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Abstract

In this paper we consider an inventory system with increasing concave ordering cost
and average cost optimization criterion. The demand process is modeled as a Brownian
motion. Porteus (1971) studied a discrete-time version of this problem and under the
strong condition that the demand distribution belongs to the class of densities that are
finite convolutions of uniform and/or exponential densities (note that normal density does
not belong to this class), an optimal control policy is a generalized (s, S) policy consisting
of a sequence of (Si, Si). Using a lower bound approach, we show that an optimal control
policy for the Brownian inventory model is determined by a single pair (s, S).
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I. Introduction

In this paper we study a continuous-review stochastic inventory system with a piecewise
linear and increasing concave ordering cost c(z) 2: 0 for placing an order of quantity z 2: o.
That is, there exist some ai, i = 0, 1, ... , n, satisfying

o= ao < al < ... < an-l < an = 00

such that c(z) = K I{z>o} +CIZ when 0 ~ z < al and, for i = 1, ... , n - 1,

c(z) = c(ai) + Ci+l . (z - ai), (1)

where I{A} is the indicator function taking value 1 if statement A is true and 0 otherwise, K > 0,
and

Cl > C2 > ... > Cn > 0

is a sequence of decreasing positive constants. Note that c(z) is continuous at all but point
z = 0; see Figure 1. Other nondecreasing concave ordering cost functions that are continuous
on z > 0 can be approximated, arbitrarily closely, by such piecewise linear concave functions.
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FIGURE 1: Ordering cost function c(z).

The ordering cost described above includes many interesting special cases of practical
interest. The following are two examples.

1. Classic inventory model with a setup cost plus proportional purchasing cost. This is
obtained by setting K > 0 and n = 1, i.e. al = 00. In this case, there is a setup cost K
for placing any positive order, and each unit costs CI. This is one of the most studied
stochastic inventory models in the literature; see, for example, Scarf [15].

2. Inventory models with incremental quantity discount. For example, if we set a2 = 00

then we obtain a model that has incremental ordering quantity discount: the unit ordering
cost is CI for an order quantity up to aI, but any order quantity above al has a discounted
unit cost of C2 < CI (and K is the order processing related cost). Ordering discount is
commonly observed in practice; see, for example, Hax and Candea [9].

Due to its practical importance, increasing concave ordering cost has been studied in the
literature. Porteus [12], [13] considered a periodic review inventory model with increasing
concave ordering cost function. Under the strong condition that the demand distribution belongs
to the class of densities that are finite convolutions of uniform and/or exponential densities, the
author showed that there exists an optimal policy that is a generalized (s, S) policy. It should
be noted that normal density does not belong to this class.

In this paper we consider a stochastic inventory system where the demand is modeled by a
Brownian motion process. As in the traditional inventory systems, in addition to an ordering
cost, there are also holding and shortage costs, and the objective is to minimize the long-run
average cost per unit time. We show that there is an optimal policy that is an (s, S) policy. Our
approach is based on first establishing a lower bound for the average cost within a large class
of policies and then identifying an (s, S) policy that achieves this lower bound thereby proving
its optimality.

There are numerous papers in the literature on Brownian inventory systems with fixed
plus proportional ordering costs. Bather [1] used Brownian motion to model the demand
process and assumed that the inventory level could be adjusted by orders with a setup cost
and proportional variable cost; and showed that an (s, S) policy is optimal under a long-run
average cost criterion. Richard [14] considered both infinite- and finite-horizon problems with
a discounted cost criterion, and he presented sufficient conditions for the optimality of an
(d, D, U, u) policy among the class of impulse control policies. See also Constantinides and
Richard [2]. Harrison and Taylor [7] studied a similar discounted cost optimal control problem
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of a Brownian model, and they imposed the condition that the state of the system is nonnegative
and obtained an optimal impulse control policy for the case with or without a setup cost.
Harrison et al. [8] proposed another Brownian model for a cash management problem in which
the state of the system could be instantaneously increased or decreased, and the authors showed
that a (0, q, Q, S) policy is optimal for a discounted cost criterion. Sulem [16] investigated the
issue of computing the control parameters of an optimal policy for a one-sided impulse control
problem based on the work of [2]. Ormeci et ale [11] considered linear holding and shortage cost
rate and extended the result of [8] to a long-run average-cost criterion. They also generalized
the result to the case when there is a finite adjustment constraint in the impulse control policies.
Dai and Yao [3], [4] further extended the model of [8] and [11] to convex holding and shortage
costs and obtained an optimal control policy under either average or discounted cost criterion.
Wu and Chao [17] studied a stochastic production system in which replenishment cannot be
instantaneous, but instead must be gradual. They modeled both the production and demand
processes as Brownian motions and characterized the structure of an optimal policy.

The rest of this paper is organized as follows. In the next section we present the mathematical
formulation. We establish a lower bound for the average cost of an admissible policy in
Section 3, analyse the average cost of the stochastic inventory system in Section 4, and prove
the optimality of an (s, S) policy in Section 5. For clarity the results are presented for the strict
quasi-convex holding and shortage cost, and the general quasi -convex cost case is presented in
Section 6.

