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CONTINUUM AB PERCOLATION AND AB RANDOM
GEOMETRIC GRAPHS

BY MATHEW D. PENROSE

Abstract

Consider a bipartite random geometric graph on the union of two independent homoge-
neous Poisson point processes in d-space, with distance parameter r and intensities λ

and μ. We show for d ≥ 2 that if λ is supercritical for the one-type random geometric
graph with distance parameter 2r , there exists μ such that (λ, μ) is supercritical (this was
previously known for d = 2). For d = 2, we also consider the restriction of this graph
to points in the unit square. Taking μ = τλ for fixed τ , we give a strong law of large
numbers as λ → ∞ for the connectivity threshold of this graph.

Keywords: Bipartite geometric graph; continuum percolation; connectivity threshold
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1. Introduction and statement of results

The continuum AB percolation model, introduced by Iyer and Yogeshwaran [3], goes as
follows. Particles of two types, A and B, are scattered randomly in Euclidean space as two
independent Poisson processes, and edges are added between particles of opposite type that are
sufficiently close together. This provides a continuum analogue of lattice AB percolation which
is discussed in, e.g. [2]. Motivation for considering continuum AB percolation is discussed in
detail in [3]; the main motivation comes from wireless communications networks with two
types of transmitter.

Another type of continuum percolation model with two types of particle is the secrecy random
graph [9] in which the type-B particles (representing eavesdroppers) inhibit percolation; each
type-A particle may send a message to every other type-A particle lying closer than its nearest
neighbour of type B. See also [7]. Such models are not considered here; they are complementary
to ours.

To describe continuumAB percolation more precisely, we make some definitions. Let d ∈ N.
Given any two locally finite sets X, Y ⊂ R

d , and given r > 0, let G(X, Y, r) be the bipartite
graph with vertex sets X and Y, and with an undirected edge {X, Y } included for each X ∈ X
and Y ∈ Y with ‖X − Y‖ ≤ r , where ‖ · ‖ is the Euclidean norm in R

d (our parameter r would
be denoted 2r in the notation of [3]). Also, let G(X, r) be the graph with vertex set X and with
an undirected edge {X, X′} included for each X, X′ ∈ X with ‖X − X′‖ ≤ r .

For λ, μ > 0, let Pλ and Qμ be independent homogeneous Poisson point processes in R
d

of intensity λ and μ, respectively, where we view each point process as a random subset of R
d .

Our first results are concerned with the bipartite graph G(Pλ, Qμ, r).
Let I be the class of graphs having at least one infinite component. By a version of the

Kolmogorov zero–one law, given parameters r, λ, μ (and d), we have P[G(Pλ, Qμ, r) ∈ I] ∈
{0, 1}. Provided r, λ, and μ are sufficiently large, we have P[G(Pλ, Qμ, r) ∈ I] = 1; see [3],
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or the discussion below. Set

μc(r, λ) := inf{μ : P[G(Pλ, Qμ, r) ∈ I] = 1},
with the infimum of the empty set interpreted as +∞. Also, for the more standard one-type
continuum percolation graph G(Pλ, r), define

λc(2r) := inf{λ : P[G(Pλ, 2r) ∈ I] = 1},
which is well known to be finite for d ≥ 2 [2, 5], but is not known analytically. By scaling
(see Proposition 2.11 of [5]), λc(2r) = r−dλc(2), and explicit bounds for λc(2) are
provided in [5]. Simulation studies indicate that 1 − e−πλc(2) ≈ 0.676 35 for d = 2 [8]
and 1 − e−(4π/3)λc(2) ≈ 0.289 57 for d = 3 [4].

Obviously, if G(Pλ, Qμ, r) ∈ I then also G(Pλ, 2r) ∈ I, and, therefore, a necessary
condition for μc(r, λ) to be finite is that λ ≥ λc(2r). In other words, for any r > 0, we have

λAB
c (r) := inf{λ : μc(r, λ) < ∞} ≥ λc(2r). (1.1)

For d = 2 only, Iyer and Yogeshwaran [3] showed that the inequality in (1.1) is in fact an
equality. For general d ≥ 2, they also provided an explicit finite upper bound, here denoted by
λ̃AB

c , for λAB
c (r), and established explicit upper bounds on μc(r, λ) for λ > λ̃AB

c (r). Note that
even for d = 2, their explicit upper bounds for μc(r, λ) are given only when λ > λ̃AB

c (r), with
λ̃AB

c (r) > λc(2r) for all d ≥ 2; for the case with d = 2 and λc(2r) < λ ≤ λ̃AB
c (r), their proof

that μc(r, λ) < ∞ does not provide an explicit upper bound on μc(r, λ).
In our first result, proved in Section 2, we establish for all dimensions (and all r > 0) that

the inequality in (1.1) is an equality, and provide explicit asymptotic upper bounds on μc(r, λ)

as λ approaches λc(2r) from above. Let πd denote the volume of the ball in d dimensions with
unit radius.

