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INJECTIVES IN FINITELY GENERATED 
UNIVERSAL HORN CLASSES 

MICHAEL H. ALBERT' AND ROSS WILLARD2 

Abstract. Let K be a finite set of finite structures. We give a syntactic characterization of the 
property: every element of K is invective in ISP(K). We use this result to establish that 4 is 
invective in ISP(s) for every two-element algebra i. 

?0. Introduction. Let K be a finite set of finite structures for a first-order language. 
In this paper we give a syntactic characterization (Theorem 4) of the property that 
each member of K is infective in ISP(K), the universal Horn class generated by K. We 
then show that K = {J} has this property for every two-element algebra J. 

This paper was motivated by the following question: for which two-element 
algebras J does ISP(.4) have the amalgamation property? The property stated 
above is stronger than the amalgamation property, so the answer is: for every two- 
element algebra. 

Model companions appear in Lemma 1. For their definition and elementary 
properties see [8], but note that we replace a theory by its class of models. Theorem 
9 rests on E. Post's classification [9] of all two-valued clones of operations, a 
summary of which appears in [7]. 

The results of ?1 are joint work of the authors, the individual contributions being 
inextricably combined but of equal magnitude. ?2 is due to R. Willard, and the 
details of ?3 were also worked out by R. Willard based on an explanation of the 
results in [1] given by M. H. Albert. 

?1. The syntactic characterization. Let M be a class of structures for some first- 
order language. The classes I(M), S(M), P(M) and Pfin(M) are the closures of M 
under isomorphism, substructures, products, and finite products respectively. Mfin 
is the class of all finite members of M. Arrows and hooked arrows between members 
of M denote homomorphisms and embeddings respectively. A member 9 of M is 
invective in M if every diagram 1 (a) in M can be completed to a commuting diagram 
1(b). 
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1(a) 1(b) 

Mini denotes the class of all members of M which are invective in M. We say that 
M has enough injectives (El) if M c IS(Min'), and that M has the transferability 
property (TP) if every diagram 2(a) in M can be completed in M to a commuting 
diagram 2(b). 

cSC >eX uV >,4 

2(a) 2(b) 

REMARK. El implies TP, and P(Min,) n M Mini. 
A first-order formula is existential-positive (3+) if it is both existential and 

positive; likewise open-positive (0). A &at formula is a conjunction of atomic 
formulas; an 3&at formula is one of the form ]9 /(f) where 0 is &at. We say that M 
has the property ]+-O- if every 3+ formula (in the language of M) is equivalent 
modulo M to an O formula; likewise ]&at _ &at. 

REMARK. ]&at _ &at implies ]= 0; if Pfin(M) c IS(M), then M has ]_ 
iff it has ]&at _ &at. 

A member a? of M is algebraically closed in M if for every a4 E M, every 
embedding a: sa c+ M, every 3+ formula +(X)3 and all a E A, # 4(c(ad) implies 
a? 4 +(a). The class of all members of M which are algebraically closed in M is 
denoted M". 

We first establish some connections between Mini, Mac ]3+ _ 0+ and TP. 
LEMMA 1. Let M be a universal class. 
a) If there is a class N such that M = IS(N) and N has 3+--0+, then M has TP. 
b) The converse is true if M has a model companion. 
PROOF. a) This is a consequence of Theorem 2.1(c) of [2]; however, we prove it 

directly. Suppose that we have the following diagram in M: 

hi 

Choose fi: X c+ A' e N and y: W c+ Vt e N. Suppose that /(x, y5) is an O+ formula, a 
E X, b E X and X k1= 0(oa, b). Pick an O+ formula #(xi) such that N 1 -* i/. 

