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Abstract

Using a characterizing equation for the Beta distribution, Stein’s method is applied
to obtain bounds of the optimal order for the Wasserstein distance between the distri-
bution of the scaled number of white balls drawn from a Pólya-Eggenberger urn and
its limiting Beta distribution. The bound is computed by making a direct comparison
between characterizing operators of the target and the Beta distribution, the former
derived by extending Stein’s density approach to discrete distributions.

In addition, refinements are given to Döbler’s result [12] for the Arcsine approxi-
mation for the fraction of time a simple random walk of even length spends positive,
and so also to the distributions of its last return time to zero and its first visit to its
terminal point, by supplying explicit constants to the present Wasserstein bound and
also demonstrating that its rate is of the optimal order.

1 Introduction

The classical Pólya-Eggenberger urn at time zero contains α ≥ 1 white and β ≥ 1 black balls,
and at every positive integer time a ball is chosen uniformly from the urn, independently of
the past, and replaced along withm ≥ 1 additional balls of the same color. With L indicating
distribution, or law, and →d indicating convergence in distribution, it is well known, see [22]
for instance, that if Sn = Sα,β,m

n is the number of white balls drawn from the urn by time
n = 0, 1, 2, . . . then as n→ ∞

L(Wn) →d B(α/m, β/m) where Wn =
Sn

n
. (1)

Here, for positive real numbers α and β we let B(α, β) denote the Beta distribution having
density

p(x;α, β) =
xα−1(1− x)β−1

B(α, β)
1{x∈[0,1]}, (2)
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where B(α, β) = Γ(α)Γ(β)/Γ(α+β) is the Beta function as expressed in terms of the Gamma
function Γ(x).

Using Stein’s method we derive an order O(1/n) bound in the Wasserstein distance dW ,
defined in (17), between Wn and its limiting Beta distribution in (1). We show in Remark 3.1
that the rate of Theorem 1.1 cannot be improved. Let x∧ y and x ∨ y denote the minimum
and maximum of two real numbers x and y, respectively.

Theorem 1.1 For α ≥ 1 and β ≥ 1 let Sn be the number of white balls in n draws from
a Pólya-Eggenberger urn that initially contains α white and β black balls. Then with Wn =
Sn/n and Z ∼ B(α/m, β/m),

dW (Wn, Z) ≤

(

m+ α ∨ β

2nm
+

αβ

nm(α + β)

)

(b0 + b1) +
3

2n
,

where b0 = b0(α/m, β/m) and b1 = b1(α/m, β/m) are given in Lemma 3.4.

Connections between Theorem 1.1 and the work [11] of Döbler are spelled out in Remark
3.2.

The B(1/2, 1/2) distribution, also known as the Arcsine law, describes the asymptotic
distribution of many quantities that arise naturally in the study of the simple symmetric
random walk Tn = X1+· · ·Xn, where X1, . . . , Xn are independent variables taking the values
1 and −1 with probability 1/2. For instance, let L2n be the random variable

L2n = sup{m ≤ 2n : Tm = 0}

giving the last return time to zero up to time 2n. Then, see [15],

P (L2n = 2k) = u2ku2n−2k where u2m = P (T2m = 0), (3)

where P (T2m = 0) = 2−2m
(

2m
m

)

, the probability that the walk returns to zero at time 2m.
In the limit, (2n)−1L2n → Z in probability, where Z has the Arcsine distribution. It

is often noted that this limiting result is somewhat counter intuitive in that the Arcsine
density has greatest mass near the endpoints, and least mass in the center of the unit
interval, whereas in a fair coin tossing game one might assume that players are more likely
to spend equal time in the lead. Perhaps at least as remarkable is the fact that the number
U2n of segments of the walk that lie above the x axis, and R2n, the first time the walk visits
the terminal point S2n, are all equal in distribution to L(L2n); see [15] for a nice exposition.

Using the methods presented here that were available in a preprint of this article, Döbler
[12] presents a Wasserstein bound of order O(1/n) without explicit constants between the
distribution of (2n)−1U2n and the limiting Arcsine. In Section 4, essentially by applying the
bounds in Lemma 3.4, we are able to attach concrete constants to the result of [12], as well
as show the rate of the bound is optimal.

Theorem 1.2 Let L2n be the last return time to zero of a simple symmetric random walk
of length of length 2n and let Z have the Arcsine distribution. Then

dW

(

L2n

2n
, Z

)

≤
27

2n
+

8

n2
.

The same bound holds with L2n replaced by U2n or R2n. The O(1/n) rate of the bound cannot
be improved.
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Beginning with the introduction by Stein [32] of a ‘characterizing equation’ method for de-
veloping bounds in normal approximation, to date the method has been successfully applied
to a large number of the classical distributions, including the Poisson [2], [4], Multinomial
[20], Gamma [21],[24], Geometric [29], Negative Binomial [5] and Exponential [6], [27], [28],
as well as to non classical distributions such as the PRR family of [26] also based on Pólya
type urn models. Here we further extend the range of Stein’s method by including the Beta
distribution, focusing on its role as the limiting law of the fraction of white balls drawn from
the Pólya-Eggenberger urn.

The application of Stein’s method here differs from the way it is usually applied in that
we focus on the approximation of particular distributions whose exact forms are known,
rather than develop a bound that applies to a class of complex distributions obtained by,
say, summing random variables that obey weak moment and dependence conditions, as in
the case of the central limit theorem. And indeed, though explicit formulas exist for the
distributions we study, the need for their approximation arises regardless, as is the case also
for, say, the ubiquitous use of the normal approximation for the binomial.