Theorem 1.1. Let d ≥ 2 and r > 0. Then

(i) λAB
c (r) = λc(2r), and

(ii) with λc = λc(2r),

lim sup
δ↓0

(
μc(r, λc + δ)

δ−2d | log δ|
)

≤
(

4λ2
c

r

)d

d3d(d + 1)πd . (1.2)

Our proof (see Section 2) is based on the classic elementary continuum percolation tech-
niques of discretization, coupling, and scaling. We also indicate how, for any given λ > λc(2r),
we can compute an explicit upper bound for μc(r, λ) (see (2.7) below).

It would be interesting to try to find complementary lower bounds for μc(r, λ). An analogous
problem in the lattice is mixed bond-site percolation, which similarly has two parameters. For
that model, similar questions have been studied by Chayes and Schonman [1], but it is not clear
to what extent their methods can be adapted to the continuum.

Our second result concerns full connectivity for the AB random geometric graph, i.e. the
restriction of the AB percolation model to points in a bounded region of R

d . For λ > 0, let
P F

λ := Pλ ∩ [0, 1]d and QF
λ := Qλ ∩ [0, 1]d (these are finite Poisson processes of intensity λ;

hence, the superscript F). Given also τ > 0 and r > 0, let G1(λ, τ, r) be the graph on the vertex
set P F

λ , with an edge between each pair of vertices sharing at least one common neighbour in
G(P F

λ , QF
τλ, r).
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Let G2(λ, τ, r) be the graph on the vertex set QF
τλ, with an edge between each pair of vertices

sharing at least one common neighbour in G(P F
λ , QF

τλ, r). Then G(P F
λ , QF

τλ, r) is connected,
if and only if both G1(λ, τ, r) and G2(λ, τ, r) are connected.

Let K be the class of connected graphs, and let

ρn(τ) = min{r : G1(n, τ, r) ∈ K},
which is a random variable determined by the configuration of (Pn, Qτn). It is a connectivity
threshold for the AB random geometric graph. Let us assume that P F

λ and QF
μ are coupled for

all λ, μ > 0 as follows. Let (X1, Y1, X2, Y2, . . .) be a sequence of independent uniform random
d-vectors uniformly distributed over [0, 1]d . Independently, let (Nt , t ≥ 0) and (N ′

t , t ≥ 0)

be independent Poisson counting processes of rate 1. Let P F
λ = {X1, . . . , XNλ} and QF

μ =
{Y1, . . . , YN ′

μ
}.

In Section 3 we prove the following result, with ‘
a.s.−−→’ denoting almost-sure convergence as

n → ∞ (with n ∈ N).

Theorem 1.2. Assume that d = 2. Let τ > 0. Then

nπ(ρn(τ ))2

log n

a.s.−−→ max

(
1

τ
,

1

4

)
. (1.3)

Remark 1.1. The restriction to d = 2 arises because boundary effects become more important
in higher dimensions (and d = 1 is a different case). It should be possible to adapt the proof
to obtain a similar result to (1.3) in the unit torus in arbitrary dimensions d ≥ 2, namely,
nπd(ρn(τ ))d/ log n

a.s.−−→ max(1/τ, 2−d), although we have not checked the details.

Remark 1.2. Iyer and Yogeshwaran [3, Theorem 3.1] gave a.s. lower and upper bounds for
ρn(τ) in the torus. The extension of our result mentioned in Remark 1.1 would show that the
lower bound of [3] is sharp for τ ≤ 2d , and improve on their upper bound.

Notation. Given a countable set X, we write |X| for the number of elements of X and if
also X ⊂ R

d , given A ⊂ R
d , we write X(A) for |X ∩ A|. Also, for a > 0, we write aA for

{ay : y ∈ A}. Let ‘⊕’ denote the Minkowski addition of sets (see, e.g. [6]).

2. Percolation: proof of Theorem 1.1

Fix r > 0, and let λ > λc(2r). We first prove that μc(r, λ) < ∞; combined with (1.1)
this shows that λAB

c (r) = λc(2r), which is part (i) of the theorem. Later we shall quantify the
estimates in our argument, thereby establishing part (ii).

Choose s < r and ν < λ such that P[G(Pν, 2s) ∈ I] = 1. This is possible because
decreasing the radius slightly is equivalent to decreasing the Poisson intensity slightly, by
scaling (see [5]; also the first equality of (2.5) below). Set t = (r + s)/2, and let ε > 0
be chosen small enough so that any cube of side length ε has Euclidean diameter at most
t − s = 1

2 (r − s). For a > 0, let pa := 1 − exp(−εda), the probability that a given cube of
side length ε contains at least one point of Pa .

Consider Bernoulli site percolation on the graph (εZ
d , ∼), where, for u and v ∈ εZ

d , u ∼ v

if and only if there exists w ∈ εZ
d with ‖w − u‖ ≤ t and ‖w − v‖ ≤ t . Given p > 0, suppose

that each site u ∈ εZ
d is independently occupied with probability p. Let D1 be the event that

there is an infinite path of occupied sites in the graph, and let Pp[D1] be the probability that
this event occurs.
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Divide R
d into cubes Qu, u ∈ εZ

d , defined by Qu := {u} ⊕ [0, ε)d . For x ∈ R
d , let

zx ∈ εZ
d be such that x ∈ Qzx . The Poisson process Pν may be coupled to a realization of the

site percolation process with parameter pν , by deeming each z ∈ εZ
d to be occupied if and only

if Pν(Qz) ≥ 1. By the choice of ε, for X, Y ∈ Pν , if ‖X −Y‖ ≤ 2s then ‖zX − z(X+Y )/2‖ ≤ t

and ‖zY −z(X+Y )/2‖ ≤ t , and, hence, zX ∼ zY . Therefore, with this coupling, if G(Pν, 2s) ∈ I
then there is an infinite path of occupied sites in (εZ

d , ∼). Because we chose ν and s in such
a way that P[G(Pν, 2s) ∈ I] = 1, we must have Ppν [D1] = 1.

