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UPPER BOUNDS FOR THE MAXIMUM OF A RANDOM WALK

WITH NEGATIVE DRIFT

JOHANNES KUGLER AND VITALI WACHTEL

Abstract. Consider a random walk Sn =
∑

n

i=0
Xi with negative drift. This

paper deals with upper bounds for the maximum M = maxn≥1 Sn of this
random walk in different settings of power moment existences. As it is usual for
deriving upper bounds, we truncate summands. Therefore we use an approach
of splitting the time axis by stopping times into intervals of random but finite
length and then choose a level of truncation on each interval. Hereby we can

reduce the problem of finding upper bounds for M to the problem of finding
upper bounds for Mτ = maxn≤τ Sn. In addition we test our inequalities in
the heavy traffic regime in the case of regularly varying tails.

1. Introduction and statement of results

Let {Sn, n ≥ 0} denote the random walk with increments Xi, that is,

S0 := 0, Sn :=

n
∑

i=1

Xi, n ≥ 1.

We shall assume that X1, X2, . . . are independent copies of a random variable X
with distribution function F and a := −E[X ] > 0. The random walk Sn drifts
to −∞ and the total maximum M := maxk≥0 Sk is finite almost surely. The
random variable M plays a crucial role in a number of applications. For example,
its distribution coincides with the stationary distribution of the queue-length in
simple queueing systems. Another important application comes from the insurance
mathematics: Under some special restrictions on X the quantity P(M > u) is equal
to the ruin probability in the so-called Poisson model.

The tail-behaviour of M has been studied extensively in the literature. The first
result goes back, apparently, to Cramer and Lundberg (see, for example, Asmussen
[2]): If

E[eh0X ] = 1 for some h0 > 0, (1)

and, in addition, E[Xeh0X ] < ∞, then there exists a constant c0 ∈ (0, 1) such that

P(M > x) ∼ c0e
−h0x as x → ∞. (2)

The case E[Xeh0X ] = ∞ has been considered recently by Korshunov [10].
If (1) is not fulfilled, then one assumes that the distribution of X is regular in

some sense. To specify what regular means we recall some definitions and known
properties. For their proofs we refer to Asmussen [2]. Consider a distribution
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function B on R and let B(x) = 1 − B(x) be the right tail of B. A distribution
function B with support R+ is called subexponential, if B(x) > 0 for all x and

lim
x→∞

B∗n(x)

B(x)
= n (3)

for all n ≥ 2, where B∗n(x) is the n-fold convolution of B with itself. For the
subexponentiality it is sufficient to verify the equation (3) in the case n = 2. All
subexponential distributions are heavy-tailed, i.e. E[exp(ǫX)] = ∞ for all ǫ > 0,
hence subexponential distributions do not satisfy (1). If (1) is not fulfilled, the most
classical result for the asymptotics of M is due to Veraverbeke [16], who showed
that if the integrated tail G(x) :=

∫∞

x
F (u)du is subexponential, then

P(M > x) ∼
1

a
G(x) as x → ∞. (4)

In many situations one needs non-asymptotic properties of the distribution ofM .
Since the exact form of that distribution is known in some special cases only, good
estimates are required. Under condition (1) one has for all x > 0 the inequality

P(M > x) ≤ e−h0x. (5)

In the case when (1) is not fulfilled, upper bounds for P(M > x) have been
derived by Kalashnikov [9] and by Richards [15]. The approach in these papers
is based on the representation of M as a geometric sum of independent random
variables:

P(M > x) =

∞
∑

k=0

q(1 − q)kP(χ+
1 + χ+

2 . . .+ χ+
k > x), (6)

where {χ+
k } are independent random variables and q = P(M = 0). The main

difficulty in this approach is the fact that one has to know the distribution of χ+
k

and the parameter q. In some special cases this information can be obtained from
the initial data. But in general one has to obtain appropriate estimates for q and
P(χ+

1 > x).
The main purpose of the present paper is to derive upper bounds for P(M > x)

assuming the existence of power moments of X only. Thereby we want to avoid the
representation via geometric sums and use a supermartingale-construction instead.