2. Model and result

Let Q be the space of all continuous functions w: [0, (0) ~ JR. Let B = {B(t): t 2: O} be
a standard Brownian motion (with mean °and variance 1), and J=' = {.1i, t 2: O} be the natural
filtration generated by B with probability measure P. Then, (Q, J=', P) forms the probability
space under consideration.

We consider an inventory system with its demand process modeled by a Brownian motion
with drift parameter u. > 0 and variance parameter a. That is, the total demand up to time t is
modeled by

D(t) = iu + a B(t), t 2: o.

The demand process above can be understood as the netput process, which captures the
difference between the demand and some (nominal) input process such as customer returns.
For convenience, we call this netput process the demand process.

The cost structure is described as follows. Let Z (t) denote the inventory level of the system
at time t. When the inventory level is z, it incurs a holding/penalty cost at rate h(z). If z 2: 0
then h (z) is the holding cost rate for having z units on hand; while if z < 0 then h (z) is the
penalty cost rate for having backlog level -z > O. To raise the inventory level, the firm can
order from an outside supplier. The cost of ordering z units of product, which is delivered
immediately, is given by e(z) as defined in (1).

A policy ip is a sequence {(Tn, ~n), n 2: OJ, where To = 0, Tn, the time of the nth
replenishment, is a stopping time and ~n, the size of the nth replenishment, is J='Tn measurable.
We shall focus on the following class of policies \II. For each policy cp in \II, there exists some
finite number Mlp such that the policy cp does not place an order when the inventory level is
greater than Mlp. Because Mlp can be arbitrarily large, \II contains all policies of practical
interest. In what follows, we say a policy cp is admissible if cp E \II.
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Suppose that the initial inventory level at time 0 is x, and assume that Z (t) is right -continuous
with left limits. Under an admissible policy cp = {(Tn, ~n), n ~ OJ, the inventory process Z(t)
is given by

N(t) N(t)

Z(t) = X - D(t) + L ~n = X - iu - a B(t) + L ~n,
n=O n=O

where N(t) = sup{n: Tn ~ t} is the number of inventory replenishments up to time t (not
including the possible replenishment at time 0). We assume that the policy satisfies

lEx[N(t)] < 00,

N(t)

s, [L ~n ] < 00 for each t :::: 0,
n=O

where lEx stands for the conditional expectation given Z (0-) = x.
Given that the initial inventory level is Z(O-) = x, the long-run average cost for the system

under an admissible policy cp = {(Tn, ~n), n ~ O} is defined as

1 [T N(T) ]
Cavg(x,gJ)=limsup-lEx r h(Z(t))dt+ Lc(~n).

T~oo T io n=O

The objective in this paper is to characterize an optimal admissible policy tp" that satisfies

Cavg(x, cp*) = min Cavg(x, tp),
cpE\IJ

(2)

We assume that the holding and penalty cost function h: lR ---+ [0,00) satisfies the following
technical conditions.

Assumption 1. The cost function h: lR ---+ lR+ satisfies the following conditions:

(i) h is continuous and quasi-convex;

(ii) h has a minimum at h(O) = 0;

(iii) limlxl~oo hex) = +00;

(iv) h is polynomially bounded, i.e. there exist constants Ai, i = 1, 2 and an integer m E N+
such that hex) ~ Al + A21xlm for all x E IR.

(v) There exist scalars p > 0 and q such that hex) ~ -px + q.

Conditions (i)-(v) are standard assumptions in the inventory literature and are satisfied by
most applications of practical interest. Condition (v) assumes that the cost rate function h(x)

is bounded below by a linear function, which holds, for example, if h(x) is differentiable and
limsupx~_ooh'(x) < O.

To present the main result of this paper, we define n positive (and increasing) values

o< KI < K2 < ... < K n

as follows: K I = K and, for 1 < i < n,
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See Figure 1 for an illustration of Ki. Moreover, let A = 21vl/a2 and define a function G(x) by

2100

G(x) = 2" h(~)e-A(~-X)d~.
a x

(3)

Let y* be a minimizer of G. Furthermore, define a setup cost function X(Q) by X(O) = 0
and, for 1 :::: i :::: n,

X(Q) = tc, if ai-l < Q :::: ai,

The following is the main result of this paper.

Theorem 1. An optimal control policy of the Brownian stochastic inventory system with con­
cave ordering cost is an (s, S) policy. In addition, the policy parameters sand S ofthis optimal
policy satisfy

(i) s :::: y* ~ S;

(ii) G(s) = G(S);

(iii) (S - s)G(S) - isS G(z) dz = X(S - s).

To prove that an optimal policy for the system under consideration assumes the desired form,
we take the following approach. We first present a lower bound for the average cost function
for an admissible policy within a large class of policies, and then identify a simple (s, S) policy
whose average cost achieves this lower bound. Finally, we show that if a policy does not belong
to this class of policies then its average cost is equal to 00; hence, it cannot be optimal. This
implies that the identified (s, S) policy is optimal.

3. Lower bound

In this section we establish a lower bound for the long-run average cost (2) for a policy
within a large class of policies. To that end, we first state the generalized Ito formula; see, for
example, Harrison [6, p. 71].