Now consider a form of lattice AB percolation on εZ
d with parameter pair (p, q) ∈ [0, 1]2

(not necessarily the same as any of the lattice AB percolation models in the literature). Let each
of {Vu, u ∈ εZ

d} and {Wu, u ∈ εZ
d} be a family of independent Bernoulli random variables,

with parameters p and q, respectively. Let D2 be the event that there is an infinite sequence
u1, u2, . . . of distinct elements of εZ

d and an infinite sequence v1, v2, . . . of elements of εZ
d

such that, for each i ∈ N, we have Vui
Wvi

= 1 and max{‖ui − vi‖, ‖vi − ui+1‖} ≤ t . Let
P̃p,q [D2] be the probability that event D2 occurs, given the parameter pair (p, q).

Since Ppν [D1] = 1, clearly, P̃pν,1[D2] = 1. Increasing p slightly and decreasing q slightly,
we shall show that there exists q < 1 such that

P̃pλ,q [D2] = 1. (2.1)

This is enough to demonstrate that μc(r, λ) < ∞. Indeed, suppose that such a q exists and
choose μ such that pμ = q. Then, for u ∈ εZ

d , set Vu = 1 if and only if Pλ(Qu) ≥ 1 and
Wu = 1 if and only if Qμ(Qu) ≥ 1. Suppose that D2 occurs, and let u1, v1, u2, v2, . . . be as in
the definition of the event D2. Then, for each i ∈ N, we have Vui

= 1, so we can pick a point
Xi ∈ Pλ ∩ Qui

, and Wvi
= 1, so we can pick a point Yi ∈ Qμ ∩ Qvi

. Then, by the choice of ε,
for each i ∈ N, we have

max{‖Xi − Yi‖, ‖Yi − Xi+1‖} ≤ t + (t − s) = r,

and, hence, G(Pλ, Qμ, r) ∈ I. Hence, by (2.1) we have P[G(Pλ, Qμ, r) ∈ I] = 1. Therefore,
μc(r, λ) ≤ μ < ∞, as asserted.

To complete the proof of part (i), it remains to prove that (2.1) holds for some q < 1. Let
{Tu, u ∈ εZ

d} be independent Bernoulli variables with parameter pλ. For each ordered pair
(u, v) ∈ (εZ

d)2 with 0 < ‖u − v‖ ≤ t , let Uu,v be independent Bernoulli random variables
with parameter (pν/pλ)

1/	, where we set

	 := |{u ∈ εZ
d : 0 < ‖u‖ ≤ t}|. (2.2)

Assume that the variables Uu,v and Tu are all mutually independent, and, for u, v ∈ εZ
d , define

the Bernoulli variables
Vu := Tu

∏
{v∈εZd : 0<‖v−u‖≤t}

Uu,v,

Wv := 1 −
∏

{u∈εZd : 0<‖v−u‖≤t}
(1 − Uu,v).

Then each of {Vu}u∈εZd and {Wv}v∈εZd is a family of independent Bernoulli variables, with
respective parameters pν and

q := 1 −
(

1 −
(

pν

pλ

)1/	)	

< 1, (2.3)

and each is independent of {Tu, u ∈ εZ
d}.
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Since Ppν [D1] = 1, with probability 1, there exists an infinite sequence u1, u2, . . . of distinct
elements of εZ

d with ui ∼ ui+1 for all i ∈ N, and with Vui
= 1 for each i ∈ N. By the definition

of the relation ‘∼’, we can choose a sequence v1, v2, . . . of elements of εZ
d such that, for each

i ∈ N, we have max(‖vi − ui‖, ‖vi − ui+1‖) ≤ t . Then, for each i, since Vui
= 1, we have

Uui,vi
= 1, and, therefore, Wvi

= 1; also, Tui
= 1. Hence, (2.1) holds as required, establishing

that μc(r, λ) < ∞. We have proved part (i).
To prove part (ii), we need to quantify the preceding argument. First note that the value of

μ associated with q given by (2.3) (i.e. with pμ = q) has exp(−μεd) = (1 − (pν/pλ)
1/	)	,

so that, since εd	 ≤ πdrd by (2.2), we have

μc(r, λ) ≤ μ = ε−d	 log

(
1

1 − (pν/pλ)1/	

)
≤ ε−2dπdrd log

(
1

1 − (pν/pλ)(ε/r)d/πd

)
.