As it is usual for deriving upper bounds, we are going to truncate summands
and to use inequalities, which are based on truncated exponential moments. But
the problem is that we have infinitely many Xi’s. So we can not truncate all of
them at the same level. Thus, we have to split the time axis into intervals of finite
length and then choose a level of truncation on each of these intervals. One can
take, for example, a deterministic strictly increasing sequence kn with k0 = 0 and
consider the intervals In := (kn, kn+1]:

P (M ≥ x) = P





⋃

k≥0

{Sk ≥ x}



 ≤

∞
∑

n=0

P

(

⋃

k∈In

{Sk ≥ x}

)

≤

∞
∑

n=0

P

(

max
k≤kn+1

(Sk − ka) ≥ x− kna}

)

. (7)

Now, one can apply the Fuk-Nagaev inequalities, see [13], to every probability in
the last line. It is clear that replacing supk∈In(Sk − ka) by supk≤kn+1

(Sk − ka) is
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not too rough if and only if kn+1 and kn+1 − kn are comparable. Thus, one has to
take kn exponentially growing. Using this approach with kn = x2n, Borovkov [3]
obtained a version of the Markov inequality for M .

Our strategy is quite different and consists in splitting [0,∞) into random in-
tervals defined by a sequence of stopping times. More precisely, we introduce the
stopping time

τz := min{k ≥ 0 : Sk ≤ −z}, z ≤ x.

Let Mτ = max1≤k≤τz Sk. We split the tail probability

P (M > x) ≤ P (Mτz > x) +P

(

max
k≥τz

Sk > x

)

(8)

and can consider the continuation of the process (Sk) beyond τz as a probabilistic
replica of the entire process. By Sτz ≤ −z a.s. follows

P

(

max
k≥τz

Sk > x

)

≤ P (M > x+ z) .

As a result, we have

P (M > x) ≤ P (Mτ > x) +P (M > x+ z) ,

and inductively we conclude

P (M > x) ≤

∞
∑

j=0

P (Mτ > x+ jz) . (9)

It is worth mentioning that the difference between (7) and (9) is the same as between
Riemann and Lebesgue integrals: We do not fit the random walk Sn into a fixed
splitting of the time, but choose the splitting depending on the paths of the random
walk.

A decomposition similar to (8) has been used by Denisov [5] for deriving the
asymptotics of P(Mτ0 > x) from that of P(M ∈ [x, x−Sτ0)). In the present paper
we use the opposite approach: We obtain estimates for P(M > x) from the ones
for P(Mτz > x).

We now state our results on Mτ .

Theorem 1. Assume that At := E[|X |t] < ∞ for some t ∈ (1, 2]. For all y
satisfying yt−1 ≥ (e − 1)Ata

−1 we have the following inequality:

P (Mτ > x) ≤
A

x/y
t

ax/y−1
E[τz]y

−1−(t−1)x/y log
(

1 + ayt−1/At

)

+

(

1 +
A

x/y
t

ax/y
y−(t−1)x/y

)

E[τz ]P(X > y). (10)

Remark 2. We show in the proof that (10) remains true, if one replaces a and
At by −E[X, |X | ≤ y] and At(y) = E[|X |t, |X | ≤ y] respectively. In this case the
restriction yt−1 > (e − 1)a−1At should be replaced by E[X, |X | ≤ y] < 0. The
use of truncated moments is more convenient in theoretical applications, but for
deriving concrete estimates for M it is easier to use full moments. ⋄

Fix α ∈ (0, 1) and put β = 1− α.

Theorem 3. Assume Var(X) < ∞ and At,+ := E[Xt, X > 0] < ∞ for some
t > 2.
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(i) If y satisfies the condition

2αa

etVar(X)
≤

1

y
log

(

1 +
βa

At,+
yt−1

)

,

then

P (Mτ > x) ≤
2αa2

etVar(X)
E[τz]

(

exp

{

2αax

etVar(X)

}

− 1

)−1

+

(

1 +

(

exp

{

2αax

etVar(X)

}

− 1

)−1
)

E[τz]P(X > y). (11)

(ii) If y satisfies the condition

2αa

etVar(X)
≥

1

y
log

(

1 +
βa

At,+
yt−1

)

, (12)

then

P (Mτ > x) ≤
A

x/y
t,+ β−x/y

ax/y−1
E[τz ]y

−1−(t−1)x/y log
(

1 + βayt−1/At,+

)

+

(

1 +
A

x/y
t,+ β−x/y

ax/y
y−(t−1)x/y

)

E[τz]P(X > y). (13)

Remark 4. Analogously to Theorem 1 one can replace Var(X) and At,+ by the
corresponding truncated expectations B2(−∞, x) = E[X2, X ≤ y] and At,+(y) =
E[Xt, X ∈ (0, y]] respectively in Theorem 3. ⋄

Corollary 5. Assume that P(|X | > x) = L(x)x−r for some r > 1 and

P(X > x))/P(|X | > x) → p ∈ (0, 1) as x → ∞.