Lemma 1. Assume that f is continuously differentiable and has a continuous second order
derivative at all but a finite number ofpoints. Then

T T N(T)

f(Z(T)) = f(Z(O)) +1 r'f(Z(t))dt +a1 f'(Z(t))dB(t) + EOn, (4)

where
r f(x) = ~a2I"(x) - u.f"(x) for each x E ~

such that t" (x) exists, and ()n = f(Z(Tn ) ) - f(Z(Tn - )).

The following theorem presents a lower bound for the optimal long-run average cost in (2)
within a class of admissible policies.

Theorem 2. Suppose that f satisfies the conditions in Lemma 1 and there is a constant y such
that

(i) r f (x) + h(x) ~ yfor each x E ~ such that f" (x) exists;

(ii) f(x) - fey) ~ -c(x - y)for y < x.
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lfJEx[J~(f'(Z(t)))2dt]< 00 for each finite time t, then Cavg(x, cp) ~ y for any initial state
x E IR and any admissible policy cp E \11I: where

\11f ~ {ifJ: lim inf ~JEx[f(Z(T))) ::s 0 for all x E JR.}.
T-+oo T

Proof. For an admissible policy cp = {(Tn, ~n): n ~ OJ, (4) implies that

(5)

T T N(T)
f(Z(T» = f(Z(O» +1r f(Z(t» dt + a 1 t'rzo» dB(t) + Een

T T N(T)
= f(x) +1 rf(Z(t»dt+a1 f'(Z(t»dB(t) + ?;en

T T N(T)
2: f(x) + yT - ( h(Z(t» dt + a ( f' (Z(t» dB(t) - L c(~n), (6)

10 10 n=O

where the second equality follows from eo = f(Z(O)) - f(Z(O-)) = f(Z(O)) - f(x), and
the inequality is due to Theorems 2(i) and 2(ii).

IfJEx[J~ (f'(Z(t)))2 dt] < 00 then JOT f'(Z(t)) dB(t) is a martingale. Taking the expecta­
tion on both sides of (6) yields

T N(T)

JEx[f(Z(T»] 2: f(x) + yT - JEx [1 h(Z(t) dt + ?; C(~n)l
Dividing both sides by T and taking the limit superior as T --+ 00, we obtain

1
Cavg(x, cp) ~ y -liminf -JEx[f(Z(T))] ~ y.

T-+oo T

The last inequality follows from the assumption that cp E \11f .

(7)

4. Analysis of the cost function

We first analyse the cost function of the inventory system with concave ordering cost
operating under a given (s, S) policy. Under the said policy, whenever the inventory level
drops to s, an order is placed to raise the inventory level to S. It is well known (see, for
example, [1]) that an (s, S) policy is optimal for the special cases of fixed plus proportional
ordering costs.

The inventory process Z (r) operating under an (s, S) policy is a regenerative process if we
define a cycle as follows. Without loss of generality, let us suppose that the inventory level
starts from s, and an order of the quantity S - s is placed. Then Z (t) drops from S with drift - Jvl
and variance parameter a 2 until it hits s, indicating the end of a cycle. The random duration of
a cycle is the time it takes for the inventory level to drop from S to s, which we denote by t .

The total cost of a cycle is the summation of the ordering cost c(S - s) and the holding/penalty
cost incurred while the inventory level drops from S to s. Due to the regenerative structure,
the long-run average system cost is equal to the expected cost during one cycle divided by the
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(8)

expected length of the cycle. See, for example, [10, Theorem 6-8, p. 184]. Thus, the long-run
average cost under a given (s, S) policy with s < S is

c(S - s) + lEs[J; h(Z(t» dt]
yes, S) := Cavg(S, (s, S» = lE '

s[r]

where ':=' is 'defined as', c(S - s) is the ordering cost in one cycle, lEs[J; h(Z(t» dt] is the
expected holding/shortage cost in one cycle given that the system starts with inventory level S
(after placing the order), and r denotes the length of one cycle and satisfies Jlr + a B; = S - s.

First, it follows from Jlr + a B; = S - s that lEs[r] = (S - s) tu- Secondly, the behavior
of Z(t) during the cycle allows us to write lEs[J; h(Z(t» dr] = isS G(z) dz, where G(x) is
defined in (3); see [17, Equation (13)]. Therefore, we have

Jl(c(S - s) + IsS G(z) dz)
yes, S) = .

S-s

Based on Assumption 1, we have the following result.

Lemma 2. It holds that G(x) is differentiable, quasi-convex, and limlxl~ooG(x) = 00.

Proof. By substituting y = x - ~, from (3), we obtain

110 1G(x) = - AeAYh(x - y) dy = -lE[h(x - Y)],
Jl -00 Jl

where the random variable Y has density function p (y) = AeAY, where y ~ O. Since In p (y) =
In A+ Ay, the density function p(y) is a log-concave function. By the assumption that h is
a quasi-convex function, we conclude that G(x) is a quasi-convex function as well; see [5,
Theorem 1.10]. The function G can also be written as

This function is the product of two differentiable functions; hence, it is also differentiable. The
fact that limx~±oo G(x) = 00 follows from the assumption that limx~±oo hex) = 00.

By letting Q = S - s :::: 0 be the ordering quantity, we can write the average cost function
Yes, S) in (8) as

Jl(c(Q) + Iss+Q G(z) dz)
y(s, Q) = Q .