Urn models of the classical type, and generalizations including drawing multiple balls
or starting new urns, have received considerable attention recently; see for example [1], [7]
and [10]. Interest has partly been sparked by the ability of urn models to exhibit power-law
limiting behaviour, which in turn has been a focus of network analysis, see for example [13]
and [26]. Connections between urn models and binary search trees are clearly explained in
[23]. In particular, let m = 1 and consider the initial state of the Pólya-Eggenberger urn as
a rooted binary tree having α white and β black leaves, or external nodes. At every time
step one external node is chosen, uniformly, to duplicate, yielding a pair of leaves of the
same colour. That is, the chosen external node becomes an internal node while two external
nodes of the chosen colour are added. The rule for adding an additional white leaf to the
tree at time n clearly is the same as the rule for adding an additional white ball to the
Pólya-Eggenberger urn for the case m = 1, and hence the number of white leaves of the
tree and white balls in the urn have same distribution. Many variations and extensions on
this theme are possible. Another line of interest comes from edge reinforced random walks,
because an infinite system of independent Pólya-Eggenberger urns can be used to represent
edge reinforced random walks on trees, see [30].

2 Characterizing equations and generators

Stein’s method for distributional approximation is based on a characterization of the target
approximating distribution. For the seminal normal case considered in [32], it was shown
that a variable Z has the standard normal distribution if and only if

E[Zf(Z)] = E[f ′(Z)] (4)

for all absolutely continuous functions f for which E|f ′(Z)| < ∞. If a variable W has
an approximate normal distribution, then one expects that it satisfies (4) approximately.
More specifically, if one wishes to test the difference between the distribution of W and
the standard normal Z on a function h, then instead of computing Eh(W ) − Nh, where
Nh = Eh(Z), one may set up a ‘Stein equation’

f ′(w)− wf(w) = h(w)−Nh (5)

3



for the given h, solve for f(w), and, upon replacing w by W in (5), calculate the expectation
of the right hand side by taking expectation on the left. At first glance it may seem that
doing so does not make the given problem any less difficult. However, a number of techniques
may be brought to bear on the quantity E[f ′(W )−Wf(W )]. In particular, this expression
contains only the single random variable W , in contrast to the difference of the expectations
of h(W ) and h(Z), depending on two distributions.

To obtain our result, we compute the distance between the distribution of the fraction
of white balls drawn from the Pólya-Eggenberger Urn and the Beta by comparing the op-
erators that characterize them. Our approach in characterizing the urn distribution stems
from what is known as the density method; see for instance, [33], [31] or Section 13.1 of
[8]. In particular, recognizing the −w in (5) as the ratio of φ′(w)/φ(w) where φ(w) is the
standard normal density, one hopes to replace the term −w by the ratio p′(w)/p(w) when
developing the Stein equation to handle the distribution with density p(w), and to apply
similar reasoning when the distribution under study is discrete. Use of the density method
in the discrete case, followed by the application of a judiciously chosen transformation, leads
to the characterization of the Pólya-Eggenberger Urn distribution given in Lemma 2.1.

Another approach to construct characterizing equations is known as the generator method.
A number of years following the publication of [32], the relationship between the character-
izing equation (4) and the generator of the Ornstein-Uhlenbeck process

Af(w) = f ′′(w)− wf ′(w),

of which the normal is the unique stationary measure, was recognized in [3], where it was
noted that that in some generality the process semi-group may be used to solve the Stein
equation (5). Given this connection between Stein characterizations and generators it is nat-
ural to consider a stochastic process which has the given target as its stationary distribution
when extending Stein’s method to handle a new distribution.

Regarding the use of this ‘generator’ method for extending the scope of Stein’s method
to the Beta distribution, we recall that the Fisher Wright model from genetics, originating
in the work in [16], [35] and [36], is a stochastic process used to model genetic drift in a
population and has generator given by

Af(x) = w(1− w)f ′′(w) + (α(1− w)− βw)f ′(w)

for positive α and β, and that the B(α, β) distribution is its unique stationary distribution.
In particular, with Z ∼ B(α, β) we have EAf(Z) = 0. Let Bα,βh = Eh(Z), the B(α, β)
expectation of a function h; we drop the subscripts when the role of the parameters α and
β is clear. As Eh(Z)− Bh is also zero, we are led to consider a Stein equation for the Beta
distribution of the form

w(1− w)f ′(w) + (α(1− w)− βw) f(w) = h(w)− Bα,βh. (6)

Lemma 2.1 provides a characterizing equation for the Pólya urn distribution that is
parallel to equation (6). Taking differences then allows us to estimate the expectation of
the right hand side of (6) when w is replaced by Wn by exploiting the similarity of the two
characterizing operators; a similar argument can be found in [14] and [18] for stationary
distributions of birth-death chains. The results most closely related to the present work is
[11], and its connections to the present manuscript are discussed in Remark 3.2
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First we introduce some notation. We say a subset I of the integers Z is a finite integer
interval if I = [a, b] ∩ Z for a, b ∈ Z with a ≤ b, and an infinite integer interval if either
I = (−∞, b] ∩ Z or I = [a,∞) ∩ Z or I = Z. For a real valued function f let ∆f(k) =
f(k + 1) − f(k), the forward difference operator, and for a real valued function p taking
non-zero values in the integer interval I let

ψ(k) = ∆p(k)/p(k) for k ∈ I. (7)

For Z a random variable having probability mass function p with support an integer
interval I, let F(p) denote the set of all real-valued functions f such that either E∆f(Z −
1) or Eψ(Z)f(Z) is finite, limn→∞ f(n)p(n + 1) = 0 when sup{k : p(k) > 0} = ∞,
limn→−∞ f(n)p(n + 1) = 0 when inf{k : p(k) > 0} = −∞, and f(a − 1) = 0 in the
case where I = [a, b] ∩ Z or I = [a,∞) ∩ Z.