Then, it follows from (10) and (13) that

lim sup
x→∞

P (Mτ > x)

P(X > x)
≤ E[τz]

for every z > 0.

But it follows from the results of Asmussen [1] (see also Denisov [5]), that

lim
x→∞

P (Mτ > x)

P(X > x)
= E[τz ]

under the condition that the tail of F is regularly varying. This means that the
inequalities (10) and (13) are asymptotically precise in the case of regularly varying
tails.

In all these inequalities we have E[τz] on the right hand side. It is really hard
to get an exact expression for this value via initial data, but there are good upper
bounds in the literature: Since E[τz] < ∞ (see, for example, Feller [6]) by Wald’s
Identity,

E[τz] =
z +E[Rz]

a
, (14)

where Rz = −z− Sτz denotes the overshoot in τz. Hence, we get upper bounds for
E[τz] by the inequality of Lorden [11]: For E[X ] < 0 and E[(X−)2] < ∞,

E[Rz] ≤
E[(X−)2]

a
(15)
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and the one from Mogul’skii [12]: For E[X ] ≤ 0 and E[|X |3] < ∞,

E[Rz ] ≤ A
3

2

E[|X |3]

E[X2]
, (16)

where A is a certain constant, A ≤ 2. The disadvantage of these bounds is, that
we have to assume the existence of the second or even the third moment. We
give another bound, which only requires the finiteness of the moment of order t,
t ∈ (1, 2].

Proposition 6. Assume that At,− := E[(X−)t] < ∞ for some t ∈ (1, 2], then, for
every z > 0,

E[Rz] ≤
tt/(t−1)A

1/(t−1)
t,−

(t− 1)at/(t−1)

(

E[−X,X < 0] +
z2−t

t
At,−

)

. (17)

Combining (14) with (15), (16) or (17) we obtain upper bounds for E[τz]. Plug-
ging these bounds into the inequalities in Theorems 1 and 3 we get bounds for
P(Mτ > x), which contain information on X only. So, they can be used for con-
crete calculations.

We now come back to the global maximum.

Theorem 7. Fix some θ ∈ (0, 1) and define

c1 :=
3A

1/θ
t θ−(t−1)/θ

(t− 1)a1/θ−1
, c2 :=

3A
1/θ
t,+θ−(t−1)/θ

(t− 1)a1/θ−1
.

(i) Assume that At < ∞ for some t ∈ (1, 2]. Then, for every x satisfying
xt−1 ≥ θ1−t(e − 1)Ata

−1 and x ≥ z(t− 1)θ−1, we have

P(M > x) ≤ c1
E[τz ]

z
log

(

1 +
aθt−1xt−1

At

)

x−(t−1)/θ

+

(

1 +

(

At

θt−1axt−1

)1/θ
)

E[τz]

(

1

θz
G(θx) +P(X > θx)

)

. (18)

(ii) Assume that Var(X) < ∞ and At,+ < ∞ for some t > 2. Then, for
every x satisfying (12) for y = θx, xt−1 ≥ θ1−t(eθ − 1)At,+β

−1a−1 and
x ≥ z(t− 1)θ−1, we have

P(M > x) ≤ c2β
−1/θE[τz]

z
log

(

1 +
βaθt−1xt−1

At,+

)

x−(t−1)/θ

+

(

1 +

(

At,+

βθt−1axt−1

)1/θ
)

E[τz]

(

1

θz
G(θx) +P(X > θx)

)

. (19)

Corollary 8. If the assumptions of Corollary 5 hold, then it follows from Theorem
7 that

lim sup
x→∞

P(M > x)

G(x)
≤

E[τz]

z
θ−r.