(2.4)

From now on, set λc := λc(2r) and λ = λc + δ for some δ > 0. We need to choose s < r

and ν < λ such that P[G(Pν, 2s) ∈ I] = 1. Choose α, β > 0 with α + β < 1, and also let
α′ ∈ (0, α) and β ′ ∈ (0, β). Set

s := r

(
1 + αδ

λc

)−1/d

and ν := λc + (1 − β)δ.

By scaling (see [5, Proposition 2.11]) and our choice of s, we have

λc(2s) =
(

r

s

)d

λc(2r) = λc + αδ, (2.5)

and, hence, ν > λc(2s), so P[G(Pν, 2s) ∈ I] = 1, as required.
Our choice of ε in the discretization needs to satisfy

ε ≤ r − s

2
√

d
= r

2
√

d

(
1 −

(
1 + αδ

λc

)−1/d)
, (2.6)

and the right-hand side of (2.6) is asymptotic to αrδ/(2d3/2λc) as δ → 0. Hence, taking
ε = α′rδ/(2d3/2λc), we have (2.6) provided δ ≤ δ1 for some fixed δ1 > 0. Also,

pν

pλ

≤ εdν

εdλ exp(−εdλ)
=

(
λc + (1 − β)δ

λc + δ

)
exp(εdλ),

and so, by Taylor’s expansion, there is some δ2 > 0 such that, provided 0 < δ ≤ δ2, taking
ε = α′rδ/(2d3/2λc) we have(

pν

pλ

)(ε/r)d/πd

≤ 1 − β ′δεd

πdrdλc

= 1 − β ′δd+1

πdλc(2d3/2λc/α′)d
.

Therefore, by (2.4), for 0 < δ ≤ min{δ1, δ2}, we have

μc(r, λ) ≤
(

2d3/2λc

rδα′

)2d

πdrd log

(
πdλc(2d3/2λc/α

′)d

β ′δd+1

)

and since we can take α′ arbitrarily close to 1, (1.2) follows, completing the proof.
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For a given value of λ with λ = λc(2r) + δ for some δ > 0, an explicit upper bound for
μc(r, λ) could be computed as follows. Choose α, β > 0 with α + β < 1, and let ε be given
by the right-hand side of (2.6). Then a numerical upper bound for μc(r, λ) can be obtained by
computing the right-hand side of (2.4). To make this bound as small as possible (given α), we
make ν as small as we can, i.e. make β approach 1 − α and ν approach λc + αδ. Taking this
limit and then optimizing further over α gives us the upper bound

μc(r, λ) ≤ inf
α∈(0,1)

ε(α)−2dπdrd log

(
1

1 − (pλc+αδ/pλ)(ε(α)/r)d/πd

)
, (2.7)

with ε = ε(α) given by the right-hand side of (2.6).

3. Connectivity: proof of Theorem 1.2

Throughout this section, we assume that d = 2. All asymptotics are as n → ∞. Given
a, b ∈ R, we sometimes write a ∨ b = max{a, b} and a ∧ b = min{a, b}. Fix τ > 0. Given τ

and rn, let δn denote the minimum degree of G1(n, τ, rn).

Lemma 3.1. Let α ∈ (0, 1/τ). If nπr2
n/ log n = α for n ≥ 2 then, almost surely, δn = 0 for

all but finitely many n.

Proof. See [3, Proposition 5.1].

Lemma 3.2. Let α ∈ (0, 1
4 ). If nπr2

n/ log n = α for n ≥ 2 then, almost surely, δn = 0 for all
but finitely many n.

Proof. By [6, Theorem 7.8], for this choice of rn, almost surely, the minimum degree of the
(one-type) geometric graph G(P F

n , 2rn) is 0 for all but finitely many n, and, therefore, so is the
minimum degree of G1(n, τ, rn).

Corollary 3.1. Let d = 2. Given ε > 0, almost surely, nπ(ρn(τ ))2/ log n > (1 − ε) max{ 1
4 ,

1/τ } for all but finitely many n.

Proof. Assume that ε < 1. For n ≥ 2, set rn = [(1 − ε)( 1
4 ∨ 1/τ) log n/(nπ)]1/2, so

nπr2
n/ log n = (1 − ε)( 1

4 ∨ 1/τ). Let δn be the minimum degree of G1(n, τ, rn). If the
minimum degree of a graph of order greater than 1 is zero, then it is not connected; hence,

{
nπ(ρn(τ ))2

log n
≤ (1 − ε)

(
1

4
∨ 1

τ

)}
= {G1(n, τ, rn) ∈ K}
⊂ {δn > 0} ∪ {P F

n ([0, 1]2) ≤ 1},
and, by Lemmas 3.1 and 3.2, this occurs for only finitely many n almost surely.

To complete the proof of Theorem 1.2, it suffices to prove the following result.

