dW̃ σ
t )TΣ

1/2
t ,

where we have used that Σ1/2θQ+QT θTΣ1/2 = H. Hence the process (Σt) is again a Wishart

process under P̃ however with different drift. The characteristic operator of this process is for
f ∈ C2

(
S+
d (R)

)
given by

(Af)(Σ) =
1

2
Tr
(
Σ(∇+∇T )(QTQ)(∇T +∇)

)
f + Tr

((
NNT +MΣ + ΣMT +H

)
∇f
)

under P̃. Then the partial differential equation (4.3) can be written as

Ah = −ht −
(γr
δ

+
γ

2 (1− γ) δ
(B − r)T Σ−1 (B − r)

)
h,

h(T,Σ) = 1.

Applying the theorem of Feynman-Kac, we conclude that the representation in (4.5) is the so-
lution of (4.3) under proper conditions. �

Proof of Theorem 4.2: We simply verify that g given in (4.8) satisfies (4.7). To this end note
that

gt = −g
(
φt(T − t) + Tr(ψt(T − t)Σ)

)
,

∇g = ∇T g = gψ(T − t),
gΣlk,Σij = gψji(T − t)ψkl(T − t).

Plugging these derivatives into (4.7) yields (obviously g cancels out):

0 =−
(
φt + Tr(ψtΣ)

)
+ 2Tr(Σψ(QTQ)ψ)

+ Tr
(
ψ(NNT +MΣ + ΣMT )

)
+ γr +

γ

2(1− γ)
Tr
(
vTΣv + 4ρTQψΣv + 4ρTQψΣψQTρ

)
.
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In order to see that the right hand side is really zero, keep in mind that φ satisfies (4.10) and ψ
satisfies (4.9) and that the following relations hold

γ

2(1− γ)
Tr
(
vTΣv

)
= Tr

(
Γ̃Σ
)
,

γ

2(1− γ)
Tr
(
4ρTQψΣv

)
=

γ

(1− γ)
Tr
(
vρTQψΣ

)
+

γ

(1− γ)
Tr
(
ψQTρvTΣ

)
,

T r
(
ρTQψΣψQTρ

)
= Tr

(
ψQTρρTQψΣ

)
.

To ensure g(T,Σ) = 1, we need the initial conditions ψ(0) = 0 and φ(0) = 0. �

Proof of Proposition 4.4: The explicit representation of ψ and φ follows directly from Theorem
11 in Gnoatto & Grasselli (2012). Given Q̃T Q̃ ∈ GLd(R) these expressions are well-defined and
finite when

K(t) :=
√
C2 cosh(

√
C2t) + C1 sinh(

√
C2t) ∈ GLd(R), t ∈ [0, T ].

Indeed we show now that K(t) ∈ GLd(R), for all t ≥ 0, if and only if

−2Γ̃ + M̃T (Q̃T Q̃)−1M̃ � 0 and
√
C2 + C1 � 0. (8.1)

First of all note that C2 is symmetric and for the well definedness of the matrix square root
of C2, we need C2 to be nonnegative definite, which is equivalent to −2Γ̃ + M̃T (Q̃T Q̃)−1M̃ � 0.
Consider the situation t = 0. We obtain K(0) =

√
C2. Then K(0) ∈ GLd(R) if and only if

−2Γ̃ + M̃T (Q̃T Q̃)−1M̃ � 0.
Subsequently, we show the sufficiency of the conditions for t > 0. For the sake of simplicity,

we write

K(t) =
1

2

(√
C2 + C1

)
e
√
C2t +

1

2

(√
C2 − C1

)
e−
√
C2t. (8.2)

Note that for
√
C2 ∈ S+

d (R) and t > 0, there is e
√
C2t ∈ S+

d (R) and e−
√
C2t =

(
e
√
C2t
)−1 ∈ S+

d (R).

Moreover, expanding the matrix exponential functions as a series, one gets e
√
C2t − e−

√
C2t � 0

for
√
C2 ∈ S+

d (R), t > 0. Hence, one can write e
√
C2t = e−

√
C2t+P (t) with P (t) ∈ S+

d (R). Then
there is

K(t) =
1

2

(√
C2 + C1

)(
e−
√
C2t + P (t)

)
+

1

2

(√
C2 − C1

)
e−
√
C2t

=
√
C2e

−
√
C2t +

1

2

(√
C2 + C1

)
P (t),

which is always invertible if and only if det(K(t)) 6= 0, for all t > 0. Note that det
(
K(t)P−1(t)

)
=

det
(
K(t)

)
det
(
P−1(t)

)
and det

(
P−1(t)

)
> 0, for all t > 0, since P (t) ∈ S+

d (R) for all positive

t, one gets K(t) ∈ GLd if and only if det
(
K(t)P−1(t)

)
6= 0, for all t > 0. Because of

K(t)P−1(t) =
√
C2e

−
√
C2t
(
e
√
C2t − e−

√
C2t
)−1

+
1

2

(√
C2 + C1

)
=
(
e2
√
C2t
(√

C2

)−1 −
(√

C2

)−1
)−1

+
1

2

(√
C2 + C1

)
=
(

2tI + 2t2
√
C2 +

4t3

3
C2 + . . .

)−1

︸ ︷︷ ︸
�0

+
1

2

(√
C2 + C1

)
,

it follows det
(
K(t)P−1(t)

)
6= 0, for all t > 0 from

√
C2 + C1 � 0.