Since the left-hand side does not depend on θ and z, we can let θ → 1 and
z → ∞. Noting that each of (15) and (16) combined with (14) yields

E[τz]

z
→

1

a
as z → ∞,
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we conclude

lim sup
x→∞

P(M > x)

G(x)
≤

1

a
.

Comparing this with (4), we see that the inequalities in Theorem 7 are asymptot-
ically precise. This even remains valid, if we bound E[τz] in these inequalities by
combining (15) or (16) with (14).

The reason why we are able to obtain asymptotically precise bounds is, that
we may choose z arbitrary large. That possibility seems to be a quite important
advantage of our method compared to geometric sums. If the distribution of χ+

1 is
subexponential, then it follows easily from (6) that

P(M > x) ∼

(

1

q
− 1

)

P(χ+
1 > x) as x → ∞.

Therefore, in order to obtain an upper bound for the maximum we need to control
the quantity 1/q. It is well known that 1/q = E[−Sτ0 ] = E[R0]. Thus, we may
apply (15), (16) or (17) with z = 0. But corresponding inequalities for M will not
be asymptotically precise. Summarising, the approach via geometric sums can only
lead to asymptotically precise bounds if q is known.

We next test our inequalities in the heavy-traffic regime. Let {S(a), a ≥ 0} be a
family of random walks with E[X(a)] = −a. We shall assume that X(a) = X(0)− a
for all a > 0. Let M (a) denote the corresponding maximum. It is known that
if X(0) belongs to the domain of attraction of a stable law, then there exists a
regularly varying function g(a) such that g(a)M (a) converges weakly as a → 0. It
turns out that our inequalities may be applied to large deviation problems in the
heavy-traffic convergence mentioned above. More precisely, they give asymptoti-
cally precise bounds for the probabilities P(M (a) > xa) if xa ≫ 1/g(a). In the case
of σ2 := Var(X(0)) being finite, one has g(a) = a and the weak limit of aM (a) is
the exponential distribution with parameter 2/σ2.

Theorem 9. Assume that σ2 < ∞ and the right tail of the distribution function of
X(0) is regularly varying with index r > 2, that is, P(X(0) > u) = u−rL(u), where
L is slowly varying. If

lim inf
a→0

xa

a−1 log a−1
> er

(r − 2)

2
σ2, (20)

then

P(M (a) > xa) ∼
x−r+1
a L(xa)

(r − 1)a
as a → 0. (21)

Olvera-Cravioto, Blanchet and Glynn [14] have shown that for an M/G/1 queue
the relation (21) holds under the condition

lim inf
a→0

xa

a−1 log a−1
>

(r − 2)

2
σ2.

We believe that the latter should be sufficient for the validity of (21) also in the
general case. The extra factor er appears in (20) only as a consequence of the
technique we used, and can be removed by adoption of (19) to the heavy-traffic
setting.
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Theorem 10. Assume that E[(min{0, X(0)})2] < ∞ and P(X(0) > u) = u−rL(u)
with r ∈ (1, 2). If

lim inf
a→0

g(a)xa = ∞, (22)

then

P(M (a) > xa) ∼
x−r+1
a L(xa)

(r − 1)a
as a → 0. (23)

We have imposed the condition E[(min{0, X(0)})2] < ∞ just to use the Lorden
inequality for the overshoot. If one replaces that condition by E[(min{0, X(0)})t] <
∞ with t ∈ (1, 2), then, using Proposition 6, one can show that (23) holds for

xa ≫ a−t/(t−1)2 only. The reason is the roughness of Proposition 6 for small values
of a. Indeed, if we use (17) even with t = 2, then we get the bound E[Rz] ≤ Ca−2,
which is much worse then the Lorden inequality.