For ease of exposition, in this section we assume that G(x) is strictly quasi-convex, i.e. it strictly
decreases before reaching a minimum at its unique minimizer y* and then strictly increases.
Our results are extended to the case of weakly quasi-convex G(x) in Section 6.

To minimize yes, Q), in the following we first solve min, yes, Q) for fixed Q, and then
optimize the resulting objective function over Q :::: O. It follows from

ayes, Q) G(s + Q) - G(s)--- = Jl------
as Q

and Lemma 2 that y (s, Q) is quasi-convex in s. Let s ( Q) be the minimizer of y (s, Q), then it
follows from Lemma 2 that seQ) is well defined for any Q :::: O.
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(9)

Note that when Q is fixed, the optimization problem of y (s, Q) over s is the same as that
of the classic stochastic inventory control problem with fixed ordering cost; see, for example,
[18, Lemma 2 and Lemma 3], for which the following results are known to hold.

Lemma 3. For a given Q, the minimizer ofs = s (Q) of y (s, Q) satisfies

(i) s(Q) is decreasing in Q; and s(Q) + Q is increasing in Q;

(ii) G(s(Q)) = G(s(Q) + Q);

(iii) s(Q) .s y* and s(Q) + Q 2: y*.

Remark 1. We note that under the assumption that G(x) is strictly quasi-convex, s(Q) and
s(Q) + Q are uniquely determined and are strictly decreasing and increasing,respectively,
in Q. If G(x) is weakly quasi-convex, then we can show that there exists at least one optimal
s(Q) and at least one minimizer y* of G(x) that satisfy Lemmas 3(ii) and 3(iii), but Lemma 3(i)
will be changed to (i'), s(Q) is nonincreasing in Q, and s(Q) + Q is nondecreasing in Q. This,
however, does not affect our subsequent analysis.

For convenience, we define the following function:

l
S ( Q )+ Q

~(Q) = QG(s(Q) + Q) - G(z) dz.
s(Q)

By Lemma 3(i)-(iii) and the quasi-convexity of G(x), we have ~(Q) 2: 0 and ~(Q) is a
nondecreasing function of Q.

We next optimize y (s, Q) on the range Q E [ai-1, ai]. The following lemma characterizes
the optimal solution.

Lemma 4. On the range Q E [ai-I, ail, i = 1, ... , n - 1, the optimal Qi that minimizes
y(s(Q), Q) is

(i) Qi = ai-l if ~(ai-l) - K, > 0;

(ii) Qi = a, if ~(ai) - K, < 0;

(iii) otherwise, o. E [ai-I, ail and ~(Qi) = s;
Proof. For any i satisfying 1 ~ i ~ n - 1 and z E [ai-1 , ai], the ordering cost function can

be written as
c(z) = K, + CiZ.

(Note that at the boundary points of the interval [ai-l,ai], c(z) has other representations.)
Thus, the average cost function on this range can be written as

( Q)
JL(Ki + fss+Q G(z) dz)

y s, =CiJL+ Q .

Since
min y(s, Q) = min y(s(Q), Q),

Q;:::o,s Q;:::O

we take the derivative of y(s(Q), Q) with respect to Q and apply the envelope theorem to
obtain, when Q E [ai-I, ail,

dy JL
dQ (s(Q), Q) = Q2 (l1(Q) - Kj). (10)
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(11)

This shows that, whether or not y(s(Q), Q) increases with respect to Q depends on the sign
of ~(Q) - Ki. Because L\(Q) is nondecreasing in Q, it follows that y(s(Q), Q) is increasing
on [ai -1, ai] if L\(ai -1) - K, > 0; hence, by the continuity of y (s (Q), Q) in Q, it implies that
Qi = ai-I if L\(ai-I) - K, > O. Similar argument shows that Qi = a; if L\(ai) - K, < O.

Since L\(Q) is nondecreasing in Q, L\(Q) - K, cannot cross from negative to positive
multiple times, and by (10), dy(s(Q), Q)jdQ cannot cross from negative to positive multiple
times either. This shows that y(s(Q), Q) is quasi-convex on [ai-I, ai]. If neither Lemma 4(i)
nor (ii) is satisfied, then y (s (Q), Q) is strictly decreasing at a; -1 and strictly increasing at a.,

Thus, there must exist a Qi E [ai-I, ai] such that L\(Qi) = Ki.

Remark 2. For i = n, i.e. Q E [an-I, 00), Lemma 4(ii) does not occur, and the optimal Qn
satisfies either Lemma 4(i) or (iii). This is because, when Q ~ 00, limQ~oo L\ (Q) - K n = 00,

so Lemma 4(ii) will never happen. Similarly, when i = 1, L\(ao) - KI = -KI < 0; thus,
Lemma 4(i) never happens for i = 1, and QI satisfies either Lemma 4(ii) or (iii).

Remark 3. The argument above uses the fact that L\(Q) - K, in (10) is nondecreasing to prove
y(s(Q), Q) is quasi-convex in Q on each interval [ai-I, ai]. However, it is not guaranteed
that the derivative of y(s(Q), Q) with respect to Q, namely (~jQ2)(L\(Q) - Ki), is also
nondecreasing; thus, we have no conclusion about the convexity of y. Furthermore, even though
y(s(Q), Q) is quasi-convex on each interval [ai-I, ai], it is not quasi-convex on Q E ]R+.