Eventually, we show the necessity of the conditions. We assume
√
C2 + C1 � 0. Note that

for t = 0, K(0) =
√
C2 � 0, which implies that all the eigenvalues of K(0) are positive. If√

C2 + C1 � 0, i.e.
√
C2 + C1 possesses at least one negative eigenvalue, one can identify the
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matrix
(√
C2 +C1

)
e
√
C2t owns also at least one negative eigenvalue through a matrix similarity

transformation:

σ
((√

C2 + C1

)
e
√
C2t
)

= σ
((
e
√
C2t
)1/2(√

C2 + C1

)(
e
√
C2t
)1/2)

,

where σ(A) denotes the spectrum of the matrix A. Then for t large enough, it follows that K(t)
owns at least one negative eigenvalue. Since the spectrum of a matrix is a continuous function
on the entries of the matrix (see Rellich (1969)), we conclude that there exists a t > 0 with
K(t) /∈ GLd(R), if

√
C2 + C1 � 0. �

Proposition 8.1. Let us denote

Zt := exp

(∫ T

t
Tr
(
AsΣ

1/2
s dW σ

s

)
− 1

2

∫ T

t
‖AsΣ1/2

s ‖2ds
)
,

where (At)t∈[0,T ] is a deterministic process with values in Rd×d and bounded by A∗ ∈ Rd×d. Then
(Zt)t∈[0,T ] is a martingale.

Proof. By Lemma 4.2. in Hata & Sekine (2011) we get that (Zt) is a martingale, if there is
constant C0 ∈ R+ s.t. √

Tr (θ (Σ) θT (Σ) θ (Σ) θT (Σ)) ≤ C0
√
Tr (ΣΣ) (8.3)

with θ (Σ) = AΣ1/2. Consider the left-hand side of this inequality:

Tr
(
θ (Σ) θT (Σ) θ (Σ) θT (Σ)

)
=Tr(AΣATAΣAT ) ≤ λmaxTr

(
AΣΣAT

)
= λmaxTr

(
ΣATAΣ

)
≤ λ2

maxTr (ΣΣ) ,

where λmax is the largest eigenvalue of ATA. The second last inequality follows from the fact
that the trace of a matrix is the sum of its eigenvalues and

AΣATAΣAT = AΣOΛOTΣAT � λmaxAΣΣAT ,

where OΛOT is the spectral decomposition of ATA. The last inequality follows in the same way,
i.e.

ΣATAΣ = ΣOΛOTΣ � λmaxΣΣ.

Since As ∈ Rd×d is bounded on [0, T ], λmax is also bounded on [0, T ] and we denote its upper
bound by λ∗max. Then one concludes that (8.3) is satisfied with C0 = λ∗max, which implies that
(Zt) is a martingale. �

Proposition 8.2. Let us denote

Zt := exp

(∫ T

t
ATs Σ1/2

s dWS
s −

1

2

∫ T

t
‖ATs Σ1/2

s ‖2ds
)
, t ∈ [0, T ]

where (At)t∈[0,T ] is a deterministic process with values in Rd which is bounded by A∗ ∈ Rd. Then
(Zt)t∈[0,T ] is a martingale.

Proof. First note that it is sufficient to show that EZt = 1 for t ∈ [0, T ]. Since < WS
t,k,W

σ
t,kj >=

ρj we obtain (WS
t,k)

d
= (ρ1W

σ
t,k1 +

√
1− ρ2

1Ŵt,k1) where (Ŵt) is a d × d Brownian motion

matrix, independent of (W σ
t ). Thus, when we denote vρ := (ρ1, 0, . . . , 0)T ∈ Rd and v̄ρ :=

(
√

1− ρ2
1, 0, . . . , 0)T ∈ Rd we obtain

ATt Σ
1/2
t dWS

t
d
= Tr

(
vρA

T
t Σ

1/2
t dW σ

t

)
+ Tr

(
v̄ρA

T
t Σ

1/2
t dŴt

)
and

‖ATt Σ
1/2
t ‖2 =

(
ρ2

1 + (1− ρ2
1)
)
‖ATt Σ

1/2
t ‖2 = ‖vρATt Σ

1/2
t ‖2 + ‖v̄ρATt Σ

1/2
t ‖2.
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Hence we can write

Zt
d
= exp

(∫ T

t
Tr
(
vρA

T
s Σ1/2

s dW σ
s

)
− 1

2

∫ T

t
‖vρATs Σ1/2

s ‖2ds
)

· exp
(∫ T

t
Tr
(
v̄ρA

T
s Σ1/2

s dŴs

)
− 1

2

∫ T

t
‖v̄ρATs Σ1/2

s ‖2ds
)

= E
(∫ T

·
Tr
(
vρA

T
s Σ1/2

s dW σ
s

))
t
E
(∫ T

·
Tr
(
v̄ρA

T
s Σ1/2

s dŴs

))
t

where E denotes the stochastic exponential. Now we obtain

EZt = E
[
E[Zt|FW

σ

T ]
]

= E
[
E
(∫ T

·
Tr
(
vρA

T
s Σ1/2

s dW σ
s

))
t
E
[
E
(∫ T

·
Tr
(
v̄ρA

T
s Σ1/2

s dŴs

))
t
|FWσ

T

]]
.

Since (Ŵt) and (W σ
t ) are independent, the inner conditional expectation is equal to 1 due to

Example 4 in Liptser & Shiryaev (2001). From Proposition 8.1 we conclude that the remaining
expression is also 1. �
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