3In order to avoid annoying exceptions, we reserve the symbol x (but not 9) for nonempty tuples of 
variables, i.e. n-tuples for n 2 1. Otherwise, our notation is standard. 
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Then A' # ]- 9(4fla-, ), so AR' # (fla), t/ (a) and W' # /(yha-); hence W' # 
] 4(yhal, 9). It now follows by compactness that there is an elementary extension 
9 of V' and a homomorphism g: X 9 such that g , a = (incl a y) a h, as desired. 

b) Let N be the model companion of M. All we need to know is that N is 
elementary, N c Mac, and M = IS(N). Let ?(x~) be an 3+ formula. If N -mI ?(x) 
then clearly N # +(x Or(x., 9), where *(x, 9) is the matrix of +(x). Otherwise we 
use the following variation of Lemma 3.2.1 in [6]: if N is elementary and ?(x~) is a 
formula such that N V-- m +(x), then 0 is equivalent modulo N to an O' formula iff 
for all a?, X E N, all a E a?, and every homomorphism h from < a-> (= the 
substructure of J generated by a) to X, a? # /(d) implies X # 0(ha). 

Suppose that in our case we have the diagram below, with a? , E N: 

< _ > C n > S9t(/J(a) 
he 

Since M has TP there are W E M, a: M cp W, and g: v -* W such that g a incl = , a h. 
Then W # 0(ga), i.e., W # /(oha-) and hence X # #(ha) as desired, since 0 is 3+ and 
X E Mac 

LEMMA 2. Let M be a universal class and let N be a class such that M = IS(N) and N 
has 3] O+. Then 

a) N c Mac, and 
b) Mac has 3] _ O'. 
PROOF. a) Let a? E N. Given a: a? cp 4 E M, find f3: 4 cp W E N. If ?() is 3+, a 

E J and X # /(oa-), then W # 0(flxa). Clearly NaC = N since N has 3] = -O; hence 
a? t- +(a). 

b) Let p, / be 3], O' formulas respectively such that N #-- ?r. An argument 
like the previous one yields Mac = + Q. 

LEMMA 3. Let M be a class of structures. 
a)Mini Mac. 
b) (Mac)fin C M' if M has TP. 
PROOF. a) Let a? E Mini. Given a: a? cp 4 E M, use the infectivity of a? in the 

diagram 

i ' x, tj 

b) Suppose W E (Mac)fin and we have the following diagram in M: 

he 

As in the proof of Lemma 1(b), for every 3' formula ?(x) and all a E /,4 X 0(#4d) 
implies W # #(ha). As in the proof of Lemma 1(a), it follows that there is an 
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elementary extension Q of q and a homomorphism g: X - 9 such that g o a 
incl o h. But e6 is finite, so 9 = W6 as desired. 
We now establish the main result of this section. 
THEOREM 4. Let K be a finite set of finite structures. Then K c ISP(K)in' iff K has 

]&at -&at. 
PROOF. (a). Suppose that K c ISP(K)ini. Then P(K) c ISP(K)in' by the first 

remark of this section, so ISP(K) has El and hence TP. ISP(K) has a model 
companion [5]; thus by Lemmas 1(b) and 2(b), ISP(K)'C has ]+-O0 and hence 
]&at -&at (see the second remark). It remains to note that K c ISP(K)aC by 
Lemma 3(a) and the hypothesis. 

(a). Suppose that K has ]&at _ &at. Then P(K) does likewise (since, if 0 and / 
are ]&at, then Vx/(0() *x-* 0()) is equivalent to a Horn sentence and so is preserved 
under products). Thus ISP(K) has TP by Lemma 1 (a), K c (ISP(K)ac)fin by Lemma 
2(a), and (ISP(K)aC)fin c ISP(K)in' by Lemma 3(b). 

?2. A transfer theorem. In this section we reformulate Theorem 4 in the style of 
clones and use this reformulation to prove a transfer theorem (Corollary 5). 

Let K be a finite set of finite structures for a first order language. K denotes the set 
of universes of the members of K. We say that K is regular if no two members share a 
common universe. We wish to compare regular sets K and K', not necessarily for the 
same language, such that K = K'. The insistence on distinct universes is simply to 
ensure that there is, in this case, a natural 1-1 correspondence between the structures 
of K and those of K'. 