Using X(Q), we can write the derivative of y(s(Q), Q) on all Q :::: 0 and Q f:. ai(i =
1,2, ... , n) as

dy ~
dQ (s(Q), Q) = Q2 (L\(Q) - X(Q)).

The function L\ ( Q) - X (Q) is continuous at all points except a;.i = 0, 1, ... , n, and it has
a negative jump of size -(Ki+I - Ki) at Q = ai, Thus, (11) holds for all Q :::: 0 if it
is understood as the right and left derivatives, respectively, at Q = a,+ and Q = a,-. See
Figure 2 for an illustration of L\ (Q) - X (Q). Since L\(Q) - X (Q) is a piecewise nondecreasing
function with downward jumps at Q = ai, (i = 1, ... , n), and L\(O) - X(O) = -KI < 0,
limQ~oo[L\(Q) - X(Q)] = 00, there must exist at least one Q > 0 with L\(Q) - X(Q) = O.
There may be multiple zero points for the function L\ (Q) - X (Q), and there are usually multiple
local minimum points for y(s(Q), Q).

The next result characterizes the values of an optimal (s, S) that minimizes yes, S). Note
that it differs from Theorem 1 in that in Theorem 3 the optimization is over the class of (s, S)
policies and we search for the two parameters sand S, while in Theorem 1 we search for an
optimal policy among all admissible policies, including the subset of (s, S) policies.

Theorem 3. An optimal (s*, S*) that minimizes yes, S) of (8) satisfies all the conditions of

Theorem 1. That is, s* and S* satisfy s* :::: y* :::: S*, G(s*) = G(S*), and Theorem l(iii).

Proof. We first prove that, under the conditions in Lemma 4(i) and 4(ii), the minimizer of
y(s(Q), Q) on Q :::: 0 cannot fall into the interval [ai-I, ai].

For each i we optimize y(s(Q), Q) on the interval Q E [ai-I, ai]' If Lemma 4(iii) is
satisfied then the optimizer Qi on the interval [ai -1 , ai] satisfies L\ ( Qi) = K i. Otherwise, if
L\(ai-I) - K, > 0 (note that by Remark 2, this does not occur for i = 1) then the optimal
solution of y(s(Q), Q) is Q = ai-I and it also implies that L\(ai-I) - Ki-I > O. The
latter further implies that y (s (Q), Q) is strictly increasing at Q = a; -1; hence, the minimizer
of y(s(Q), Q) on [ai-2, ai-I] is less than ai-I and the optimal solution of y(s(Q), Q) on
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FIGURE 2: The graph of L\(Q) - X(Q).
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[ai-2, ai] is less than ai-I. This shows that the minimizer of y(s(Q), Q) on the entire Q ~ 0
cannot be in the interval [ai-I, ail. Similarly, if ~(ai) - K, < 0 then the optimal solution of
y(s(Q), Q) on [ai-I, ail is Q = tu and we have ~(ai) - Ki+I < 0, and the latter implies
that the minimizer of y(s(Q), Q) on [ai-I, ai+I] is greater than a, and the optimal solution of
y(s(Q), Q) on [ai-I, ai+I] is greater than a., implying that the minimizer of y(s(Q), Q) on
Q 2:: 0 cannot be in the interval [ai -1 , ai] either.

Because the minimizer of y (s (Q), Q) on Q 2:: 0 exists and has to be in one of the intervals
[ai -1, a; l, 1 ::: i ::: n, the argument above shows that the optimal solution Q* is one of those
Qis that satisfy

~(Q) - X(Q) = O.

Letting s* = s(Q*) and S* = s(Q*) + Q*, and applying Lemma 3 and (9), we complete the
proof of Theorem 3.

5. Optimal policy

Some preparations are needed to prove our main result. First, we introduce some notation.
Let (Si, Si) be the control parameters that minimize

~(Ki + IsS G(z) dz)
Yi(S,S)=Ci~+ S

-s

under the constraint S, - s, E [ai-I, ail, and let Qi = S, - si, By Lemma 4(i)-(iii) and
K 1 < K 2 < . . . < K n» we have

QI < Q2 < ... < Qn.

Also, on account of the decreasing property of s(Q) and the increasing property of s(Q) + Q
as proved in Lemma 3, it holds that

sn < Sn-l < ... < SI < y* < SI < S2 < ... < Sn.

Let Yi be the corresponding minimum objective function value, i.e.

Yi = min y(s(Q), Q).
QE[ai-l,ai]

Moreover, denote

Y = min {Yi} = Yi*,
iE{l,2, ... ,n}

(12)
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S* = S(Qi*), S* = S(Qi*) + Qi*. (13)

In the rest of this section, we prove that the (s*, S*) defined in (13) is an optimal policy for
our original problem among the class of policies \II of Section 2. This is done in two steps. First,
we define a value function v and prove that the (s*, S*) policy is optimal among all policies
of \II that are in \IIv (see (5)). Secondly, we prove that if a policy of \II is not in \IIv, then its
average cost is equal to 00; hence, it is worse than policy (s", S*).