Lemma 2.1 Let p be the probability mass function of the number Sα,β,m
n of white balls drawn

from the Pólya-Eggenberger urn by time n. Then a random variable S has probability mass
function p if and only if for all functions f ∈ F(p)

E [S(β/m+ n− S)∆f(S − 1) + {(n− S)(α/m+ S)− S(β/m+ n− S)} f(S)] = 0. (8)

We prove Lemma 2.1 by applying a general technique for constructing equations such as
(8) from discrete probability mass functions which is of independent interest, see [19]. We
begin with Proposition 2.1 below, a discrete version of the density approach to the Stein
equation.

Proposition 2.1 Let Z have probability mass function p with support the integer interval
I, and let ψ(k) be given by (7) for k ∈ I. If a random variable X with support I has mass
function p then for all f ∈ F(p),

E(∆f(X − 1) + ψ(X)f(X)) = 0. (9)

Conversely, if (9) holds for all f(k) = 1(k = ℓ), ℓ ∈ I then X has mass function p.

Remark 2.1 1. The functions f(k) = 1(k = ℓ), ℓ ∈ I are indeed in F(p), so Proposition
2.1 implies that a random variable X with support I has mass function p if and only
if (9) holds for all f ∈ F(p).

2. The statement in Proposition 2.1 is equivalent to Theorem 1.1 given in [19] under a
different assumption, namely that equality (9) holds with g replacing f for all functions
for which

∑

k∈I ∆(g(k)p(k)) = 0. We note that their set-up would translate to test
functions f(k) = g(k + 1).

Proof: Let p be a real valued function defined on the integer interval [a, b+1]∩Z for a, b ∈ Z

with a ≤ b. Applying the summation by parts formula in the first line below, we obtain

b
∑

k=a

f(k)∆p(k) = −

b
∑

k=a

p(k + 1)∆f(k) + f(b+ 1)p(b+ 1)− f(a)p(a) (10)

= −
b+1
∑

k=a+1

p(k)∆f(k − 1) + f(b+ 1)p(b+ 1)− f(a)p(a)

= −

b
∑

k=a

p(k)∆f(k − 1) + f(b)p(b+ 1)− f(a− 1)p(a). (11)
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If p(b+ 1) = 0 and f(a− 1) = 0 then we obtain

b
∑

k=a

f(k)∆p(k) = −

b
∑

k=a

p(k)∆f(k − 1). (12)

Hence (9) holds when p is a probability mass function with support [a, b]∩Z and f(a−1) = 0.
The case where I is an infinite integer interval follows by applying Abel’s Lemma on

summation by parts as modified by [9]. In particular, if either 11) or the left hand side
of (10) is convergent upon replacing b by ∞, and if limn→∞ f(n)p(n + 1) = 0, then (3a)
of [9] shows that (12) holds upon replacing b by infinity, completing the argument when
I = [a,∞). Similarly, (3b) of [9] can be used to argue the case when I = Z.

For I = (−∞, b], (11) gives that

Eψ(X)f(X) =

b
∑

k=−∞

f(k)∆p(k) = lim
a→−∞

b
∑

k=a

f(k)∆p(k)

= lim
a→−∞

(

−

b
∑

k=a

p(k)∆f(k − 1) + f(b)p(b+ 1)− f(a− 1)p(a)

)

.

Since p(b+ 1) = 0 and p(a)f(a− 1) → 0 as a→ −∞, we obtain that

Eψ(X)f(X) = − lim
a→−∞

b
∑

k=a

p(k)∆f(k − 1) = −E∆f(X − 1)

and (9) holds.
Conversely, if X with support I satisfies (9) for all functions f(k) = 1(k = ℓ) for ℓ ∈ I,

then

0 = E(∆f(X − 1) + ψ(X)f(X))

=
∑

k∈I

P(X = k) {(f(k)− f(k − 1)) + ψ(k)f(k)}

= P(X = ℓ)− P(X = ℓ+ 1) + P(X = ℓ)

(

P(Z = ℓ+ 1)− P(Z = ℓ)

P(Z = ℓ)

)

,

and rearranging gives

P(X = ℓ + 1)

P(X = ℓ)
=

P(Z = ℓ+ 1)

P(Z = ℓ)
.

Hence, if I is [a, b] or [a,∞) we obtain that for all j ∈ I,

P(X = j)

P(X = a)
=

j−1
∏

ℓ=a

P(X = ℓ+ 1)

P(X = ℓ)
=

j−1
∏

ℓ=a

P(Z = ℓ+ 1)

P(Z = ℓ)
=

P(Z = j)

P(Z = a)
.

Summing over j ∈ I yields P (X = a) = P (Z = a), whence P (X = j) = P (Z = j) for all
j ∈ I. Similarly one may handle the remaining case where I = (−∞, b]. ✷

Given a characterization produced by Proposition 2.1, the following corollary produces
varieties of characterizations for the same distribution, each one corresponding to a choice
of a function c possessing certain mild properties.
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Corollary 2.1 Let Z be a random variable with probability mass function p with support
I = [a, b] ∩ Z where a ≤ b, a, b ∈ Z, and let ψ be given by (7). Then for all functions
c : [a− 1, b] ∩ Z → R \ {0}, a random variable X with support I has mass function p if and
only if

E [c(X − 1)∆f(X − 1) + [c(X)ψ(X) + c(X)− c(X − 1)]f(X)] = 0 (13)

for all functions f ∈ F(p).