Theorem 3.1. Suppose for some fixed α that {rn}n∈N is such that, for all n ≥ 2,

nπr2
n

log n
= α > max

{
1

τ
,

1

4

}
. (3.1)

Then, almost surely, G1(n, τ, rn) ∈ K for all but finitely many n.
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Our proof of this theorem requires a series of lemmas and proceeds by discretization of
space. Assume that α and rn are given, satisfying (3.1). Let ε0 ∈ (0, 1

99 ) be chosen in such a
way that, for ε = ε0, we have both

ατ(1 − 12ε) > 1 + ε (3.2)

and α(4 − 12ε(3 + τ)) > 1 + ε. (3.3)

Given n, partition [0, 1]2 into squares of side εnrn with εn chosen so that ε0 ≤ εn < 1
99 and

1/(εnrn) ∈ N, and ε = εn satisfies (3.2) and (3.3); this is possible for all large enough n, n ≥ n0
say. In the sequel we assume that n ≥ n0 and often write just ε for εn.

Let Ln be the set of centres of the squares in this partition (a finite lattice). Then |Ln| =
�(n/ log n). List the squares as Qi, 1 ≤ i ≤ |Ln|, and the corresponding centres of squares
(i.e. the elements of Ln) as qi, 1 ≤ i ≤ |Ln|.

Given a set X ⊂ [0, 1]2, define the projection of X onto Ln to be the set of qi ∈ Ln

such that X ∩ Qi �= ∅. Given also Y ⊂ [0, 1]2, define the projection of (X, Y) onto Ln

to be the pair (X′, Y′), where X′ is the projection of X onto Ln and Y′ is the projection of
Y onto Ln. We refer to |X′| + |Y′| (respectively |X′|, |Y′|) as the order of the projection of
(X, Y) (respectively of X, of Y) onto Ln.

Lemma 3.3. Let n ∈ N. Suppose that X and Y are finite subsets of [0, 1]2 such that
G(X, Y, rn) is connected. Let (X′, Y′) be the projection of (X, Y) onto Ln. Then the bipartite
geometric graph G(X′, Y′, rn(1 + 2εn)) is connected.

Proof. If qi, qj ∈ Ln, and X ∈ X and Y ∈ Y with ‖X − Y‖ ≤ rn, then by the triangle
inequality we have

‖qi − qj‖ ≤ ‖X − qi‖ + ‖X − Y‖ + ‖Y − qj‖ ≤ rn(1 + 2ε),

and, therefore, since G(X, Y, rn) is connected, so is G(X′, Y′, rn(1 + 2ε)).

Given n, m ∈ N, let An,m denote the set of pairs (σ1, σ2) with each σj ⊂ Ln, with |σ1| +
|σ2| = m and |σ1| ≥ 1, such that G(σ1, σ2, rn(1 + 2εn)) is connected; these may be viewed as
‘bipartite lattice animals’.

Let A2
n,m be the set of (σ1, σ2) ∈ An,m such that all elements of σ1 ∪ σ2 are distances at

least 2rn from the boundary of [0, 1]2.
Let A1

n,m be the set of (σ1, σ2) ∈ An,m such that σ1 ∪ σ2 is a distance less than 2rn from
just one edge of [0, 1]2.

Let A0
n,m := An,m \ (A2

n,m ∪ A1
n,m), the set of (σ1, σ2) ∈ An,m such that σ1 ∪ σ2 is a

distance less than 2rn from two edges of [0, 1]2 (i.e. near a corner of [0, 1]2).

Lemma 3.4. Given m ∈ N, there exists a constant C = C(m) such that, for all n ≥ n0,

|An,m| ≤ C

(
n

log n

)
, |A1

n,m| ≤ C

(
n

log n

)1/2

, |A0
n,m| ≤ C.

Proof. Fix m. Consider how many ways there are to choose σ ∈ An,m.
For the first element of σ1 in the lexicographic ordering, there are at most |Ln| choices, and,

hence, O(n/ log n) choices. Having chosen the first element of σ1, there are a bounded number
of ways to choose the rest of σ .

We now consider how many ways there are to choose σ ∈ A1
n,m. There are O(r−1

n ) =
O((n/ log n)1/2) ways to choose the first element of σ1 (a distance at most 2rn from the boundary
of [0, 1]2), and then a bounded number of ways to choose the rest of σ .
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Finally, consider how many ways there are to choose σ ∈ A0
n,m. There are O(1) ways to

choose the first element of σ1, and then a bounded number of ways to choose the rest of σ .

For n ∈ N, set ν(n) := n�4/ε0�. Note that ν(n + 1) ∼ ν(n) and rν(n+1) ∼ rν(n) as n → ∞,
and that rn is monotone decreasing in n for n ≥ 3.

Given n ∈ N with ν(n) ≥ n0, and given σ1 ⊂ Lν(n) and σ2 ⊂ Lν(n), let E(σ1,σ2) be the
event that there exists some n′ ∈ N ∩ [ν(n), ν(n + 1)) such that there is a component (U, V )

of G(P F
n′ , QF

τn′ , rn′) such that (σ1, σ2) is the projection of (U, V ) onto Lν(n).
For x ∈ R

2 and r > 0, let B(x, r) := {y ∈ R
2 : ‖y − x‖ ≤ r}. Also, let B+(r) be the right

half of B((0, 0), r), and let B−(r) be the left half of B((0, 0), r). Let v2(·) denote the Lebesgue
measure, defined on Borel subsets of R

2.