Define a value function v by

vex) =

For convenience, we let

Then, for x E lR, we have

LX (-f + G(Y)) dy for x ::: Sn,

(-f+G(sn))(x-sn) for x <Sn.

G(x) = lG(X) for x 2:: Sn,
G(sn) for x < Sn.

v'(x) = _l:. + G(x). (14)
j.,t

We now prove that the policy (s", S*) given by (13) is optimal among all policies in \IIv. By
Theorem 2, it suffices to show that v and y defined in (12) satisfy Theorem 2(i) and (ii), which
we verify next.

First, from (14) it is easy to see that v'is continuous at x = Sn; hence, v'is continuous in
x E lR, and that v" (x) is continuous except at point x = Sn.

Next, we verify Theorem 2(i). Note that G defined by (3) satisfies

0'2
TG/(x) - j.,tG(x) + hex) = O. (15)

To check Theorem 2(i), we apply (15) to obtain, for x ~ Sn,

rv(x) + h(x) = ~2 G'(x) - JL(-f + G(X)) + h(x) = y.

For x < Sn, we have

0'2
rv(x) + hex) = y - j.,tG(Sn) + hex) = y + j.,t(G(x) - G(sn)) - TG/(x) :::: y,

where the second equality follows from (15), and the inequality follows from the fact that G is
quasi-convex and that x < Sn ~ y*.

To verify Theorem 2(ii), we first note that for any i E {I, ... , n} and x - y E [ai -1, ai], if
Y < Sn then we have

j.,t(Ki + f; G(z) dz) j.,t(Ki + fs(Sn+(X-y»/\Sn G(z) dz)_______ > n

X - Y (sn + (x - y)) /\ Sn - Sn

j.,t(Ki + fs~n+(X-Y»/\Sn G(z) dz)

(sn + (x - y)) /\ Sn - Sn
(16)
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where a /\ b = min{a, b} for any numbers a and b. To see why this holds, we consider two
cases separately: i E {I, ... , n - I} and i = n. First, for i E {I, ... , n - I}, we have
x - y :::; ai :::; an-I:::; Sn - Sn; hence, (sn+ (x - y» /\ Sn = Sn + (x - y) and G(XI) :::; G(X2)
for Xl E [Sn, Sn] and X2 ¢ [sn, Sn]. For an illustration, see Figure 3. Secondly, for i = n, if
Sn - Sn ::::x - y, then the proof is similar to that when i E {I, ... ,n - I}. If Sn - Sn < X - y,
then it follows from Remark 2 that ~(Sn - sn) :::: K n, i.e.

Thus, we have

JL(Kn + f; G(z) dz) JL(Kn + t: G(z) dz + G(sn)((x - y) - (Sn - sn»)___~ > n

x-y x-y

JL(Kn + fsSn G(z) dz)
> n

- Sn - Sn '

where the first inequality follows from Sn-Sn < X - Y ~nd G(xd :s G(x21 for xj E [sn, Sn]and
X2 ¢ [sn, Sn], and the second inequality follows from G(sn) :::: JL(Kn+ fs

n

n G(z) dz)/(Sn -sn).
This shows that (16) is indeed satisfied.

Therefore, for any i E {I, ... , n} and x - y E [ai -1 , ai], we have

JL(Ki + fX G(z) dz) JL(Ki + fs(Sn+(X-Y))ASn G(z) dz)
c·~+ Y >c·~+ n _

I X - Y - I (Sn + (x - y» /\ Sn - Sn

. JL(Ki + f; G(z) dz)
::::Ci~+ mm

x-yE[ai-l,a;] X - Y

=Yi, (17)

where the first inequality follows from that if y < Sn, (16) holds and (sn + (x - y» /\ Sn - Sn E

[ai -1 , ai] when x - y E [ai -1 , ai], i E {I, ... , n}. For any x :::: y, there exists an i E {I, ... , n}

\G(x)
\

\

G(x)

FIGURE 3: Relationship between G(x) and G(x).
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such that x - y E [ai-I, ail, and c(x - y) = K, + Ci(X - y). We have

v(x) - v(y) + c(x - y) =iX

(v' (z) + Ci) dz + K,

=i X (-f+ G(z) +Ci) dz + x,

l
X

( - )
Yi -

:::: y - JL + G(z) + c, dz + K,

(
s, + J; G(z)dz Yi)

= (x - y) Ci + - -
x-y IL

~ 0,

921

where the second equality follows from (14), the first inequality follows from the definition
of Y, and the last inequality follows from (17). Thus, Theorem 2(ii) is proven to hold.

Tocomplete the proof that policy (s", S*) is optimal among all policies in \IIv , by Theorem 2
we need to verify the condition that the inventory process of any policy cp E \IIv satisfies
lEx[J[ (v'(Z(t)))2 dt] < 00. Note that v'(x) = -Y IlL + G(x) and it can be easily shown
that when hex) is polynomially bounded with degree m then so is G(x). That is, there exist
constants al and a2 such that Iv'(x)1 :s al + a2/x/m. For a policy cp for which there exists
an MqJ such that it does not order whenever the inventory level is at or above MqJ' the inventory
process is bounded between two processes: one is obtained by raising the inventory level to Mq;
whenever the inventory drops below it, and the other is to not order anything. Call these two
inventory level processes Z(t) andZ(t), respectively. Then, for all t ~ 0, Z(t) :s Z(t) :s Z(t).