Proof: Suppose that (13) holds for X for all functions in f ∈ F(p). Since c(ℓ) 6= 0 for all
ℓ ∈ I the functions f(k) = c(ℓ)−11(k = ℓ), ℓ ∈ I all lie in F(p), so X has mass function p by
Proposition 2.1. For the converse, note that f ∈ F(p) implies that cf ∈ F(p). Hence if X
has mass function p then (13) follows from Proposition 2.1 upon replacing f(x) by c(x)f(x).
✷

Proposition 2.1 applied to Z with mass function p of the Poisson distribution P(λ),
having ψ(k) = λ/(k + 1)− 1 by (7) for all k ∈ N0, yields that for all functions f ∈ F(p),

E∆f(Z − 1) = E

(

1−
λ

Z + 1

)

f(Z), that is, Ef(Z − 1) = E

(

λ

Z + 1

)

f(Z),

a nonstandard version of a characterization of the Poisson. An extension of Corollary 2.1 to
the case of infinite support produces the usual characterization by the choice c(k) = k + 1
and the substitution g(k) = f(k − 1). Naturally, additional characterizations are produced
when using different choices of c.

Remark 2.2 When I = [a, b]∩Z we automatically have ψ(b) = −1, in which case c(b) does
not appear in (13), and may be assigned a value arbitrarily.

We now apply Corollary 2.1 to the distribution of Sα,β,m
n , the number of white balls drawn

from the Pólya-Eggenberger urn by time n. We suppress α, β and m for notational ease
unless clarity demands it. It is well known, and not difficult to verify, that the distribution
pk = P (Sn = k), k ∈ Z satisfies

pk =

(

n

k

)

(α/m)k(β/m)n−k

(α/m+ β/m)n
, (14)

where (x)0 = 1 and otherwise (x)k = x(x+1) · · · (x+k−1) is the rising factorial. The distri-
bution (14) is also known as the beta-binomial and the negative hypergeometric distribution,
see [34]. We now have the ingredients to prove Lemma 2.1.

Proof of Lemma 2.1: Taking differences in (14) for k = 0, . . . , n− 1 yields

∆pk =

(

n

k

)

(α/m)k(β/m)n−k

(α/m+ β/m)n

{

(n− k)(α/m+ k)

(k + 1)(β/m+ n− k − 1)
− 1

}

,

while for k = n,

∆pn = −pn.

7



Hence with ψ(k) = ∆pk/pk as in (7) we obtain for k = 0, . . . , n− 1

ψ(k) =
(n− k)(α/m+ k)− (k + 1)(β/m+ n− k − 1)

(k + 1)(β/m+ n− k − 1)
,

and ψ(n) = −1.
In applying Corollary 2.1, as ψ(n) = −1 we may take the value c(n) arbitrarily, see

Remark 2.2. In particular, taking c(k) = (k + 1)(β/m+ n − k − 1) for all k = 0, . . . , n− 1
and c(n) = n we obtain (8). ✷

The next lemma is instrumental in calculating the higher moments of Sα,β,m
n . We let

[x]0 = 1, and otherwise set [x]k = x(x− 1) · · · (x− k + 1), the falling factorial.

Lemma 2.2 For all nonnegative integers n, a and b, we have

E
(

[Sα,β,m
n ]a[n− Sα,β,m

n ]b
)

=
[n]a+b(α/m)a(β/m)b
(α/m+ β/m)a+b

. (15)

Proof: First we note that both sides of (15) are zero when a+ b ≥ n+1. This is clear for the
right hand side, as the falling factorial [n]a+b is zero. For the left hand side, if Sn ≤ a − 1
then [Sn]a = 0. On the other hand, if Sn ≥ a then b − 1 ≥ n − a ≥ n − Sn, in which case
[n− Sn]b is zero.

Now assume n ≥ a+ b. For any k = 0, 1, . . . , n we have

[k]a[n− k]bP (S
α,β,m
n = k)

= [k]a[n− k]b

(

n

k

)

(α/m)k(β/m)n−k

(α/m+ β/m)n

=
[n]a+b(α/m)a(β/m)b
(α/m+ β/m)a+b

(

n− a− b

k − a

)

(α/m+ a)k−a(β/m+ b)n−k−b

(α/m+ β/m+ a+ b)n−a−b

=
[n]a+b(α/m)a(β/m)b
(α/m+ β/m)a+b

P (a+ Sα+am,β+bm,m
n−a−b = k).

Summing over k = 0, 1, . . . , n and using that the support of Sr is {0, . . . , r} yields (15). ✷

If Z has the limiting beta distribution B(α/m, β/m) with density (2), using (15) we
obtain

E

(

[Sn]a[n− Sn]b
na+b

)

=
[n]a+b(α/m)a(β/m)b
na+b(α/m+ β/m)a+b

=
[n]a+b

na+b

B(α/m+ a, β/m+ b)

B(α/m, β/m)
=

[n]a+b

na+b
E
(

Za(1− Z)b
)

(16)

that is, the scaled falling factorial moments of Sn and the power moments of Z differ only
by factors of order 1/n. This observation can be used to provide a proof of convergence in
distribution of Wn = Sn/n to Z by the method of moments, but without a bound on the
distributional distance.
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3 Bounds for the Pólya-Eggenberger urn model

Theorem 1.1 provides an explicit bound in Wasserstein distance of order O(1/n) between
the distribution of Wn, the fraction of white balls drawn from the urn by time n, and the
limiting Beta distribution. For approximating a discrete distribution by a continuous one
the Wasserstein distance dW is a typical distance to use, see for example [17]. For random
variables X and Y , this distance is given by

dW (X, Y ) = sup
h∈Lip(1)

|E[h(X)]− E[h(Y )]| , (17)

where Lip(1) = {h : |h(x)− h(y)| ≤ |x− y|}, the class of all Lipschitz-continuous functions
with Lipschitz constant less than or equal to 1. The Wasserstein distance defines a metric
on the set of probability measures on (R,B(R)), the set of real numbers equipped with their
Borel σ−field. On this space, convergence under the Wasserstein distance implies weak
convergence. On ([0, 1],B([0, 1])), the Wasserstein distance metrizes weak convergence, see
[17].