2. Proofs

2.1. Proofs of Theorems 1 and 3. We set for brevity τ = τz .

Lemma 11. For all h satisfying

E[ehX , X ≤ y] ≤ 1 (24)

we have the inequality

P(Mτ > x) ≤
(

1 +
1

ehx − 1

)

E[τ ]P(X > y) +E[τ ]
ah

ehx − 1
. (25)

Proof. Our strategy is to truncate the random variables Xi in the level y:

P (Mτ > x) ≤ P

(

Mτ > x, max
1≤k≤τ

Xk ≤ y

)

+P

(

max
1≤k≤τ

Xk > y

)

= P
(

Mτ1{max1≤k≤τ Xk≤y} > x
)

+P

(

max
1≤k≤τ

Xk > y

)

. (26)

From the Wald identity follows

P

(

max
1≤k≤τ

Xk > y

)

≤ E

[

τ
∑

k=1

1{Xk>y}

]

= E [τ ]P (X > y) . (27)

To examine the first term on the right-hand-side of (26) we introduce the process
{Wk} defined by

W0 := 1, Wk :=

k
∏

i=1

ehXi1{Xi≤y}, k ≥ 1.

It is clear that if h satisfies (24), {Wk} is a positive supermartingale. Define

σy := min{k ≥ 1 : Xk > y}, tx := min{k ≥ 1 : Sk > x} and T := min{σy, tx, τ}.

Applying the Optional Stopping Theorem to the supermartingale {Wk∧T } leads us

1 = W0 ≥ E[WT ] = E
[

WT1{tx<τ,tx<σy}

]

+E
[

WT1{τ<tx,τ<σy}

]

.

We analyse the two terms on the right-hand-side separately:

E
[

WT1{tx<τ,tx<σy}

]

≥ ehxP(tx < τ < σy) = ehxP
(

Mτ1{max1≤k≤τ Xk≤y} > x
)
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and

E
[

WT1{τ<tx,τ<σy}

]

= E
[

ehSτ
]

−E
[

ehSτ1{Mτ>x}∪{max1≤k≤τ Xk>y}

]

≥ E
[

ehSτ
]

− e−hz

(

P
(

Mτ1{max1≤k≤τ Xk≤y} > x
)

+P

(

max
1≤k≤τ

Xk > y

))

.

Consequently,

P
(

Mτ1{max1≤k≤τ Xk≤y} > x
)

≤

1−E
[

ehSτ
]

+P

(

max
1≤k≤τ

Xk > y

)

ehx − 1

and hence by applying (27),

P
(

Mτ1{max1≤k≤τ Xk≤y} > x
)

≤
1−E

[

ehSτ
]

+E[τ ]P (X > y)

ehx − 1
.

It is easy to see that

E
[

ehSτ
]

≥ E [1 + hSτ ] = 1 + hE[Sτ ]

and as a result we have

P
(

Mτ1{max1≤k≤τ Xk≤y} > x
)

≤ E[τ ]
ha+P (X > y)

ehx − 1
. (28)

Applying (27) and (28) to the summands in (26) finishes the proof. �

To prove Theorems 1 and 3 we need to choose a specific h for which (24) holds.
The optimal choice would be the positive solution of the equation E[ehX , X ≤ y] =
1, which is in the spirit of the Cramer-Lundberg condition. But it is not clear how
to solve this equation. For this reason we replace E[ehX , X ≤ y] = 1 by the equation
φ(h, y) = 1, where φ(h, y) is an appropriate upper bound for E[ehX , X ≤ y].

If At < ∞, we may use a bound from the proof of Theorem 2 from [8], which
says

E[ehX , X ≤ y] ≤ 1 + hE[X, |X | ≤ y] +
ehy − 1− hy

yt
At. (29)

Using the Markov inequality we also obtain

E[X, |X | ≤ y] ≤ −a−E[X,X ≤ −y] ≤ −a+
At

yt−1
,

and therefore

E[ehX , X ≤ y] ≤ 1− ha+
ehy − 1

yt
At.

Put h0 := 1
y log

(

1 + ayt−1/At

)

. It is easy to see that

−h0a+
eh0y − 1

yt
At ≤ 0

for all y such that yt−1 ≥ (e− 1)At/a and this implies that h0 satisfies (24). Using
(25) with h = h0 and applying the inequality

(1 + u)x/y ≥ 1 + ux/y, x ≥ y,
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we obtain

P(Mτ > x) ≤
A

x/y
t

ax/y−1
E[τ ]y−1−(t−1)x/y log

(

1 + ayt−1/At

)

+

(

1 +
A

x/y
t

ax/y
y−(t−1)x/y

)

E[τ ]P(X > y).