Let K be any finite set of nonempty finite sets. An n-ary operation (relation) on K is 
a map with domain K which assigns to each A E K an n-ary operation (relation) on 
A. We use C9K (SK) to denote the set of all n-ary operations on K, n > 0 (all n-ary 
relations on K, n ? 1). We distinguish an operation f from its graph (which is a 
relation). ?K is the (disjoint) union of (OK and SK. 

Let K be a regular set of structures for some language. LK is the set of operations 
and relations on K defined by the symbols in the language; thus LK ' ?4. 
Conversely, any L ' SK can be considered as a language (in the obvious way) which 
has a natural interpretation in K. The regular set of L-structures so obtained is 
denoted KL. 

Fix K. For f E p9K, graph(f) denotes the graph of f. If c is a constant (nullary 
operation) on K, then c denotes the unary operation on K defined by c(x) c. 
Define Su(YIK) to be the set of subsets of ?K. We define the maps C, C&at, and C]&at 
from Su(YK) to Su(YK) as follows. For L ' ?K, f E (9K, p E SKI and constant c Ec OK: 

p E C&at(L) if p is definable in KL by a &at formula; 
f E C&at(L) iff graph(f) E C&at(L); 
C3&at is defined similarly; 
p E C(L) iff p E C&at(L); 
f E C(L) if f is definable in KL by an L-term, provided that the arity of f is not 
zero; 
c E C(L) iff c(x) E C(L). 
It is straightforward to show that these maps are monotone increasing, L _ C(L) 

_ C&at(L) c C3&at(L) for all Lc YK, C3&at is idempotent and C&atC = C&at. 
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Theorem 4 now has the following reformulation: for any regular K, K c ISP(K)"i 
iff C3&at(LK) = C&at(LK). From this we deduce 

COROLLARY 5. Let K and K' be regular sets of structures (not necessarilyfor the 
same language) such that K = K'. Suppose that LK C C(LK') and LK' C C3&at(LK). 
Then K c ISP(K) in implies K' c ISP(K')ini. 

PROOF. Let L = LK and L' = LK'. By Theorem 4 we have C3&at(L) = C&at(L), 
and we must show that C3&at(L') c C&at(L'). First, monotonicity yields C3&at(L') 
c C3&at(C3&at(L)). By idempotence and the sentence above, this last equals 
C&at(L). Finally C&at(L) c C&at(C(L')) = C&at(L'). 

REMARK. It is clear from the proof that the condition LK C C(LK') can be replaced 
by the more general (but less wieldy) C&at(LK) ' C&at(LK'). 

We close this section by stating a trivial transfer result. 
LEMMA 6. Suppose that K is a regular set of structures, c is a constant on K, and Kc is 

the set of expansions of the members of K to include c. 
a) If K c ISP(K)in' then Kc 'ISP(K,)inj. 
b) The converse is true if the automorphism group of each member of K is transitive. 

?3. Application to two-element algebras. In this section we prove the claim that 
SI E ISP(S/)inj for every two-element algebra a?. Our method is to use Corollary 5 
and Lemma 6 to reduce the case of an arbitrary two-element algebra to cases for 
which the claim is already known to be true. We start with Post's classification of the 
clones of operations on the set 2 = {0, 1} as presented in [7]. 