Hence,
IZ(t)1 :s IZ(t)1 + IZ(t)l. (18)

Y E lR,

It is obvious that Z(t) is the Brownian motion process x - ILt + a B(t), and Z(t) is the
regulated Brownian motion process with a single barrier, which has a steady state distribution
that is exponentially distributed; see [6, Sections 1.9 and 2.2] for the definition and analysis of
regulated Brownian motion, and [6, Equation (1), Section 3.6] for its exponential steady state
distribution. Applying these results, we obtain

IP'CZ(f) ::: y) = <I> ( - (y : ~ - JLf ) ,

IP'(Z(f) > y) = <1>( -y +;:;! -JLf) + e-A(y-MI') <I> ( -y - ;:;! + JLf). Y :::: Mrp,

where <I> (.) is the standard normal distribution function; see [6, p. 49] for the distribution
of Z(t). Then, we have lEx[J[ IZ(t)1 2m dt] < 00 and lEx [JoT IZ(t)1 2m dt] < 00. These results
together with (18) and Iv'(x)1 :s al + a2lx/m imply that lEx [JoT (v'(Z(t)))2 dt] < 00 for any
T ~ o.

We finally show that if a policy cp E \II is not in \IIv then its average cost is equal to 00;
hence, it cannot be better than policy (s", S*). This concludes that policy (s", S*) is optimal
among all policies in \II.

Consider a policy cp E \II \ \IIv with inventory process {Z(t); t ~ OJ. Because cp E \II, there
exists some large MqJ such that cp never orders when the inventory level is at or above MqJ.
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By assumption, we have liminfT~oo lEx[v(Z(T))]jT > 0; thus, there exist TO and a > 0
such that for all t > TO, lEx[v(Z(t))] > at. For an arbitrary t ~ TO, we have

JEx[v(Z(t))] = JEx[v(Z(t)) l{z(t»MqJ}] + JEx[v(Z(t)) l{sn<Z(t)~MqJ}]

+ JEx[v(Z(t)) l{Z(t):SSn}]

::s lEx[v(Z(t)) l{z(t»MqJ}] + sup v(z) + lEx [v(Z(t)) l{Z(t)~Sn}].
sn<z~MqJ

Clearly, M(t) = Z(t) l{z(t»MqJ} represents the part of the process Z(t) that is above Mcp.

Recall that Z(t) ::s Z(t) for all t ~ 0 and Z is the regulated Brownian motion process with a
single barrier Mcp, which has exponential steady state distribution. As limx~oo G(x) = 00 in
Lemma 2 and v' (x) = -9 j ~ + C(x), when Mcp is large enough we have v' (x) >0 for x >
Mcp. Then, lEx [v(Z(t)) l{z(t»MqJ}] :::; lEx[v(Z(t)) l{Z(t»MqJ}] < 00, where the last inequality
follows from the fact that v is polynomially bounded. Let a3 = lEx[v(Z(t)) l{z(t»Mcp} and
a4 = suPs <z<M v(z), then by lEx[v(Z(t))] > at, we obtainn _ qJ

at < a3 + a4 + lEx [v(Z(t)) l{Z(t)~Sn}].

On Z(t) ::s Sn, v(Z(t)) = -AZ(t) + B. If A ::s 0 then -AZ(t) + B ::s -Asn + B; hence,

JEx[v(Z(t)) l{Z(t)~Sn}] ::s -Asn + B.

It follows that, for large t,

Thus, we must have A > O. We have

IEx[v(Z(t)) l{Z(t):SSn}] = -AIEx[Z(t) l{Z(t)~Sn}]+ BJP>{Z(t) ::s sn} > at - a3 - a4·

Consequently,

where as and a6 are some constants with as > o.
On the other hand, Assumption 1(v) implies that the existence of constant p > 0 and q such

that h (x) ~ - px + q for all x. Hence, applying these results, we obtain

1 iTCavg(X, cp) ~ lim sup - lEx [h(Z(s))] ds
T~oo T TO

1 iT~ lim sup - lEx [h(Z(s)) l{Z(S)~Sn}]ds
T~oo T TO

1 iT~ lim sup - (-plEx[Z(s) l{Z(S):::;Sn}] + qJP>{Z(s) ::s Sn}) ds
T~oo T TO

1 iT~ limsup- (a7S -as -q)ds
T~oo T TO

= 00,

where a7 = asp, as = aep, This shows that policy cp cannot be better than policy (s", S*).
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To summarize, we have shown that among those policies of \II that are in \IIv , an optimal
policy is the (s", S*) identified, and any policy of \II that is not in \IIv has an average cost equal
to 00. It follows that the (s", S*) policy is optimal among all policies in \II, completing the
proof of Theorem 1.

6. General quasi-convex cost

In this section we provide the technical details for the case when G(·) is weakly quasi­
convex. Specifically, we give a rigorous definition for s (Q) and prove its properties stated in
Lemma 3. All other results follow the same lines of analyses as before.