Thus, the proof of Theorem 1 is complete.
In order to show that one can replace E[X ] and At by the corresponding trun-

cated moments, see Remark 2, we first note that analogously to (29) and by addi-
tionally using ex − 1 ≤ xex,

E[ehX , X ≤ y] ≤ 1 + hE[X, |X | ≤ y] + h
ehy − 1

yt−1
E[|X |t, |X | ≤ y].

If E[X, |X | ≤ y] < 0, then

h0 :=
1

y
log

(

1 +
|E[X, |X | ≤ y]|yt−1

E[|X |t, |X | ≤ y]

)

is strictly positive and solves

hE[X, |X | ≤ y] + h
ehy − 1

yt−1
E[|X |t, |X | ≤ y] = 0.

Therefore, we may use Lemma 11 with h = h0 and get an inequality with truncated
moments.

To bound E[ehX , X ≤ y] under the conditions of Theorem 3 we proceed similar
to the proof of Theorem 3 from [13] and get

E[ehX , X ≤ y] ≤ 1− ha+ etVar(X)
h2

2
+

ehy − 1− hy

yt
At,+.

Following further the method from the proof of this Theorem, we split this upper
bound into two parts:

−αha+ etVar(X)
h2

2
=: f1(h),

−βha+
ehy − 1− hy

yt
At,+ =: f2(h).

We consider f1 and f2 separately. It is clear that

h1 :=
2αa

etVar(X)

is the positive solution of the equation f1(h) = 0. Moreover, f1(h) < 0 for all
h ∈ (0, h1).

Furthermore, it is easy to see that f2 takes it’s unique minimum in

h2 :=
1

y
log

(

1 + a
βyt−1

At,+

)

.

Since f2 is convex, one has

f2(h) < 0 for all h ∈ (0, h2]. (30)

The assumption in Theorem 3(i) means that h1 ≤ h2. In this case, taking into
account (30), we obtain

f1(h1) + f2(h1) < 0.
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From the latter inequality we conclude that h1 satisfies (24) and by applying (25)
with h = h1 we obtain (11).

Under the conditions of Theorem 3 (ii) we have h2 ≤ h1. By the same arguments
we get

f1(h2) + f2(h2) < 0.

Then, applying (25) with h = h2 and using the inequality (1 + u)x/y ≥ ux/y, we
obtain (13).

2.2. Proof of Proposition 6. We want to use Theorem 2.1 from [4]. If we put
F := F−X the conditions (G1)-(G3) of this Theorem are fulfilled in our setting.
Hence we get

E[Rz] ≤ c

∫ ∞

0

P(−X > u)du+ c

∫ ∞

0

∫ u+z

u

P(−X > v)dvdu, (31)

where

c =
b∗(ǫa)

a(1− ǫ)
(32)

with b∗(u) = min{v : −E[X,X < −v] ≤ u} and ǫ ∈ (0, 1) arbitrary. By the
Theorem of Fubini we obtain

∫ ∞

0

P(−X > u)du = E[−X,X < 0]. (33)

Changing the order of integration gives us
∫ ∞

0

∫ u+z

u

P(−X > v)dvdu =

∫ z

0

vP(−X > v)dv + z

∫ ∞

z

P(−X > v)dv

≤ z2−t

∫ ∞

0

vt−1P(−X > v)dv =
z2−t

t
At,−. (34)

As you can easily see,

b∗(u) ≤

(

At,−

u

)1/(t−1)

,

therefore by (32)

c ≤
A

1/(t−1)
t,−

at/(t−1)ǫ1/(1−t)(1− ǫ)
,

and by minimisation over ǫ ∈ (0, 1)

c ≤
tt/(t−1)A

1/(t−1)
t,−

(t− 1)at/(t−1)
. (35)

Finally, combining (31), (33), (34) and (35) gives us the desired result.