Lemma 3.5. There exists n1 ∈ N such that, for all m ∈ N and n ≥ n1,

sup
σ∈A2

ν(n),m

(P[Eσ ]) ≤ ν(n)−(1+ε), (3.4)

sup
σ∈A1

ν(n),m

(P[Eσ ]) ≤ ν(n)−(1+ε)/2, (3.5)

sup
σ∈A0

ν(n),m

(P[Eσ ]) ≤ ν(n)−1/20. (3.6)

Proof. Choose n1 so that ν(n1) ≥ n0 and also (1 − ε0)rν(n) < rν(n+1) for n ≥ n1. Assume
from now on that n ≥ n1.

Given σ = (σ1, σ2) ∈ Aν(n),m, let qi and qj respectively be the lexicographically first and
last elements of σ1. Let σ−

2 be the set of qk ∈ σ2 ∩ B(qi, rν(n)(1−4ε)) lying strictly to the left of
qi (in this proof, ε := εν(n)). Let σ+

2 be the set of qk ∈ σ2 ∩ B(qj , rν(n)(1−4ε)) lying strictly to
the right of qj . Let σ̃+

2 := σ+
2 ⊕[−εrν(n)/2, εrν(n)/2]2 and σ̃−

2 := σ−
2 ⊕[−εrν(n)/2, εrν(n)/2]2

(see Figure 1).
Let B−

σ be the part of B(qi, rν(n)(1 − 5ε)) lying strictly to the left of Qi . Let B+
σ be the part

of B(qj , rν(n)(1 − 5ε)) lying strictly to the right of Qj .
Given σ , define the events A+

σ and A−
σ by

A+
σ := {QF

τν(n+1)(B
+
σ \ σ̃+

2 ) = 0} ∩ {P F
ν(n+1)(σ̃

+
2 ⊕ B+(rν(n)(1 − 3ε))) = 0},

A−
σ := {QF

τν(n+1)(B
−
σ \ σ̃−

2 ) = 0} ∩ {P F
ν(n+1)(σ̃

−
2 ⊕ B−(rν(n)(1 − 3ε))) = 0}.

See Figure 1 for an illustration of the event A+
σ . Note that the events A+

σ and A−
σ are independent.

Suppose that k is such that Qk ∩ B+
σ �= ∅. Then, by the triangle equality,

‖qk − qj‖ ≤ rν(n)(1 − 5ε) + εrν(n) = rν(n)(1 − 4ε). (3.7)

Similarly, if Qk ∩ B−
σ �= ∅ then ‖qk − qi‖ ≤ rν(n)(1 − 4ε).

By our coupling of Poisson processes, for ν(n) ≤ n′ < ν(n + 1), we have Pν(n) ⊂
Pn′ ⊂ Pν(n+1). Also, if x ∈ Qk and y ∈ Qi with ‖qi − qk‖ ≤ rν(n)(1 − 3ε), then, by
the triangle inequality and our condition on n1, we have ‖x − y‖ ≤ rν(n)(1 − ε) ≤ rn′ for
all n′ ∈ [ν(n), ν(n + 1)). Hence, by the argument at (3.7), for any σ ∈ An,m, we have
Eσ ⊂ A+

σ ∩ A−
σ .

First we prove (3.5). Takeσ ∈A1
ν(n),m. Consider just the case whereσ is near to the left edge of

[0, 1]2 (the other three cases are treated similarly). If σ+
2 = ∅ then A+

σ = {QF
τν(n+1)(B

+
σ ) = 0},
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Figure 1: The dots are the points of σ1, and the crosses are the points of σ2. The grey squares are the
set σ̃+

2 (since ε = εn < 1
99 , they should really be smaller). The event A+

σ says that the black region
contains no points of QF

τν(n+1)
and the grey region (partly obscured by the black region) contains no

points of P F
ν(n+1)

.

and in this case we have

P[A+
σ ] ≤ exp

( 1
2 − τν(n)(π(rν(n)(1 − 5ε))2 − 2εr2

ν(n))
)

≤ exp
( 1

2 − τα(log ν(n))(1 − 12ε)
)

≤ ν(n)−(1+ε)/2, (3.8)

where the last inequality comes from (3.2). This proves (3.5) for this case.
Suppose instead that σ+

2 �= ∅. Then σ̃+
2 ⊂ {qj } ⊕ B+(rν(n)(1 − 3ε)), so that v2(σ̃

+
2 ) ≤

πr2
ν(n)(1 − 3ε)2/2. Let s ∈ [0, 1] be chosen such that v2(σ̃

+
2 ) = s2πr2

ν(n)(1 − 3ε)2/2. Then,
by the Brunn–Minkowski inequality (see, e.g. [6]),

v2(σ̃
+
2 ⊕ B+(rν(n)(1 − 3ε))) ≥ πr2

ν(n)

2
(1 − 3ε)2(1 + s)2,

and also v2(B
+
σ ) ≥ πr2

ν(n)((1 − 5ε)2 − 2ε)/2, so that

P[A+
σ ] ≤ exp(−τν(n)v2(B

+
σ \ σ̃+

2 ) − ν(n)v2(σ̃
+
2 ⊕ B+(rν(n)(1 − 3ε))))