Remark 3.1 The function h(x) = x(1 − x)1{x∈[0,1]} is in Lip(1), and applying (16) with
a = b = 1 we obtain that for all α ≥ 1, β ≥ 1 and m ≥ 1,

dW (Wn, Z) ≥ |E(h(Wn))− Eh(Z)| =

∣

∣

∣

∣

(

[n]2
n2

− 1

)

E (Z(1− Z))

∣

∣

∣

∣

=
1

n

αβ

(α + β +m)(α + β)
.

Thus the 1/n order of the bound in Theorem 1.1 cannot be improved.

Remark 3.2 Theorem 4.3 of [11] provides a bound of order 1/n for the Beta approximation
to the Pólya-Eggenberger urn for test functions with bounded first and second derivatives
using an exchangeable pair coupling. The results in [11] differ from ours in two significant
ways. Firstly, the bound in Theorem 4.3 of [11] is expressed in terms of two non-explicit
constants C1, C2 that are defined in Proposition 3.8 of [11]. Lemma 3.4 below provides values
of C1. The lack of an explicit expression for C2 in [11] can be explained by the fact that the
solution there is given in terms of ratios of functions which are related to incomplete Beta
functions, for which a uniform bound would be difficult.

A more important difference between the present work and [11] is that expressing the
bound of the latter, presently given in terms of twice differentiable functions, in terms of
a bound in a metric, say d2, obtained from twice differentiable functions in the same way
that Lipschitz functions yield the Wasserstein metric dW , we have that d2 ≤ dW with equality
everywhere not holding. Hence Theorem 1.1 implies bounds in the d2 metric, while the reverse
does not hold.

In the following we set our test functions h to be zero outside the unit interval [0, 1]. For
y > 0 set

∆yf(x) = f (x+ y)− f(x),

and for a real valued function g on [0, 1] we let ||g|| = supw∈[0,1] |g(w)|, the supremum norm
of g. In the following we recall, with the help of Rademacher’s Theorem, that a function h
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is in Lip(1) if and only it is absolutely continuous with respect to Lebesgue measure with an
almost everywhere derivative bounded in absolute value by 1.

Lemma 3.1 below shows that for all {α, β} ⊂ (0,∞) and functions h for which the
expectation Bα,βh exists,

fα,β(w) =
1

wα(1− w)β

∫ w

0

uα−1(1− u)β−1(h(u)− Bα,βh)du, w ∈ [0, 1] (18)

is the unique bounded solution of the Stein equation (6). We continue to omit subscripts
when the context makes it clear which parameters are used. In the proof below we invoke
Lemma 3.4 which yields bounds on the supremum norm of the derivative f ′ in terms of that
same norm on the derivative h′ of the test function.

Proof of Theorem 1.1. For h a given function in Lip(1), let f = fα/m,β/m be the
solution of the Stein equation (6) given in (18). Replacing f(z) by f(z/n) and dividing by
n in (8) results in

0 = ESn

(

β

nm
+ 1−Wn

)

∆1/nf

(

Wn −
1

n

)

+E

{

(n− Sn)
( α

nm
+Wn

)

− Sn

(

β

nm
+ 1−Wn

)}

f(Wn)

= E

[

nWn

(

β

nm
+ 1−Wn

)

∆1/nf

(

Wn −
1

n

)

+

{

α

m
(1−Wn)−

β

m
Wn

}

f(Wn)

]

.

Applying this identity in the Stein equation (6), with α and β replaced by α/m and β/m
respectively, and invoking Lemma 3.4 below to yield the existence and boundedness of f ′,
we obtain

Eh(Wn)− Bh

= E

(

Wn(1−Wn)f
′(Wn) +

[

α

m
(1−Wn)−

β

m
Wn

]

f(Wn)

)

= E

(

Wn(1−Wn)f
′(Wn)− nWn

(

β

nm
+ 1−Wn

)

∆1/nf

(

Wn −
1

n

))

= E

(

Wn(1−Wn)f
′(Wn)− nWn (1−Wn)∆1/nf

(

Wn −
1

n

))

+R1, (19)

where, using Lemma 2.2 to calculate moments, we obtain

|R1| =
β

m

∣

∣

∣

∣

EWn∆1/nf

(

Wn −
1

n

)
∣

∣

∣

∣

≤
β

nm
‖f ′‖EWn =

αβ

nm(α + β)
‖f ′‖. (20)
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Writing the difference in (19) as an integral, we have

E

(

Wn(1−Wn)f
′(Wn)− nWn (1−Wn)∆1/nf

(

Wn −
1

n

))

= EWn(1−Wn)

(

f ′(Wn)− n

∫ Wn

Wn−
1

n

f ′(x)dx

)

= nE

∫ Wn

Wn−
1

n

Wn(1−Wn)(f
′(Wn)− f ′(x))dx

= nE

∫ Wn

Wn−
1

n

(Wn(1−Wn)f
′(Wn)− x(1 − x)f ′(x))dx− R2, (21)

where

R2 = nE

∫ Wn

Wn−
1

n

(Wn(1−Wn)− x(1− x))f ′(x)dx.