We write (92 for (,{2}, etc.; V, A, _, 0, 1, are the Boolean operations on 2. Define 
x y := (m x) v y, (x, y, z):= x A (y v z), d3(x, y, z):= (x A y) v (x A z) v (y A Z), 
and RC(x, y, z):= d3(x, y, - z). The group operation on 2 with identity 0 is +. For L, 

L (92 we write L _ L' if L and L' generate the same clone; that is, C(L) c ( 
- C(L') r (92 

Lemma 6(a) has a number of obvious applications including, for example, L1 = 

{+,I}-{+,1} reducing to {+} = L3 and C3 = {+, A}={v, A,RC,0} 
reducing to { v, A, RC} C4. Lemma 6(b) can be applied to subsets of {d3, 
x + y + z,I }; for example [1], D2 = {d3} reduces to {d3,0} ={(x, y,z), d3,O} = 

and D1 = {d3, x + y + z} reduces to {d3,x + y + z,} -{, A } = C3. Finally, 
[1] shows that { A, V } c C&at({ }) n C&at({(X, y, z)}) and RC e C&at({ A, v }), from 
which we deduce 

LEMMA 7. For any L c C({ v, A,RC}), L u {} reduces to {->} = F4 and 
L u {(x, y, z)} reduces to {(x, y, z)} = F6. 

PROOF. Consider L u {-+}. We establish the hypothesis of Corollary 5; that is, 
{-+} I C(L u { >}) and L u {} ' C3&at({4}). It suffices to show that L c 

C3&at({ > }), and indeed 

L ' C({ V, A, RC}) c C(C&at({ V, A })) c C(C&a(C&at({4}))) 

C(C3&at )3({_}) 
= C 3&at({ 

}) 
D 

The preceding reductions allow us to reduce an arbitrary clone of ()2 to one of the 
following (or a dual): 0, {- }, { + }, { v }, {(x, y, z)}, { -- 
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LEMMA 8. {(x,y,z)} and {-} reduce to { V, A 
PROOF. It suffices to reduce {(x, y,z)} to { v, A } and {a} to { V, A, I}. We use the 

remark following Corollary 5. Thus in the first case we must show that 
C&at({ V, A }) e CQat({(x, y, z)}) and {(x, y, z)} e C3&at({ V, A }). The latter inclu- 
sion is immediate. Concerning the former, note that every atomic { V, A }-formula is 
equivalent (in 2) to a conjunction of formulas of the form 

Axj ? VAYjk. 
i j k 

Since A is an {(x, y, z)}-term, it suffices to show that each x < Yi v y v y is 
definable (in 2) by a &at {(x, y, z)}-formula. Indeed for n > 2 

x <Y Vl .. v Yn iff (xv 1JX,Y2,(. (x, Yn - l, Yn ... x- 

The proof for {I} is similar: v and 1 are {}-terms, and 

X1 A A Xn < Y PT (XI y) V V (Xn _-+y) = 

We can now prove 
THEOREM 9. c- ISP(./)"i' Jor every two-element algebra d. 
PROOF. ISP(<2, V, A }>) is the class of distributive lattices; it is known that the 

two-element lattice is infective there [3, p. 113]. The situation is the same for 
ISP(<2, { V }>), the class of semilattices [4]. ISP(<2, { + }>) is the class of vector 
spaces over the two-element field, and hence every member is infective by elementary 
linear algebra. The claim can be checked directly for ISP(<2, {-i }>) and for 
ISP(<2, 0>). All other cases reduce to these by the previous results of this section. 

We conclude this paper with an application to varieties generated by two-element 
algebras. 

COROLLARY 10. Every variety generated by a two-element algebra has EL. 
PROOF. Let 1 be a two-element algebra and V(vl) the variety it generates. Since 

V(S) has, up to isomorphism, only finitely many subdirectly irreducible members 
[10], it suffices, by Birkhofl's theorem and the first remark of ?1, to show that every 
maximal subdirectly irreducible member of V(v) is infective in V(v). 

If V(v) is simply ISP(V/) together with trivial algebras then the claim follows by 
Theorem 9. It is known (e.g. [10]) that there are only a handful of exceptions to this 
situation: those / whose clones are generated by one of the following sets: {O, 1}, 
j{ }, {,O}0, { +, 1 }, and {x + y + z, }. The claim can be verified directly in each of 
these exceptional cases. 
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