≤ exp
(− 1

2ν(n)πr2
ν(n)[τ((1 − 5ε)2 − 2ε − s2(1 − 3ε)2) + (1 + s)2(1 − 3ε)2])

≤ exp
(− 1

2α(log ν(n))gτ (s)
)
,

where we set gτ (s) := (τ + 1 + 2s)(1 − 12ε) + s2(1 − 3ε)2(1 − τ). If τ ≤ 1 then gτ (s) is
minimised over s ∈ [0, 1] at s = 0. If τ > 1 then gτ (·) is concave, so its minimum over [0, 1]
is achieved at s = 0 or s = 1; also in this case gτ (1) ≥ (3 + τ)(1 − 12ε)+ 1 − τ . Hence, using
(3.2) and (3.3), we obtain

P[A+
σ ] ≤ exp

(− 1
2α(log ν(n)) min{(1 + τ)(1 − 12ε), 4 − 12ε(3 + τ)})

≤ ν(n)−(1+ε)/2, (3.9)

completing the proof of (3.5).
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Now we prove (3.4). If σ ∈ A2
n,m then P[A+

σ ] ≤ ν(n)−(1+ε)/2 by (3.8) and (3.9), and
P[A−

σ ] ≤ ν(n)−(1+ε)/2 similarly. Therefore, P[Eσ ] ≤ P[A+
σ ∩ A−

σ ] ≤ ν(n)−1−ε, completing
the proof of (3.4).

Finally, to prove (3.6), let σ ∈ A0
n,m. Assume that σ is near the lower-left corner of

[0, 1]2 (the other cases are treated similarly). First suppose that σ+
2 = ∅. Then P[Eσ ] ≤

P[QF
τν(n+1)(B

+
σ ) = 0] and since the upper half of B+

σ is contained in [0, 1]2, in this case

P[Eσ ] ≤ exp
(−τν(n)πr2

ν(n)

[ 1
4 (1 − 5ε)2 − 1

2ε
])

≤ ν(n)−ατ(1−12ε)/4

≤ ν(n)−(1+ε)/4. (3.10)

Now suppose that σ+
2 �= ∅. Let q� be the last element (in the lexicographic order) of σ+

2 . Then

P[Eσ ] ≤ P[P F
ν(n+1)({q�} ⊕ B+(rν(n)(1 − 3ε))) = 0]

≤ exp
( 1

4 − ν(n)πr2
ν(n)(1 − 3ε)2)

≤ ν(n)−α(1−6ε)/4

≤ ν(n)−1/20,

where, for the last inequality, we used the facts that α > 1
4 and ε < 1

99 . Together with (3.10)
this demonstrates (3.6).

For m, n ∈ N and r > 0, let Kn,m(r) be the class of bipartite point sets (X, Y) in [0, 1]2

such that G(X, Y, r) has at least one component, the vertex set of which has projection onto
Ln of order m and contains at least one element of X.

Lemma 3.6. Let m ∈ N. Almost surely, for all but finitely many n ∈ N, we have (P F
n′ , QF

τn′) /∈
Kν(n),m(rn′) for all n′ ∈ N ∩ [ν(n), ν(n + 1)).

Proof. By Lemmas 3.3 and 3.5, for n ≥ n1, we have

P

[ ⋃
ν(n)≤n′<ν(n+1)

{(P F
n , QF

τn) ∈ Kν(n),m(rn′)}
]

≤
∑

σ∈Aν(n),m

P[Eσ ]

≤ |A2
ν(n),m| × ν(n)−(1+ε) + |A1

ν(n),m| × ν(n)−(1+ε)/2 + |A0
ν(n),m| × ν(n)−1/20.

Using Lemma 3.4 and the definition ν(n) := n�4/ε0�, and recalling that ε = εn ≥ ε0 as described
just after (3.3), this probability is O(n−2), so it is summable in n. Then the result follows by
the Borel–Cantelli lemma.

Lemma 3.7. (See [6, Lemma 9.1].) For any two closed connected subsets A and B of [0, 1]2

with union A ∪ B = [0, 1]2, the intersection A ∩ B is connected.

Given n ∈ N, let k(n) be the choice of k ∈ N satisfying ν(k) ≤ n < ν(k + 1). Also,
given K ∈ N, let FK(n) be the event that G(P F

n , QF
τn, rn) has two or more components with

projections onto Lν(k(n)) of order greater than K .

Lemma 3.8. There exists K ∈ N such that, with probability 1, the event FK(n) occurs for only
finitely many n.
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Proof. Suppose that FK(n) occurs. Then there exist distinct components U = (U1, U2) and
V = (V1, V2) in G(P F

n , QF
τn, rn), both with projections onto Lν(k(n)) of order greater than K .

Let U ′ be the union of closed Voronoi cells in [0, 1]2 (relative to Pn ∪ Qτn) of vertices of U ,
and let V ′ be the union of closed Voronoi cells in [0, 1]2 of vertices of V .