To handle R2, using that the solution f of the Stein equation equals 0 for x 6∈ [0, 1] to
obtain the first inequality,

|R2| =

∣

∣

∣

∣

∣

nE

∫ Wn

Wn−
1

n

f ′(x)

∫ Wn

x

(1− 2y)dydx

∣

∣

∣

∣

∣

≤ ‖f ′‖nE

∫ Wn

Wn−
1

n

∫ Wn

x

dydx

= ‖f ′‖nE

∫ Wn

Wn−
1

n

(Wn − x) dx

=
1

2n
‖f ′‖. (22)

For the first term in (21), substituting using the Stein equation (6) with α and β replaced
by α/m and β/m, respectively, we obtain

nE

∫ Wn

Wn−
1

n

(Wn(1−Wn)f
′(Wn)− x(1− x)f ′(x))dx

= nE

∫ Wn

Wn−
1

n

{

h(Wn)− h(x) +
1

m
[(βWn − α(1−Wn))f(Wn)− (βx− α(1− x))f(x)]

}

dx

= nE

∫ Wn

Wn−
1

n

{
∫ Wn

x

h′(y)dy +
1

m

∫ Wn

x

[βy − α(1− y)f(y)]′ dy

}

dx

= nE

∫ Wn

Wn−
1

n

{
∫ Wn

x

h′(y)dy +
1

m

∫ Wn

x

[βy − α(1− y))f ′(y) + (β + α)f(y)]dy

}

dx.

We bound the inner integrals separately. Firstly,
∣

∣

∣

∣

∣

nE

∫ Wn

Wn−
1

n

∫ Wn

x

h′(y)dydx

∣

∣

∣

∣

∣

≤ n||h′||E

∫ Wn

Wn−
1

n

(Wn − x)dx =
1

2n
||h′||. (23)
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Next, recalling that 0 ≤Wn ≤ 1 and noting that |(βy−α(1− y))| ≤ α∨β for 0 ≤ y ≤ 1,
∣

∣

∣

∣

∣

n

m
E

∫ Wn

Wn−
1

n

∫ Wn

x

(βy − α(1− y))f ′(y)dy dx

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n

m
E

∫ Wn

Wn−
1

n

(βy − α(1− y))f ′(y)

∫ y

Wn−
1

n

dx dy

∣

∣

∣

∣

∣

≤
n

m
||f ′||(α ∨ β)E

∫ Wn

Wn−
1

n

∫ y

Wn−
1

n

dx dy

=
1

2nm
‖f ′‖(α ∨ β). (24)

Arguing in a similar fashion, we obtain
∣

∣

∣

∣

∣

n

m
E

∫ Wn

Wn−
1

n

∫ Wn

x

(β + α)f(y)dydx

∣

∣

∣

∣

∣

≤
n

m
‖f‖(β + α)E

∫ Wn

Wn−
1

n

∫ y

Wn−
1

n

dxdy =
1

2nm
‖f‖(α+ β).(25)

Collecting the bounds (20), (22), (23), (24) and (25) yields

|Eh(Wn)− Eh(W )| ≤

(

m+ α ∨ β

2nm
+

αβ

nm(α + β)

)

‖f ′‖+
1

2n
||h′||+

1

2nm
(α + β)‖f‖.

Note that by Lemma 3.2

1

2nm
(α+ β)‖f‖ ≤

1

2nm

(

2

α/m+ β/m

)

||h′|| =
1

n
||h′||.

The theorem now follows by invoking Lemma 3.4. ✷

Lemma 3.1 For any {α, β} ⊂ (0,∞) and real valued function h on [0, 1] such that the
expectation Bα,βh of h exists, the function f given by (18) is the unique bounded solution of
(6).

Proof: It is straightforward to verify that f as given in (18) is a solution of (6). Writing the
associated homogeneous equation as

(wα−1(1− w)β−1)−1(wα(1− w)βg(w))′ = 0

we find that all solutions to (6) are given by

f(w) + cg(w), for some c ∈ R, where g(w) =
1

wα(1− w)β
.

The claim follows since g(w) is unbounded at the endpoints of the unit interval for all c 6= 0,
and Lemma 3.4 below demonstrates that f(w) is bounded. ✷

Since the expectation of h(Z)− Bh is zero when Z ∼ B(α, β), we may also write

f(w) = −
1

wα(1− w)β

∫ 1

w

uα−1(1− u)β−1(h(u)− Bh)du. (26)

From Proposition 3.8 in [11] we quote the following result.
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Lemma 3.2 The solution f , given in (18), of (6) for h a Lipschitz function on [0, 1] satisfies

||f || ≤
2

α + β
||h′||.

The cases in the bounds of Lemma 3.4 reflect the behaviour of the function

g(w) = wα−1(1− w)β−1 for w ∈ [0, 1], (27)

as described in Lemma 3.3. In the following we will use the terms decreasing and increasing
in the non-strict manner, for example, a constant function is both increasing and decreasing.
Let

xα,β =
α− 1

α + β − 2
.

Lemma 3.3 For {α, β} ⊂ (−1,∞), the function g : [0, 1] → [0,∞) given in (27) has the
following behaviour.

β < 1 β = 1 β > 1
α < 1 decreasing on [0, xα,β ] decreasing decreasing

increasing on [xα,β , 1]
α = 1 increasing constant decreasing
α > 1 increasing increasing increasing on [0, xα,β]

decreasing on [xα,β, 1]

Proof: Clearly when α = 1 and β = 1 the function g(w) is constant. Otherwise, taking
derivative in (27) yields

g′(w) = (α− 1)wα−2(1− w)β−1 − (β − 1)wα−1(1− w)β−2

= wα−2(1− u)β−2{(α− 1)(1− w)− (β − 1)w}.