2.3. Proof of Theorem 7. We prove (18) only. The proof of the second bound
goes along the same line.

Using Theorem 1 with y = θ(x + jz), we obtain

P(Mτ > x+ jz) ≤
A

1/θ
t θ−1−(t−1)/θE[τz]

a1/θ−1(x+ jz)1+(t−1)/θ
log

(

1 +
aθt−1(x+ jz)t−1

At

)

+

(

1 +
A

1/θ
t θ−(t−1)/θ

a1/θ
(x+ jz)−(t−1)/θ

)

E[τz]P(X > θ(x+ jz)),
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and in view of (9),

P(M > x) ≤
A

1/θ
t θ−1−(t−1)/θ

a1/θ−1
E[τz]Σ1(x, z)

+

(

1 +
A

1/θ
t

a1/θ
x−(t−1)/θ

)

E[τz ] (P(X > θx) + Σ2(x, z)) , (36)

where

Σ1(x, z) :=
∞
∑

j=0

log

(

1 +
aθt−1(x+ jz)t−1

At

)

(x+ jz)−1−(t−1)/θ

and

Σ2(x, z) :=

∞
∑

j=1

P(X > θ(x + jz)).

Define

Σ̃1(x, z) :=

∞
∑

j=1

log

(

1 +
aθt−1(x+ jz)t−1

At

)

(x+ jz)−1−(t−1)/θ.

The summands in this sum are strictly decreasing, so we conclude by the integral
criteria for sums:

Σ̃1(x, z) ≤

∞
∑

j=1

∫ j

j−1

log

(

1 +
aθt−1(x+ uz)t−1

At

)

(x+ uz)−1−(t−1)/θdu

=
1

z

∫ ∞

x

log

(

1 +
aθt−1wt−1

At

)

w−1−(t−1)/θdw

and further by integration by parts,

1

z

∫ ∞

x

log

(

1 +
aθt−1wt−1

At

)

w−1−(t−1)/θdw

≤
θ

z(t− 1)
log

(

1 +
aθt−1xt−1

At

)

x−(t−1)/θ +
θ2

z(t− 1)
x−(t−1)/θ.

Therefore, for all x sufficing xt−1 ≥ θ1−t(eθ − 1)Ata
−1 and x ≥ z(t− 1)θ−1,

Σ1(x, z) ≤
3θ

z(t− 1)
log

(

1 +
aθt−1xt−1

At

)

x−(t−1)/θ.

Furthermore, it is easy to see that

Σ2(x, z) ≤
∞
∑

j=1

∫ j

j−1

P(X > θ(x + uz))du =
1

θz
G(θx). (37)

and Theorem 7 is proved.

2.4. Proof of Theorem 9. Foss, Korshunov and Zachary have shown, see Theo-
rem 5.1 in [7], that for any random walk with the drift −a and xa with xa → ∞ as
a → 0 one has the following lower bound:

lim inf
a→0

P(M (a) > xa)

a−1G(xa)
≥ 1.
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It follows from the regular variation of P(X(0) > u), that

G(xa) ∼
1

r − 1
x−r+1
a L(xa) as a → ∞, (38)

therefore

P(M (a) ≥ xa) ≥ (1 + o(1))
x−r+1
a L(xa)

(r − 1)a
as a → 0.

Thus, we only have to derive an upper bound. During this proof we assume a to be
sufficiently small in every inequality. We want to apply Theorem 7 (ii) with t < r.
It is clear that

A
(a)
t,+ := E[(X(a))t, X(a) > 0] ≤ E[(X(0))t, X(0) > 0],

therefore A
(a)
t,+ is finite for t < r and

lim
a→0

A
(a)
t,+ = A

(0)
t,+ > 0.

Further, we have to show that (12) is fulfilled for y = θx under our assumptions.

Since the function y−1 log(1+βayt−1/A
(a)
t,+) is decreasing for y ≫ a1/(t−1), we have

the following bound for xa ≥ ca−1 log a−1:

1

θxa
log

(

1 +
βθt−1axt−1

a

A
(a)
t,+

)

≤
a

θc log a−1
log

(

1 +
βθt−1ct−1

A
(a)
t,+

a2−t logt−1 a−1

)

=
(t− 2)

θc
a(1 + o(1)).

This implies that if c > er(r− 2)σ2/2 and θ = (t− 2)/(r− 2), we can choose α < 1
so close to 1 that xa satisfies (12).