The interior of U ′ and the interior of V ′ are disjoint subsets of [0, 1]2, and we now show that
they are connected sets. Suppose that X ∈ U1 and Y ∈ U2 with ‖X − Y‖ ≤ rn; then we claim
that the entire line segment [X, Y ] is contained in the interior of U ′. Indeed, let z ∈ [X, Y ],
and suppose that z lies in the closed Voronoi cell of some W ∈ P F

n ∪ QF
τn. If W ∈ P F

n then

‖W − Y‖ ≤ ‖W − z‖ + ‖z − Y‖ ≤ ‖X − z‖ + ‖z − Y‖ = ‖X − Y‖ ≤ rn,

so W ∈ U . Similarly, if W ∈ QF
τn then ‖W − X‖ ≤ rn, so again W ∈ U . Hence, the interior

of U ′ is connected, and likewise for V ′.
Let Ṽ be the closure of the component of [0, 1]2 \ U ′, containing the interior of V ′, and let

Ũ be the closure of [0, 1]2 \ Ṽ (essentially, this is the set obtained by filling in the holes of U ′
that are not connected to V ′).

Then Ũ and Ṽ are closed connected sets, whose union is [0, 1]2. Therefore, by Lemma 3.7,
the set ∂U := Ũ ∩ Ṽ is connected. Note that ∂U is part of the boundary of U ′ (it is the ‘exterior
boundary’ of U ′ relative to V ′).

Let T be the set of cube centres qi ∈ Lν(k(n)) such that Qi ∩ (∂U) �= ∅. Then T is
∗-connected in Lν(k(n)), i.e. for any x, y ∈ T , there is a path (x0, x1, . . . , xk) with x0 = x,
xk = y, xi ∈ Lν(k(n)), and ‖xi − xi−1‖∞ = εrν(k(n)) for 1 ≤ i ≤ k (here ε = εν(k(n))).

Also, for each qi ∈ T , we claim that Pn(Qi)Qτn(Qi) = 0. Indeed, suppose on the contrary
that Pn(Qi)Qτn(Qi) > 0. Then all points of (Pn ∪ Qτn) ∩ Qi lie in the same component
of G(P F

n , QF
τn, rn). If they are all in U then Qi and all neighbouring Qj (including diagonal

neighbours) are contained in U ′. If all points of (Pn ∪ Qτn) ∩ Qi are not in U then Qi

and all neighbouring Qj (including diagonal neighbours) are disjoint from U ′. Therefore,
(∂U) ∩ Qi = ∅.

We now prove the isoperimetric inequality

|T | ≥
(

K

2

)1/2

. (3.11)

To see this, define the width of a nonempty closed set A ⊂ [0, 1]2 to be the maximum difference
between x-coordinates of points in A, and the height of A to be the maximum difference between
y-coordinates of points in A.

We claim that either the height or the width of ∂U is at least (K/2)1/2εrν(k(n)). Indeed,
if not then ∂U is contained in some square of side (K/2)1/2εrν(k(n)), and then either U ′ or
V ′ is contained in that square, so either U or V is contained in that square, contradicting
the assumption that the projections of U and of V onto Lν(k(n)) have order greater than K .
For example, if the projection of U has order greater than K then at least one of U1 and U2,
say U1, has projection of order greater than K/2, and then the union of squares of side εrν(k(n))

centred at vertices in the projection of U1 has total area greater than (K/2)ε2r2
ν(k(n)), so is not

contained in any square of side (K/2)1/2εrν(k(n)). Thus, the claim holds, and so (3.11) follows
by the ∗-connectivity of T .

For ν, m ∈ N, let A′
ν,m be the set of ∗-connected subsets of Lν with m elements. By a

similar argument as used in the proof of Lemma 3.4 (see also [6, Lemma 9.3]), there are finite
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constants γ and C such that, for all ν, m ∈ N,

|A′
ν,m| ≤ C

(
ν

log ν

)
γ m. (3.12)

Set φn := P[Pn(Qi)Qτn(Qi) = 0]; this does not depend on i. By the union bound and (3.1),

φn ≤ exp(−n(εrν(k(n)))
2) + exp(−τn(εrν(k(n)))

2)

≤ 2 exp

(
−(τ ∧ 1)ε2 α

π

n log ν(k(n))

ν(k(n))

)
≤ 2ν(k(n))−(τ∧1)ε2α/π

≤ 3n−(τ∧1)ε2α/π ,

where the last inequality holds for all large enough n. Using (3.11) and (3.12), we obtain

P[FK(n)] ≤
∑

m≥(K/2)1/2

C

(
ν(k(n))

log ν(k(n))

)
γ mφm

n ≤ 2Cn(3γ n−ε2α(τ∧1)/π )(K/2)1/2
,

which is summable in n provided K is chosen so that ε2π−1α(τ ∧ 1)(K/2)1/2 > 3. The result
then follows by the Borel–Cantelli lemma.

Proof of Theorem 3.1. Choose K ∈ N as in Lemma 3.8. Writing ‘i.o.’ for ‘for infinitely
many n’ (i.e. infinitely often), we have

P[G1(n, τ, rn) /∈ K i.o.] ≤
( K∑

m=1

P[(P F
n , QF

τn) ∈ Kν(k(n)),m(rn) i.o.]
)

+ P[FK(n) i.o.].

By Lemmas 3.6 and 3.8, this is 0.
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