The expression is non-negative if and only if

(α− 1)(1− w) ≥ (β − 1)w. (28)

When α ≥ 1 and β ≤ 1 inequality (28) is always satisfied. Similarly (28) holds with the
non-strict inequality reversed when α ≤ 1 and β ≥ 1. The remaining two cases α < 1, β < 1
and α > 1, β > 1 follow by solving the inequality. ✷

Our next result bounds the magnitude of the derivative of the solution f in terms of h.

Lemma 3.4 For {α, β} ⊂ (0,∞) let f = fα,β,h be the solution to (6) given by (18) for an
absolutely continuous function h. Then

||f ′|| ≤ b0||h− Bh||+ b1||h
′|| ≤ (b0 + b1)||h

′||, (29)

where b0 = b0(α, β) and b1 = b1(α, β) are given by

b0 =



























4max (|α− 1|; |β − 1|) if α ≤ 2, β ≤ 2;

(α + β − 2)2max
(

α−1
(α−2)2

; |β−1|
β2

)

if α > 2, β ≤ 2;

(α + β − 2)2max
(

|α−1|
α2 ; β−1

(β−2)2

)

if α ≤ 2, β > 2;

(α + β − 2)2max
(

1
α−1

; 1
β−1

)

if α > 2, β > 2
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and

b1 =



























4
(

1 + max(α;β)
α+β

)

if α ≤ 2, β ≤ 2;
(α+β−2)2

min(α−2,β)2
+ 2max

(

α
α−2

; 1
)

if α > 2, β ≤ 2;
(α+β−2)2

min(α,β−2)2
+ 2max

(

1; β
β−2

)

if α ≤ 2, β > 2;

(α+β−2)2

min(α−1,β−1)2
+ 2max

(

α
α−1

; β
β−1

)

if α > 2, β > 2.

Proof: By replacing h by h−Bα,βh we may assume Bα,βh = 0. Rewriting the Stein equation
(6) yields

w(1− w)f ′(w) = h(w) + (βw − α(1− w))f(w),

so to show (29) it suffices to demonstrate that for all w ∈ [0, 1]

|h(w) + (βw − α(1− w))f(w)| ≤ (b0||h||+ b1||h
′||)w(1− w).

Using (18) and integration by parts we obtain

α(1− w)f(w) = h(w) +
β − 1

wα(1− w)β−1

∫ w

0

uα(1− u)β−2h(u)du

−
1

wα(1− w)β−1

∫ w

0

uα(1− u)β−1h′(u)du

and, now applying (26),

βwf(w) = −h(w)−
α− 1

wα−1(1− w)β

∫ 1

w

uα−2(1− u)βh(u)du

−
1

wα−1(1− w)β

∫ 1

w

uα−1(1− u)βh′(u)du.

Hence

h(w) + (βw − α(1− w))f(w)

= −
β − 1

wα(1− w)β−1

∫ w

0

uα(1−u)β−2h(u)du+
1

wα(1− w)β−1

∫ w

0

uα(1−u)β−1h′(u)du+βwf(w)

= −
α− 1

wα−1(1− w)β

∫ 1

w

uα−2(1−u)βh(u)du−
1

wα−1(1− w)β

∫ 1

w

uα−1(1−u)βh′(u)du−α(1−w)f(w).

From Lemma 3.2 we immediately have the bounds

|βwf(w)| ≤
2β

α + β
w||h′|| and |α(1− w)f(w)| ≤

2α

α + β
(1− w)||h′||. (30)

As 0 ≤ u ≤ 1,
∣

∣

∣

∣

−
β − 1

wα(1− w)β−1

∫ w

0

uα(1− u)β−2h(u)du+
1

wα(1− w)β−1

∫ w

0

uα(1− u)β−1h′(u)du

∣

∣

∣

∣

≤
||h|| |β − 1|

wα(1− w)β−1

∫ w

0

uα(1− u)β−2du+
||h′||

wα(1− w)β−1

∫ w

0

uα(1− u)β−1du

≤ (|β − 1|||h||+ ||h′||)
1

wα(1− w)β−1

∫ w

0

uα(1− u)β−2du.
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When uα(1−u)β−2 is increasing on [0, x∗] then for w ∈ [0, x∗] we can bound this expression
by

||h||w(1− w)
|β − 1|

(1− x∗)2
+ ||h′||w(1− w)

1

(1− x∗)2
,

and now using the first inequality in (30), we obtain

|h(w) + (βw − α(1− w))f(w)|

≤ ||h||w(1− w)
|β − 1|

(1− x∗)2
+ ||h′||w(1− w)

(

1

(1− x∗)2
+

2β

(α + β)(1− x∗)

)

≤
|β − 1|

(1− x∗)2
||h||w(1− w) +

(

1

(1− x∗)2
+

2β

(α + β)(1− x∗)

)

||h′||w(1− w).

Similarly,

∣

∣

∣

∣

−
α− 1

wα−1(1− w)β

∫ 1

w

uα−2(1− u)βh(u)du−
1

wα−1(1− w)β

∫ 1

w

uα−1(1− u)βh′(u)du

∣

∣

∣

∣

≤ (|α− 1|||h||+ ||h′||)
1

wα−1(1− w)β

∫ 1

w

uα−2(1− u)βdu

and if uα−2(1− u)β is decreasing on [x∗, 1] then for w ∈ [x∗, 1] we can bound this expression
by

||h||w(1− w)
|α− 1|

x2∗
+ ||h′||w(1− w)

1

x2∗
.

Now using the second inequality in (30), we obtain

|h(w) + (βw − α(1− w))f(w)|

≤ ||h||w(1− w)
|α− 1|

x2∗
+

(

1

x2∗
+

2α

(α + β)x∗

)

||h′||w(1− w).