We take z = za satisfying a−1 ≪ z ≪ xa. Then, combining (14) and (15), we
get

E[τz]

z
∼

1

a
as a → 0. (39)

Since (t− 1)/θ = (t− 1)(r − 2)/(t− 2) > r − 1,

β−1/θE[τz ]

z
log

(

1 +
βθt−1axt−1

a

A
(a)
t,+

)

x−(t−1)/θ
a = o

(

a−1x−r+1
a L(xa)

)

. (40)

Further, it follows from the condition z = o(x) and the regular variation ofP(X(0) >
x) that

zP(X(a) > xa) = o
(

x−r+1
a L(xa)

)

. (41)

Combining (39) with (41) and (38), we obtain


1 +

(

A
(a)
t,+

βθt−1axt−1
a

)1/θ


E[τz ]

(

1

θz
G(θxa) +P(X(a) > θxa)

)

∼ θ−r(r − 1)−1a−1x−r+1
a L(xa) (42)

and plugging (40) and (42) into (19) gives us

lim sup
a→0

P(M (a) > xa)

a−1x−r+1
a L(xa)

≤ θ−r(r − 1)−1.
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To complete the proof it suffices to note, that we can choose θ arbitrary close to
1 by choosing t close to r. This implies that the previous inequality is valid even
with θ = 1.

2.5. Proof of Theorem 10. We again need an upper bound only. Let a be
sufficiently small during this proof.

It follows from the assumptions in the theorem that S
(0)
n /cn converges weakly to

a stable law of index r. The sequence cn can be taken from the equation c−r
n L(cn) =

1/n. It is known that the function g(a) in the heavy-traffic approximation can be
defined by the relations

g(a) = 1/cna
and ana ∼ cna

.

The latter can be rewritten as

cna
∼ a

(cna
)r

L(cna
)
.

From this we infer that (22) is equivalent to

axr−1
a

L(xa)
→ ∞ as a → 0. (43)

We want to apply Theorem 1 with −E[X(a), |X(a)| ≤ y] and A2(y) instead of a
and A2 respectively with y = θx. According to Remark 2 we have to show that
E[X(a), |X(a)| ≤ θxa] is negative. Using the Markov inequality, we have

E[X(a), |X(a)| ≤ θxa] ≤ −a+ (θxa)
−1E[(min{0, X(0)})2].

In view of (43), axa → ∞. Therefore,

E[X(a), |X(a)| ≤ θxa] ≤ −a(1 + o(1)).

Furthermore,

A2(y) ∼
r

2− r
y2−rL(y) (44)

and consequently by −E[X(a), |X(a)| ≤ θxa] ∼ a,

A
1/θ
2 (θxa)E[τz ]

(−E[X(a), |X(a)| ≤ θxa])
1−1/θ

θ1+1/θx
1+1/θ
a

log

(

1−
θxaE[X(a), |X(a)| ≤ θxa]

A2(θxa)

)

≤ (1 + o(1))k1E[τz ]P(X(a) > xa) log

(

1 + k2
axr−1

a

L(xa)

)(

axr−1
a

L(xa)

)−(1/θ−1)

(45)

with k1 and k2 appropriate. Then, (43) implies that

log

(

1 + c2
axr−1

a

L(xa)

)(

axr−1
a

L(xa)

)−(1/θ−1)

= o(1). (46)

Further,

A
1/θ
2 (θxa)

a1/θ
θ−1/θx−1/θ

a ∼ k3

(

axr−1
a

L(xa)

)−1/θ

with k3 suitable and hence by (43),
(

1 +
A

1/θ
2 (θxa)

a1/θ
θ−1/θx−1/θ

a

)

= (1 + o(1)). (47)
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Then, combining (45), (46) and (47), Theorem 1 with t = 2 and y = θxa gives us

P(M (a)
τ > xa) ≤ (1 + o(1))θ−rE[τz ]P(X(a) > xa),

where θ ∈ (0, 1) is arbitrary. Hence by θ → 1,

P(M (a)
τ > xa) ≤ (1 + o(1))E[τz ]P(X(a) > xa).

By the summation formula (9) we get a bound for the total maximum:

P(M (a) > xa) ≤ (1 + o(1))E[τz ]

∞
∑

j=0

P(X(a) > xa + jz). (48)

Combining (37) and (38) with a−1 ≪ z ≪ xa gives us

∞
∑

j=0

P(X(a) > xa + jz) ≤ (1 + o(1))

(

x−r
a L(xa) +

x−r+1
a L(xa)

z(r − 1)

)

∼ (1 + o(1))
x−r+1
a L(xa)

z(r − 1)

and regarding (39) completes the proof.
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