For convenience, for a closed bounded interval A, we use min A and max A to denote the
minimum and maximum points of A. Let g = minx G(x) and Ao = arg min, G(x). For any
g > 0, we define -

A g = Ag,l U Ag,r,

where Ag,l = {x < min An: G(x) = g+ g}, Ag,r = {x > max An; G(x) = g + g}. Since
G(x) is continuous quasi-convex andlimx--+±oo G(x) = 00, Ag,l and Ag,r both exist and
are bounded closed intervals. Similarly, we can show that for any g' > g, if xI E Ag',l and
x; E Ag,l' then x; < xi; and if x; E Ag',r and Xr E Ag,r, then x; > xr.

Let y* = (max Ao+ min Ao)/2. For Q = 0, we define g(Q) = 0; and for any Q > 0, we
define g(Q) by

g(Q) = {g ~ 0: there exists xi < y*, x; > v",
such that x, - xi = Q, g + ~ = G(XI) = G(xr)}.

Since G(x) is a continuous function, g(Q) is never empty. Besides, we can show that g(Q)

is a single-valued function. If not, then we have xi, X; < min Ao, x-, x; > max Ao with
Xr - xi = Q, X; - X; = Q, and G(Xl) = G(xr) = g + ~ < g' + ~ = G(x;) = G(x;).

By the quasi-convexity of G(·), xI < xi and x; > xr, which contradicts the condition that
x; - x; = x; - x; = Q. Therefore, g(Q) is a function and, according to the argument, g(Q) is
nondecreasing. We note that g(Q) is not a one-to-one function, i.e. for Ql 1= Q2, it is possible
that g(Ql) = g(Q2). Finally, we show that g(Q) is continuous, since if not, there is a Q

such that limQ'--+Q+ g(Q') > limQ'--+Q- g(Q'). For any g such that limQ'--+Q- g(Q') < g <
limQ'--+ Q+ g(Q'), since Ag,l and Ag,r are not empty, there exists Q such that g(Q) = g, which
is again a contradiction. Thus, we conclude that g(Q) is continuous.

For g > 0, we further define

qg = min{Ag,r} - max{Ag,l}, Qg = max{Ag,r} - min{Ag,l}.

We note that if IA g,z1 and IAg,rl (1·1 is the length of the interval) are equal to 0, then qg = Qg.

Also, we define s; = max {x; x E Ag,l} and S; = min{x; x E Ag,r}.
We define the function s(Q) as

if Q ::; IAol,

if Q > IAol and IAg(Q),11 = IAg(Q),rl = 0,

otherwise, (19)

where
IAg,11

p= .
IA g,z1 + IAg,rl
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We now prove that seQ) is a nonincreasing function of Q. For any Q1 < Q2, if g(Q1) =
g(Q2), according to the definition of seQ), then S(Q2) ~ S(Q1). Otherwise, g(Q2) > g(Q1)
then A g(Q2),Z is to the left of Ag(Q}),l as discussed before; thus, S(Q2) < S(Q1). Next, we
show that seQ) is continuous. Since seQ) has been shown to be nonincreasing, if seQ) is
not continuous then there exists Q such that limQ/~Q- seQ') > limQ/~Q+ seQ'). For any
s' E (limQ/~Q- seQ'), limQ/~Q+ seQ')), let g = G(s') -~: If IA g,L1 = IAg,rl = 0, then
Q = S;-s; makess(Q) = s', Otherwise, ifs' E Ag,i then by(19), there exists a Q E [qg, Qg]
such that s (Q) = s'. This leads to a contradiction to the assumption that s (Q) is not continuous.
Therefore, seQ) is continuous. See Figure 4 for an illustration of seQ).

Next we show that seQ) + Q is a nondecreasing function of Q. Instead of working on
seQ) + Q directly, we define SeQ) similarly to seQ), and show that seQ) = seQ) + Q. The
definition of S(Q) is

{

y* +!Q
SeQ) = S;(Q)

S;(Q) + (1 - p)(Q - qg(Q))

if Q ~ IAol,
if Q > IAol and IAg(Q),zl = IAg(Q),rl = 0,

otherwise.

We note that when Q > IAol, we have IAg(Q),zl = IAg(Q),rl = 0, S;(Q) E Ag(Q),r, and
s;(Q) E Ag(Q),z,so by the definition of Ag(Q),z and Ag(Q),r, it follows that SeQ) - seQ) = Q.
Otherwise, when Q > IAol, IA g(Q),L1 1= °or IAg(Q),rl 1= 0, we have

SeQ) - seQ) = S;(Q) + (1 - p)(Q - qg(Q)) - s;(Q) + p(Q - qg(Q))

= (S;(Q) - s;(Q)) + (Q - qg(Q))

= qg(Q) + Q - qg(Q)

= Q,

and lastly, when Q ~ IAol, SeQ) = seQ) + Q is easy to show. Hitherto, we have shown that
seQ) = seQ) + Q. Thus, seQ) is continuous since seQ) is continuous.

The proof for SeQ) to be nondecreasing is a counterpart of seQ) being nonincreasing, and
it can be proven similarly.

G(x)

Q

I
I

I
I
I

g :
I
I

I
I

-------~----t---------- ------ £

*s
s(Q) g

~
Ag,l

FIGURE 4: Illustration of s(Q).

Sg
S(Q)
~
Ag,r

x
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