Hence we may take

b0 = max

(

|α− 1|

x2∗
,

|β − 1|

(1− x∗)2

)

(31)

and

b1 = max

{

1

x2∗
+

2α

(α + β)x∗
;

1

(1− x∗)2
+

2β

(α+ β)(1− x∗)

}

(32)

In view of Lemma 3.3 we distinguish four cases.

Case 1. α ≤ 2, β ≤ 2. By Lemma 3.3, uα(1 − u)β−2 is increasing and uα−2(1 − u)β is
decreasing. Setting x∗ = 1/2, by (31) and (32) we obtain

b0 = 4max (|α− 1|; |β − 1|) and b1 = 4 +
4

α + β
max (α; β) = 4

(

1 +
max (α; β)

α + β

)

.
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Case 2. α > 2, β ≤ 2. In this case, from Lemma 3.3, uα(1 − u)β−2 is increasing,
and uα−2(1 − u)β is decreasing on [xα−1,β+1, 1]. Setting x∗ = xα−1,β+1 and noting that
xα,β + xβ,α = 1, by (31) and (32) we obtain

b0 = max

(

α− 1

x2α−1,β+1

;
|β − 1|

x2β+1,α−1

)

= (α+ β − 2)2max

(

α− 1

(α− 2)2
;
|β − 1|

β2

)

and

b1 = max

{

1

x2α−1,β+1

+
2α

(α + β)xα−1,β+1
;

1

x2β+1,α−1

+
2β

(α + β)xβ+1,α−1

}

≤
(α+ β − 2)2

min(α− 2, β)2
+ 2

(

α + β − 2

α + β

)

max

(

α

α− 2
; 1

)

,

and bounding (α+ β − 2)/(α+ β) by 1 gives the assertion.

Case 3. α ≤ 2, β > 2. In this case, from Lemma 3.3, uα(1 − u)β−2 is increasing on
[0, xα+1,β−1], and uα−2(1 − u)β is decreasing. Setting x∗ = xα+1,β−1, by (31) and (32) we
obtain

b0 = max

(

|α− 1|

x2α+1,β−1

;
β − 1

x2β−1,α+1

)

= (α+ β − 2)2max

(

|α− 1|

α2
;
β − 1

(β − 2)2

)

and

b1 = max

{

1

x2β−1,α+1

+
2β

(α + β)xβ−1,α+1

;
1

x2α+1,β−1

+
2α

(α + β)xα+1,β−1

}

≤
(α+ β − 2)2

min(α, β − 2)2
+ 2

(

α + β − 2

α + β

)

max

(

1;
β

β − 2

)

.

Case 4. α > 2, β > 2. In this case, from Lemma 3.3, uα(1 − u)β−2 is increasing on
[0, xα+1,β−1], and u

α−2(1− u)β is decreasing on [xα−1,β+1, 1]. Noting that

xα−1,β+1 < xα,β < xα+1,β−1,

setting x∗ = xα,β , by (31) and (32) we obtain

b0 = max

(

α− 1

x2α,β
;
β − 1

x2β,α
= (α + β − 2)2max

(

1

α− 1
;

1

β − 1

)

)

and

b1 = max

{

1

x2α,β
+

2α

(α+ β)xα,β
;

1

x2β,α
+

2β

(α+ β)xβ,α

}

≤
(α + β − 2)2

min(α− 1, β − 1)2
+ 2

(

α + β − 2

α + β

)

max

(

α

α− 1
;

β

β − 1

)

.
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For the final inequality in (29), with p(y;α, β) denoting the B(α, β) density in (2), we
have

||h− Bh|| = sup
x∈[0,1]

|h(x)− Bh| ≤ sup
x∈[0,1]

∫ 1

0

|h(x)− h(y)|p(y;α, β)dy

≤ ||h′|| sup
x∈[0,1]

∫ 1

0

|x− y|p(y;α, β)dy ≤ ||h′||.

✷

4 Distance of the distribution of L2n to the Arcsine law

We rely on [12] for the following argument, noting that in [12] no explicit bound is obtained.
Proof of Theorem 1.2. Let p be the mass function of L2n given by (3), and let Z have

the Arcsine distribution. Applying Proposition 2.1 for p, followed by Corollary 2.1 with the
choice

ψ(k) =
2k − n+ 1

(k + 1)(2(n− k)− 1)
and c(k) = (k + 1)(2(n− k)− 1),

[12] arrives at the version of Lemma 2.1, showing that Wn = (2n)−1L2n is so distributed if
and only if

E

[

nWn

(

1−Wn +
1

2n

)

∆1/nf

(

Wn −
1

n

)

+

(

1

2
−Wn

)

f(Wn)

]

= 0 (33)

for all functions f ∈ F(p).
Now following steps as those in Theorem 1.1 for the Pólya urn, collecting the estimates

from the proof of Theorem 3.1 of [12] shows that if f is the solution (18) to (6) with
α = β = 1/2, so that b0 = 2 and b1 = 6, then for all differentiable functions h one has

|Eh(Wn)− Eh(Z)| ≤
1

2n
||h′||+

1

2n
||f ||+

(

1

4n
+
n+ 2

2n2
+

3

4n

)

||f ′||.

Applying the bounds of Lemma 3.4 as well as Lemma 3.2 yields the bound in Theorem 1.2.

Applying (33) with f(w) replaced by g(w) = 1 and g(w) = w yields

EWn =
1

2
and EW 2

n =
3

8
+

1

8n

respectively. For f(w) = w2/2, a function in Lip(1) on [0, 1], since EZ2 = 3/8 we obtain

Ef(Wn)− Ef(Z) =
1

16n
.

Hence the O(1/n) rate cannot be improved. ✷
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